2.1椭圆(1)(学生学案)
人教版数学高二数学人教A版选修2-1学案第一课时椭圆的简单几何性质
2.2.2椭圆的简单几何性质第一课时椭圆的简单几何性质预习课本P43~47,思考并完成以下问题1.椭圆有哪些几何性质?什么叫做椭圆的中心、顶点、长轴与短轴?2.什么是椭圆的离心率?随着离心率的变化椭圆的形状有何变化?[新知初探]椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0) 范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a 顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 轴长长轴长=2a,短轴长=2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 焦距|F1F2|=2c对称性对称轴x轴和y轴,对称中心(0,0)离心率e =ca(0<e <1) [小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长等于a ( )(2)椭圆上的点到焦点的距离的最小值为a -c ( ) (3)椭圆的离心率e 越小,椭圆越圆( ) 答案:(1)× (2)√ (3)√2.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,45B .10,6,45C .5,3,35D .10,6,35答案:B3.若椭圆x 2a 2+y 2=1的焦点在x 轴上,长轴长是短轴长的两倍,则椭圆的离心率为( )A .32B .12C .22D .52 答案:A4.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.答案:32由标准方程研究几何性质[典例] [解] 椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c =a 2-b 2=9-4=5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2), 离心率e =c a =53.求椭圆的性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.[活学活用]已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.解:(1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35;(2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10; ②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④焦点:(0,6),(0,-6); ⑤离心率:e =35.利用几何性质求标准方程[典例] (1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. [解] (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0). 由已知得2a =10,a =5. 又∵e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆方程为x 225+y 29=1或y 225+x 29=1.(2)依题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1FA 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,则c =b =3, a 2=b 2+c 2=18,故所求椭圆的方程为x 218+y 29=1.(1)利用椭圆的几何性质求标准方程通常采用待定系数法.(2)根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a 2,b 2的值;②确定焦点所在的坐标轴;③写出标准方程.[活学活用]求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的5倍,且过点A (5,0). (2)离心率e =35,焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧ 2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b 2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.(2)由e =c a =35,2c =12,得a =10,c =6,则b 2=a 2-c 2=64.当焦点在x 轴上时,所求椭圆的标准方程为x 2100+y 264=1;当焦点在y 轴上时,所求椭圆的标准方程为y 2100+x 264=1.综上所述,所求椭圆的标准方程为 x 2100+y 264=1或y 2100+x 264=1.求椭圆的离心率[典例] 设椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A .36B .13C .12D .33[解析] 法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). [答案] D[一题多变]1.[变条件]若将本例中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“∠PF 2F 1=75°,∠PF 1F 2=45°”,求C 的离心率.解:在△PF 1F 2中,∵∠PF 1F 2=45°,∠PF 2F 1=75°, ∴∠F 1PF 2=60°,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,椭圆的长轴长为2a ,则在△PF 1F 2中, 有m sin 75°=n sin 45°=2csin 60°, ∴m +n sin 75°+sin 45°=2csin 60°,∴e =c a =2c 2a =sin 60°sin 75°+sin 45°=6-22. 2.[变条件,变设问]若将本例中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“C 上存在点P ,使∠F 1PF 2为钝角”,求C 的离心率的取值范围.解:由题意,知c >b ,∴c 2>b 2. 又b 2=a 2-c 2,∴c 2>a 2-c 2, 即2c 2>a 2. ∴e 2=c 2a 2>12,∴e >22. 故C 的离心率的取值范围为⎝⎛⎭⎫22,1.求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca 求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.层级一 学业水平达标1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A .12B .32 C .34D .64解析:选A 依题意,△BF 1F 2是正三角形,∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°, ∴cos 60°=c a =12,即椭圆的离心率e =12,故选A .3.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( ) A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若AP =2PB ,则椭圆的离心率是( )A .32B .22C .13D .12解析:选D ∵AP =2PB ,∴|AP |=2|PB |. 又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12.5.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x 2-n +y 2-m =1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m -(-n )=n -m . 6.椭圆x 24+y 2m =1的离心率为12,则m =________.解析:当焦点在x 轴上时,4-m 2=12⇒m =3; 当焦点在y 轴上时,m -4m=12⇒m =163. 综上,m =3或m =163. 答案:3或1637.已知椭圆的中心在原点,焦点在x 轴上,离心率为55, 且过P (-5,4),则椭圆的方程为________________.解析:∵e =c a =55,∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1. 解得a 2=45.∴椭圆方程为x 245+y 236=1. 答案:x 245+y 236=18.设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上,若1F A =5F B 2,则点A 的坐标是________.解析:设A (m ,n ).由1F A =5F B 2,得B ⎝ ⎛⎭⎪⎫m +625,n 5.又A ,B 均在椭圆上,所以有⎩⎪⎨⎪⎧m 23+n 2=1,⎝ ⎛⎭⎪⎫m +62523+⎝⎛⎭⎫n 52=1,解得⎩⎪⎨⎪⎧ m =0,n =1或⎩⎪⎨⎪⎧m =0,n =-1,所以点A 的坐标为(0,1)或(0,-1). 答案:(0,1)或(0,-1)9.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22,过点F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,求椭圆C 的标准方程.解:设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0).由e =22知c a =22,故c 2a 2=12,从而a 2-b 2a 2=12,b 2a 2=12.由△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,得a =4,∴b 2=8.故椭圆C 的标准方程为x 216+y 28=1.10.椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点是A (a,0),其上存在一点P ,使∠APO =90°,求椭圆离心率的取值范围.解:设P (x ,y ),由∠APO =90°知,点P 在以OA 为直径的圆上,圆的方程是⎝⎛⎭⎫x -a 22+y 2=⎝⎛⎭⎫a 22.∴y 2=ax -x 2.①又P 点在椭圆上,故x 2a 2+y 2b2=1.②把①代入②化简,得(a 2-b 2)x 2-a 3x +a 2b 2=0,即 (x -a )[(a 2-b 2)x -ab 2]=0,∵x ≠a ,x ≠0, ∴x =ab 2a 2-b 2,又0<x <a ,∴0<ab 2a 2-b 2<a ,即2b 2<a 2. 由b 2=a 2-c 2,得a 2<2c 2,∴e >22. 又∵0<e <1,∴22<e <1. 层级二 应试能力达标1.椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系为( )A .有相等的长轴长、短轴长B .有相等的焦距C .有相同的焦点D .有相同的顶点 解析:选B c 21=25-9=16,c 22=(25-k )-(9-k )=25-9=16,所以两椭圆有相等的焦距.