高中数学必修第一册课件:集合的概念

合集下载

2024-2025学年高一数学必修第一册(北师版)教学课件第一章-§1集合-1.1 集合的概念与表示

2024-2025学年高一数学必修第一册(北师版)教学课件第一章-§1集合-1.1 集合的概念与表示
律显示清楚后,才能用省略号表示,如N+也可表示为{1,2,3, ⋯ , , ⋯ }.
高中数学
必修第一册
北师大版
2.描述法
描述法是通过描述元素满足的条件表示集合的方法.
一般可将集合表示为{x及x的范围|x满足的条件},即在花括号内先写出集合中元素的一般符号及范围,再画一条
竖线“|”,在竖线后写出集合中元素所具有的共同特征.
第一章
§1
集 合
1.1
集合的概念与表示
高中数学
必修第一册
北师大版
学习目标
1.通过实例,了解集合的含义,理解元素与集合的“属于”关系.
2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.
3.在具体情境中,了解空集的含义.
核心素养:数学抽象
高中数学
必修第一册
北师大版
新知学习
情境导学
高中数学
必修第一册
北师大版
典例剖析
一 集合的概念
例1
给出下列各组对象:
①我们班比较高的同学;②无限接近于0的数的全体;③比较小的正整数的全体;
④平面上到点O的距离等于1的点的全体;⑤正三角形的全体;⑥ 2 的近似值的全体.
其中能够组成集合的有( B )
A.1个
B.2个
C.3个
D.4个
分析:判断一组对象能否组成集合,就看判断标准是否明确.
(2)解:①将x=0代入方程,得02-a×0-5=-5≠0,所以0不是集合A中的元素;
②若-5∈A,则有(-5)2-(-5)a-5=0,解得a=-4.
③若1∉A,则12-a×1-5≠0,解得a≠-4.
(3)解:是.因为-6+2 2=3×(-2)+ 2×2,此时a=-2∈Z,b=2∈Z,所以-6+2 2是集合A中的元素.

高中数学新教材《1.1 集合的概念》公开课优秀课件(好用)

高中数学新教材《1.1 集合的概念》公开课优秀课件(好用)

①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?
四、集合的表示
立德树人 和谐发展
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x的所有实数根组成的集合;
(3)由1~10以内的所有质数组成的集合.
思考?
立德树人 和谐发展
(1)你能用自然语言描述集合{2,4,6,8}吗?
(2)你能用列举法表示不等式 x 7 3 的解集吗?
(2)描述法 用集合所含元素的共同特征表示集合的方法称为描述法. 例2 试分别用列举法和描述法表示下列集合:
四、集合的表示
立德树人 和谐发展
描述法
列举法
A={x R | x2 2=0 } B={x Z | 10<x<20 } C={x | x=2n,n N }
A { 2, 2}
B={11,12,13,14,15,16,17,18,19 }
有限集通常用列举法来表示 无限集通常用描述法来表示
六、小结归纳
(1)方程x2 2 0 的所有实数根组成的集合;
(2)由大于10小于20的所有2 0的实数根为 x ,并且满足条件
x2 2 0 ,因此,用描述法表示为
A x R | x2 2 0
方程 x2 2 0有两个实数根 2, 2,因此,用列举法表

高中数学必修一1.1集合 PPT课件

高中数学必修一1.1集合 PPT课件
记作: A B (或B A) 读作:A 含于 B(或 B 包含 A).
如果 A B,但存在 x∈B,且 xA,我们就说这两个集合有真包含关系,称集合 A 是集合
B 的真子集,记作 A B(或 B A). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
问题3:与实数中的结论“若 a b, 且b a, 则a b
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算 不叫集合的加法,而是叫做求集合的并集.集合 C 叫集合 A 与 B 的并集.记为 A∪B=C,读作 A 并 B.
(1)文字语言:所有属于集合 A 或属于集合 B 的元素所组成了集合 C. (2) 数学符号:C={x|x∈A,或 x∈B}. (3) Venn 图:

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

苏教版(2019)必修第一册 1-1 集合的概念与表示 课件(37张)

