九年级数学一元二次函数与一元二次不等式_图文.ppt
合集下载
《基本不等式》一元二次函数、方程和不等式PPT教学课件(第一课时基本不等式)
1.下列不等式中,正确的是( )
A.a+4a≥4
B.a2+b2≥4ab
C. ab≥a+2 b
D.x2+x32≥2 3
解析:选 D.a<0,则 a+4a≥4 不成立,故 A 错;a=1,b=1,
a2+b2<4ab,故 B 错,a=4,b=16,则 ab<a+2 b,故 C 错;
由基本不等式可知 D 项正确.
2.2 基本不等式
第1课时 基本不等式
第二章 一元二次函数、方程和不等式
考点
学习目标
基本不等式
理解基本不等式的内容及 导出过程
利用基本不等式 能够运用基本不等式求函
求最值
数或代数式的最值
核心素养 逻辑推理 数学运算
第二章 一元二次函数、方程和不等式
问题导学 预习教材 P44-P46,并思考以下问题: 1.基本不等式的内容是什么? 2.基本不等式成立的条件是什么? 3.利用基本不等式求最值时,应注意哪些问题?
栏目 导引
第二章 一元二次函数、方程和不等式
■名师点拨 利用基本不等式求最值,必须按照“一正,二定,三相等”的 原则,即: ①一正:符合基本不等式a+2 b≥ ab成立的前提条件,a>0,b >0; ②二定:化不等式的一边为定值; ③三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.
第二章 一元二次函数、方程和不等式
所以 y=x+x-4 2=x-2+x-4 2+2
≥2 (x-2)·x-4 2+2=6,
当且仅当 x-2=x-4 2, 即 x=4 时,等号成立.
所以 y=x+x-4 2的最小值为 6.
栏目 导引
第二章 一元二次函数、方程和不等式
(2)因为 0<x<12, 所以 1-2x>0, 所以 y=12x(1-2x)=14×2x×(1-2x)≤142x+12-2x2=14×14= 116, 当且仅当 2x=1-2x, 即当 x=14时,ymax=116.
一元二次不等式及其解法
定二次方程根的个数;
(3)对相应的一元二次方程根的大小进行讨论,以
确定解集.
1.三个“二次”的关系
一元二次不等式解的端点值是对应一元二次方程
的根,也是对应一元二次函数的零点. 2.含参一元二次不等式的解法:
(1)对二次项系数分是否为0,是正还是负进行讨论;
(2)对判别式进行讨论; (3)对相应的一元二次方程根的大小进行分类讨论.
(1)化成不等式的标准形式:
ax2 + bx + c > 0或ax2 + bx + c < 0(a > 0);
(2)求方程 ax2 + bx + c = 0(a > 0) 的根, 并画出对应的一元二次函数 y = ax2 + bx + c(a > 0)
的图象;
(3)由图象得出不等式的解集:
当Δ > 0时,方程ax2 + bx + c = 0有两个不等的实数根 x1,x( 2 x1 < x2),
因为Δ = 49 > 0,
所以方程 3x2 + 5x - 2 = 0 有两个实数根 1 x1 = -2,x 2 = . 3 而 y = 3x2 + 5x - 2 的图象开口向上,
转化为一 般形式
1 所以原不等式的解集为 x x < -2或x > 3 .
【提升总结】 解一元二次不等式的一般步骤:
y
O
x
例6
解关于 x 的不等式 ax2 -(a +1)x +1 < 0.
分析:题中二次项系数含有参数,因此要分
及
解:原不等式可化为 (ax - 1)(x - 1)< 0. (1) 当a = 0时,x > 1. 1 (2) 当a < 0时,不等式可化为 (x - )(x - 1)> 0. a 1 1 因为 < 1,所以x < 或x > 1. a a
(3)对相应的一元二次方程根的大小进行讨论,以
确定解集.
1.三个“二次”的关系
一元二次不等式解的端点值是对应一元二次方程
的根,也是对应一元二次函数的零点. 2.含参一元二次不等式的解法:
(1)对二次项系数分是否为0,是正还是负进行讨论;
(2)对判别式进行讨论; (3)对相应的一元二次方程根的大小进行分类讨论.