故选B .2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8,6B .4,3C .2, 3D .4,2 3解析:选B 过椭圆焦点的最长弦为长轴,其长度为2a =4;最短弦为垂直于长轴的弦,因为c =1,将x =1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y =±32,所以最短弦的长为2×32=3.故选B .3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A .x 22+y 24=1B .x 2+y 26=1 C .x 26+y 2=1D .x 28+y 25=1解析:选B 椭圆9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),则c =5.又2b =2,即b =1,所以a 2=b 2+c 2=6, 则所求椭圆的标准方程为x 2+y 26=1. 4.(全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34解析:选A 如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ), 由PF ∥OE ,得|MF ||OE |=|AF ||AO |, 则|MF |=m (a -c )a .①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m (a +c )2a.② 由①②得a -c =12(a +c ),即a =3c , ∴e =c a =13.故选A . 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 分别为椭圆的左顶点和上顶点,F 为右焦点,且AB ⊥BF ,则椭圆的离心率为________.解析:在Rt △ABF 中,|AB |=a 2+b 2,|BF |=a ,|AF |=a +c ,由|AB |2+|BF |2=|AF |2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0,解得e =-1±52. 因为e >0,所以e =5-12. 答案:5-12 6.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心的距离的取值范围是________.解析:由题意,知a =10,b =8,不妨设椭圆方程为x 2100+y 264=1,其上的点M (x 0,y 0),则|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20.因为x 20100+y 2064=1,所以y 20=64⎝⎛⎭⎫1-x 20100=64-1625x 20,则d =x 20+64-1625x 20= 925x 20+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,即8≤d ≤10. 答案:[8,10]7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求实数m 的值及椭圆的长轴长和短轴长,并写出焦点坐标和顶点坐标.解:椭圆方程可化为x 2m +y 2m m +3=1,由m -m m +3=m (m +2)m +3>0,可知m >m m +3,所以a 2=m ,b 2=m m +3,c =a 2-b 2= m (m +2)m +3, 由e =32,得 m +2m +3=32,解得m =1. 于是椭圆的标准方程为x 2+y 214=1, 则a =1,b =12,c =32. 所以椭圆的长轴长为2,短轴长为1;两焦点坐标分别为⎝⎛⎭⎫-32,0,⎝⎛⎭⎫32,0;四个顶点坐标分别为(-1,0),(1,0),⎝⎛⎭⎫0,-12,⎝⎛⎭⎫0,12.8.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0) 的左、右焦点,过点 F 1的直线交椭圆 E 于 A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2 的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率. 解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1.因为△ABF 2的周长为16,所以由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8. 故|AF 2|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k . 由椭圆定义可得,|AF 2|=2a -3k ,|BF 2|=2a -k . 在△ABF 2中,由余弦定理可得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|·cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )·(2a -k ). 化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k . 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k .因此|BF 2|2=|F 2A |2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,所以椭圆E 的离心率e =c a =22.。
学案3:2.2.1 椭圆的标准方程
2.2.1 椭圆的标准方程学习目标核心素养1.掌握椭圆的定义,会用椭圆的定义解决实际问题.(重点)2.掌握用定义法和待定系数法求椭圆的标准方程.(重点)3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.(难点)1.通过椭圆的定义、标准方程的学习,培养学生的数学抽象素养.2.借助于标准方程的推导过程,提升学生的逻辑推理、数学运算素养.新知初探1.椭圆的定义(1)定义:平面内与两个定点F1,F2的距离的(大于|F1F2|)的点的轨迹(或集合)叫做椭圆.(2)相关概念:两个定点F1,F2叫做椭圆的,两焦点的距离|F1F2|叫做椭圆的.思考1:椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?2.椭圆的标准方程焦点位置在x轴上在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标(±c,0)(0,±c) a,b,c的关系a2=初试身手1.已知点M 到两个定点A (-1,0)和B (1,0)的距离之和是定值2,则动点M 的轨迹是( ) A 一个椭圆 B .线段ABC .线段AB 的垂直平分线D .直线AB2.以下方程表示椭圆的是( ) A.x 225+y 225=1 B.2x 2-3y 2=2 C.-2x 2-3y 2=-1D.x 2n 2+y 2n 2+2=0 3.以坐标轴为对称轴,两焦点的距离是2,且过点(0,2)的椭圆的标准方程是( ) A.x 25+y 24=1 B.x 23+y 24=1 C.x 25+y 24=1或x 23+y 24=1 D.x 29+y 24=1或x 23+y 24=1 合作探究类型1 求椭圆的标准方程例1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). 规律方法确定椭圆方程的“定位”与“定量”提醒:若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 跟踪训练1.求适合下列条件的椭圆的标准方程: (1)焦点分别为(0,-2),(0,2),经过点(4,32); (2)经过两点(2,-2),⎝⎛⎭⎫-1,142.类型2 椭圆的定义及其应用 [探究问题]1.如何用集合语言描述椭圆的定义?2.如何判断椭圆的焦点位置?3.椭圆标准方程中,a ,b ,c 三个量的关系是什么?例2 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 为椭圆上的点,且∠PF 1F 2=120°,求△PF 1F 2的面积.母题探究(改变问法)在例题题设条件不变的情况下,求点P的坐标.类型3 与椭圆有关的轨迹问题例3如图,圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,求点M的轨迹方程.规律方法在求动点的轨迹方程时,要对动点仔细分析,当发现动点到两定点的距离之和为定值且大于两定点之间的距离时,由椭圆的定义知其轨迹是椭圆,这时可根据定值及两定点的坐标分别求出a,c,即可写出其方程,这种求轨迹方程的方法叫定义法.跟踪训练2.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,求动圆圆心的轨迹方程.规律方法椭圆上一点P 与椭圆的两焦点F 1、F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1|·|PF 2|看成一个整体,利用定义|PF 1|+|PF 2|=2a 及余弦定理求出|PF 1|·|PF 2|,这样可以减少运算量. 当堂达标 1.思考辨析(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆. ( ) (2)椭圆x 216+y 225=1的焦点坐标是(±3,0). ( )(3)y 2a 2+x 2b2=1(a ≠b )表示焦点在y 轴上的椭圆. ( )2.已知椭圆x 225+y 216=1上一点P 到椭圆的一个焦点的距离为3,则到另一个焦点的距离为( )A .1B .5C .2D .73.椭圆x 225+y 29=1的两个焦点为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,则△ABF 1的周长为( )A .10B .20C .40D .504.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A ⎝⎛⎭⎫1,32到F 1,F 2两点的距离之和为4,则椭圆C 的方程是________.参考答案新知初探 1.(1)和等于常数 (2)焦点 焦距思考1:[提示] 2a 与|F 1F 2|的大小关系所确定的点的轨迹如下表:思考2:[提示] a ,b 的值及焦点所在的位置. 初试身手 1.【答案】B【解析】定值2等于|AB |,故点M 只能在线段AB 上. 2.【答案】C【解析】A 中方程为圆的方程,B ,D 中方程不是椭圆方程. 3.【答案】C【解析】若椭圆的焦点在x 轴上,则c =1,b =2,得a 2=5,此时椭圆方程是x 25+y 24=1;若焦点在y 轴上,则a =2,c =1,则b 2=3,此时椭圆方程是x 23+y 24=1.] 合作探究类型1 求椭圆的标准方程例1 解:(1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).∵2a =(5+4)2+(5-4)2=10,∴a =5. 又c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1.(2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,⇒⎩⎪⎨⎪⎧a 2=4,b 2=1. 故所求椭圆的标准方程为y 24+x 2=1.(3)法一:①当焦点在x 轴上时,a b依题意有⎩⎪⎨⎪⎧ (3)2a 2+(-2)2b2=1,(-23)2a2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b2=1,1a 2+(-23)2b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15.因为a >b >0,所以无解.