行星与太阳间万有引力

合集下载

第六章 第2、3节 太阳与行星间的引力 万有引力定律

第六章  第2、3节  太阳与行星间的引力  万有引力定律

对万有引力定律的理解
1.对万有引力定律表达式F=Gmr1m2 2的说明 (1)引力常量G:G=6.67×10-11N·m2/kg2;其物理意义为:引 力常量在数值上等于两个质量都是1 kg的质点相距1 m时的相互吸 引力。 (2)距离r:公式中的r是两个质点间的距离,对于质量均匀分 布的球体,就是两球心间的距离。
1 602
g相等,这说明地面物体受地球的引
力、月__球__受地球的引力,以及太阳、行星间的引力,遵从相同的规律。
2.万有引力定律 (1)内容:自然界中任何两个物体都相互_吸__引__,引力的方向在它 们的_连__线__上,引力的大小与物体的质量 m1 和 m2 的_乘__积__成正比、 与它们之间距离 r 的_二__次__方__成反比。 (2)公式:F=_G__m_r1_m2_2_。 (3)引力常量:上式中 G 叫_引__力_常__量__,大小为 6.67×10-11 N·m2/kg2 ,它是由英国科学家_卡__文__迪__许_在实验室里首先测出的,该 实验同时也验证了万有引力定律。
二、万有引力定律
1.月—地检验
(1)目的:验证月球绕地球运动的力与使得苹果下落的力是同一种
力,从而将太阳与行星间的引力规律推广到宇宙中的一切物体之间。
(2)原理:计算月球绕地球运动的向心加速度an,将an与物体在地球 附近下落的加速度——自由落体加速度g比较,看是否满足an=6102g。
(3)结论:数据表明,an与
1 4
,下列办法不可采用
的是
()
A.使物体的质量各减小一半,距离不变
B.使其中一个物体的质量减小到原来的14,距离不变
C.使两物体间的距离增为原来的2倍,质量不变
解D.析使:两选物D体根间据的F距=离G和m质r1m2量2 都可减知为,原A、来B的、14C三种情况中万有

太阳与行星间的引力万有引力定律讲课文档

太阳与行星间的引力万有引力定律讲课文档

地面对物体的支持力 FN 的作用,其合力充当__向__心___力___,FN 的大小等于物体的重力的大小.
(3)其他位置物体的重力随纬度的增加而___增__大____.
第二十六页,共41页。
学习互动
2.重力和高度的关系 Mm
若物体距地面的高度为h,在忽略地球自转的条件下有:mgh=___G__(__R__+_,h)可2得:gh= GM
第八页,共41页。
新课导入
师:开普勒在1609和1619年发表了行星运动的三个定律,解决了描述行星运动的问 题,但好奇的人们,面向天穹,深情地叩问:是什么力量支配着行星绕着太阳做如此 和谐而有规律的运动呢?这节课我们就来认识这些问题.
第九页,共41页。
知识必备
知识点一 太阳与行星间的引力 1.太阳对行星的引力 太阳对行星的引力,与行星的质量m成__正__比____,与行星和太阳间距离的二次方成
Mm 反比,即F=___G___r_2____.表达式中的G是比例系数,其大小与太阳和行星都无关.引力
的方向沿二者的连线.
第十一页,共41页。
知识必备
知识点二 万有引力定律 1.月—地检验 由于月球轨道半径约为地球半径的60倍,所以月球轨道上物体受到的引力是地球上的
1 _6__0_2____.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速
1
A.5
B.5
1 C.25
D.25
第二十八页,共41页。
学习互动
[答案] C [解析] 设海王星绕太阳运行的轨道半径为 R1,周期为 T1,地球绕太阳公转的轨道半径
m __反__比____,即F∝____r__2__.
2.行星对太阳的引力 行星对太阳的引力,与太阳的质量M成______正__比,与行星和太阳间距离的二次方成

万有引力定律与行星运动

万有引力定律与行星运动

万有引力定律与行星运动万有引力定律是牛顿在17世纪提出的一项重大理论,它被认为是自然科学的基石之一。

这一定律能够解释行星的运动规律以及其他天体间的相互作用。

本文将从理论与实践两个方面来探讨万有引力定律与行星运动的关系。

理论方面,万有引力定律表明,两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。

具体而言,如果两个物体的质量分别为m1和m2,它们之间的距离为r,那么它们之间的引力可以用下式表示:F = G・(m1・m2) / r²其中,G为一个常数,被称为引力常数。

通过这个公式,我们可以计算出两个物体之间的引力大小。

万有引力定律的发现对于解释行星的运动规律起到了关键作用。

实践方面,万有引力定律的应用也能够解释行星的运动轨迹,包括行星在椭圆轨道上的运行和行星之间的相对位置变化。

根据牛顿的第二定律,行星受到的向心力与行星的加速度成正比。

而根据万有引力定律,行星受到的向心力又与它与太阳的距离的平方成反比。

将这两个定律结合起来,我们可以得到行星运动的方程。

通过对这个方程进行求解,我们可以得到行星在太阳系中的运动轨迹。

这些轨迹往往是呈椭圆形状的,而且行星在轨道上的运行速度并不是恒定的,它随着离太阳的距离而变化。

这就解释了为什么行星在不同的季节里运动速度有所不同,以及为什么行星在轨道上的运行不会偏离预定轨道。

除此之外,万有引力定律还能够解释其他天体间的相互作用,比如卫星绕地球运动、月球绕地球运动等等。

这些运动都可以通过类似的方法进行计算和分析。

总结而言,万有引力定律是一个可以准确描述行星运动规律的重要理论。

它的理论和实践的应用为人类对宇宙的认知提供了宝贵的信息。

我们可以通过这个定律来解释行星的运动轨迹、相对位置的变化以及其他天体间的相互作用,从而更好地理解宇宙的奥秘。

尽管万有引力定律已经被证实为有效的描述自然界规律的理论,但它仍然存在一些问题和待解决的谜团。

比如,为什么万有引力的作用是如此弱小,为什么宇宙正在加速膨胀等等。

牛顿的万有引力定律行星如何围绕太阳运动

牛顿的万有引力定律行星如何围绕太阳运动

牛顿的万有引力定律行星如何围绕太阳运动在自然界中,行星围绕太阳运动的规律一直以来都是人们感兴趣的话题之一。

而牛顿的万有引力定律为解释行星运动提供了重要的理论依据。

本文将仔细探讨牛顿的万有引力定律以及行星如何围绕太阳运动的机制。

牛顿的万有引力定律是物理学领域中最重要的定律之一,它描述了两个物体之间的引力作用力与它们的质量和距离的关系。

这个定律可以表示为:任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。

我们知道,太阳是太阳系的中心,而行星则是绕着太阳进行运动。

这是因为太阳对行星施加了足够大的引力,使得行星被吸引向太阳。

按照万有引力定律,太阳对行星的引力与行星质量成正比,与行星和太阳之间的距离的平方成反比。

正是由于这个引力的作用,行星在太阳的引力场中遵循一定的轨道运动。

这个轨道被称为椭圆轨道,椭圆的一个焦点是太阳的位置。

椭圆的形状取决于行星离太阳的距离和引力的大小。

根据万有引力定律,当行星离太阳较远时,引力较弱,行星的速度会变慢,轨道呈现出较大的椭圆形状。

相反,当行星离太阳较近时,引力较强,行星的速度会增加,轨道呈现出较小的椭圆形状。

除了椭圆轨道外,行星还会在运动中经历近日点和远日点。

近日点是指行星离太阳最近的位置,而远日点则是指行星离太阳最远的位置。

在行星运动的过程中,行星在近日点附近运动得较快,而在远日点处运动较慢。

除了行星的椭圆轨道和近远日点外,牛顿的万有引力定律还能够解释行星的运动速度和周期。

根据万有引力定律,行星离太阳越近,它围绕太阳运动的速度就越快。

而行星的运动周期则取决于行星的平均距离和太阳的质量。

通过观测和测量行星的运动轨迹、周期以及速度,可以验证并精确计算牛顿的万有引力定律。

这个定律的成功解释了行星围绕太阳运动的机制,并且可以用来预测和计算行星的位置和轨道。

在现代天文学中,万有引力定律为我们理解行星运动以及整个宇宙中的其他天体运动提供了基础。

它不仅解释了行星围绕太阳的运动,同时也解释了卫星围绕行星、月亮围绕地球以及其他更复杂的天体运动。

行星对太阳的引力公式推导

行星对太阳的引力公式推导

行星对太阳的引力公式推导行星对太阳的引力是行星受到太阳引力的作用,根据万有引力定律,引力的大小与两个物体的质量和它们之间的距离有关。

对于行星和太阳这两个天体来说,它们之间的距离是可变的,所以我们需要推导出一个与距离有关的公式来描述行星对太阳的引力。

首先我们假设太阳是一个质点,行星的质量为m,行星与太阳之间的距离为r。

根据万有引力定律,行星受到的引力大小为:F=G*(m*M)/r^2其中,G是万有引力常数,M是太阳的质量。

我们需要推导出一个与距离有关的公式,所以我们需要找到行星质量m与距离r之间的关系。

为了简化推导,我们可以假设行星的轨道是一个圆,即行星距离太阳的距离是不变的。

这个假设是近似的,但在实际计算中是可行的。

根据牛顿第二定律,行星所受到的向心力与它的质量、速度和半径有关。

向心力可以用质量乘以加速度来表示,即:F=m*a行星在轨道上做匀速圆周运动,它的加速度可以表示为:a=v^2/r其中,v是行星在轨道上的速度。

将上面两个公式代入万有引力定律中,得到:m*a=G*(m*M)/r^2化简这个方程,得到:v^2=G*M/r将行星在轨道上的速度表示为圆周运动的速度,得到:v=(2*π*r)/T其中,T是行星绕太阳一周的时间(公转周期)。

将这个速度代入上面的方程中,得到:(2*π*r/T)^2=G*M/r再次化简方程,得到:r^3=(G*M*T^2)/(4*π^2)这个方程描述了行星与太阳之间的距离r与行星质量m、太阳质量M 以及行星绕太阳一周的时间T之间的关系。

为了得到行星对太阳的引力公式,我们将这个方程中的行星质量m替换为行星体积乘以密度m=V*ρ其中,V是行星的体积,ρ是行星的密度。

行星的体积可以表示为:V=(4/3)*π*r^3将这个体积代入方程中,得到:[(4/3)*π*r^3]*ρ=(G*M*T^2)/(4*π^2)化简这个方程,得到:4*π*r^3*ρ=G*M*T^2再次化简方程,得到:ρ=(3*G*M*T^2)/(4*π*r^3)这个方程描述了行星的密度ρ与行星对太阳的引力以及行星绕太阳一周的时间T、行星与太阳的距离r之间的关系。