(1)化成不等式的标准形式:
ax2 + bx + c > 0或ax2 + bx + c < 0(a > 0);
(2)求方程 ax2 + bx + c = 0(a > 0) 的根, 并画出对应的一元二次函数 y = ax2 + bx + c(a > 0)
的图象;
(3)由图象得出不等式的解集:
当Δ > 0时,方程ax2 + bx + c = 0有两个不等的实数根 x1,x( 2 x1 < x2),
因为Δ = 49 > 0,
所以方程 3x2 + 5x - 2 = 0 有两个实数根 1 x1 = -2,x 2 = . 3 而 y = 3x2 + 5x - 2 的图象开口向上,
转化为一 般形式
1 所以原不等式的解集为 x x < -2或x > 3 .
【提升总结】 解一元二次不等式的一般步骤:
y
O
x
例6
解关于 x 的不等式 ax2 -(a +1)x +1 < 0.
分析:题中二次项系数含有参数,因此要分
及
解:原不等式可化为 (ax - 1)(x - 1)< 0. (1) 当a = 0时,x > 1. 1 (2) 当a < 0时,不等式可化为 (x - )(x - 1)> 0. a 1 1 因为 < 1,所以x < 或x > 1. a a
第二章 一元二次函数、方程和不等式(单元解读课件)
2.利用不等式的性质证明不等式注意事项 1利用不等式的性质及其推论可以证明一些不等式.解决此类问题 一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中 灵活准确地加以应用. 2应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.
能说明基本不等式的几何解释;能借助二次函数图象,说明二次函数与一元 二次方程、不等式的联系;能根据二次函数二次项系数和一元二次方程的根 画出二次函数图象,能够借助函数图象,求解一元二次不等式.
能将比较两个代数式大小的问题转化为两个代数式的差与0比大小的问题, 能将解方程 ax2 +bx+c=0 (a≠0) 的问题转化为研究函数 y ax2 bx c ,当 自变量为何值时,函数值 y=0的问题,能将解不等式 ax2 bx c>0 的问题 转化为研究函数 y ax2 bx c ,当自变量在什么范围时,函数值 y>0的 问题
人教A版2019必修第一册
第二章 一元二次函数、 方程和不等式单元解读
一:本章知识结构图
二: 单元目标
1.能够理解不等式的概念,掌握不等式的性质. 2.能够掌握基本不等式,能用基本不等式解决简单的最大值或最小值问题 3.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现 实意义 4.能够借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系. 5.能够借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的 解集 6.能够从函数的观点认识方程和不等式,感悟数学知识之间的关联,认识函数 的重要性.体会数学的整体性. 7.能够在本章的学习中,重点提升逻辑推理、数学运算和数学建模素养
6.利用基本不等式求最值 利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的 “拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体 可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应 凑出定和或定积;
一元二次不等式PPT优秀课件
6.2一元二次不等式
本节主要内容:一元二次不等式的解法, 一元二次不等式与相应的二次函数的图象、 方程之间的联系.要求能熟练、准确、迅速 地解一元二次不等式,会用分类讨论的方 法求解含参数的一元二次不等式,能够判 断一元二次不等式恒成立的条件.注意等价 转化的思想、函数与方程的思想、数形结 合的思想以及分类讨论的思想在解决问题 中的应用.
一元二次不等式与相应的二次函数的图象、 方程之间的关系如下
判别式 b2 4ac
二次函数 y ax2 bx c (a 0)的图象
△>0
y
x1 x2
x1
x2
O
x
△=0 y
x1 x2
O
x
方程ax2 bx c 0 (a 0)的根
有x1,2两不等实根 b b2 4ac
2
时
x
a
x
2
a
当 a 2 时,原不等式的解集是 x x 2 ;
a
2
时,原不等式的解集为
x
2 a
x
a ;
0a
2
时,原不等式的解集为
x
a
x
2 a
;
a 2 时,原不等式的解集是 R ;
2
a
0
时,不等式的解集为
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
本节主要内容:一元二次不等式的解法, 一元二次不等式与相应的二次函数的图象、 方程之间的联系.要求能熟练、准确、迅速 地解一元二次不等式,会用分类讨论的方 法求解含参数的一元二次不等式,能够判 断一元二次不等式恒成立的条件.注意等价 转化的思想、函数与方程的思想、数形结 合的思想以及分类讨论的思想在解决问题 中的应用.