综上,所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎨⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.跟踪训练1.解:(1)法一:因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=4 2. 所以椭圆的标准方程为y 236+x 232=1.法二:因为椭圆的焦点在y 轴上,所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(2)法一:若椭圆的焦点在x 轴上,a b由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在. 综上,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.类型2 椭圆的定义及其应用 [探究问题]1.[提示] P ={M ||MF 1|+|MF 2|=2a,2a >|F 1F 2|}.2.[提示] 判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x 2项和y 2项的分母哪个更大一些,即“谁大在谁上”.3.[提示] 椭圆的标准方程中,a 表示椭圆上的点M 到两焦点间距离的和的一半,可借助图形帮助记忆.a ,b ,c (都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2(如图所示).例2 解:由已知a =2,b =3, 得c =a 2-b 2=4-3=1,|F 1F 2|=2c =2, 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义,得|PF 1|+|PF 2|=4,即|PF 2|=4-|PF 1|. ②②代入①解得|PF 1|=65.所以S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是35 3.母题探究解:设P 点坐标为(x 0,y 0).由本例解答可知S △PF 1F 2=12|F 1F 2|·|y 0|=353,解得|y 0|=353,即y 0=±353, 将y 0=±353代入x 24+y 23=1得x =±85,所以点P 的坐标为⎝⎛⎭⎫±85,±353. 类型3 与椭圆有关的轨迹问题例3 解:由垂直平分线性质可知|MQ |=|MA |, |CM |+|MA |=|CM |+|MQ |=|CQ |. ∴|CM |+|MA |=5.∴M 点的轨迹为椭圆,其中2a =5, 焦点为C (-1,0),A (1,0), ∴a =52,c =1,∴b 2=a 2-c 2=254-1=214.∴所求轨迹方程为:x 2254+y 2214=1.跟踪训练2.解:如图所示,设动圆圆心为M (x ,y ),半径为r ,由题意动圆M 内切于圆C 1, ∴|MC 1|=13-r . 圆M 外切于圆C 2,∴|MC 2|=3+r .∴|MC 1|+|MC 2|=16>|C 1C 2|=8,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆, 且2a =16,2c =8, b 2=a 2-c 2=64-16=48, 故所求轨迹方程为x 264+y 248=1.当堂达标1.[提示] (1)× 需2a >|F 1F 2|. (2)× (0,±3).(3)× a >b >0时表示焦点在y 轴上的椭圆. 2.【答案】D【解析】由|PF 1|+|PF 2|=10可知到另一焦点的距离为7. 3.【答案】B【解析】由椭圆的定义得|AF 1|+|AF 2|=2a =10,|BF 1|+|BF 2|=2a =10,所以△ABF 1的周长为|AF 1|+|BF 1|+|AB |=20,故选B. 4.【答案】x 24+y 23=1【解析】由|AF 1|+|AF 2|=2a =4得a =2,∴原方程化为x 24+y 2b 2=1,将A ⎝⎛⎭⎫1,32代入方程得b 2=3,∴椭圆方程为x 24+y 23=1.。
2.1椭圆(1)(教学设计)
2.1椭圆(1)(教学设计) 2.1.1椭圆及其标准方程教学目标: 知识与技能目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程; 过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。
情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。
教学重点:椭圆的定义及椭圆标准方程,用待定系数法求曲线方程。
教学难点:椭圆标准方程的建立和推导 教学过程:一、复习回顾:1、圆的定义是:在平面上,到定点的距离等于定长的点的轨迹;那么当动点满足哪些条件时轨迹仍然是圆? 另:平面上到两个定点(距离为2d)距离的平方和等于定值a(a >2d 2)的点的轨迹是圆; 另:平面上,与两个定点连线的斜率乘积为-1的点的轨迹是圆. 二、创设情境,新课引入:1、师做一个道具(课本P32探究),观察后请学生回答.问:动点是在“到两个定点距离之和等于定值”这一条件下运动的,轨迹是椭圆.师提出问题,与学生进一步探究?是否到两个定点距离之和等于定值的点的轨迹就一定是椭圆呢? 师演示让学生一起思考?当两个定点位置变化时,转变发生了怎样的变化? (1) 当两个定点重合时,轨迹变化为圆;(2)当定值等于两个定点间的距离时,轨变是一条线段. (3)平面上不存在到两个定点距离之和小于定值的点(4)师生共同小结完成下表在平面上到两个定点F1,F2距离之和等于定值2a 的点的轨迹为 (1)椭圆——|MF 1|+|MF 2|>|F 1F 2|; (2)线段——|MF 1|+|MF 2|=|F 1F 2|;(3)不存在——|MF 1|+|MF 2|<|F 1F 2|.三、师生互动,新课讲解:1、椭圆的定义:把平面内与两个定点F 1,F 2距离之和等于定值2a 的点的轨迹叫做椭圆,其中2a >|F 1F 2|.两个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距,用2c(c >0)表示.2、椭圆标准方程的推导:求到两个定点F 1、 F 2距离之和等于定值2a(2a >|F 1F 2|)的点的轨迹. (1)研究曲线方程的一般方法是什么?坐标法 (2)求曲线方程的一般步骤是什么?建系:建立适当的直角坐标系; 设点:设M (x,y )是曲线上任意一点; 列式:建立关于x,y 的方程f(x,y) =0; 化简:化简方程f(x,y)=0.检验:说明曲线上的点都符合条件;符合条件的点都在曲线上.那么此题应如何建立坐标系呢?建立直线坐标系一般应符合简单和谐化的原则,如使关键点的坐标、关键几何量(距离、直线的斜率等)的表达式简单化,注意要充分利用图形的特殊性. 教师归纳大体上有如下三个方案:(1)取一个定点为原点,以F 1,F 2所在直线为x 轴建立直角坐标系,如左图; (2)以F 1,F 2所在直线为x 轴,线段F 1F 2的中点为原点建立直角坐标系,如中图;(3)以F 1,F 2所在直线为y 轴,线段F 1F 2的中点为原点建立直角坐标系,如右图;以F 1,F 2所在直线为x 轴,线段F 1F 2的中点为原点建立直角坐标系,最后选定方案②,如图2-27,推导出方程.解 1)建系:以F 1,F 2所在直线为x 轴,线段F 1F 2的中点为原点建立直角坐标系,并设椭圆上任意一点的坐标为M(x,y), 设两定点坐标为:F 1(-c,0),F 2(c,0),2)则M 满足:|MF 1|+|MF 2|=2a ,3)坐标化即:+++22)(y c x 22)(yc x +-=2a ,4)化简.22)(yc x ++ =2a-22)(y c x +-两边平方得:(x+c)2+y 2=4a 2-4a 22)(y c x +- +(x-c)2+y 2,即a 2-cx=a 22)(y c x +-,两边再平方得: a 4-2a 2cx+c 2x 2=a 2x 2-2a 2cx+a 2c 2+a 2y 2,整理得: (a 2-c 2)x 2+a 2y 2=a 2 (a 2-c 2).请结合图形找出方程中a 、c 的关系.根据椭圆定义知道a 2>c 2,且如图所示,a 与c 可以看成Rt ΔMOF 2的斜边和直角边.不妨令b 2=a 2-c 2,则方程就变形为b 2x 2+a 2y 2=a 2b 2,如果再化简,你会得到什么形式的方程呢? 方程变化为:12222=+bx ay .(*)其中a 与b 的关系如何?为什么?a >b >0,因为a 与b 分别是Rt ΔMOF 2的斜边、直角边.教师指出(*)式就是焦点在x 轴上的椭圆的标准方程,最后说明:1)方程中条件a >b >0不可缺少(结合图形),当a=b >0时,就化成圆心在原点的圆的方程,从而进一步说明圆是椭圆的特例;(这实际上是一种极限情况.)2)b 的选取虽然是为了方程形式简洁与和谐,但也有实际的几何意义,即:b 2=a 2-c 2; 3)请学生猜想:若用方案③(即焦点在y 轴上),得到的方程形式又如何呢? (启发学生根据对称性进行猜想)方程形式为12222=+bx ay请同学们课后进行推导验证.此时方程中a 与b 的关系又如何?(结合图形请学生 将条件a >b >0补上.) 例1:下列哪些是椭圆方程?如果是,请指出其焦点所在的坐标轴.,4002516)1(22=+y x ,12516)2(22=-xy,144)3(22=+yx,194)4(22-=+xy.243)5(22=+y x对椭圆及其标准方程的理解:⑴ 椭圆标准方程中,哪个分母大,焦点就在相应的哪条坐标轴上;⑵ a 、b 、c 始终满足c 2=a 2-b 2,焦点在 x 轴上为(-c , 0) 、 (c , 0) ,在 y 轴上为(0, -c )、(0, c ); ⑶ 形如 Ax 2+By 2=C 的方程中,只要A 、B 、C 同号(A ≠B),就表示椭圆. 例2: 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==例3(课本P34例1) 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程. 分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解.解:设椭圆的标准方程为()222210x y a b ab+=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591444a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩例4.求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是)0,4(-、(4,0),椭圆上一点P 到两焦点的距离的和等于10; (2)两个焦点的坐标分别是)2,0(-、(0,2),并且椭圆经过点)25,23(-.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by ax (a >b >0)∵102=a ,∴5=a ,又4=c ,∴94522222=-=-=c a b所求椭圆的标准方程为192522=+yx(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+bx ay (a >b >0)由椭圆的定义知102)225()23()225()23(22222=-+-+++-=a∴10=a 又2=c ∴6410222=-=-=c a b所以所求圆的方程为161022=+xy课堂练习:(课本P36练习:NO :1;2) 四、课堂小结、巩固反思:⑴知识小结:学生自己小结 椭圆定义 a MF MF 221=+标准方程22ax +22by =1和22ay +22bx =1(0>>b a )⑵方法小结:①用坐标法研究曲线②用待定系数法和定义法求标准方程③解题过程中注意数形结合和分类讨论思想方法的应用⑶实际应用:椭圆在天文学、建筑学上有广泛的应用。