万有引力与行星运动规律的总结

万有引力与行星运动规律的总结

万有引力与行星运动规律的总结万有引力是牛顿于17世纪提出的重要物理理论,它描述了质点之间的相互作用力。

在天体力学中,万有引力是解释行星运动轨迹以及太阳系中天体相互作用的核心原理。

本文将对万有引力与行星运动规律进行总结,并探讨它们在天文学中的重要性。

1. 简介万有引力是指任何两个质点之间都存在相互吸引的力,这种吸引力与它们的质量成正比,与它们的距离成反比。

万有引力公式由牛顿提出,即F=G*(m1*m2)/(r^2),其中F为引力,m1和m2为两个质点的质量,r为它们之间的距离,G为万有引力常数。

2. 行星运动规律根据万有引力的作用,行星绕太阳的运动规律可以总结为以下几个方面:2.1 开普勒第一定律:行星轨道是椭圆形开普勒第一定律也被称为椭圆轨道定律。

根据此定律,行星绕太阳的轨道是一个椭圆,太阳位于椭圆的一个焦点上。

椭圆轨道的形状可以由离心率来描述,离心率为0时,轨道为圆形;离心率大于0时,则为椭圆形。

2.2 开普勒第二定律:面积速度相等开普勒第二定律也被称为面积速度定律或等面积定律。

根据此定律,行星在单位时间内扫过的椭圆轨道面积是相等的。

这意味着行星在靠近太阳的位置运动较快,在远离太阳的位置运动较慢。

2.3 开普勒第三定律:调整周期与轨道半长轴的关系开普勒第三定律也被称为调整周期定律或调整轨道定律。

根据此定律,在太阳系中,行星轨道的周期的平方与轨道半长轴的立方成正比。

这表明行星离太阳越远,其公转周期越长。

3. 万有引力与天文学的重要性万有引力的发现与应用对天文学研究有着重要的影响:3.1 解释行星运动规律万有引力理论成功地解释了行星在太阳系中的运动规律,如行星轨道的形状、运动速度以及公转周期等。

这有助于人们理解天体之间的相互作用,揭示宇宙运行的法则。

3.2 预测行星位置和轨道基于万有引力理论,天文学家能够预测行星的位置和轨道。

这对于天文观测的准确性和天体定位有重要影响,同时也为人类航天探测任务的设计提供了重要参考。

3 万有引力定律

3  万有引力定律

行星m
F
F′
太阳M
二、行星对太阳的引力
行星对太阳的引力
类比
M ' F 2 r
跟太阳的质量成正比,
与行星到太阳的距离 的二次方成反比。
三、太阳与行星间的引力
方向:沿着太阳与行
星间的连线。
m F 2 r
类 牛 比 三
G为比例系数,与
太阳、行星无关。
牛三
F 和F ′是一对作用力和 反作用力,那么可以得出F大
故它们之间的引力很小,且小于它们与地面间的摩擦力, 故两人没吸引到一起。
三、引力常量的测定
1.1687年牛顿发现万有引力定律后,曾经设想过几种测定
引力常量的方法,却没有成功。 2.其间又有科学家进行引力常量的测量也没有成功。 3.直到1798年,英国物理学家卡文迪许巧妙地利用了扭秤 装置,第一次在实验室里对两个物体间的引力大小做了精 确的测量和计算,比较准确地测出了引力常量。
重力就是地球对物体的万有引力。
例2. 要使两物体间的万有引力减小到原来的1/4,下列 办法可采用的是( ABC ) A. 使两个物体质量各减小一半,距离不变
B. 使其中一个物体的质量减小到原来的1/4,距离不变
C. 使两物体的距离增为原来的2倍,质量不变 D. 两物体的距离和两物体质量都减小为原来的1/4
F g 2.7 103 m / s 2 向心加速度为:a m 3600 根据当时实验观测数据T=27.3天,r=3.8×108m,
M 地 m果
检验表明,地面物体所受地球的引力,月球所受地球的
FG 引力,以及太阳与行星间的引力,遵循规律: Mm r2
4 2 求得的月球的向心加速度为:a 2 r 2.7 103 m / s 2 T

物理知识点行星运动与万有引力与行星公转与椭圆轨道与开普勒定律

物理知识点行星运动与万有引力与行星公转与椭圆轨道与开普勒定律

物理知识点行星运动与万有引力与行星公转与椭圆轨道与开普勒定律物理知识点:行星运动与万有引力、行星公转、椭圆轨道、开普勒定律行星运动一直是天文学和物理学中的重要研究领域,早在古代,人们就对行星运动产生了浓厚的兴趣。

而如今,随着科学技术的不断发展,我们对行星运动的认识也越来越深入。

本文将就行星运动的几个重要知识点进行阐述,包括万有引力、行星公转、椭圆轨道和开普勒定律。

1. 万有引力万有引力是描述天体之间相互作用的力,由英国科学家牛顿首次提出。

牛顿第二定律告诉我们,两个物体之间的引力正比于它们的质量,并且与它们之间的距离的平方成反比。

在行星运动中,太阳作为太阳系的重要天体,发挥着重要的作用。

行星绕太阳运动的轨道是由太阳对行星的万有引力决定的。

2. 行星公转行星运动中的行星公转指的是行星绕着太阳进行的运动。

根据开普勒第一定律,行星的轨道是椭圆形的,其中太阳位于椭圆轨道的一个焦点上。

在行星公转过程中,行星呈现出不断改变的速度和加速度。

根据牛顿第二定律,行星在公转过程中受到的向心力就是太阳对行星的万有引力。

3. 椭圆轨道开普勒第一定律告诉我们,行星的轨道是椭圆形的。

椭圆是一个几何图形,具有两个焦点和一个长轴和短轴。

太阳位于椭圆轨道的一个焦点上。

根据开普勒第二定律,行星与太阳连线所扫过的面积在相同时间段内是相等的。

这意味着,当行星离太阳较远时,它的速度较慢;而当它离太阳较近时,它的速度较快。

4. 开普勒定律开普勒第三定律描述了行星运动的周期与轨道半长轴之间的关系。

该定律可以用一个简洁的公式表示:T^2 = k × a^3,其中T为行星公转的周期,a为轨道的半长轴,k为一个与太阳质量和G(引力常数)有关的常数。

这一定律揭示了行星运动中的规律性和数学上的关系。

总结起来,行星运动涉及到物理学和天文学的多个方面,包括万有引力、行星公转、椭圆轨道和开普勒定律。

通过深入研究这些知识点,我们能够更好地理解太阳系中行星的运动规律,并对宇宙中其他行星系统的运动特征有更清晰的认识。

万有引力与行星运动的关系

万有引力与行星运动的关系

万有引力与行星运动的关系万有引力是牛顿在17世纪末提出的一种力学原理,它描述了物体之间相互吸引的力。

行星运动是太阳系中行星绕太阳运动的现象。

这两个概念之间存在紧密的联系,行星运动正是由万有引力所引起的。

本文将探讨万有引力与行星运动之间的关系,并说明其原理和重要性。

1. 万有引力的原理万有引力的原理是指:两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

也就是说,物体的质量越大,它所产生的引力越强;物体之间的距离越近,它们之间的引力也越大。

2. 行星运动的基本规律根据万有引力的原理,太阳系中的行星绕着太阳运动。

行星绕太阳的运动轨道大致呈椭圆形,其中太阳位于椭圆的一个焦点处。

这就是开普勒定律中的第一定律,也称为椭圆轨道定律。

行星的运动速度在近日点最快,在远日点最慢。

这是由于行星与太阳之间的引力与距离的平方成反比的原因。

3. 开普勒定律与万有引力开普勒定律是描述行星运动的定律,也是由开普勒在17世纪总结出来的。

这些定律既符合实际观测结果,也能通过万有引力予以解释。

其中,第一定律已在前文中提及,第二定律和第三定律更加深入地阐述了万有引力与行星运动的关系。

3.1 第二定律:行星运动的面积速度相等定律第二定律指出,行星在轨道上的面积速度保持恒定。

也就是说,行星在相同时间内所扫过的面积是相等的。

这个定律可以解释为,由于行星距离太阳的距离是不断变化的,为了保持面积速度恒定,行星在近日点时速度较快,在远日点时速度较慢。

3.2 第三定律:行星运动周期与距离的关系第三定律指出,行星绕太阳运动的周期和平均距离的立方成正比。

也就是说,离太阳较远的行星运动周期更长,离太阳较近的行星运动周期更短。

这一定律进一步证明了万有引力与行星运动之间的关系。

4. 万有引力与行星运动的重要性万有引力与行星运动的关系不仅对牛顿力学的发展有着重要影响,也进一步证明了地心说的错误。

在哥白尼的地心说中,行星运动是由于天体围绕地球旋转所引起的,而万有引力的发现证明了天体间相互吸引的原理,推翻了地心说的观点。

万有引力定律行星运动的原理

万有引力定律行星运动的原理

万有引力定律行星运动的原理万有引力定律是由牛顿在17世纪提出的一项重要物理定律。

这一定律揭示了行星运动背后的原理,对于我们理解宇宙运行规律具有重要意义。

本文将介绍万有引力定律以及它在行星运动中的应用原理。

一、万有引力定律简介万有引力定律是牛顿在1687年首次提出的物理定律之一,其核心思想是任何两个物体之间都存在互相吸引的力。

具体表述为:两个物体之间的引力正比于它们的质量,并与它们之间的距离的平方成反比。

二、行星运动的基本原理根据万有引力定律,行星绕太阳运动的原理可以被解释如下:1. 太阳对行星的引力根据万有引力定律,太阳对行星施加的引力是使其绕太阳运动的主要原因。

太阳质量巨大,因此其对行星的引力非常强大。

2. 行星对太阳的引力虽然行星的质量相比太阳来说较小,但根据万有引力定律,行星同样会对太阳产生引力。

这个引力虽然比太阳对行星的引力要小很多,但它在行星运动中扮演了重要的角色。

3. 引力的平衡和运动轨道太阳对行星的引力和行星对太阳的引力共同作用下,形成了行星的运动轨道。

这个运动轨道既满足了行星处于引力平衡状态,同时也满足了行星运动的稳定性。

三、行星运动的结果及规律通过万有引力定律的应用,我们可以了解到行星运动的一些规律:1. 椭圆轨道根据万有引力定律,行星绕太阳运动的轨道是椭圆轨道。

太阳位于椭圆的一个焦点处,而行星则沿着椭圆轨道运动。

2. 开普勒定律开普勒在17世纪通过观测行星运动提出了三大行星运动定律:第一定律:行星运动轨道是椭圆,太阳位于椭圆的一个焦点上。

第二定律:行星与太阳连线所扫过的面积相等。

也就是说,行星在运动过程中,每个时间段扫过的面积是相等的。

第三定律:行星绕太阳的周期的平方与行星到太阳平均距离的立方成正比。

四、应用举例:地球的运动以地球绕太阳运动为例,根据万有引力定律及开普勒定律我们可以了解到:1. 地球的轨道是椭圆,太阳位于椭圆的一个焦点上。

2. 地球在运动过程中,每个时间段所扫过的面积是相等的。

物理学概念知识:牛顿万有引力定律和行星的星际运动

物理学概念知识:牛顿万有引力定律和行星的星际运动

物理学概念知识:牛顿万有引力定律和行星的星际运动牛顿万有引力定律与行星的星际运动牛顿万有引力定律是牛顿在17世纪提出的一项重大发现,它解释了宏观物体如何相互作用的规律。