苏教版(2019)必修第一册 1-1 集合的概念与表示 课件(37张)
(1)确定性:给定的集合,它的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在
这个集合中就确定了.
(2)互异性:一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.任何两个
相同的对象在同一个集合中,只能算作这个集合的一个元素.
(3)无序性:集合中的元素无先后顺序之分.
些对象的全体,而非个别对象.
【示例】中国古代四大发明组成一个集合,那么集合的元素就是造纸术、指南针、火药、印刷术.
二十一世纪中国有新四大发明:高铁、移动支付、共享单车和网购.这四大发明就组成了一个集合.
即时巩固
[多选题]下列所给对象能构成集合的是(AD)
A.平面直角坐标系内到原点的距离等于1的点
B.《高中数学必修第一册》课本上的所有难题
两个集合相等,记作A=B.
【提示】(1)两个集合相等时,其元素个数一定相等.
(2)当两个集合相等时,其元素不一定依次对应相同.
如:集合{1,2,3}与集合{3,2,1}相等.
(3)两个集合是否相等,不能只看形式.
如:不等式0<x<1的解集与不等式 0<y<1的解集是两个相等的集合.
三、集合的表示方法
,即
∈{
}.
2.常用数集及其记法(要牢记)
数学中一些常用的数集及其记法:
全体自然数组成的集合,叫作自然数集,记作N;
全体正整数组成的集合,叫作正整数集,记作N*或N+;
全体整数组成的集合,叫作整数集,记作Z;
全体有理数组成的集合,叫作有理数集,记作Q;
全体实数组成的集合,叫作实数集,记作R.
【提示】(1)N比N*(或N+)多一个元素0;(2)N*中*在右上角,N+中+在右下角.

高中数学人教A版必修1课件:1、1、1集合的含义与表示

高中数学人教A版必修1课件:1、1、1集合的含义与表示
重点:集合的含义及表示方法。 难点:1.对新概念、新符号的理解与区分;
2.集合表示方法的恰当选择。
3
自主学习:
根据自学提纲(知识点),自学P2~3页。 1、元素、集合的概念? 2、集合中元素的三大特征? 3、集合与元素间的关系,符号表示? 4、一些常用的数集及其记法?
4
学生展示:
1、集合、元素的概念 元素 ——我们把研究的对象统称为元素;
平面内两直线的 位置关系有几种?
交集的性质:
A
A B
B
1.A∩A= A ; 2.A∩∅=∅∩A= ∅ ; 3. A∩B ⊆ A,A∩B ⊆B; 4. 如果A⊆B,则A∩B= A反之,
如果 A∩B=A,则 A⊆B .
P11 练习1~3
4.A={(x,y)|4x+y=6}, B={(x,y)|3x+2y=7},求A∩B。
即 A∪B= {x | x∈A,或x∈B}
AB
A
A
BB
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B. 提示:利用韦恩图
A
46
58 37
B
解: A∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3},
思考2:集合{1,2}与集合{(1,2)}相同吗?
集合{y | y x2, x R} 与集合 {y x2} 相同吗? 思考3: 集合{(x, y) | y x2, x R} 的几何意义如何?
y y x2
x o
课堂小结
1.元素与集合的概念:一般地,我们把研究对象统称为 元素,把一些元素组成的总体叫做集合(简称为集); 2.集合元素的三大特征:确定性、互异性、无序性; 3.元素与集合之间的关系:属于(∈)或 不属于(∉) ; 4.数集及有关符号:N、N﹡、N₊、Z、Q、R; 5. 集合的分类:有限集、无限集、空集; 6. 集合的表示方法:列举法、描述法、 Venn图。

高中必修高一数学PPT课件集合

高中必修高一数学PPT课件集合

集合的基本概念(2)
• 观察如下一些集合: • (a) 集合 {1}、{2}、{3}、{1,2}、{2,3}、 {3,1}、{1,2,3} • (b) 以上这些集合与集合{1,2,3}、 {1,2,3,4}分别有什么关系?
• 结论:(a)中集合的元素都在(b)
中的集合之中。
1.子集:对于两个集合A和B,如果集 合A的任何一个元素都是集合B的元素, 那么集合A叫做集合B的子集。




练习三:用描述法写出集合如能 化简并化简为列举法的形式。
• 8.由数字1,3,6中抽出一部分或全部数字 (没有重复)所排成的一切自然数。 • 答:{由数字1,3,6中抽出一部分或全部数 字(没有重复)所排成的自然数}={1,3,6, 13,31,16,61,36,63,136,361, 613,316,163,631}。 • 9.直角坐标系第二象限内所有的点的坐标。 • 答:{(x,y)│x<0,y>0}


• 包含、真包含关系具有传递性(1)如果 C.(2)如果 C,那么A A B,B A B,B C,那么A C. • 3.集合相等:对于集合A,B,C,如果 A B,B A,那么就说这两个集合相等。 记作 A = B.