一元二次不等式与相应的二次函数的图象、 方程之间的关系如下
判别式 b2 4ac
二次函数 y ax2 bx c (a 0)的图象
△>0
y
x1 x2
x1
x2
O
x
△=0 y
x1 x2
O
x
方程ax2 bx c 0 (a 0)的根
有x1,2两不等实根 b b2 4ac
2
时
x
a
x
2
a
当 a 2 时,原不等式的解集是 x x 2 ;
a
2
时,原不等式的解集为
x
2 a
x
a ;
0a
2
时,原不等式的解集为
x
a
x
2 a
;
a 2 时,原不等式的解集是 R ;
2
a
0
时,不等式的解集为
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
人教版九年级数学上册《一元二次方程》PPT优秀课件
③
①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤
审
审题,弄 清已知量 与未知量 之间的关 系
设 设未知数
找
找出等量 关系
列
根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
一元二次函数.ppt
第二章 函数——一元二次函数与一元二次不等式
知识巩固
判别式Δ=b2-4ac 二次函数y=ax2+bx+c (a>0) 的图像
“三个二次”:二次函数、二次方程、 二次不等式间的主要关系。
Δ>0 Δ=0 Δ<0
x1
x2
x1=x2 有两个相等实 根 b
二次方程ax2+bx+c=0 (a≠0)的根
有两个相异实根
4ac b 2 [ , ) 4a
实数集R
4ac b 2 (, ] 4a
( , 增区间: ( 减区间:
单调性
b , ) 2a b ( , ) 减区间: 2a ( 增区间:
b , ) 2a
b ) 2a
第二章 函数——一元二次函数与一元二次不等式
二次函数的图像与性质
第二章 函数——一元二次函数与一元二次不等式
知识回顾
函数的性质
1、函数的单调性
如果函数y=f(x)在区间(a,b)上是增函数或是减函 数,那么就说函数y=f(x)在区间(a,b)内具有单调性 , 区间(a,b)叫做函数y=f(x)的单调区间。
2、函数的奇偶性
如果一个函数f(x)是奇函数或偶函数,那么我们就 说函数f(x)具有奇偶性。
第二章 函数——一元二次函数与一元二次不等式
知识学习
2
观察一元二次函数的图像性质
y 3( x 1) 2
y 3x 1 2
2
y
y 3x 1 2
2
y 3x 2
y 3x 1 2
2
y 3x 1
2
X=1
第二章 函数——一元二次函数与一元二次不等式
《基本不等式》一元二次函数、方程和不等式 图文
2
∴xy≤4,当且仅当 x=y=2 时,等号成立,
∴xy 的最大值为 4.
答案:(1)4 (2)4
课堂篇
探究学习
探究一
探究二
探究三
随堂演练
基本不等式的理解
例1下列命题正确的是(
)
4
A.若 x≠0,则 x+≥4
B.若 a,b∈R,且 ab>0,则 + ≥2
C. 2 + 2 +
4
1
的最小值为 2
)
A.6 B.5
C.4 D.3
(2)已知a>0,b>0,且ab=1,则a+4b的最小值为
9
解析:(1)∵x>0,∴+x≥2
9
·=6,当且仅当
9
x=,即
.
x=3 时等号成
立,此时取得最小值 6.
(2)因为 a>0,b>0,且 ab=1,所以 a+4b≥2 4=4,当且仅当 a=4b,
即
1
a=2,b= 时取等号.
A.最小值12
C.最小值144
4
9
解析: + ≥2
答案:C
)
B.最大值12
D.最大值144
36
,即
≤12,∴xy≤144.
课堂篇
探究学习
探究一
探究二
探究三
随堂演练
1
时,4x+ (x>0)取得最小值.
3.当且仅当 x=
1
1
解析:由于 x>0,由基本不等式可得 4x+≥2 4·=4,当且仅当
不等式,将和变积,并证得不等式.(2)不等式右边的数字为8,使我们
∴xy≤4,当且仅当 x=y=2 时,等号成立,
∴xy 的最大值为 4.
答案:(1)4 (2)4
课堂篇
探究学习
探究一
探究二
探究三
随堂演练
基本不等式的理解
例1下列命题正确的是(
)
4
A.若 x≠0,则 x+≥4
B.若 a,b∈R,且 ab>0,则 + ≥2
C. 2 + 2 +
4
1
的最小值为 2
)
A.6 B.5
C.4 D.3
(2)已知a>0,b>0,且ab=1,则a+4b的最小值为
9
解析:(1)∵x>0,∴+x≥2
9
·=6,当且仅当
9
x=,即
.
x=3 时等号成
立,此时取得最小值 6.
(2)因为 a>0,b>0,且 ab=1,所以 a+4b≥2 4=4,当且仅当 a=4b,
即
1
a=2,b= 时取等号.
A.最小值12
C.最小值144
4
9
解析: + ≥2
答案:C
)
B.最大值12
D.最大值144
36
,即
≤12,∴xy≤144.