牛顿引力定律表明,两个物体之间的引力大小与它们的质量和距离的平方成反比,这个力与他们的距离方向正比。

这个简单而又具有普适性的定律,极大地推动了当时物理学的进展。

行星运动是受到引力作用的结果,因此,牛顿的万有引力定律恰好适用于行星运动。

对于太阳与任何一个星球之间的引力作用,可以由它们之间的距离平方除以质量乘以万有引力常数而得到。

在八大行星中,水星、金星、地球、火星、木星、土星、天王星、海王星都遵循这个规律,在行星运动中,太阳看似固定不动,实际上因为其中的引力作用而像一个巨大的巨石,吸引着行星围绕它不断地运转。

行星从居住的轨道中,根据时机,在它的轨道上旋转,此时就显示出天空中的动感。

太阳系中最引人注目的天体之一是行星,它们绕太阳不断运动。

Mulde等人通过实验确定了行星的轨道和运动速度遵循圆形运动的规律,并以此作为基础推出了行星的星际运动。

在经典物理学中,行星的星际运动可以被推导出来并预测。

牛顿已经通过天文观察,验证了这个理论和观察结果之间的一致性和精确性。

研究行星的轨道和星际运动的物理模型,已经成为宇宙探索的核心之一,并且在人类探索它们的奥秘时发挥重要作用。

正因为牛顿的万有引力定律的发现,使得我们可以更好的了解星际运动和太阳系中各天体之间的运动关系。

虽然在这个宏观世界中,各种物质形式的速度和造型会出现变化,我们仍可以借助物理学的思维,得到关于它们之间关系的规律。

现代物理学中,万有引力定律被认为是经典物理学中最重要的定律之一,不仅在行星的星际运动中发挥着至关重要的作用,也被广泛应用于其他物理学分支中,如质点运动,能量守恒和电场。