例1写出集合{a}的所有
的子集及真子集 • 解:集合{a}的所有 的子集是φ,{a},其 中φ是真子集.
10.写出方程组
• 答:方程组
x y 4 y z 5 z x 3
的解ห้องสมุดไป่ตู้。
x y 4 y z 5 z x 3
}
的解集为

• •
x y 4 {(x,y,z)│ y z 5 z x 3

人教版高中数学新教材必修第一册课件 集合的含义与表示

人教版高中数学新教材必修第一册课件 集合的含义与表示

(8)滕州一中2019年9月入学的所有高一学生.
讲集合的描述性定义:我们把研究对象统称为元


:邢启素.把一些元素组成的全体叫做集合(简称为集).

4
学习新知
1、集合的含义:
集合的含义:
把一些确定的研究对象放在一起
作为一个整体,就形成一个 集合.
集合里面的每个对象就称为元素.
确定的对象:任何一个集合它的组成元
素必须是确定的,不能模糊不清.即给定
一个集合,任何一个元素在不在这个集
合中就确定了.





启 强
5
学习新知
1、集合的含义:
说明:
●集合是数学中最原始的概念之一,我们不能用 其他的概念下定义,只能作描述性说明,是不定 义概念,即原始概念,和点、直线、平面等基本 概念及原理构成了整个数学大厦的基石,是从 现实世界中总结出来的.
注:集合的相等:构成两个集合的元素完全一样

7
学习新知
3、元素与集合的表示及它们之间的关系:
1.符号表示
集合常用大写拉丁字母A,B,C,D,……标记, 元素常用小写拉丁字母a,b,c,d,……标记。
2.集合与元素的关系表示:
若a是集合A的元素,就说a属于集合A ,
记作 a∈A ;
若a不是集合A的元素,则说a不属于集合A ,
(3)方程x2-16=0的实数解组成的集合__{_-_4_, _4_}__;
例 2.已知集合 A={-1,x,x+1},若 0 A,
求实数 x 的值
0





启 强
12
学习新知
5、集合的常用表示方法:

人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念

人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念

名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)

其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能

高中数学必修一课件:集合的概念(第2课时)

高中数学必修一课件:集合的概念(第2课时)

4.用列举法表集合A={y|y=x2+1,|x|≤2,x∈Z}=_{1_,__2,__5_} _.
5.已知集合A={m|y=m4 ∈N,m∈N},用列举法表示集合A=_{_1,__2_,_4_}_.
解析
∵m4 ∈N,m∈N,∴
4 m
=1,m=4;
4 m
=2,m=2, m4
=4,m=1.∴A
={1,2,4}.
【解析】 (1)因为x2(x+1)=0,所以可得x2与x+1中至少有一个为0,所以可
得x=0或x=-1,所以解的集合为{0,-1}. (2)全体负整数的集合为{-1,-2,-3,-4,…}. (3)因为a,b为非零实数,①当a,b同正时,原式=2, ②当a,b同负时,原式=-2, ③当a,b一正一负时,原式=0. 所以A={-2,2,0}. (4)由yy= =- x+23x, +6,得xy= =14, . 所以一次函数y=x+3与y=-2x+6的图象的交点为(1,4),所以D={(1,
要点4 非空集合的分类 有限集:含有___有__限_____个元素; 无限集:含有____无_限_____个元素.
1.“列举法只能表示有限集”对吗? 答:不对.当构成集合的元素有明显规律时,可用列举法表示无限集,如 {1,2,3,4,5,…}.
2.集合{x∈N|x3=x}与集合{-1,0,1}相等吗? 答:不相等.因为{x∈N|x3=x}={0,1}.
思考题3
方程组
x-y+1=0, 2x+y-4=0
的解集可以表示为:①(1,2);②{(1,
2)};③{(x,y)|x=1或y=2};④{1,2};⑤(x,y)|xy= =12. 以上正确的是___②_⑤____.
【讲评】 通过本题辨析方程组解集的几种错误写法.