课堂篇
探究学习
探究一
探究二
探究三
随堂演练
1
时,4x+ (x>0)取得最小值.
3.当且仅当 x=
1
1
解析:由于 x>0,由基本不等式可得 4x+≥2 4·=4,当且仅当
不等式,将和变积,并证得不等式.(2)不等式右边的数字为8,使我们
第2章 一元二次函数、方程和不等式 课件(1)(共28张PPT)
x 1
x 1
则当且仅当x+1= a 时取等号,
x 1
此时x= a-1<0(不合题意),因此,上式等号取不到.
设x1>x2≥0,则
f(x1)-f(x2)=x1+
a x1
1
x2
x
a 2
1[1(x-1
x2
)
∵x1>x2≥0,∴x1-x2>0,x1+1>1,x2+1≥1,
],
a
x1 1(x2 1)
∴(x1+1)(x2+1)>1,而0<a<1,
方法二:令g(x)=x2-2ax+2-a,
由已知,得x2-2ax+2-a≥0在[-1,+∞)上恒成立,
0,
即Δ=4a2-4(2-a)≤0或 a 1解, 得-3≤a≤1.
g 1 0.
即所求a的取值范围为[-3,1].
利用基本不等式求最值 【名师指津】 利用基本不等式求最值的方法
基本不等式通常用来求最值问题:一般用a+b≥ 2 ab (a>0, b>0)解“定积求和,和最小”问题,用ab≤ (a b)2 解
程思想.
【例6】 已知不等式ax2+bx+c>0的解集为(α,β),且
0<α<β,求不等式cx2+bx+a<0的解集.
【审题指导】审题时要明确不等式的解集与方程的根的关系,
以及根与系数的关系的应用.
【规范解答】由已知不等式可得a<0,且α、β为方程
ax2+bx+c=0的两根,
∴由根与系数的关系可得
人教2019A版必修 第一册
一元二次不等式课件.ppt
y=-4.9x2+14.7x+18, 问:x为何值时,烟花的高度大于27.8米?
解:由题知:
-4.9x2+14.7x+18>27.8
整理得:x2-3x+2<0
思考?
新课导入
这个不等式x2-3x+2<0是我们以前学习过的 类型吗?如果是,说出它的类型.如果不是,它含 有几个未知数?未知数的最高次数是几?
0
0
X1=x2 x
x
X1(x2) 没有实数根
{x|x≠x1}
R
φ
φ
课堂教学
△=b2-4ac y =ax2+bx+c (a>0)的图象
ax2+bx+c=0 (a>0)的根 ax2+bx+c≥0 (a>0)的解集
ax2+bx+c≤0 (a0
y
0 x1
x2 x
X1,X2(X1 <X2) {X|X≥X2或 X≤X1} {X|X1≤X≤ X2}
教学 策略
教学设计理念
教学思路 教法运用 学法指导 教具运用
A、课前预习 B、小组竞赛 C、当堂练习
A、多媒体课件演示 B、小组探究讨论 C、讲练结合
A、指导学生动手动脑 B、小步伐、多活动、
快反馈 多媒体课件、黑板
教学 过程
新课导入 新课教学 课堂练习 课堂小结
作业布置
新课导入
例子: 烟花的运动轨迹是一条抛物线,烟花 距地面的高度y(米)与时间x(秒)之间的函 数关系为
一元二次不等式及其解法
中山市华侨中学 吴会群
一、本节教材所处地位和作用
教材 分析
A、知识目标 二、教学目标 B、能力目标
C、德育目标
解:由题知:
-4.9x2+14.7x+18>27.8
整理得:x2-3x+2<0
思考?
新课导入
这个不等式x2-3x+2<0是我们以前学习过的 类型吗?如果是,说出它的类型.如果不是,它含 有几个未知数?未知数的最高次数是几?