总之,牛顿的万有引力定律展示了物理学领域的一次重要突破,为行星的星际运动和宇宙探测技术奠定了基础,也极大地促进了现代科学的发展。

高中物理必修二---太阳与行星间的引力 第3节 万有引力定律

高中物理必修二---太阳与行星间的引力 第3节 万有引力定律

第2节 太阳与行星间的引力 第3节 万有引力定律 1.知道行星绕太阳做匀速圆周运动的向心力来源. 2.知道太阳与行星间引力的方向和表达式,知道牛顿运动定律在推导太阳与行星间引力时的作用,知道万有引力定律的适用范围.(难点) 3.理解万有引力定律,会用万有引力定律解决简单的引力计算问题,并且了解引力常量G 的测定在科学历史上的重大意义.(重点)一、太阳与行星间的引力1.太阳对行星的引力:设行星质量为m ,行星到太阳中心的距离为r ,则太阳对行星的引力:F ∝m r2. 2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同(设太阳质量为M ),即F ′∝M r2. 3.太阳与行星间的引力:根据牛顿第三定律F =F ′,又由于F ∝m r 2、F ′∝M r 2,则有F ∝Mm r2,写成等式F =G Mm r2,式中G 为比例系数,与太阳、行星都没有关系. 二、月—地检验1.猜想:维持月球绕地球运动的力与使物体下落的力是同一种力,遵从“平方反比”的规律.2.推理:物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:计算结果与预期符合得很好.这表明:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.表达式:F =G m 1m 2r2. 3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N ·m 2/kg 2.判一判 (1)地球表面的物体的重力必然等于地球对它的万有引力.( )(2)若只知道某行星的自转周期和行星绕太阳做圆周运动的半径,则可以求出太阳的质量.( )(3)已知地球绕太阳转动的周期和轨道半径,可以求出地球的质量.( )(4)海王星是依据万有引力定律计算的轨道而发现的.( )(5)在地面上发射人造卫星的最小速度是7.9 km/s.( )(6)在地面上发射火星探测器的速度应为11.2 km/s<v <16.7 km/s.( )提示:(1)× (2)× (3)× (4)√ (5)√ (6)√做一做 在牛顿的月-地检验中有以下两点:(1)由天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.84×108 m ,由此可计算出加速度a =0.002 7 m/s 2;(2)地球表面的重力加速度为9.8 m/s 2,月球的向心加速度与地球表面重力加速度之比为1∶3 630,而地球半径(6.4×106 m)和月球与地球间距离的比值为1∶60.这个比值的平方1∶3 600与上面的加速度比值非常接近.以上结果说明( )A .地面物体所受地球的引力与月球所受地球的引力是同一种性质的力B .地面物体所受地球的引力与月球所受地球的引力不是同一种性质的力C .地面物体所受地球的引力只与物体质量有关,即G =mgD .月球所受地球的引力除与月球质量有关外,还与地球质量有关提示:选A .通过完全独立的途径得出相同的结果,证明了地球表面上的物体所受地球的引力和月球所受地球的引力是同一种性质的力,故选项A 正确.想一想 如何通过天文观测计算月球绕地球转动时的向心加速度呢?提示:通过天文观测我们可以获得月球与地球之间的距离以及月球的公转周期,所以我们可以利用a n =4π2T2r 计算月球绕地球运动时的向心加速度.对天体间引力的理解1.太阳与行星间的引力是相互的,沿两个星体连线方向,指向施力星体.2.公式中G 为比例系数,与行星和太阳均没有关系.3.太阳与行星间的引力规律也适用于行星和卫星间.4.该引力规律普遍适用于任何有质量的物体之间.与行星绕太阳运动一样,地球卫星之所以能绕地球运动也同样是因为它受到地球的引力,假设有一颗人造地球卫星,质量为m ,绕地球运动的周期为T ,轨道半径为r ,则应有F =4π2mr T2.由此有人得出结论:地球对卫星的引力F 应与r 成正比,你认为该结论是否正确?若不正确错在何处?[解析]不正确.F与r成正比,是建立在周期T不变的前提下的,由开普勒第三定律,人造地球卫星的轨道半径r发生变化时,周期T也在变化,所以不能说F与r成正比.[答案]见解析求解天体间或实际物体间的引力问题时,限于具体条件,有些物理量不便直接测量或直接求解,此时可利用等效的方法间接求解,或通过舍去次要因素、抓住主要因素的方法建立简化模型,或通过相关公式的类比应用消去某些未知量.(多选)下列说法正确的是( )A.在探究太阳对行星的引力规律时,我们引用了F=mv2r,这个关系式实际上是牛顿第二定律的公式,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了v=2πrT,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得到的C.在探究太阳对行星的引力规律时,我们引用了r3T2=k,这个关系式实际上是开普勒第三定律,是可以在实验室中得到验证的D.在探究太阳对行星的引力规律时,使用的三个公式都是可以在实验室中得到验证的解析:选AB.物理公式或规律,都是在满足一定条件下建立的.有些是通过实验获得,并能在实验室进行验证的,如本题中选项A、B.但有些则无法在实验室证明,如开普勒的三大定律,是根据行星运动的观察结果而总结归纳出来的规律,每一条都是经验定律,都是从观察行星运动所取得的资料中总结出来的,故开普勒的三大定律都是在实验室无法验证的定律.公式F=GMmr2来源于开普勒定律,无法得到验证.故本题正确选项是A、B.对万有引力定律的理解内容自然界中任何两个物体都互相吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比公式F=Gm1m2r2,其中G=6.67×10-11N·m2/kg2,称为引力常量,m1、m2分别为两个物体的质量,r为它们之间的距离适用条件(1)严格地说,万有引力定律只适用于质点间的相互作用(2)万有引力定律也适用于计算两个质量分布均匀的球体间的相互作用,其中r是两个球体球心间的距离(3)计算一个均匀球体与球外一个质点间的万有引力也适用,其中r为球心与质点间的距离(4)两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离特性 普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力 相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,符合牛顿第三定律 宏观性 在地面上的一般物体之间,由于质量比较小,物体间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间,或天体与其附近的物体之间,万有引力起着决定性作用特殊性 两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,与所在空间的性质无关,与周围是否存在其他物体无关命题视角1 对万有引力定律的理解对于质量为m 1和质量为m 2的两个物体间的万有引力的表达式F =G m 1m 2r2,下列说法中正确的是( )A .两物体所受引力总是大小相等,方向相反,是一对平衡力B .当两物体间的距离r 趋于0时,万有引力无穷大C .当有第三个物体放入这两个物体之间时,这两个物体间的万有引力将不变D .两个物体所受的引力性质可能相同,也可能不同[解析] 物体间的万有引力是一对相互作用力,始终等大反向,故选项A 错误.当物体间距离趋于0时,物体就不能看成质点,因此万有引力定律不再适用,物体间的万有引力不会变得无穷大,选项B 错误.物体间万有引力的大小只与两物体的质量m 1、m 2和物体间的距离r 有关,与是否存在其他物体无关,故选项C 正确.物体间的万有引力是一对同种性质的力,选项D 错误.[答案] C命题视角2 引力常量的测定正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法测定地球的质量,也正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”.若重力加速度g 取9.8 m/s 2,则还需要知道哪些物理量就能运用所学知识得出地球的质量,并具体估算一下地球质量大约为多少?[解析] 由地球表面物体重力近似等于万有引力得mg =G mM R 2,即M =gR 2G,因此,要求出地球质量,还要知道引力常量G ,地球半径R .将G =6.67×10-11 N ·m 2/kg 2,R =6.40×106m 代入可得M ≈6.02×1024 kg.[答案] 引力常量G ,地球半径R 6.02×1024 kg引力常量测定的意义(1)卡文迪许利用扭秤装置通过改变小球的质量和距离,证实了万有引力的存在及万有引力定律的正确性.(2)引力常量的确定使万有引力定律能够进行定量的计算,显示出真正的实用价值.(3)卡文迪许扭秤实验是物理学上非常著名和重要的实验,扭秤实验巧妙地利用等效法合理地将微小量进行放大,开创了测量弱力的新时代.【通关练习】1.(2020·江西上饶期中)下面有关万有引力的说法不正确的是( )A .F =G m 1m 2r2中的G 是比例常数,其值是牛顿通过扭秤实验测得的 B .地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力C .苹果落到地面上,说明地球对苹果有引力,苹果对地球也有引力D .万有引力定律是牛顿在总结前人研究的基础上发现的解析:选A.G 是比例常数,其值是卡文迪许通过扭秤实验测得的,A 错误;由万有引力定律可知,地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力,B 正确;地球吸引苹果的力与苹果吸引地球的力是相互作用力,因此地球对苹果有引力,苹果对地球也有引力,C 正确;万有引力定律是牛顿在总结前人研究的基础上发现的,D 正确.2.(多选)关于引力常量,下列说法正确的是( )A .引力常量是两个质量为1 kg 的质点相距1 m 时的相互吸引力B .牛顿发现了万有引力定律,测出了引力常量的值C .引力常量的测定,证明了万有引力的存在D .引力常量的测定,使人们可以测出天体的质量解析:选CD.引力常量的大小等于两个质量为1 kg 的质点相距1 m 时的万有引力的数值,而引力常量不能说是两质点间的吸引力,选项A 错误;牛顿发现了万有引力,但他并未测出引力常量,引力常量是卡文迪许巧妙地利用扭秤装置在实验室中第一次比较精确地测出的,所以选项B 错误;引力常量的测出,不仅证明了万有引力的存在,而且也使人们可以测出天体的质量,这也是测出引力常量的意义所在,选项C 、D 正确.万有引力定律的应用1.重力与万有引力的关系在地球表面上的物体所受的万有引力F 可以分解成重力mg 和随地球转动做圆周运动所需要的向心力F ′,如图所示.其中F =G Mm R2,而F ′=mω2r .从图中可以看出: (1)当物体在赤道上时,F 、mg 、F ′三力同向,此时F ′为最大值F ′max =mω2R ,重力为最小值,G min =F -F ′=G Mm R2-mω2R . (2)当物体在两极时,F ′=0,F =mg ,此时重力等于万有引力,重力为最大值,G max =G Mm R 2. 当物体由赤道向两极移动的过程中,向心力逐渐减小,重力逐渐增大,只有物体在两极时物体所受的万有引力才等于重力.(3)在高空中(如绕地球转动的卫星),重力等于万有引力,即mg ′=G Mm (R +h )2.由此可知,离地面的高度h 越高,所在处的重力加速度g ′就越小.(4)在地球表面,重力加速度随地理纬度的增加而增大;在地球上空,重力加速度随距地面高度的增大而减小.总之,除在两极外,都不能说重力等于地球对物体的万有引力,但由于分力F ′远小于引力F ,所以在忽略地球自转的问题中,通常认为重力等于万有引力,即mg =GMm R2. 2.对重力加速度的“再认识”(1)天体表面的重力加速度在天体表面处,万有引力等于或近似等于重力,则G Mm R 2=mg ,所以g =GM R2(R 为星球半径,M 为星球质量).由此推得,两个不同天体表面重力加速度的关系为g 1g 2=R 22R 21·M 1M 2. (2)某高度处的重力加速度若设离天体表面高h 处的重力加速度为g h ,则G Mm (R +h )2=mg h ,所以g h =GM (R +h )2.可见,随高度的增加重力加速度逐渐减小.由以上分析可推得,天体表面和某高度处的重力加速度的关系为g h g =R 2(R +h )2. 