1.1 集合的概念(共2课时)-2024-2025学年高一数学课件(人教A版2019必修第一册)

1.1 集合的概念(共2课时)-2024-2025学年高一数学课件(人教A版2019必修第一册)

所以
1 a 1 2
反思感悟
(1)判断是否能够构成集合,关注能否满足确定性、互异性、无序性; (2)若两个集合相等,则这两个集合的元素相同,但是要注意其中的元素 不一定按顺序对应相等.
跟踪训练2 (1)下列结论中,不正确的是
√A.若a∈N,则-a∉N
B.若a∈Z,则a2∈Z C.若a∈Q,则|a|∈Q D.若a∈R,则a3∈R
a,
b a
,1
a2,a b,0
a2023 b2024

a,
b a
,1
a
2
,
a
b,
0,显然a≠0,

b a
=0,∴b=0
∴ a,0,1 a2, a,0
∵a≠1,
∴a2 1 ∴ a2023 =b-12024
反思感悟
(1)判断是否能够构成集合,关注能否满足确定性、互异性、无序性; (2)若两个集合相等,则这两个集合的元素相同,但是要注意其中的元素 不一定按顺序对应相等.
新知讲解
一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x 所组成的集合表示为_{_x_∈__A_|_P_(x_)_}_,这种表示集合的方法称为描述法. 注意点: (1)写清该集合中元素的代表符号,如{x|x>1}不能写成{x>1}. (2)语言简明、准确,不能出现未被说明的字母,如{x∈Z|x=2m}中m未 被说明,故此集合中的元素是不确定的. (3)所有描述的内容都要写在花括号内,如“{x∈Z|x=2m},m∈N*”不 符合要求,应将“m∈N*”写进“{ }”中,即{x∈Z|x=2m,m∈N*}.
例2 (1)用符号“∈”或“∉”填空:
1__∈__ N*;-2__∉__N;0.4__∉__Z;

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.

人教版高中数学必修一《集合的概念》教学优质课件

人教版高中数学必修一《集合的概念》教学优质课件

思考2:对于一个给定的集合A,那么某元素a与集合A 有哪几种可能关系?
思考3:如果? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用数 学化的语言表达?
a不属于集合A,记作 a A
人教版高中数学必修一《集合的概念 》教学课件(共22张PPT)
情境导入
在电影《唐伯虎点秋香》中,有下面一段场景: 华太夫人带着婢女四香及丫环上山进香,江南四大才子唐伯虎、祝枝山、文征明、
徐祯卿久闻秋香貌若天仙,想一睹芳容,在道旁等候,唐伯虎看过秋香后觉得很普通, 文征明提议一.起喊美女,于是众人齐喊美女,结果华府的婢女四香及丫环全部转过头 来,都以为叫她,也让四大才子从众丫环的美貌中发现了秋的不凡.
知识探究(五)
思考:我们可以用自然语言描述一个集合,除此之 外还可以用什么方式表示集合呢?
考察下列集合: (1)小于5的所有自然数组成的集合; (2)方程 x3 x的所有实数根组成的集合.
思考1:这两个集合分别有哪些元素?
(1)0,1,2,3,4; (2)-1,0,1 思考2:由上述两组数组成的集合可分别怎样表示?
第一章
1.1集合的概念
初中知识回顾
1.实数的分类
整数 有理数
实数
分数
正整数 零 负整数 正分数
负分数
有限小数或循环小数
正无理数 无理数
负无理数
无限不循环小数
2.数轴与绝对值
(1)规定了原点,正方向和单位长度的直线叫数轴。 (2)数轴上的点表示数,右边的点表示的数总大于 左边的点表示的数。
(3)绝对值
中国的直辖市