选修2-1:椭圆及其标准方程(一)教案案
一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。
椭圆教案
§2.1.1椭圆及其标准方程【教材分析】本节课是选修1-1第二章第一节的第一课时。
椭圆是常见的曲线,通过引言及日常生活的体验,学生对椭圆有一定的认识。
学生掌握椭圆的本质特征,得到椭圆的定义,并利用定义在直角坐标系中得出椭圆的标准方程,同时为下一节椭圆的简单几何性质做好铺垫。
【学情分析】椭圆是常见的曲线,学生对椭圆有一定的认识。
之前对圆的学习学生们已经体会到的几何法和代数法解题的优劣势。
本章延续了解析几何的学习,学生们有一定感受,但是计算量的增大可能成为学生们错误的主要原因。
【教学目标】一、知识与技能1.掌握椭圆定义,熟记椭圆的标准方程;2.利用条件确定椭圆的标准方程;二、过程与方法1.数形结合,掌握椭圆定义;2.结合定义,待定系数法求解椭圆的标准方程;三、情感、态度与价值观1.椭圆应用很广,例如地球的运行轨道;2.椭圆是高考中对圆锥曲线考察频率最高的曲线类型.【教学重难点】1. 椭圆定义(两个条件),椭圆的标准方程(分类讨论);2. 椭圆标准方程的统一方程.【学生预习反馈】1.凭借 a 和c 的值,可以确定一个椭圆吗?(3,4)2.椭圆的标准方程中,“标准”的含义是什么?(3,7,9,10)3.方程122=+ny mx 表示椭圆的条件?(1,2,4,7,8) 【教学工具】细绳,三角板【教学过程】(1)引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察后,提出问题:你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;(同桌的两位同学准备无弹性的细绳子一条,当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.提问:在这一过程中,你能说出移动的笔尖(动点)满足的几何条件是什么?(2)新课讲授过程探究一:椭圆的定义平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.【随堂检测】1.下列说法正确的是 ( )A.已知F1(-4,0),F2(4,0),到F1,F2的距离之和等于8的点的轨迹是椭圆B.已知F1(-4,0),F2(4,0),到F1,F2的距离之和为6的点的轨迹是椭圆C.到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆D.到F1(-4,0),F2(4,0)两点距离相等的点的轨迹是椭圆答案:C.A 中常数8=|F1F2|;B 中常数6<|F1F2|,所以轨迹都不是椭圆;C 中常数等于 104 >|F1F2|,符合椭圆定义,轨迹是椭圆;D 中点的轨迹应该是一条直线.2. 已知命题甲:动点P 到两定点A ,B 的距离之和|PA|+|PB|=2a ,其中a 为大于0的常数;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:B.若P 点轨迹是椭圆,则一定有|PA|+|PB|=2a(a>0,为常数).所以甲是乙的必要条件.反过来,若|PA|+|PB|=2a(a>0,为常数),当2a>|AB|时,P 点轨迹是椭圆;当2a=|AB|时,P 点轨迹是线段AB ;当2a<|AB|时,P 点的轨迹不存在,所以甲不是乙的充分条件.综上,甲是乙的必要不充分条件.探究二:椭圆的标准方程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.学生回答:以坐标原点为中心,以经过两定点的直线为x 轴,两定点的垂直平分线为y 轴,建立直角坐标系xOy . 根据定义可以得出关系式:a y c x y c x 2)()(2222=+-+++,检测性提问:这个方程中含有两个无理式,该如何化简,为什么?学生回答:将其中一个根号移项到右边,然后平方。
椭圆学案
《椭圆的简单几何性质》学案一、课标要求:(1) 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(2) 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. (3)使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、重、难点:1.圆的几何性质及初步运用.2.椭圆离心率的概念的理解.3.椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.三、知识聚焦:1.对于椭圆()222210x y a b a b+=>>来说,______,_______x y ∈∈。
设它的图像分别与x 轴的正、负半轴交于12,A A ,分别与y 轴的正、负半轴交于12,B B ,则各点坐标分别为1A ( ),2A ( )1B ( )2B ( )。
设2F 为椭圆的右焦点,在Rt ∆22OB F 中,2222222OF B F OB =-。
这就是 _____________________的几何意义。
22OB F ∆叫做椭圆的特征三角形,并且22cos OF B ∠是椭圆的___________。
2 完成下表:四、基础训练:1.椭圆22981x y +=的长轴长为____,短轴长为_____,焦点坐标为____,顶点坐标为________,离心率为________.2椭圆221259x y +=与221(09)925x y k k k+=<<--的关系是() A.有相同的长、短轴 B. 有相同的焦距C.有相同的焦点D.有相同的准线3椭圆的短轴的一个端点到一个焦点的距离是5,焦点到椭圆中心的距离是3,则椭圆的标准方程是()A. 222211169916x y x y +=+=或B. 222211259925x y x y +=+=或 C. 22221125161625x y x y +=+=或 D.椭圆方程无法确定4焦点在X 轴上,长、短半轴之和为10,焦距为A. 2213616x y +=B. 2211636x y +=C. 22164x y +=D. 22146x y += 5中心在原点,焦点在X 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆方程是()A. 2218172x y +=B. 221819x y +=C. 2218145x y +=D. 2218136x y += 6若椭圆22189x y m +=+的离心率为12,则实数m 的取值范围是____________________. 五、典例分析:例1. 椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近端点的距离是510-,求椭圆方程.例2. 已知动圆定点)4,0(F ,并和定圆100)4(22=++y x 相内切,求动圆圆心P 的轨迹方程例3 .有一个椭圆形的溜冰场,长轴长100米,短轴长60米,现要在这个溜冰场上划定一个各定点都在溜冰场边界上的矩形区域,且使这个矩形区域的面积最大,那么应把这个矩形的定点定在何处?这时矩形的面积有多大?例4.点()y x M ,与定点()0 ,c F 的距离和它到定直线ca x l 2:=的距离的比是常数()0c a >>ac ,求点M 的轨迹。
2.1.1 椭圆及其标准方程(1)(教师版)
高二数学选修1-1学案2.1.1 椭圆及其标准方程(1)学习目标:(1)掌握坐标法求椭圆的标准方程;(2)掌握椭圆的标准方程的推导及标准方程的形式; (3)通过对同一标准方程的推导,提高运算能力. 学习重点:椭圆的定义及椭圆的标准方程. 学习难点:椭圆标准方程的推导. 学习过程:一、课前准备:预习课本32~34P P 的内容,记录下疑惑之处,并思考下列问题:1. 我们知道,到一个定点的距离等于定长的动点的轨迹是圆,那么到两个定点的距离之和等于定长的动点的轨迹是什么?动动手,做教材32P 中的演示.2. 椭圆的定义:把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆. 这两个定点叫做椭圆的 焦点 ,两焦点的距离(2c )叫做 焦距 . 3.椭圆的标准方程:22221y x ab+=22221y x ba+=4.判断下列椭圆的焦点位置,指出焦点的坐标:(1)221169y x +=; (2) 222516400x y +=; (3)221(0)y x m n m n+=>>答:(1)焦点在x轴上,焦点坐标为(0); (2)焦点在y 轴上,焦点坐标为(0,3)±; (3)焦点在x轴上,焦点坐标为(0).二、新课导学: (一)探究新知:在椭圆标准方程的推导过程中,思考以下问题:(1)如何建立适当的直角坐标系?有几种建立坐标系的方式?答:以线段12F F 的中点为原点,线段12F F 所在直线为x轴,建立坐标系;也可以以线段12F F 的中点为原点,线段12F F 所在直线为y 建立坐标系;所以有两种建立坐标系的方法.(2)根据椭圆的定义,你能得到的等式是12||||2M F M F a +=.(3)在标准方程的推导过程中,引入了222b ac =-,你能结合图形加以解释b 的含义吗?答:在右图中,12||||M F M F a ==,||M O b =,12||||OF OF c ==. (4)在椭圆的定义中,强调了a c >;若a c =动点的轨迹是什么?若a c <呢? 答:若a c =动点的轨迹是线段12||F F ;若a c <,则没有轨迹. (二) 典型例题:【例1】求适合下列条件的椭圆的标准方程: (1) 焦点在y 轴上,且经过两个点(0,2)和(1,0); (2) 中心在原点,且经过点(3,0)P ,3a b =. 【解析】(1)设椭圆的方程为22221y x ba+=(0a b >>),将两个已知点坐标分别代入,得24a =,21b =, 所以,所求的椭圆方程为2214yx +=.(2)若焦点在x 轴上,根据已知,设椭圆方程为222219y xbb+=,因为(3,0)P 在椭圆上,所以,可得1b =,所以椭圆方程为2219x y +=. 若焦点在y 轴上,设椭圆方程为222219yx bb+=,因为(3,0)P 在椭圆上,所以,可得3b =,所以椭圆方程为221981y x +=. 动动手:求适合下列条件的椭圆的标准方程:(1)两焦点坐标分别是)0,4(-、(4,0),椭圆上一点P 到两焦点的距离的和等于10; (2)两焦点的坐标分别是)2,0(-、(0,2),并且椭圆经过点)25,23(-. 【解析】(1)由已知5a =,4c =,且焦点在x轴上,所以3b ==,于是椭圆的标准方程是221259y x+=.(2)由椭圆定义知2a ==,所以a =,而2c =,所以26b =.所以椭圆的标准方程是221610y x+=.【例2】求适合下列条件的椭圆的标准方程: (1)求经过点A、B 的椭圆的标准方程; (2) 与椭圆191322=+yx有相同焦点,且经过点(2,的椭圆方程.【解析】(1)当椭圆的方程是标准形式,而焦点的位置不确定时,可设椭圆的标准方程为221(0mx ny m +=>,0n >).将A 、B 点坐标代入,得 312413m n m n ⎧+=⎪⎨⎪+=⎩,解之得12m =,13n =. 所以椭圆方程为22123y x+=.(2)椭圆191322=+yx的焦点为1(2,0)F -,2(2,0)F ,依题意,设椭圆方程为222214yx aa +=-,将点(2,代入,得224214aa +=-,解得22a =,或28a =,因为240a ->,所以舍去22a =.所以椭圆的方程为22184y x +=. 动动手:写出适合下列条件的椭圆的标准方程: (1)10,a b c +== (2)4,a c ==y 轴上.【解析】(1)22220a b c -==,又10a b +=,所以2a b -=,解得6a =,4b =.所以椭圆的标准方程为2213616y x +=或2211636y x+=.(2)2221b a c =-=,所以椭圆的标准方程为22116yx +=.三、总结提升1.解题时,注意椭圆定义的使用,特别注意“到两定点距离之和等于常数”以及“1222a F F c >=”这个特征.2.求椭圆的定义时,就是求系数a 、b ,所以,可以使用待定系数法.四、反馈练习:1.已知1,6==ca,焦点在y轴上的椭圆的标准方程是( C )A.2213635yx+=B.2213625yx+=C.2213536yx+=D.2212536yx+=2.如果椭圆22110036yx+=上一点到焦点1F的距离等于6,那么点P到另一个焦点2F的距离是( B )A.8B.14C.16D.203.椭圆221169yx+=的左、右焦点为1F、2F,一直线过1F交椭圆于A、B,则2A B F∆的周长为16.4.两焦点为(0,2)-,(0,2),3b=,则椭圆的标准方程是221 913yx+=.5.已知一个储油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上点到两个焦点距离的和为3m,求这个椭圆的标准方程.【解析】根据题意, 1.2c=, 1.5a=,所以0.9b===,所以椭圆的标准方程为2212.250.81yx+=或2210.81 2.25yx+=.五、学后反思。