命题视角1 万有引力的大小计算两艘轮船,质量都是1.0×104 t ,相距10 km ,它们之间的万有引力是多大?这个力与轮船所受重力的比值是多少?(g 取10 m/s 2)[解析] 轮船之间的万有引力F =G m 1m 2r 2=6.67×10-11×1.0×107×1.0×107(10×103)2N =6.67×10-5 N.轮船的重力G =mg =1.0×107×10 N =1.0×108 N. 两轮船间的万有引力与轮船所受重力的比值为 F G = 6.67×10-13. [答案] 6.67×10-5 N 6.67×10-13命题视角2 “填补法”在引力求解中的应用有一质量为M 、半径为R 的密度均匀球体,在距离球心O为2R 的地方有一质量为m 的质点,现在从M 中挖去一半径为R 2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?[思路点拨] 挖去一球体后,剩余部分不再是质量分布均匀的球体,不能直接利用万有引力定律公式求解.可先将挖去部分补上来求引力,求出完整球体对质点的引力F 1,再求出被挖去部分对质点的引力F 2,则剩余部分对质点的引力为F =F 1-F 2.[解析] 完整球质量M =ρ×43πR 3 挖去的小球质量M ′=ρ×43π⎝⎛⎭⎫R 23=18ρ×43πR 3=M 8由万有引力定律得F 1=G Mm (2R )2=G Mm 4R 2 F 2=G M ′m r ′2=G M 8m ⎝⎛⎭⎫3R 22=G Mm 18R 2 故F =F 1-F 2=G Mm 4R 2-G Mm 18R 2=7GMm 36R 2. [答案] 7GMm 36R 2命题视角3 天体重力加速度的相关问题火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员.(1)在火星表面上受到的重力是多少?(2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?(在地球表面的重力加速度g 取10 m/s 2)[思路点拨] 本题涉及星球表面重力加速度的求法,应先求火星表面的重力加速度,再求宇航员在火星表面所受的重力;然后再利用竖直上抛运动规律求上升的高度.[解析] (1)在地球表面有mg =G Mm R 2,得g =G M R2同理可知,在火星表面上有g ′=G M ′R ′2 即g ′=G ⎝⎛⎭⎫19M ⎝⎛⎭⎫12R 2=4GM 9R 2=49g =409 m/s 2 宇航员在火星表面上受到的重力G ′=mg ′=50×409N =222.2 N. (2)在地球表面宇航员跳起的高度H =v 202g在火星表面宇航员跳起的高度h =v 202g ′综上可知,h =g g ′H =10409×1.5 m =3.375 m. [答案] (1)222.2 N (2)3.375 m1.涉及重力与引力关系时应注意的问题(1)由物体所受的重力近似等于地球对物体的引力可知,地球表面的重力加速度g =GM R2,即GM =gR 2,这是一个常用的“黄金代换式”.(2)重力是万有引力的一个分力,故受力分析时不能重复分析,即分析万有引力时就不必再分析重力.(3)对相对于地面的运动,通常只分析重力;对随地球的自转运动或卫星问题只分析万有引力.(4)除非专门研究随地球自转问题,计算时都可认为重力与万有引力相等.2.运用万有引力定律分析求解相关综合问题时,首先必须明确问题涉及哪些知识内容,需要运用哪些物理规律,并注意把握以下几点:(1)无论问题是涉及运动学规律,还是动力学规律,联系的桥梁都是重力加速度g ,要注意重力加速度的变化,特别是明确星球表面上g 0=G M R 2,高度h 处g =G M (R +h )2,即g 随h 增加而减小.(2)在地球上运用的运动学规律和动力学规律,在其他星球上仍然适用,只是重力加速度g 不同.3.应用挖补法时应注意的两个问题(1)找到原来物体所受的万有引力、挖去部分所受的万有引力与剩余部分所受的万有引力之间的联系.(2)所挖去的部分为规则球体,剩余部分不再为球体时适合应用挖补法.若所挖去部分不是规则球体,则不适合应用挖补法. 【通关练习】 1.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0B .GM (R +h )2C .GMm (R +h )2D .GM h2 解析:选B.由G Mm (R +h )2=mg 得,g =GM (R +h )2,故B 项正确. 2.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .⎝⎛⎭⎫R -d R 2D .⎝⎛⎭⎫R R -d 2解析:选A.如图所示,根据“质量分布均匀的球壳对壳内物体的引力为零”可知,地面处的球壳对地面与矿井底部之间的环形部分的引力为零.设地面处的重力加速度为g ,地球质量为M ,由地球表面的物体m 1受到的重力近似等于万有引力,可得m 1g =G Mm 1R 2,即g =GM R2;再将矿井底部所在的球壳包围的球体取出来进行研究,设矿井底部处的重力加速度为g ′,取出的球体的质量为M ′,半径r =R -d ,同理可得矿井底部处的物体m 2受到的重力m 2g ′=G M ′m 2r 2,即g ′=GM ′r2,又M =ρV =ρ·43πR 3,M ′=ρV ′=ρ·43π(R -d )3,联立解得g ′g =1-d R,选项A 正确.[随堂检测]1.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律.以下说法正确的是( )A .物体的重力不是地球对物体的万有引力引起的B .人造地球卫星离地球越远,受到地球的万有引力越大C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用解析:选C.物体的重力是由地球的万有引力产生的,万有引力的大小与质量的乘积成正比,与距离的二次方成反比,选项A 、B 错误;人造地球卫星绕地球运动的向心力是由万有引力提供的,选项C 正确;宇宙飞船内的宇航员处于失重状态,是因为宇航员受到的万有引力全部提供了宇航员做圆周运动所需的向心力,选项D 错误.2.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的( )A .0.25B .0.5C .2倍D .4倍解析:选C.根据万有引力定律得:宇航员在地球上所受的万有引力F 1=GM 地m R 2地,在星球上所受的万有引力F 2=GM 星m R 2星,所以F 2F 1=M 星R 2地M 地R 2星=12×22=2,故C 正确. 3.某行星可看成一个均匀的球体,密度为ρ,若在其赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星的自转周期为(引力常量为G )( )A .4πG 3B .3πG 4C . 3πρGD . πρG解析:选C.根据G Mm r2=m ⎝⎛⎭⎫2πT 2r ,可得T =2πr 3GM ,将M =43πr 3ρ代入,可得T =3πρG ,故选项C 正确. 4.如图所示,一个质量为M 的匀质实心球,半径为R .如果从球的正中心挖去一个直径为R 的球,放在相距为d 的地方.求两球之间的引力是多大.解析:根据匀质球的质量与其半径的关系M =ρ×43πR 3∝R 3,两部分的质量分别为m =M 8,M ′=7M 8根据万有引力定律,这时两球之间的引力为F =G M ′m d 2=7GM 264d 2. 答案:7GM 264d 25.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t ,小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10 m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ′的大小;(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.解析:(1)设竖直上抛小球初速度为v 0,则 v 0=12gt =12g ′×5t ,所以g ′=15g =2 m/s 2.(2)设小球的质量为m , 则mg =G M 地m R 2地,mg ′=G M 星m R 2星所以M 星∶M 地=g ′R 2星gR 2地=15×116=180.答案:(1)2 m/s 2 (2)1∶80[课时作业] 【A 组 基础过关】1.地球可近似看成球形,由于地球表面上物体都随地球自转,所以有( ) A .物体在赤道处受的地球引力等于两极处,而重力小于两极处 B .赤道处的角速度比南纬30°大C .地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D .地面上的物体随地球自转时提供向心力的是重力解析:选A.由F =G MmR 2可知,若将地球看成球形,则物体在地球表面任何位置受到地球的引力都相等,此引力的两个分力一个是物体的重力,另一个是物体随地球自转的向心力.在赤道上,向心力最大,重力最小,A 对;地表各处的角速度均等于地球自转的角速度,B 错;地球上只有赤道上的物体向心加速度指向地心,其他位置的向心加速度均不指向地心,C 错;地面上物体随地球自转的向心力是万有引力与地面支持力的合力,D 错.2.如图所示,两球的半径小于R ,两球质量均匀分布,质量分别为m 1、m 2,则两球间的万有引力大小为( )A .G m 1m 2R 21B .G m 1m 2R 22C .G m 1m 2(R 1+R 2)2D .G m 1m 2(R 1+R 2+R )2解析:选D.由万有引力定律公式中“r ”的含义知:r 应为两球心之间的距离,故D 正确. 3.(多选)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( )A .甲的运行周期大于乙的运行周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方 答案:AC4.(多选)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =GMRB .角速度ω=gRC .运行周期T =2πRgD .向心加速度a =GmR2解析:选AC.根据万有引力提供卫星做圆周运动的向心力和万有引力等于重力得出:G MmR 2=m v 2R ,得v =GMR,故A 正确;根据mg =mω2R ,得ω=gR,故B 错误;根据mg =m 4π2T 2R ,得T =2πR g ,故C 正确;根据万有引力提供向心力得G Mm R 2=ma ,a =GM R2,故D 错误.5.两颗行星的质量分别为m 1和m 2,它们绕太阳运行的轨道半径分别是r 1和r 2,若它们只受太阳引力的作用,那么这两颗行星的向心加速度之比为( )A .1B .m 2r 1m 1r 2C .m 1r 2m 2r 1D .r 22r 21解析:选D.设行星m 1、m 2的向心力分别为F 1、F 2,由太阳与行星之间的作用规律可得:F 1∝m 1r 21,F 2∝m 2r 22,而a 1=F 1m 1,a 2=F 2m 2,故a 1a 2=r 22r 21,D 正确.6.两个质量均为m 的星体,其连线的垂直平分线为MN ,O 为两星体连线的中点,如图所示,一个质量也为m 的物体从O 沿OM 方向运动,则它受到的万有引力大小变化情况是( )A .一直增大B .一直减小C .先减小,后增大D .先增大,后减小解析:选D.m 在O 点时,所受万有引力的合力为0,运动到无限远时,万有引力为0,在距O 点不远的任一点,万有引力都不为0,因此D 正确.7.设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球对物体的万有引力的作用而产生的加速度为g ,则gg 0为( )A .1B .19C .14D .116解析:选D.地球表面处的重力加速度和在离地心高4R 处的加速度均由地球对物体的万有引力产生,所以有地面上:G MmR2=mg 0①离地心4R 处:G Mm(4R )2=mg ②由①②两式得g g 0=⎝⎛⎭⎫R 4R 2=116.【B 组 素养提升】8.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图象是( )解析:选D.在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图象是D.9.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体,射程为60 m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为( )A .10 mB .15 mC .90 mD .360 m解析:选A.由平抛运动公式可知,射程x =v 0t =v 02h g ,即v 0、h 相同的条件下x ∝1g.。