身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学

人教B版高中数学必修第一册精品课件 第1章集合与常用逻辑用语 集合的概念、集合间的基本关系与基本运算

人教B版高中数学必修第一册精品课件 第1章集合与常用逻辑用语 集合的概念、集合间的基本关系与基本运算

解:∵A∩B={-2},∴-2∈A.
又a2+1>0,∴a2-3=-2,
解得a=±1.
当a=1时,A={-1,2,-2},B={-2,0,2},
则A∩B={-2,2},与A∩B={-2}矛盾.
∴a≠1.
当a=-1时,A={-1,2,-2},B={-4,-2,0},
则A∩B={-2},符合题意.
此时A∪B={-4,-2,-1,0,2}.
答案:(1)B (2)28
个子集.
三、集合的运算
1.(1)A∩B={x|x∈A且x∈B},A∪B={x|x∈A或x∈B},∁UA={x|x∈U且x∉A}.
(2)若A∪B=B,则A⊆B;若A∩B=B,则B⊆A.
(3)(∁UA)∪(∁UB)=∁U(A∩B),(∁UA)∩(∁UB)=∁U(A∪B).
2.(1)若U=R,A=(-6,8),B=[0,+∞),求A∩B,∁UA,(∁UA)∩(∁UB).
(2)已知集合A=(2a,+∞),B=[3,+∞),且A∪B=B,求实数a的取值范围.
解:(1)由题意,得A∩B=[0,8),∁UA=(-∞,-6]∪[8,+∞),A∪B=(-6,+∞).
故(∁UA)∩(∁UB)=∁U(A∪B)=(-∞,-6].
(2)∵A∪B=B,
∴A⊆B,∴2a≥3,∴a≥
∴a的取值范围是
D.9
)
解析:(1)由集合中的元素满足互异性,知集合M中的元素最多有m,n,m2,n2,
且4个元素互不相同.
(2)∵A={0,1,2},B={x-y|x∈A,y∈A},
∴当x=0时,y分别取0,1,2,得x-y的值分别为0,-1,-2;
当x=1时,y分别取0,1,2,得x-y的值分别为1,0,-1;

高中数学集合的概念课件人教版必修一.ppt1.1.1

高中数学集合的概念课件人教版必修一.ppt1.1.1

如果a是集A的元素,记作: a ∈ A 如果a不是集A的元素,记作: a ∉A
例如,用A表示“ 1~20以内所有的整数”组成的集合,则有
4.常见的数集有哪些?分别要怎样来表示?
数集 自然数集(非负整数集) 正整数集 符号
N N* 或N+ Z Q R
整数集
有理数集 实数集
知识探究(一)集合的表示方法 问题1:通过我们对课本的预习,我们知道,课本为我们提供了 哪几种集合表示方法?
B={ x Z 10 x 20 }
用列举法表示为 B= { 11,12,13,14,15,16,17,18,19}
课堂练习 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
(2)在平面直角坐标系中以原点为圆心,横坐标上的点 组成的集合;
(3)所有奇数组成的集合; (4)由数字1,2,3组成的所有三位数构成的集合.
知识探究(三)
思考1:a 与{a }的含义是否相同? 思考2:集合{1,2}与集合{(1,2)}相同吗? 思考3:集合{ y | y x 2 , x R} 与集合 { y x 2 } 相同吗? 思考4:集合 {( x, y) | y x 2 , x R}11,13,17,19}.
2.互异性
3.无序性
问题4:考察下列集合: (1)不等式2 x 7 3 的解组成的集合; (2)绝对值小于2的实数组成的集合.
思考1:这两个集合能不能用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征? 思考3:上述两个集合还可以怎么表示? 思考4:这种表示集合的方法叫什么? 描述法 思考5:描述法表示集合的基本模式是什么? 用集合所含元素的共同特征表示集合的方法.
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。 康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。 康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。 集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一

高中数学必修一集合 PPT课件 图文

高中数学必修一集合 PPT课件 图文

A、1 B、2 C、3 D、4
例题4:已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条
件A⊆C⊆B的集合C的个数为( ) A、1 B、2 C、3 D、4
例题5:若规定E={a1,a2,a3,…a10}的子集{ai1,ai2,…ain}为E的第K个子集,其中
K=2i1-1+2i2-1+…+2in-1,则 (1){a1,a3}是E的第_____个子集; (2)E的第211个子集为________
例题2:已知 A { x 集 |a x 1 合 0 }且 ,1 A ,求 a 的 实 . 值 数 例题3:设 y x 2 a b , x A { x |y x } { a } M , { a , b ) ( 求 } M ., 例题4:已知集A合 {xR|ax2 3x20,aR}.
第二节 集合间的基本关系 —考试题型及要点解析
1、判断两个集合之间的关系
解题要点:考察其中一个集合的所有元素是否全都在另一个集合; 考察其中一个集合是否为空集;
例题1:判断下列两个集合之间的关系:
(1) A={2,3,6},B={x| x是12的约数} ( 2) A={0,1},B={x|x2+y2=1,y∈N}
(1)若A中不含有任何元a的 素取 ,值 求范 . 围 (2)若A中只有一个元a素 的, 值求 ,并把这个出元来 .素写 (3)若A中至多有一个元a的 素取 ,值 求范 . 围
第二节 集合间的基本关系 —知识点总结
1、子集的三种语言
2、空集
(1)空集的概念:不含任何元素的集合,记作_∅__. (2)_空__集__是任何集合的子集, _空__集__是任何非空集合的 真子集.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档