椭圆及其标准方程(一)学案
第1页,共2页 2.2.1 椭圆及其标准方程(一)学案预习案学习目标:1.理解椭圆的定义,并能运用定义解决相关问题.2.了解椭圆标准方程的建立过程,熟记椭圆的标准方程,会用待定系数法求椭圆标准方程。
学习重点: 椭圆定义解题和求椭圆标准方程.学习难点: 椭圆标准方程的建立过程以及解方程(组)。
❖ 任务一:椭圆的定义(牢记)我们把平面内与两个 21,F F 的距离之 等于 ( )的点的轨迹叫做椭圆。
这两个定点叫做 ,两个焦点间的距离叫做 。
思考:1.下列命题是真命题的有:①已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于8的点的轨迹是椭圆;②已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于6的点的轨迹是椭圆;③已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于10的点的轨迹是椭圆;④已知12(4,0),(4,0)F F -,到12,F F 两点的距离相等的点的轨迹是椭圆;2.平面内动点P 到两定点)0,3(),0,3(21F F -2m ,若P 点的轨迹是椭圆,求m 的范围。
❖ 任务二:椭圆的标准方程(填表并牢记) 焦点位置焦点在x 轴上 焦点在y 轴上图形标准方程焦点坐标c b a ,,的关系思考:1.你能从右图中找出表示c b a ,,的线段吗?=a = ;=b ;=c 。
2. 下列方程表示的曲线是否为椭圆?若是椭圆,请写出其对应的c b a ,,(1)223412x y += (2)22341x y +=(3)224x y += (4)224x y -=3. 已知椭圆的两焦点坐标分别为)0,2(),0,2(21F F -,并且经过点()1,2,求它的标准方程。
预习检测1. 设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为 ( )A. 2√2B. 2√3C. 2√5D. 4√2 2. 椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个的焦点距离为 ( )A. 4B. 5C. 6D. 10第2页,共2页 3. 已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m = ( )A. 2B. 3C. 4D. 9 4. 已知椭圆:x 2k +y 22=1,若椭圆的焦距为2,则k 为 ( )A. 1或3B. 1C. 3D. 6巩固练习5. 过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为 ( )A. x25+y 210=1 B. x 210+y 215=1 C. x 215+y 210=1 D. x 225+y 210=1 6. 已知椭圆方程为x 29+y 24=1的左、右焦点分别为F 1,F 2,过左焦点F 1的直线交椭圆于A ,B 两点,则△ABF 2的周长为 ( )A. 12B. 9C. 6D. 47. 已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的标准方程为( )A. x24+y 2=1B. x 24+y 23=1C. y 24+x 2=1D. y 24+x 23=1 8. 设P 为椭圆x 29+y 24=1上的一点,F 1、F 2是该椭圆的两个焦点,若|PF 1|:|PF 2|=2:1, 则△PF 1F 2的面积为( )A. 2B. 3C. 4D. 5 9. 点P 是椭圆x 216+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,若|PF 1|·|PF 2|=12,则∠F 1PF 2的大小______.10. 求适合下列条件的椭圆的标准方程(1)1,b c ==y 轴上;(2)3,2==b a ;(3)经过两点(0,2),(1,0)。
2019-2020学年苏教版选修2-1 椭圆的简单几何性质 学案
椭圆的简单几何性质图中椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). 问题1:椭圆具有对称性吗?提示:有.椭圆是以原点为对称中心的中心对称图形,也是以x 轴,y 轴为对称轴的轴对称图形.问题2:可以求出椭圆与坐标轴的交点坐标吗?提示:可以,令y =0得x =±a ,故A 1(-a,0),A 2(a,0),同理可得B 1(0,-b ),B 2(0,b ). 问题3:椭圆方程中x ,y 的取值范围是什么? 提示:x ∈[-a ,a ],y ∈[-b ,b ].问题4:当a 的值不变,b 逐渐变小时,椭圆的形状有何变化? 提示:b 越小,椭圆越扁.(1)椭圆的简单几何性质:(2)当椭圆的离心率越接近于1,则椭圆越扁;当椭圆的离心率越接近于0,则椭圆越接近于圆.1.椭圆的范围从图形上看非常直观,就是椭圆上点的横坐标、纵坐标的取值范围.利用椭圆的范围可解决有关求范围或最值问题.设P (x ,y )为椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,由图形易知当x =0时,|OP |取得最小值b ,此时P 位于椭圆短轴端点处;当x =±a 时,|OP |取得最大值a ,这时P 位于长轴端点处.2.椭圆的顶点是它与坐标轴的交点,所以必有两个顶点与焦点在同一条直线上,且这两个顶点对应的线段为椭圆的长轴,因此椭圆的长轴恒在焦点所在的坐标轴上.3.椭圆中的基本关系:①焦点、中心和短轴端点连线构成直角三角形,三边满足a 2=b 2+c 2;②焦点到长轴邻近顶点的距离为a -c (又称近地距离),到长轴另一顶点的距离为a +c (常称为远地距离).第一课时 椭圆的简单几何性质[例1] [思路点拨] 化为标准方程,确定焦点的位置及a ,b ,c 的值,再研究相应几何性质. [精解详析] 将椭圆方程变形为x 29+y 24=1,∴a =3,b =2, ∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.[一点通] 已知椭圆的方程讨论其性质时,应先将方程化成标准形式,不确定的要分类讨论,找准a与b ,才能正确地写出焦点坐标、顶点坐标等.1.若椭圆x2a 2+y 2=1的焦点在x 轴上,长轴长是短轴长的两倍,则椭圆的离心率为( )A.32B.12C.22D.52解析:由椭圆方程知长轴长为2a ,短轴长为2, ∴2a =2×2=4,∴a =2,∴c = 22-12=3,∴e =c a =32.答案:A2.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm +3=1.∵m -m m +3=m (m +2)m +3>0,∴m >mm +3,即a 2=m ,b 2=mm +3,c =a 2-b 2=m (m +2)m +3. 由e =32得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点分别为F 1(-32,0),F 2(32,0); 四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12).[例(1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.[思路点拨] 解答本题可先由已知信息判断焦点所在坐标轴并设出标准方程,再利用待定系数法求参数a ,b ,c .[精解详析] (1)设椭圆的方程为 x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0). 由已知得2a =10,a =5.e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆的标准方程为x 225+y 29=1或x 29+y 225=1.(2)依题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.[一点通] 利用性质求椭圆的标准方程,通常采用待定系数法.其关键是根据已知条件确定其标准方程的形式并列出关于参数的关系式,利用解方程(组)求得参数.3.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( )A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1D.x 236+y 232=1解析:由题意2a =12,∴a =6.又e =c a =13,∴c =2,∴b 2=62-22=32,∴椭圆方程是x 236+y 232=1.答案:D4.求适合下列条件的椭圆的标准方程:(1)与椭圆4x 2+9y 2=36有相同的焦距,且离心率为55; (2)长轴长是短轴长的2倍,且过点(2,-4).解:(1)将方程4x 2+9y 2=36化为x 29+y 24=1,可得椭圆焦距为2c =2 5.又因为离心率e=55,即55=5a ,所以a =5,从而b 2=a 2-c 2=25-5=20. 若椭圆焦点在x 轴上,则其标准方程为x 225+y 220=1;若椭圆焦点在y 轴上,则其标准方程为y 225+x 220=1.(2)依题意2a =2·2b ,即a =2b .若椭圆焦点在x 轴上,设其方程为x 2a 2+y 2b2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,4a 2+16b 2=1.解得⎩⎪⎨⎪⎧a 2=68,b 2=17,所以标准方程为x 268+y 217=1.若椭圆焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,16a 2+4b 2=1,解得⎩⎪⎨⎪⎧a 2=32,b 2=8.所以标准方程为x 28+y 232=1.[例3] 如图所示,F 1,F 2分别为椭圆的左、右焦点,M 为椭圆上一点,且MF 2⊥F 1F 2,∠MF 1F 2=30°.试求椭圆的离心率.[思路点拨] 通过已知条件MF 2⊥F 1F 2,∠MF 1F 2=30°,得到Rt △MF 1F 2中边的关系,结合椭圆的定义建立参数a ,b ,c 之间的关系,进而求出椭圆的离心率.[精解详析] 设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 2⊥F 1F 2,所以△MF 1F 2为直角三角形.又∠MF 1F 2=30°,所以|MF 1|=2|MF 2|,|F 1F 2|=32|MF 1|. 