高一物理必修二第六章 2 3 太阳与行星间的引力 万有引力定律---教师版

高一物理必修二第六章 2 3   太阳与行星间的引力    万有引力定律---教师版

2 太阳与行星间的引力3 万有引力定律[学习目标] 1.知道太阳与行星间存在引力.2.能利用开普勒定律和牛顿运动定律推导出太阳与行星之间的引力表达式.3.理解万有引力定律的内容、含义及适用条件.4.认识万有引力定律的普遍性,能应用万有引力定律解决实际问题.一、太阳与行星间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比,即F ∝mr2.2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝Mr2.3.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mm r 2,写成等式就是F =G Mmr 2.二、月—地检验1.猜想:维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”的规律.2.推理:根据牛顿第二定律,物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602.3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同(填“相同”或“不同”)的规律. 三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.2.表达式:F =G m 1m 2r2.3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N·m 2/kg 2.1.判断下列说法的正误.(1)万有引力不仅存在于天体之间,也存在于普通物体之间.(√)(2)质量一定的两个物体,若距离无限小,它们间的万有引力趋于无限大.(×)(3)把物体放在地球中心处,物体受到的引力无穷大.(×)(4)由于太阳质量大,太阳对行星的引力大于行星对太阳的引力.(×)(5)牛顿发现了万有引力定律,并测出了引力常量.(×)2.两个质量都是1 kg的物体(可看成质点),相距1 m时,两物体间的万有引力F=________ N,一个物体的重力F′=________ N,万有引力F与重力F′的比值为________.(已知引力常量G=6.67×10-11 N·m2/kg2,取重力加速度g=10 m/s2)答案 6.67×10-1110 6.67×10-12一、对太阳与行星间引力的理解1.是什么原因使行星绕太阳运动?答案太阳对行星的引力使行星绕太阳运动.2.在推导太阳与行星的引力时,我们对行星的运动怎么简化处理的?用了哪些知识?答案将行星绕太阳的椭圆运动看成匀速圆周运动.在推导过程中,用到了向心力公式、开普勒第三定律及牛顿运动定律.太阳与行星间引力关系的得出过程例1 (多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝m r 2,行星对太阳的引力F ′∝Mr 2,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离,下列说法正确的是( ) A.由F ′∝M r 2和F ∝mr 2,得F ∶F ′=m ∶MB.F 和F ′大小相等,是作用力与反作用力C.F 和F ′大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 答案 BD解析 F ′和F 大小相等、方向相反,是作用力和反作用力,太阳对行星的引力提供行星绕太阳做圆周运动的向心力,故正确答案为B 、D. 二、万有引力定律(1)通过月—地检验结果表明,地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.一切物体之间都存在这样的引力,那么,为什么通常两个人(如图1)间的万有引力我们却感受不到?图1(2)地球对人的万有引力与人对地球的万有引力大小相等吗?答案 (1)任意两个物体间都存在着万有引力.但由于地球上物体的质量一般很小(与天体质量相比),地球上两个物体间的万有引力远小于地面对物体的摩擦力,通常感受不到,但天体质量很大,天体间的引力很大,对天体的运动起决定作用. (2)相等.它们是一对相互作用力.1.万有引力定律表达式F =G m 1m 2r 2,G =6.67×10-11 N·m 2/kg 2.2.万有引力定律公式适用的条件(1)万有引力定律适用于两个质点间的相互作用.(2)一个均匀球体与球外一个质点,r 为球心到质点的距离. (3)两个质量均匀的球体,r 为两球心间的距离.例2 关于万有引力和万有引力定律的理解正确的是( ) A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C.由F =Gm 1m 2r 2知,两物体间距离r 减小时(没有无限靠近),它们之间的引力增大D.引力常量的大小是牛顿首先测出来的,且约等于6.67×10-11N·m 2/kg 2答案 C解析 任何物体间都存在相互作用的引力,故称万有引力,A 错;两个质量分布均匀的球体间的万有引力也能用F =Gm 1m 2r 2来计算,B 错;物体间的万有引力与它们间距离r 的二次方成反比,故r 减小,它们间的引力增大,C 对;引力常量G 是由卡文迪许首先精确测出的,D 错.例3 如图2所示,两球间的距离为r 0,两球的质量分布均匀,质量分别为m 1、m 2,半径分别为r 1、r 2,则两球间的万有引力大小为( )图2A.Gm 1m 2r 02B.Gm 1m 2r 12C.Gm 1m 2(r 1+r 2)2D.Gm 1m 2(r 1+r 2+r 0)2答案 D解析 两个匀质球体间的万有引力F =Gm 1m 2r2,r 是两球心间的距离,选D.例4 (2019·江川二中高一期末)一个质量均匀分布的球体,半径为2r ,在其内部挖去一个半径为r 的球形空穴,其表面与球面相切,如图3所示.已知挖去小球的质量为m ,在球心和空穴中心连线上,距球心d =6r 处有一质量为m ′的质点,求:图3(1)被挖去的小球挖去前对m ′的万有引力为多大? (2)剩余部分对m ′的万有引力为多大? 答案 (1)G mm ′25r 2 (2)G 41mm ′225r 2解析 (1)被挖去的小球挖去前对m ′的万有引力为 F 2=G mm ′(5r )2=G mm ′25r 2 (2)将挖去的小球填入空穴中,由V =43πr 3可知,大球的质量为8m ,大球对m ′的万有引力为F 1=G 8m ·m ′(6r )2=G 2mm ′9r 2m ′所受剩余部分的万有引力为F =F 1-F 2=G 41mm ′225r 2.三、重力和万有引力的关系1.物体在地球表面上所受引力与重力的关系图4除两极以外,地面上其他点的物体,都围绕地轴做圆周运动,这就需要一个垂直于地轴的向心力.由地球对物体引力的一个分力F ′提供向心力,另一个分力为重力G ,如图4所示. (1)当物体在两极时:G =F 引,重力达到最大值G max =G MmR 2.(2)当物体在赤道上时:F ′=mω2R 最大,此时重力最小G min =GMmR 2-mω2R (3)从赤道到两极:随着纬度增加,向心力F ′=mω2R ′减小,F ′与F 引夹角增大,所以重力G 在增大,重力加速度增大.因为F ′、F 引、G 不在一条直线上,重力G 与万有引力F 引方向有偏差,重力大小mg <G MmR 2.2.重力与高度的关系若距离地面的高度为h ,则mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度).在同一纬度,距地面越高,重力加速度越小. 3.特别说明(1)重力是物体由于地球吸引产生的,但重力并不是地球对物体的引力.(2)只有在两极,mg =G Mm R 2,其他地方mg <G MmR 2,但相差不大,在忽略地球自转的情况下,认为mg =G MmR2.(3)在两极、赤道,两个力的方向相同,其他地方二者方向不同,略有偏差.引力的方向指向地心,重力的方向竖直向下.例5 (多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来.用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果.已知地球质量为M ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体.下列说法正确的是( )A.在北极地面称量时,弹簧测力计读数为F 0=G Mm R 2B.在赤道地面称量时,弹簧测力计读数为F 1=G MmR2C.在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm(R +h )2D.在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G Mm(R +h )2答案 AC解析 物体在两极时,万有引力等于重力,则有F 0=G MmR 2,故A 正确;在赤道地面称量时,万有引力等于重力加上随地球一起自转所需要的向心力,则有F 1<G MmR2,故B 错误;在北极上空高出地面h 处称量时,万有引力等于重力,则有F 2=G Mm(R +h )2,故C 正确;在赤道上空高出地面h 处称量时,万有引力大于重力,则有F 3<G Mm(R +h )2,故D 错误.例6 火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg的宇航员(地球表面的重力加速度g 取10 m/s 2) (1)在火星表面上受到的重力是多少?(2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高? 答案 (1)222.2 N (2)3.375 m 解析 (1)在地球表面有mg =G MmR 2在火星表面上有mg ′=G M ′mR ′2联立解得g ′=409 m/s 2宇航员在火星表面上受到的重力 G ′=mg ′=50×409 N ≈222.2 N.(2)在地球表面宇航员跳起的高度H =v 022g在火星表面宇航员跳起的高度h =v 022g ′综上可知,h =g g ′H =10409×1.5 m =3.375 m.1.(对万有引力定律的理解)(2019·武威第十八中学高一期末)对于万有引力定律的表达式F =G m 1m 2r2,下列说法正确的是( ) A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大C.对于m 1与m 2间的万有引力,质量大的受到的引力大D.m 1与m 2受到的引力是一对平衡力 答案 A解析 万有引力定律的表达式F =G m 1m 2r2,公式中G 为引力常量,它是由实验测得的,而不是人为规定的,选项A 正确;当r 趋近于零时,万有引力定律不再适用,选项B 错误;m 1与m 2间的万有引力是相互作用力,两物体受到的万有引力是等大反向的,与质量大小无关,选项C 错误;m 1与m 2受到的引力是一对相互作用力,因作用在两个物体上,故不是平衡力,选项D 错误.2.(月—地检验)(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A.地球吸引月球的力约为地球吸引苹果的力的1602B.月球公转的加速度约为苹果落向地面加速度的1602C.自由落体在月球表面的加速度约为地球表面的16D.苹果在月球表面受到的引力约为在地球表面的160答案 B解析 若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr2=ma ,因此加速度a 与距离r 的二次方成反比.3.(万有引力定律的简单应用)两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F .若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两个大铁球之间的万有引力为( ) A.2F B.4F C.8F D.16F 答案 D解析 两个小铁球之间的万有引力为F =G mm (2r )2=G m 24r 2.实心小铁球的质量为m =ρV =ρ·43πr 3,大铁球的半径是小铁球的2倍,则大铁球的质量m ′与小铁球的质量m 之比为m ′m =r ′3r 3=8,故两个大铁球间的万有引力为F ′=G m ′m ′4r ′2=16F .故选D.4.(重力加速度的计算)据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面重力加速度之比为( )A.k pB.k p 2C.k 2pD.k 2p 2 答案 B解析 由mg =G MmR 2可知:g 地=G M 地 R 地2,g 星=G M 星R 星2,g 星g 地=M 星M 地·R 地2R 星2=k p2,所以选项B 正确.[基础对点练]考点一 万有引力定律的理解1.(2019·肥东高级中学高一下期末)下列关于行星对太阳的引力的说法中正确的是( ) A.行星对太阳的引力与太阳对行星的引力是同一种性质的力 B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关 C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力与太阳的质量成正比,与行星距太阳的距离成反比 答案 A解析 行星对太阳的引力和太阳对行星的引力都是万有引力,性质相同,故A 正确;根据万有引力定律分析可知:行星对太阳的引力与行星和太阳的质量的乘积成正比,与两者的质量都有关,故B 错误;由牛顿第三定律分析得知,太阳对行星的引力等于行星对太阳的引力,故C 错误;根据万有引力定律分析可知:行星对太阳的引力与行星和太阳的质量的乘积成正比,与行星距太阳的距离的平方成反比,故D 错误. 2.(多选)关于引力常量G ,下列说法中正确的是( ) A.在国际单位制中引力常量G 的单位是N·m 2/kg 2B.引力常量G 的大小与两物体质量的乘积成反比,与两物体间距离的平方成正比C.引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力D.引力常量G 是不变的,其数值大小由卡文迪许测出,与单位制的选择无关 答案 AC解析 由F =G m 1m 2r 2得G =F ·r 2m 1m 2,所以在国际单位制中单位为N·m 2/kg 2,选项A 正确;引力常量是一个常数,其大小与质量以及两物体间的距离无关,选项B 错误;根据万有引力定律可知,引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力,选项C 正确;引力常量是定值,其数值大小由卡文迪许测出,但其大小与单位制的选择有关,选项D 错误.3.(2019·北京牛栏山一中期中)图1(a)是用来“显示桌(或支持)面的微小形变”的演示实验;图(b)是用来“测量万有引力常量”的实验.由图可知,两个实验共同的物理思想方法是( )图1A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法答案 B考点二 万有引力定律的简单应用4.(2019·永春县第一中学高一期末)要使两物体间的万有引力减小到原来的14,下列办法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增大到原来的2倍,质量不变D.使两物体的质量和距离都减小到原来的14答案 D解析 万有引力定律的表达式为F =G Mmr 2,根据该公式可知,使两物体的质量各减小一半,距离不变,则万有引力变为原来的14,A 正确;使其中一个物体的质量减小到原来的14,距离不变,则万有引力变为原来的14,B 正确;使两物体间的距离增大到原来的2倍,质量不变,则万有引力变为原来的14,C 正确;使两物体的质量和距离都减小到原来的14,则万有引力大小不变,D 错误.5.某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F4,则此物体距离地面的高度应为(R 为地球半径)( ) A.2R B.4R C.R D.8R 答案 C解析 根据万有引力定律有F =G Mm R 2,14F =G Mm(R +h )2,解得h =R ,选项C 正确.6.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g2,则该处距地球表面的高度为( )A.(2-1)RB.RC.2RD.2R 答案 A解析 万有引力近似等于重力,设地球的质量为M ,物体质量为m ,物体距地面的高度为h ,则有GMm R 2=mg ,G Mm (R +h )2=m g 2,联立得2R 2=(R +h )2,解得h =(2-1)R ,选项A 正确. 7.(多选)如图2所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R ,下列说法正确的是( )图2A.地球对一颗卫星的引力大小为GMm (r -R )2B.一颗卫星对地球的引力大小为GMmr 2C.两颗卫星之间的引力大小为Gm 23r2D.三颗卫星对地球引力的合力大小为3GMmr 2答案 BC解析 地球与一颗卫星间的引力大小为GMmr 2,A 错误,B 正确.由几何关系可知两卫星之间的距离为3r ,两卫星之间的引力为Gmm (3r )2=Gm 23r 2,C 正确.三颗卫星对地球引力的合力大小为零,D 错误.8.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心的距离之比为( )A.1∶9B.9∶1C.1∶10D.10∶1 答案 C解析 设月球质量为m ,则地球质量为81m ,月球球心距地球球心的距离为r ,飞行器质量为m 0,当飞行器距月球球心的距离为r ′时,地球对它的引力等于月球对它的引力,则G mm 0r ′2=G 81mm 0(r -r ′)2,所以r -r ′r ′=9,r =10r ′,r ′∶r =1∶10,故选项C 正确.[能力综合练]9.如图3所示,一个质量均匀分布的半径为R 的球体对球外质点P (图中未画出)的万有引力为F .如果在球体中央挖去半径为r 的一部分球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为( )图3A.F 2B.F 8C.7F 8D.F 4 答案 C解析 利用填补法来分析此题.原来物体间的万有引力为F ,挖去的半径为R2的球体的质量为原来球体质量的18,其他条件不变,故剩余部分对质点P 的万有引力为F -F 8=78F .10.(多选)宇宙中存在着由四颗星组成的孤立星系.如图4所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )图4A.每颗小星受到的万有引力为(32+9)F B.每颗小星受到的万有引力为(3+9)F C.母星的质量是每颗小星质量的3倍 D.母星的质量是每颗小星质量的33倍 答案 BC解析 假设每颗小星的质量为m ,母星的质量为M ,正三角形的边长为a ,则小星绕母星运动的轨道半径为r =33a . 根据万有引力定律,两颗小星间的万有引力为F =G mma 2,母星与任意一颗小星间的万有引力为9F =G Mmr 2,联立解得M =3m ,故C 正确,D 错误.任意一颗小星受到的万有引力F ′=9F+2F ·cos 30°=(3+9)F ,故A 错误,B 正确.11.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为[在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力]( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =G MR 2.由于地球的质量为:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=ρG 43πR 3R 2=43πGρR .根据题意有,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.12.某地区的地下发现了天然气资源,如图5所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )图5A.kgd GρB.kgd 2GρC.(1-k )gd GρD.(1-k )gd 2Gρ答案 D解析 如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值,因此,如果将空腔填满密度为ρ的岩石,地面质量为m 的物体的重力为mg ,没有填满时重力是kmg ,故空腔填满的岩石所引起的引力为(1-k )mg ,根据万有引力定律有(1-k )mg =G ρVmd 2,解得V =(1-k )gd 2Gρ,故选D. 13.已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如图6所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的引力F 2的大小之比为多少?图6答案 m 1a 2m 2(a +b )2解析 由太阳与行星间的引力公式F =G Mmr2得太阳对地球的引力F 1=G Mm 1(a +b )2太阳对月球的引力F 2=G Mm 2a2联立可得F 1F 2=m 1a 2m 2(a +b )2.14.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a =12g 的加速度随火箭向上加速升空的过程中,当物体与卫星中支持物的相互挤压的力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 表示地面处重力加速度,g 取10 m/s 2) 答案 1.92×104 km解析 卫星的升空过程可以认为是竖直向上的匀加速直线运动,设卫星离地面的距离为h ,这时受到地球的万有引力为F =G Mm (R 地+h )2. 在地球表面G MmR 地2=mg在上升至离地面h 时,F N -F =ma . 联立解得(R 地+h )2R 地2=mgF N -ma ,则h =(mgF N -ma-1)R 地.代入数值解得h =1.92×104 km.[拓展提升练]15.(2019·安徽师大附中高一下学期期中)地球可视为质量均匀分布的球体.某物体在地球北极点静止时对水平地面的压力为F N0,物体在地球赤道上静止时对水平地面的压力为F N ;地球自转周期为T ,万有引力常量为G ,地球密度的表达式为( ) A.3πF N0GT 2(F N0-F N ) B.3π(F N0-F N )GT 2F N0C.3πF N0GT 2D.3πF N0GT 2F N答案 A解析 地球自转周期为T ,物体在北极水平地面上静止时所受到的支持力:F N0=GMmR2;同一物体在赤道上静止时所受到的支持力:F N =GMm R 2-m (2πT )2R ;地球的质量:M =43πR 3·ρ,联立解得:ρ=3πF N0GT 2(F N0-F N ),故A 正确,B 、C 、D 错误.。

万有引力与行星运动星球间的吸引力规律

万有引力与行星运动星球间的吸引力规律

万有引力与行星运动星球间的吸引力规律万有引力与行星运动——星球间的吸引力规律引言:万有引力是一个普遍存在于宇宙中的力量,它不仅影响着物体相互间的相互作用,也是行星运动的根本原因之一。

本文将探讨万有引力与行星运动之间的关系,并阐述星球间的吸引力规律。

一、巨大的引力:引力的基本概念和特征万有引力是由英国科学家牛顿提出的一种力量,指两个物体之间相互吸引的力。

根据牛顿的万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

此外,吸引力的表现形式犹如一对相互吸引的磁铁,使得天体能够维持在相对稳定的轨道上。

恒星、行星和卫星等天体都受到引力的影响,因此它们之间的运动具有规律性。

二、行星运动的基础:开普勒定律在行星运动中,开普勒定律的提出使我们对行星运动的规律有了更深入的理解。

根据开普勒定律,行星围绕太阳运动的轨道是椭圆形,太阳位于轨道的一个焦点上。

第一定律(椭圆轨道定律)指出,行星在其椭圆轨道上运动,太阳位于椭圆焦点之一。

第二定律(面积速度定律)指出,在相同时间内,当行星离太阳较近时,它的速度较快,距离太阳较远时,它的速度较慢。

第三定律(调和定律)揭示了行星与太阳的运动周期和距离之间的关系。

根据第三定律,行星与太阳的平均距离的立方和行星的公转周期的平方成正比。

这意味着太阳系中的行星离太阳越远,它们绕太阳的周期就越长。

三、引力与行星运动的关系:牛顿的万有引力定律牛顿的万有引力定律为我们提供了解释行星运动的自然规律。

根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

在行星运动中,太阳对行星施加引力,将它们吸引在轨道上运动。

这种引力使得行星具有向太阳靠拢的趋势,但被行星的离心力平衡住。

此外,引力还决定了行星的运动速度和轨道的形状。

行星离太阳越近,太阳对它们的引力越强,相应地,行星的速度越快,轨道越紧凑。

相反,行星离太阳越远,太阳对它们的引力越弱,行星的速度越慢,轨道越宽广。

第六章 太阳与行星间的引力 万有引力定律2 3(学生版)