0
0
X1=x2 x
x
X1(x2) 没有实数根
{x|x≠x1}
R
φ
φ
课堂教学
△=b2-4ac y =ax2+bx+c (a>0)的图象
ax2+bx+c=0 (a>0)的根 ax2+bx+c≥0 (a>0)的解集
ax2+bx+c≤0 (a0
y
0 x1
x2 x
X1,X2(X1 <X2) {X|X≥X2或 X≤X1} {X|X1≤X≤ X2}
教学 策略
教学设计理念
教学思路 教法运用 学法指导 教具运用
A、课前预习 B、小组竞赛 C、当堂练习
A、多媒体课件演示 B、小组探究讨论 C、讲练结合
A、指导学生动手动脑 B、小步伐、多活动、
快反馈 多媒体课件、黑板
教学 过程
新课导入 新课教学 课堂练习 课堂小结
作业布置
新课导入
例子: 烟花的运动轨迹是一条抛物线,烟花 距地面的高度y(米)与时间x(秒)之间的函 数关系为
一元二次不等式及其解法
中山市华侨中学 吴会群
一、本节教材所处地位和作用
教材 分析
A、知识目标 二、教学目标 B、能力目标
C、德育目标
人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)
(2)若该抛物线的对称轴为直线x=5/2. ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程
的
解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线
则
= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程
的
解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线
则
= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )
人教版九年级上册第二十二章课件(共19张PPT) 二次函数与一元二次方程说课
?
讨论展示:
(3)球的飞行高度能否达到20.5m?如果能, 需要多少飞行时间?
你能结合图形指出:
20.5 h
为什么球不能达到20.5m的
高度?
O
t
(4)球从飞出到落地要用多少时间?
你能结合图形指出: 为什么在两个时间球的高 度为0m吗?
?
归纳小结:
从以上可以看出, 已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
2.已知:函数y=ax²+(3a-1)x+2a+1 (a为常数).
若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0), B(x2,0)两点,
AB=2.求抛物线的解析式
设计意:
让学生既能体会到学数学的成功感,又能恰当的提高学生的兴趣, 并与中考题型接轨。
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
讨论展示
(1)球的飞行高度能否达到15m?如果能,
需要多少飞行时间?
h
15
你能结合图形指出:
为什么在两个时间
O1
3t
球的高度为15m?
(2)球的飞行高度能否达到20m?如果能,需要 多少飞行时间?
你能结合图形指出:
为什么只在一个时间球的高 度为20m?
自学学习1:
自学课本P43页-44页思考以上内容
问题 如图,以40m/s的速度将小球沿与地面成300角的方向击出时, 球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行 h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:
(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间? (2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?
《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】
(2)形式:
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
九年级数学一元二次函数与一元二次不等式
k7平台官网
[多选]MEN2的筛查项目包括()。A.RET基因突变筛查B.基础和刺激后的血清降钙素C.尿儿茶酚胺和甲氧基肾上腺素D.血清钙E.空腹血糖 [单选,A2型题,A1/A2型题]C反应蛋白在哪种情况下不升高().A.病毒感染B.细菌感染C.高血压D.急性心肌梗塞E.大面积烧伤 [单选]以下性传播疾病不是由病毒引起的是()A.尖锐湿疣B.生殖器疱疹C.艾滋病D.扁平湿疣 [单选]上颌窦内靠下壁的半圆形软组织影边缘光滑,直径1.0~1.5cm,窦腔内其余部分无异常,最可能的诊断是()A.息肉B.黏液囊肿C.黏膜囊肿D.血管瘤E.正常变异 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选]根据柴油机的基本工作原理,下列哪一种定义最准确()。