而由椭圆定义知|MF 1|+|MF 2|=2a , 因此|MF 1|=4a 3,|MF 2|=2a3,∴2c =32×4a 3,即c a =33, 即椭圆的离心率是33. [一点通] 求离心率的值或取值范围是一类重要问题,解决这类问题通常有两种办法: (1)直接求出a 和c 的值,套用公式e =ca求得离心率;(2)根据题目条件提供的几何关系,建立参数a ,b ,c 之间的关系式,结合椭圆定义以及a 2=b 2+c 2等,消去b ,得到a 和c 之间的关系,从而求得离心率的值或范围.5.已知椭圆x 2a 2+y2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若A P =2PB ,则椭圆的离心率是( )A.32B.22C.13D.12解析:∵A P =2PB ,∴|A P |=2|PB |. 又∵PO ∥BF ,∴|P A ||AB |=|AO ||AF |=23,即aa +c =23,∴e =c a =12.答案:D6.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P .若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________.解析:由题意知PF 2⊥F 1F 2,且△F 1PF 2为等腰直角三角形,所以|PF 2|=|F 1F 2|=2c ,|PF 1|=2·2c ,从而2a =|PF 1|+|PF 2|=2c (2+1),所以e =2c 2a =12+1=2-1.答案:2-11.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e 、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10, 则c =a 2-b 2=69,故焦点坐标为(0,±69).答案:D2.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1D.x 281+y 236=1 解析:由已知得a =9,2c =13·2a ,∴c =13a =3.又焦点在x 轴上,∴椭圆方程为x 281+y 272=1.答案:A3.(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45解析:由题意可得|PF 2|=|F 1F 2|, ∴2(32a -c )=2c ,∴3a =4c ,∴e =34. 答案:C4.已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为( )A .3B .3或253C. 5D.15或5153解析:由椭圆的标准方程,易知m >0且m ≠5. ①若0<m <5,则a 2=5,b 2=m . 由m 5=1-(105)2=35,得m =3. ②若m >5,则a 2=m ,b 2=5. 由5m =1-(105)2=35,得m =253. 所以m 的值为3或253.答案:B5.如果椭圆的对称轴为坐标轴,短轴的一端点与两焦点的连线组成一个正三角形,焦点在x 轴上,且a -c =3,则椭圆的方程是________.解析:如图所示,cos ∠OF 2A =cos 60°=|OF 2||AF 2|,即c a =12.又a -c =3, ∴a =23,c =3, ∴b 2=(23)2-(3)2=9.∴椭圆的方程是x 212+y 29=1.答案:x 212+y 29=16.直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.解析:由题意知椭圆焦点在x 轴上, ∴在直线x +2y -2=0中, 令y =0得c =2;令x =0得b =1. ∴a =b 2+c 2= 5.∴e =c a =255.答案:2557.如图所示,F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c ,则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中, |F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53. 法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则M (c ,23b ).代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.8.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若2AF =2 2F B ,1AF ·AB =32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形, 所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题意知A (0,b ),F 1(-c,0),F 2(c,0). 其中,c =a 2-b 2,设B (x ,y ).由2AF =22F B ⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b 2,即B (3c 2,-b2).将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由1AF ·AB =(-c ,-b )·(3c 2,-3b 2)=32⇒b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.。
高中数学 椭圆学案 新人教A版选修2-1
椭圆【使用说明及学法指导】1.结合问题导学预习课本38-41页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。
2.针对预习自学及合作探究找出的疑惑点,课上讨论交流,答疑解惑。
3。
曹冬明说:遇到难题不要烦,审清题意是关键 【重点难点】椭圆的定义和标准方程。
【学习目标】理解椭圆的定义,掌握求椭圆的方程,和一些几何性质。
培养解析法的思想。
一问题导学问题1:根据课本上椭圆的定义,制作教具,画椭圆问题2:写出椭圆上的点满足的关系式________________________________________ 问题3:这两个定点叫做椭圆的_______。
两个定点的距离用______表示。
问题4:指出图中的哪些线段的长度是a___________________。
问题5:建立坐标系后,利用问题2的关系式,写出推导椭圆方程的过程问题6:椭圆的标准方程是:___________________________问题7:上面的a,b,c 三个量满足的关系式为:_____________________________ 二 小试牛刀1 椭圆的顶点为(-5,0),(5,0)和(0,-4),(0,4),则其方程为_________________________2 椭圆221259x y +=的焦点坐标______________________,长轴长_____________。
3 画出椭圆22y x 1259+=草图,写出其焦点坐标___________________。
4椭圆22x y 110036+=上一点P 到左焦点的距离是6.5,则到右焦点的距离是_____ 三、合作、探究、展示:例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(用自己的方法)【规律方法总结】例2 写出满足下列条件的椭圆的标准方程 (1) a=4,b=1,焦点在x 轴上 (2)y 轴上 (3) a+b=10,c=【规律方法总结】例3 如图,在圆224xy +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程例4如图,设A ,B 的坐标分别为()10,0-,()10,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.四 本节小结和感悟。
2.2.1 椭圆的标准方程学案
高二数学选修1-1 2.1.1 选修2-1 2.2.1 椭圆的标准方程学案一、学习任务:1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形. 二、探究新知:阅读课本的有关内容,并完成下列问题。
问题1:阅读课本“探究”指出圆上的点具有怎样的几何特征?和同学合作画一个椭圆或利用信息技术,指出椭圆上的点的几何特征。
你能用自己的语言给椭圆一个定义吗?问题2:对照课本,明确椭圆的定义及相关概念,思考:在定义椭圆时,对常数加上了一个条件,即常数要大于|F 1F 2|,为什么要这样规定呢?如果常数等于|F 1F 2|点的轨迹还是椭圆吗?如果常数小于|F 1F 2|,点的轨迹又会是什么图形?(结合信息技术说明)问题3:用坐标法研究椭圆,首先应求出椭圆的方程,请你想一想应如何根据椭圆的几何特征,建立适当的坐标系。
问题4:化简方程 + =2a 总结化简这类方程的一般方法。
问题5 回答P 39思考,想想为什么将 + =1化成 + =1(a>b>0)? 问题6:回答P34、P 40a 、b 、c 满足什么关系;它与勾股定理有什么区别联系?(用信息技术能更清楚地演示这种关系吗?) 问题7:看例1,回答边框“?” 2、自学检测1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .102.椭圆x 216+y 225=1的焦点坐标是( )A .(±4,0)B .(0,±4)C .(±3,0)D .(0,±3)3.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =6,则椭圆的标准方程为________. 4.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,求椭圆的方程.探究一.椭圆的标准方程的推导1.根据定义推导焦点在y 轴上的椭圆的标准方程探究二.求椭圆的标准方程2.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0).变式训练:根据下列条件,求椭圆的标准方程.坐标轴为对称轴,并且经过两点A(0,2)和B(12,3);(2)经过点(2,-3)且与椭圆9x2+4y2=36有共同的焦点.探究三.利用椭圆的定义求轨迹方程.3.已知动圆M 过定点A(-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.变式训练 已知动圆M 和定圆C1:x 2+(y -3)2=64内切,而和定圆C2:x 2+(y +3)2=4外切.求动圆圆心M 的轨迹方程.探究四.椭圆定义的应用4.已知P 为椭圆x216+y29=1上的点,F1,F2是椭圆的两个焦点,∠F 1PF 2=60°,求△F 1PF 2的面积S.巩固训练 一、选择题1.椭圆x 29+y 225=1的焦点为F 1、F 2,AB 是椭圆过焦点F 1的弦,则△ABF 2的周长是( )A .20B .12C .10D .62.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .83.已知椭圆x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( )A.x 24+y 22=1B.x 23+y 22=1 C .x 2+y 22=1 D.x 26+y 22=1二、填空题4.椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________. 5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.拓展提升1.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2.(1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程.2.已知椭圆的两焦点为F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积.三、本节课收获:⎪⎪⎪⎩⎪⎪⎪⎨⎧(x +c ) +y 2 2 (x -c ) +y 2 2 y a -c2 2 2 x a 2 2x a 2 2 y b 22。