第六章 太阳与行星间的引力  万有引力定律2 3(学生版)

2 太阳与行星间的引力3 万有引力定律知识梳理一、太阳与行星间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成 ,与行星和太阳间距离的二次方成 ,即F ∝mr 2.2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝Mr 2.3.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mm r 2,写成等式就是F =G Mmr 2.二、月—地检验1.猜想:维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“ ”的规律.2.推理:根据牛顿第二定律,物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从 (填“相同”或“不同”)的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的 ,引力的大小与物体的 成正比、与它们之间 成反比.2.表达式:F =G m 1m 2r2.3.引力常量G :由英国物理学家卡文迪许测量得出,常取G = N·m 2/kg 2.即学即用1.判断下列说法的正误.(1)万有引力不仅存在于天体之间,也存在于普通物体之间.( )(2)质量一定的两个物体,若距离无限小,它们间的万有引力趋于无限大.( ) (3)把物体放在地球中心处,物体受到的引力无穷大.( )(4)由于太阳质量大,太阳对行星的引力大于行星对太阳的引力.( ) (5)牛顿发现了万有引力定律,并测出了引力常量.( )2.两个质量都是1 kg 的物体(可看成质点),相距1 m 时,两物体间的万有引力F =_____ N ,一个物体的重力F ′=____ N ,万有引力F 与重力F ′的比值为_____.(已知引力常量G =6.67×10-11N·m 2/kg 2,取重力加速度g =10 m/s 2)重点探究一、对太阳与行星间引力的理解 导学探究1.是什么原因使行星绕太阳运动? 答案: .2.在推导太阳与行星的引力时,我们对行星的运动怎么简化处理的?用了哪些知识? 答案: .知识深化太阳与行星间引力关系的得出过程例1 (多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F ′∝Mr 2,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离,下列说法正确的是( )A.由F ′∝M r 2和F ∝mr2,得F ∶F ′=m ∶M B.F 和F ′大小相等,是作用力与反作用力C.F 和F ′大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 二、万有引力定律导学探究(1)通过月—地检验结果表明,地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.一切物体之间都存在这样的引力,那么,为什么通常两个人(如下图)间的万有引力我们却感受不到?(2)地球对人的万有引力与人对地球的万有引力大小相等吗?答案 (1) . (2) .知识深化1.万有引力定律表达式F =G m 1m 2r 2,G =6.67×10-11 N·m 2/kg 2.2.万有引力定律公式适用的条件(1)万有引力定律适用于两个质点间的相互作用.(2)一个均匀球体与球外一个质点,r 为球心到质点的距离. (3)两个质量均匀的球体,r 为两球心间的距离. 例2 关于万有引力和万有引力定律的理解正确的是( ) A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C.由F =Gm 1m 2r 2知,两物体间距离r 减小时(没有无限靠近),它们之间的引力增大D.引力常量的大小是牛顿首先测出来的,且约等于6.67×10-11N·m 2/kg 2例3 如下图所示,两球间的距离为r 0,两球的质量分布均匀,质量分别为m 1、m 2,半径分别为r 1、r 2,则两球间的万有引力大小为( )A.Gm 1m 2r 02B.Gm 1m 2r 12C.Gm 1m 2(r 1+r 2)2D.Gm 1m 2(r 1+r 2+r 0)2例4一个质量均匀分布的球体,半径为2r ,在其内部挖去一个半径为r 的球形空穴,其表面与球面相切,如下图所示.已知挖去小球的质量为m ,在球心和空穴中心连线上,距球心d =6r 处有一质量为m ′的质点,求:(1)被挖去的小球挖去前对m ′的万有引力为多大? (2)剩余部分对m ′的万有引力为多大? 三、重力和万有引力的关系1.物体在地球表面上所受引力与重力的关系除两极以外,地面上其他点的物体,都围绕地轴做圆周运动,这就需要一个垂直于地轴的向心力.由地球对物体引力的一个分力F ′提供向心力,另一个分力为重力G ,如上图所示.(1)当物体在两极时:G =F 引,重力达到最大值G max =G MmR 2.(2)当物体在赤道上时:F ′=mω2R 最大,此时重力最小 G min =GMmR 2-mω2R (3)从赤道到两极:随着纬度增加,向心力F ′=mω2R ′减小,F ′与F 引夹角增大,所以重力G 在增大,重力加速度增大. 因为F ′、F 引、G 不在一条直线上,重力G 与万有引力F 引方向有偏差,重力大小mg <G MmR 2.2.重力与高度的关系若距离地面的高度为h ,则mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度).在同一纬度,距地面越高,重力加速度越小. 3.特别说明(1)重力是物体由于地球吸引产生的,但重力并不是地球对物体的引力.(2)只有在两极,mg =G Mm R 2,其他地方mg <G Mm R 2,但相差不大,在忽略地球自转的情况下,认为mg =G MmR 2.(3)在两极、赤道,两个力的方向相同,其他地方二者方向不同,略有偏差.引力的方向指向地心,重力的方向竖直向下.例5 (多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来.用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果.已知地球质量为M ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体.下列说法正确的是( )A.在北极地面称量时,弹簧测力计读数为F 0=G Mm R 2B.在赤道地面称量时,弹簧测力计读数为F 1=G MmR 2C.在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm(R +h )2D.在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G Mm(R +h )2例6 火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员(地球表面的重力加速度g 取10 m/s 2)(1)在火星表面上受到的重力是多少? (2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?随堂演练1.(对万有引力定律的理解)对于万有引力定律的表达式F =G m 1m 2r2,下列说法正确的是( )A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的B.当r 趋近于零时,万有引力趋于无穷大C.对于m 1与m 2间的万有引力,质量大的受到的引力大D.m 1与m 2受到的引力是一对平衡力2.(月—地检验)(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A.地球吸引月球的力约为地球吸引苹果的力的1602 B.月球公转的加速度约为苹果落向地面加速度的1602C.自由落体在月球表面的加速度约为地球表面的16D.苹果在月球表面受到的引力约为在地球表面的1603.(万有引力定律的简单应用)两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F .若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两个大铁球之间的万有引力为( ) A.2F B.4F C.8F D.16F4.(重力加速度的计算)据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面重力加速度之比为( ) A.k p B.k p 2 C.k 2p D.k 2p2 课时对点练考点一 万有引力定律的理解1.(2019·肥东高级中学高一下期末)下列关于行星对太阳的引力的说法中正确的是( ) A.行星对太阳的引力与太阳对行星的引力是同一种性质的力B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力与太阳的质量成正比,与行星距太阳的距离成反比 2.(多选)关于引力常量G ,下列说法中正确的是( ) A.在国际单位制中引力常量G 的单位是N·m 2/kg 2B.引力常量G 的大小与两物体质量的乘积成反比,与两物体间距离的平方成正比C.引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力D.引力常量G 是不变的,其数值大小由卡文迪许测出,与单位制的选择无关3.(2019·北京牛栏山一中期中)下图(a)是用来“显示桌(或支持)面的微小形变”的演示实验;图(b)是用来“测量万有引力常量”的实验.由图可知,两个实验共同的物理思想方法是( )A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法考点二 万有引力定律的简单应用4.(2019·永春县第一中学高一期末)要使两物体间的万有引力减小到原来的14,下列办法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增大到原来的2倍,质量不变D.使两物体的质量和距离都减小到原来的145.某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F4,则此物体距离地面的高度应为(R 为地球半径)( ) A.2R B.4R C.R D.8R6.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g2,则该处距地球表面的高度为( )A.(2-1)RB.RC.2RD.2R7.(多选)如下图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R ,下列说法正确的是( )A.地球对一颗卫星的引力大小为GMm(r -R )2B.一颗卫星对地球的引力大小为GMmr 2C.两颗卫星之间的引力大小为Gm 23r2D.三颗卫星对地球引力的合力大小为3GMmr28.(2020·全国卷Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A .0.2B .0.4C .2.0D .2.5能力综合练9.如下图所示,一个质量均匀分布的半径为R 的球体对球外质点P (图中未画出)的万有引力为F .如果在球体中央挖去半径为r 的一部分球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为( )A.F 2B.F 8C.7F 8D.F 410.(多选)宇宙中存在着由四颗星组成的孤立星系.如下图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )A.每颗小星受到的万有引力为(32+9)F B.每颗小星受到的万有引力为(3+9)FC.母星的质量是每颗小星质量的3倍D.母星的质量是每颗小星质量的33倍11.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为[在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力]()A.R -d R +hB.(R -d )2(R +h )2C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 212.某地区的地下发现了天然气资源,如下图所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )A.kgd GρB.kgd 2Gρ C.(1-k )gd Gρ D.(1-k )gd 2Gρ13.已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如下图所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的引力F 2的大小之比为多少?14.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a =12g 的加速度随火箭向上加速升空的过程中,当物体与卫星中支持物的相互挤压的力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 表示地面处重力加速度,g 取10 m/s 2) 拓展提升15.地球可视为质量均匀分布的球体.某物体在地球北极点静止时对水平地面的压力为F N0,物体在地球赤道上静止时对水平地面的压力为F N ;地球自转周期为T ,万有引力常量为G ,地球密度的表达式为( ) A.3πF N0GT 2(F N0-F N )B.3π(F N0-F N )GT 2F N0C.3πF N0GT 2D.3πF N0GT 2F N。