A.柴油机是一种往复式内燃机B.柴油机是一种在气缸中进行二次能量转换的内燃机C.柴油机是一种压缩发火的往复式内燃机D.柴油机是和种压缩发火的回转式内燃机 [单选]要了解有关冰的术语、冰区操作、冰区导航等冰区航行知识,可阅()。A.英版《世界大洋航路》B.英版《无线电信号表》C.英版《航路指南》D.英版《航海员手册》 [填空题]英国人()、美国人()、威廉姆斯等学者认为人类文明源自中亚细亚——蒙古高原,认为蒙古人是人类第一直立人,第一智人。 [单选]脱丙烷塔回流泵全坏,实质是精馏塔内没有(),影响全塔的传质过程。A、气相B、液相C、液相回流D、气液混合相 [单选,A2型题]文化是人类生活模式的体现,这指的是文化的()A.历史性B.现实性C.渗透性D.继承性E.社会性 [判断题]室温下,稳定状态的单质的标准摩尔熵为零。A.正确B.错误 [单选,A2型题,A1/A2型题]治疗鼻出血致休克首选的方法是()。A.鼻内镜检查B.烧灼法C.鼻腔纱条填塞D.补液、输血、给升压药、保暖等抗休克治疗E.血管结扎法 [单选,A2型题,A1/A2型题]下列工具酶中不以NAD(P)H为辅酶的是().A.LDHB.MDHC.G-6-PDD.PODE.CLDH [问答题,简答题]中国的情人节是哪一天? [单选]方位投影大都是透视投影,视点在球外的方位投影称为()。A.心射投影B.极射投影C.外射投影D.日晷投影 [单选]症状性癫痫的定义是指()。A.临床上不能分类的癫痫B.从婴儿起始的癫痫C.抗癫痫药物无法控制的癫痫D.脑部无病损或代谢异常的癫痫E.脑部有病损或代谢异常的癫痫 [单选,A1型题]松子仁除润肠通便之功外,还具有的功效是()A.利水消肿B.生津止渴C.润肺止咳D.养血安神E.益气健脾 [单选]胎盘基本形成的时间约在().A.孕4周B.孕8周C.孕12周D.孕14周E.孕18周 [单选]下列关于现金流量表的描述正确的是()。A.现金流量表是反映企业在一定会计期间库存现金流入和流出的报表B.现金流量表是反映企业在一定会计期间现金和现金等价物流入和流出的报表C.现金等价物指的是企业的银行存款以及其他货币资金D.购买的股票投资也属于企业现金等价物 [填空题]计算机网络诞生于()代末,是计算机技术与通信技术结合的产物 [填空题]为了使进入工件的波形转换为横波,除选择适当的入射角外,楔块的纵波声速还要比工件的横波声速()。 [单选]癫痫持续状态判断的标准之一,是指1次发作的时间至少超过()。A.10minB.15minC.20minD.25minE.30min [判断题]《出口玩具质量许可证》的有效期为3年。()A.正确B.错误 [单选]基底胶结的渗透率()。A、没有B、很低C、中等D、很高 [单选]游乐园的()应该执行国家有关标准和规范。A、计划、设计、施工B、引进、安装C、制造、安装D、规划、设计、施工 [填空题]登高人员穿着要求:()。 [单选]柴油机与汽油机同属内燃机,它们在结构上的主要差异是()。A.燃烧工质不同B.压缩比不同C.燃烧室形状不同D.供油系统不同或者说是混合气形成的方式不同 [问答题,简答题]ST型缓冲器的组成? [单选]老年人有反复发作的霰粒肿时,首先应考虑()A.继发感染的可能B.鳞状细胞癌的可能C.基底细胞癌的可能D.眼睑皮脂腺癌的可能E.以上均不是 [填空题]游艺机操作要做好三个安全()、()、()。 [单选]颞下颌关节区疼痛,应属于三叉神经的哪一支()A.第Ⅰ支B.第Ⅱ支C.第Ⅲ支D.第Ⅰ、Ⅱ支E.第Ⅱ、Ⅲ支 [单选]《部标》规定:快速列车开车前()车内温度应符合要求。A、2小时B、1.5小时C、0.5小时D、40分钟 [单选]下列有关噪声的叙述中,错误的是()。A.当某噪声级与背景噪声级之差很小时,则感到很嘈杂B.噪声影响居民的主要因素与噪声级、噪声的频谱、时间特性和变化情况有关C.由于各人的身心状态不同,对同一噪声级下的反应有相当大的出入D.保证睡眼不受影响,室内噪声级的理想值为3 [多选]值班表提醒人们按值班要求值班,它通常用在()。A.值班室B.秘书办公室C.节假日值班办公室D.领导办公室 [问答题,简答题]C#中的委托是什么?事件是不是一种委托? [单选,A2型题,A1/A2型题]脑脊液标本抽出后,.以上均不对 [单选]抗癫痫药物治疗癫痫的原则是()。A.大量、突击、静脉用药B.按发作类型短期用药,随时改变品种C.按发作类型长期、规则用药D.长期、规则用药,禁酒E.大剂量、短期、合并用药 [问答题,案例分析题]阅读理解:1、某建筑物采用框架剪力墙结构,在一层共有8根编号为L1的梁,见图3-26。"结构设计总说明"中有如下说明:梁与剪力墙、柱交接处应设箍筋加密区,长度为1.5H(H为梁高)。(钢筋保护层25mm)。试计算各钢筋。图3-26L1梁配筋图已知:钢筋总重量按下列各 [单选]下列何项不是阿托品在眼病中的应用()A.用于治疗虹胰睫状体炎B.解除睫状肌痉挛C.用于治疗青光眼D.降低眼内血管壁的通透性E.防止虹膜与晶状体粘连 [单选]人体的血液循环路径是().A、左心室—动脉—毛细血管—静脉—右心房B、左心室—静脉—毛细血管—动脉—右心房C、右心房—动脉—毛细血管—静脉—左心室