2.1《椭圆》教案(新人教选修2-1)
教学目标:(1)掌握椭圆定义和椭圆标准方程的概念;能根据椭圆标准方程求焦距和焦点,初步掌握求椭圆标准方程的方法。
(2)在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。
(3)培养学生科学探索精神、审美观和理论联系实际思想。
教学重点:椭圆的定义和椭圆的标准方程。
教学难点:椭圆定义和椭圆标准方程的联系。
教学方法:探究、讨论。
教学手段:运用多媒体技术(有Authorware课件)和实物投影仪。
教学过程:引言:曲线是一种空间图形,方程是一种数量关系。
探索和研究直线方程与圆方程的过程告诉我们:当曲线上的点所成的集合与方程的解所成的集合建立一一对应后,形与数就密切联系起来了。
于是关于曲线性质的几何问题与关于曲线方程的代数问题就可以相互转化了。
通过对圆的形成过程和圆方程的建立过程的回忆,从一个动点以类比的方法探索平面上有规律的动点运动轨迹,引入研究课题:椭圆与它的标准方程。
根据椭圆的形成过程,请学生给出椭圆定义。
利用求轨迹方程的思想方法,根据椭圆定义探索椭圆的轨迹方程。
概念辨析:抓住形(椭圆)与数(椭圆的标准方程)的内在联系。
例1已知椭圆的焦距是6,椭圆上的点到两个焦点的距离的和等于10,写出椭圆的标准方程。
解题思考:无法确定焦点位置时,应分情况进行讨论。
挑战:同桌俩人能否围绕椭圆定义和椭圆的标准方程,商量后出一道练习题?(学生商量出题,教师巡视指导)选择有代表性的练习题,进行全班交流,教师点评。
例2太平洋上有A、B两个岛屿,B岛在A岛正东40海里处。
经多年观察研究发现,某种鱼群洄游的路线象一个椭圆,其焦点恰好是A、B两岛。
曾有渔船在距A岛正西20海里处发现过鱼群。
某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3,你能否判断鱼群此时的位置?(请学生议论后发言,教师点评。
)课堂小结:(1) 数学知识;(2) 数学思想;(3) 研究动点运动规律、探索曲线方程、解决实际问题过程给我们的启示。
高中数学第二章2.1椭圆教学案新人教A版选修
2.1 椭圆第1课时椭圆及其标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P32~P36的内容,回答下列问题.(1)阅读教材P32“探究”的内容,思考下列问题:①移动笔尖,画出的轨迹是什么图形?提示:椭圆.②笔尖在移动的过程中,笔尖到两个定点F1和F2的距离之和是一个定值吗?提示:是.其距离之和始终等于线段的长度.(2)观察教材P33-图2.1-2.设M(x,y),F1(-c,0),F2(c,0),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?提示:.(3)观察教材P34“思考”.设M(x,y),F1(0,-c),F2(0,c),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?提示:.2.归纳总结,核心必记(1)椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)椭圆的标准方程焦点在x轴上焦点在y轴上标准方程图形焦点坐标(-c,0),(c,0)(0,-c),(0,c)a,b,ca2=b2+c2的关系[问题思考](1)定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?提示:当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;_当距离之和小于|F1F2|时,动点的轨迹不存在.(2)如图,你能从中找出表示a,b,c的线段吗?提示:a=|PF2|,b=|OP|,c=|OF2|.(3)确定椭圆的标准方程需要知道哪些量?提示:a,b的值及焦点的位置.[课前反思](1)椭圆的定义是:;(2)椭圆的标准方程是:;特点:;(3)在椭圆的标准方程中,a,b,c之间的关系是:.1.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2是它的焦点.过F 1的直线AB 与椭圆交于A 、B两点,求△ABF 2的周长.[尝试解答] ∵|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△ABF 2的周长=|AB |+|BF 2|+|AF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a , ∴△ABF 2的周长为4a .由椭圆的定义可知,点的集合P ={M ||MF 1|+|MF 2|=2a }(其中|F 1F 2|=2c )表示的轨迹有三种情况:当a >c 时,集合P 为椭圆;当a =c 时,集合P 为线段F 1F 2;当a <c 时,集合P 为空集.在利用椭圆的定义判断有关点的轨迹问题时一定要注意所给常数与已知两定点之间距离的大小关系.因为椭圆上的点与两个焦点构成一个三角形,所以可联系三角形两边之和大于第三边来帮助记忆.练一练1.已知命题甲:动点P 到两定点A ,B 的距离之和|PA |+|PB |=2a ,其中a 为大于0的常数;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若点P 的轨迹是椭圆,则一定有|PA |+|PB |=2a (a >0,为常数). 所以甲是乙的必要条件.反过来,若|PA |+|PB |=2a (a >0,为常数),当2a >|AB |时,点P 的轨迹是椭圆;当2a =|AB |时,点P 的轨迹是线段AB ;当2a <|AB |时,点P 的轨迹不存在,所以甲不是乙的充分条件.综上可知,甲是乙的必要不充分条件.2.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段解析:选D 因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2.2.(1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝ ⎛⎭⎪⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.[尝试解答] (1)法一:∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).由椭圆的定义知 2a =⎝ ⎛⎭⎪⎫52+22+⎝ ⎛⎭⎪⎫-322+ ⎝ ⎛⎭⎪⎫52-22+⎝ ⎛⎭⎪⎫-322=210,∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6. ∴所求椭圆的标准方程为x 210+y 26=1.法二:设标准方程为x 2a 2+y 2b2=1(a >b >0).依题意得⎩⎨⎧254a 2+94b 2=1,a 2-b 2=4,解得⎩⎨⎧a 2=10,b 2=6.∴所求椭圆的标准方程为x 210+y 26=1.(2)法一:当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆经过两点(2,0),(0,1), ∴⎩⎪⎨⎪⎧4a 2+0b 2=1,0a 2+1b2=1,则⎩⎨⎧a =2,b =1.∴所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎪⎨⎪⎧0a 2+4b 2=1,1a 2+0b2=1,则⎩⎨⎧a =1,b =2.与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点,∴⎩⎨⎧4m =1,n =1,∴⎩⎨⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.求椭圆的标准方程时,要“先定型,再定量”,即要先判断焦点位置,再用待定系数法设出适合题意的椭圆的标准方程,最后由条件确定待定系数即可.当所求椭圆的焦点位置不能确定时,应按焦点在x 轴上和焦点在y 轴上进行分类讨论,但要注意a >b >0这一条件.当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式有两个优点:①列出的方程组中分母不含字母;②不用讨论焦点所在的坐标轴,从而简化求解过程.练一练3.求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b2=1(a >b >0).因为2a =(5+3)2+02+(5-3)2+02=10,2c =6, 所以a =5,c =3,所以b 2=a 2-c 2=52-32=16.所以所求椭圆的标准方程为x 225+y 216=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b2=1(a >b >0).因为2a =26,2c =10, 所以a =13,c =5. 所以b 2=a 2-c 2=144. 所以所求椭圆的标准方程为y 2169+x 2144=1.讲一讲3.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[尝试解答] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .动圆P 与圆M 外切并且与圆 N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为 3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).解决与椭圆有关的轨迹问题的两种方法(1)定义法:用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.练一练4.如图,圆C :(x +1)2+y 2=16及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ于M ,求点M 的轨迹方程.解:由垂直平分线性质可知|MQ |=|MA |,∴|CM |+|MA |=|CM |+|MQ |=|CQ |. ∴|CM |+|MA |=4.又|AC |=2, ∴M 点的轨迹为椭圆.由椭圆的定义知,a =2,c =1,∴b 2=a 2-c 2=3. ∴所求轨迹方程为x 24+y 23=1.讲一讲4.如图所示,P 是椭圆x 24+y 23=1上的一点,F 1,F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[思考点拨] 由余弦定理结合椭圆的定义求出|PF 1|,再代入三角形的面积公式求解. [尝试解答] 由已知a =2,b =3, 得c =a 2-b 2=4-3=1,|F 1F 2|=2c =2. 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ② ②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335.即△PF 1F 2的面积是335.对于椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2,求其三角形的面积时注意整体思想的应用,如已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出|PF 1|和|PF 2|,这样可以减少运算量.练一练5.