太阳系行星运动由万有引力决定

太阳系行星运动由万有引力决定

太阳系行星运动由万有引力决定太阳系是我们所熟知的宇宙家园,其中存在着许多行星,它们都围绕太阳运动。

这些行星的轨道与速度是如何决定的呢?其运动又是如何受到万有引力的影响呢?本文将深入探讨太阳系行星运动是如何由万有引力决定的。

在17世纪,伟大的科学家牛顿发现了万有引力定律,揭示了物体之间相互作用的基本规律。

按照万有引力定律,任何两个物体之间都存在着吸引力,这种吸引力与物体的质量成正比,与物体之间的距离的平方成反比。

太阳系中的行星与太阳之间也存在着这种吸引力。

首先,让我们来了解一下太阳系行星的运动轨道。

太阳是太阳系的中心,行星绕着太阳进行旋转。

根据万有引力定律,行星与太阳之间的引力会使行星受到一个向太阳的拉力。

然而,同时行星也具有惯性,会沿着直线运动。

因此,这个向太阳的拉力与行星的惯性之间产生了平衡,结果就是行星沿着一条曲线轨道围绕太阳运动。

具体来说,这个运动轨道是椭圆形的,太阳位于椭圆的一个焦点上。

这是由于太阳系行星的速度不是恒定的,它们在轨道上运动时速度是不断变化的。

在最靠近太阳的位置,行星的速度最快,而在最远离太阳的位置,行星的速度最慢。

这种速度变化导致了行星轨道的椭圆形状,使得行星在轨道上以不同的速度和距离围绕太阳运动。

对于太阳系行星的运动速度,如果我们将行星视为质点,可以应用牛顿的第二定律来解释。

根据牛顿第二定律,物体的加速度与作用在它上面的力成正比,质量越大,加速度越小。

太阳系行星的质量远小于太阳的质量,因此太阳对行星的引力远大于行星对太阳的引力。

这使得行星相对太阳具有较小的加速度,从而导致它们围绕太阳运动的轨道相对较稳定。

不仅如此,太阳系中的其他天体,如卫星和小行星,也受到太阳和其他天体的引力影响。

它们的运动轨道也是由万有引力决定的。

这表明万有引力定律不仅适用于太阳系内部的天体,也适用于更大范围的宇宙。

虽然万有引力决定了太阳系行星的运动,但还有其他因素也会对行星的运动产生影响。

例如,行星与其他行星之间也存在引力相互作用,它们可能会相互影响,改变彼此的轨道。

行星运动的规律行星的运动与万有引力

行星运动的规律行星的运动与万有引力

行星运动的规律行星的运动与万有引力行星运动的规律与万有引力行星的运动一直以来都是人们广泛关注的研究领域,为了解行星的运动规律,人们借助万有引力定律进行分析。

本文将探讨行星运动的规律以及与万有引力的关系。

一、行星运动的基本规律行星的运动规律,主要包括以下几个方面:1. 行星的椭圆轨道根据开普勒定律,行星的轨道是椭圆形的,太阳位于椭圆的一个焦点上。

而这个轨道上的距离最短点称为近日点,距离最远点则称为远日点。

行星在轨道上运行时,会周期性地接近和远离太阳。

2. 运动速度的变化根据开普勒第二定律,行星在轨道上运动时,它在相等时间内扫过的面积是相等的。

因此,当行星靠近太阳时,它的运动速度会加快;而当行星离太阳较远时,运动速度则会减慢。

3. 周期与轨道半长轴的关系根据开普勒第三定律,行星的公转周期与其轨道半长轴的立方成正比。

这意味着,轨道半径越大的行星,其公转周期越长。

二、行星运动与万有引力1. 万有引力定律万有引力定律是牛顿在17世纪提出的定律,它描述了任何两个物体之间的引力大小与它们的质量和距离的平方成正比。

根据这个定律,行星与太阳之间的引力决定了行星在公转过程中的轨道。

2. 引力与轨道稳定性太阳对行星的引力起到了维持其轨道稳定性的作用。

太阳的引力使得行星朝向太阳方向运动,并使得行星在轨道上保持了一定的椭圆形状。

如果没有太阳的引力,行星可能会偏离轨道,并可能脱离太阳系。

3. 行星公转周期的计算借助万有引力定律,我们可以通过牛顿运动定律推导出行星公转周期与轨道半长轴之间的关系。

根据这个关系,我们可以计算出不同行星的公转周期,进而预测行星的运动轨迹和位置。

三、总结行星运动的规律与万有引力密不可分,万有引力定律解释了行星在太阳系中的运动规律。

行星的椭圆轨道、运动速度的变化以及公转周期与轨道半长轴的关系,都是由万有引力定律所决定的。

因此,深入研究行星运动的规律和万有引力的作用,对于了解宇宙的奥秘具有重要的意义。

太阳与行星的吸引,万有引力定律

太阳与行星的吸引,万有引力定律

2太阳与行星间的引力历史的回顾合并趋势伽利略(以太)作用笛卡儿笛卡儿:在行星的周围有旋转的物质(以太)作用在行星上,使得行星绕太阳运动。

胡克和哈雷的解释更进一步太阳引力哈雷胡克胡克、哈雷等: 受到了太阳对它的引力,证明了如果行星的轨道是圆形的,其所受的引力大小跟行星到太阳的距离的二次方成反比,但没法证明在椭圆轨道规律也成立。

牛顿(1643—1727)英国著名的物理学家当年牛顿在前人研究的基础上,也经过类似的思考,并凭借其超凡的数学能力和坚定的信念,深入研究,最终发现了万有引力定律。

牛顿在1676年给友人的信中写道:如果说我看的比别人更远,那是因为我站在巨人的肩膀上。

1、太阳对行星的引力=行星绕太阳做圆周运动的向心力2、行星对太阳的引力2Mm F r ∝3、太阳与行星间的引力2G Mm F r =即:32r k T =由开普勒第三定律:2m F r ∝2v 2p m r F =2(mr T )=(对称)2M Fr ∝公式推导3万有引力定律牛顿的进一步思考:天体之间的引力是由天体的质量决定的,它和苹果落地的力是否相同呢?(“月-地”检验)(2)根据: F 引= G•Mm/r 2∝1/r2已知月球绕地球的公转周期为27.3天,地球半径为6.37×106m.月球轨道半径约为地球半径的60倍。

月球绕地球的向心加速度?(1)根据向心加速度公式:万有引力定律3、适用条件:可以看成质点的物体或质量分布均匀的球体1、内容:宇宙间一切物体都是相互吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的二次方成反比。

万有引力常量:2、公式r 为两个质点或球心之间的距离r F rF m m ´m m ´卡文迪许扭称的测量方法引力数量级对比对于万有引力定律的表述式,下列说法中正确的是( )A 、公式中G 为引力常量,它是由实验测得的,而不是人为规定的B 、当r 趋近于零时,万有引力趋于无穷大C 、m 1与m 2受到的引力大小总是相等的,方向相反,是一对平衡力D 、m 1与m 2受到的引力大小总是相等的,而与m 1、m 2是否相等无关课堂练习AD。

行星对太阳的引力公式推导

行星对太阳的引力公式推导

行星对太阳的引力公式推导
行星对太阳的引力公式是描述行星和太阳之间引力关系的数学公式。

在天文学中,行星和太阳之间的引力是非常重要的,因为它决定了行星的轨道和运动。

本文将从牛顿万有引力定律出发,推导出行星对太阳的引力公式。

牛顿万有引力定律是描述物体之间引力关系的基本定律。

它表明,任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。

具体地说,如果两个物体的质量分别为m1和m2,它们之间的距离为r,它们之间的引力F可以表示为:
F =
G * m1 * m2 / r^2
其中G是万有引力常数,它的值为6.67×10^-11 N·m^2/kg^2。

这个公式适用于任何两个物体之间的引力关系,包括行星和太阳之间的引力关系。

对于行星和太阳之间的引力关系,我们可以将上述公式中的m1和m2分别替换为行星和太阳的质量,r替换为它们之间的距离。

这样,我们就得到了行星对太阳的引力公式:
F =
G * M * m / r^2
其中M是太阳的质量,m是行星的质量,r是它们之间的距离。

这个公式可以用来计算行星在太阳引力下的加速度,从而确定行星
的轨道和运动。

需要注意的是,行星和太阳之间的引力是双向的,即太阳也会对行星产生引力。

但是,由于太阳的质量远大于行星的质量,因此太阳的运动可以忽略不计,只考虑行星的运动即可。

行星对太阳的引力公式是描述行星和太阳之间引力关系的数学公式。

它是基于牛顿万有引力定律推导出来的,可以用来计算行星在太阳引力下的加速度,从而确定行星的轨道和运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修2 第二节 太阳与行星间的引力第三节 万有引力定律 导学提纲
【自主学思】(阅读教材很重要)
一、太阳与行星间的引力
1.猜想:行星围绕太阳的运动可能是太阳的引力作用造成的,太阳对行星的引力F 应该与行星到太阳的有关.
2.模型简化:行星以太阳为圆心做运动,太阳对行星的引力提供了行星做运动的向心力.
3.太阳对行星的引力:F =m v 2r =m ⎝⎛⎭⎫2πr T 2·1r =4π2mr T 2.结合开普勒第三定律得:F ∝m r
2. 4.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝M r
2. 5.太阳与行星间的引力:根据牛顿第三定律F =F ′,又由于F ∝m r 2、F ′∝M r 2,则有F ∝Mm r
2,写成等式F =G Mm r
2,式中G 为比例系数. 二、万有引力定律
1.月—地检验
(1)猜想:维持月球绕地球运动的力与使物体下落的力是同一种力,遵从“”的规律.
(2)推理:物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的160
2. (3)结论:计算结果与我们的预期符合得很好.这表明:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从的规律.
2.万有引力定律
(1)内容:自然界中任何两个物体都相互吸引,引力的方向在,引力的大小与物体的质量m 1和m 2的乘积成,与它们之间距离r 的二次方成.
(2)表达式:
(3)引力常量G :由英国物理学家卡文迪许测量得出,常取G =N·m 2/kg 2.
【深入学习】
要点一:对万有引力定律的进一步理解
要点二:万有引力和重力的关系
要点三:物体在其他行星上的运动
要点四:方法技巧——挖补法求解万有引力
【自主应用】
1、(多选)对于万有引力定律的表达式F =G m 1m 2r 2,下列说法中正确的是( ) A .公式中G 为引力常量,与两个物体的质量无关
B .当r 趋近于零时,万有引力趋近于无穷大
C .m 1与m 2受到的引力总是大小相等,方向相反,是一对平衡力
D .m 1与m 2受到的引力大小总是相等的,而与m 1、m 2是否相等无关
2、一探月卫星在地月转移轨道上运行,某一时刻正好处于地心和月心的连线上,卫星在此处所受地球引力与月球引力之比为4∶1.已知地球与月球的质量之比约为81∶1,则该处到地心与月心的距离之比约为( )
A .81∶4
B .9∶1
C .9∶2
D .9∶4
3、设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球对物体的万有引力的作用
而产生的加速度为g ,则g g 0
为( ) A .1 B .1/9
C .1/4
D .1/16
4、(2014·高考新课标全国卷Ⅱ)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )
A.3πGT 2g 0-g g 0
B.3πGT 2g 0g 0-g
C.3πGT 2
D.3πGT 2g 0g
5、某星球的质量约为地球的9倍,半径为地球的一半,若从地球上高为h 处平抛一物体,射程为60 m ,则在该星球上从同样高度以同样初速度平抛同一物体,射程为多少?
6、宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t ,小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10 m/s 2,空气阻力不计)
(1)求该星球表面附近的重力加速度g ′;
(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.
7、有一质量为M 、半径为R 的密度均匀球体,在距离球心O 为2R 的地方有一质量为m 的质点,现在从M 中
挖去一半径为R 2
的球体,如图所示,求剩下部分对m 的万有引力F 为多大?
【学习反馈】。

相关文档
最新文档