将本讲中“∠PF 1F 2=120°”改为“∠F 1PF 2=60°”,求△PF 1F 2的面积. 解:由已知a =2,b =3, 得c =a 2-b 2=4-3=1. ∴|F 1F 2|=2c =2,在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos 60°,即4=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1|·|PF 2|cos 60°. ∴4=16-3|PF 1||PF 2|. ∴|PF 1||PF 2|=4.∴S △PF 1F 2=12|PF 1||PF 2|·sin 60°=12×4×32= 3. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的定义、标准方程的求法,以及与椭圆焦点有关的三角形问题. 2.对椭圆定义的理解易忽视“2a >2c ”这一条件,是本节课的易错点. 平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在. 3.本节课要重点掌握的规律方法 (1)椭圆标准方程的求法,见讲2.(2)与椭圆有关的轨迹问题的求法,见讲3. (3)与椭圆焦点有关的三角形问题,见讲4.课时达标训练(六) [即时达标对点练]题组1 椭圆的标准方程 1.已知方程x 2k -4+y 210-k=1表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .(4,10)B .(7,10)C .(4,7)D .(4,+∞)解析:选B由题意知⎩⎨⎧k -4>0,10-k >0,k -4>10-k ,解得7<k <10.2.已知椭圆 x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( )A.x 24+y 22=1B.x 23+y 22=1 C .x 2+y 22=1 D.x 26+y 22=1解析:选D 由题意知,椭圆焦点在x 轴上,且c =2, ∴a 2=2+4=6,因此椭圆方程为x 26+y 22=1,故选D.3.椭圆9x 2+16y 2=144的焦点坐标为________. 解析:椭圆的标准方程为x 216+y 29=1,∴a 2=16,b 2=9,c 2=7,且焦点在x 轴上, ∴焦点坐标为(-7,0),(7,0). 答案:(-7,0),(7,0)4.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b,则椭圆的标准方程为________.解析:∵c =23,a 2=4b 2,∴a 2-b 2=3b 2=c 2=12,b 2=4,a 2=16.又∵焦点在y 轴上,∴标准方程为y 216+x 24=1.答案:y 216+x 24=1题组2 与椭圆有关的轨迹问题5.已知圆x 2+y 2=1,从这个圆上任意一点P 向y 轴作垂线,垂足为P ′,则PP ′的中点M 的轨迹方程是( )A .4x 2+y 2=1B .x 2+y 214=1C.x 24+y 2=1 D .x 2+y 24=1 解析:选A 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 02,y =y 0.∵P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1. ①将x 0=2x ,y 0=y 代入方程①,得4x 2+y 2=1.6.已知B ,C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.解:以过B ,C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,c =4.但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).题组3 椭圆的定义及焦点三角形问题7.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.解析:如图,当P 在y 轴上时△PF 1F 2面积最大,∴12×8b =12,∴b =3, 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=18.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上.则sin A +sin Csin B=________. 解析:由椭圆方程x 225+y 29=1知,a =5,b =3,∴c =4,即点A (-4,0)和C (4,0)是椭圆的焦点.又点B 在椭圆上,∴|BA |+|BC |=2a =10,且|AC |=8.于是,在△ABC 中,由正弦定理,得sin A +sin C sin B =|BC |+|BA ||AC |=54.答案:549.已知椭圆的焦点在x 轴上,且焦距为4,P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项.(1)求椭圆的方程;(2)若△PF 1F 2的面积为23,求点P 坐标. 解:(1)由题意知,2c =4,c =2, |PF 1|+|PF 2|=2|F 1F 2|=8,即2a =8,∴a =4. ∴b 2=a 2-c 2=16-4=12. ∵椭圆的焦点在x 轴上, ∴椭圆的方程为x 216+y 212=1.(2)设点P 坐标为(x 0,y 0), 依题意知,12|F 1F 2||y 0|=23,∴|y 0|=3,y 0=± 3.代入椭圆方程x 2016+y 2012=1,得x 0=±23,∴点P 坐标为(23,3)或(23,-3)或(-23,3)或(-23,-3).[能力提升综合练]1.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 解析:选D ∵a +9a≥2a ·9a=6, 当且仅当a =9a,即a =3时取等号,∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|, 点P 的轨迹是线段F 1F 2;当a >0,且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|,点P 的轨迹是椭圆.2.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作x 轴的垂线与椭圆相交,一个交点为P ,则△PF 1F 2的面积等于( )A.32B. 3C.72D .4 解析:选A 如图所示,由定义可知,|PF 1|+|PF 2|=2a =4,c =a 2-b 2=3,又由PF 1⊥F 1F 2,可设点P 的坐标为(-3,y 0),代入x 24+y 2=1,得|y 0|=12,即|PF 1|=12,所以S △PF 1F 2=12|PF 1|·|F 1F 2|=32. 3.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1 B.x 212+y 29=1或 x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或 x 245+y 248=1 解析:选B 由已知2c =|F 1F 2|=23,∴c = 3. ∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43, ∴a =2 3.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.4.设F 1,F 2是椭圆C :x 28+y 24=1的焦点,在曲线C 上满足的点P 的个数为( )A .0B .2C .3D .4 解析:选B ∵,∴PF 1⊥PF 2.∴点P 为以线段F 1F 2为直径的圆与椭圆的交点,且此圆的半径为c =8-4=2. ∵b =2,∴点P 为该椭圆y 轴的两个端点.5.F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为 3的正三角形,则b 2的值是________. 解析:∵|OF 2|=c ,∴由已知得3c 24=3,∴c 2=4,c =2.设点P 的坐标为(x 0,y 0),由△POF 2为正三角形, ∴|x 0|=1,|y 0|=3,代入椭圆方程得1a 2+3b2=1.∵a 2=b 2+4,∴b 2+3(b 2+4)=b 2(b 2+4), 即b 4=12,∴b 2=2 3. 答案:2 36.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.解析:如图,设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知|MF 2|=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点, 所以|ON |=12|MF 2|=4.答案:47.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解:设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0). ∵F 1A ⊥F 2A ,∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5. 即F 1(-5,0),F 2(5,0).则2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32 =10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15. 故所求椭圆的标准方程为x 240+y 215=1. 8.已知P 是椭圆x 24+y 2=1上的一点,F 1,F 2是椭圆的两个焦点.(1)当∠F 1PF 2=60°时,求△F 1PF 2的面积; (2)当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解:(1)由椭圆的定义,得|PF 1|+|PF 2|=4且F 1(-3,0),F 2(3,0).①在△F 1PF 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°.② 由①②得|PF 1|·|PF 2|=43.所以S △PF 1F 2=12|PF 1||PF 2|·sin ∠F 1PF 2=33.(2)设点P (x ,y ),由已知∠F 1PF 2为钝角, 得即(-3-x ,-y )·(3-x ,-y )<0.又y 2=1-x 24, 所以34x 2<2,解得-263<x <263.所以点P 横坐标的范围是⎝ ⎛⎭⎪⎫-263,263. 第2课时 椭圆的简单几何性质[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 37~P 40“探究”的内容,回答下列问题. 观察教材P 38-图2.1-7,思考以下问题:(1)椭圆x 2a 2+y 2b2=1(a >b >0)中x ,y 的取值范围各是什么?提示:-a ≤x ≤a ,-b ≤y ≤b .(2)椭圆x 2a 2+y 2b2=1(a >b >0)的对称轴和对称中心各是什么?提示:对称轴为x 轴和y 轴,对称中心为坐标原点(0,0).(3)椭圆x 2a 2+y 2b2=1(a >b >0)与坐标轴的交点坐标是什么?提示:与x 轴的交点坐标为(±a ,0),与y 轴的交点坐标为(0,±b ). (4)椭圆的长轴和短轴分别对应图中的哪些线段? 提示:长轴为A 1A 2,短轴为B 1B 2.(5)椭圆的离心率是什么?用什么符号表示?其取值范围是什么? 提示:离心率e =ca;0<e <1.(6)如果保持椭圆的长半轴长a 不变,改变椭圆的短半轴长b 的值,你发现b 的变化与椭圆的扁圆程度有什么关系?提示:b 越大,椭圆越圆;b 越小,椭圆越扁. (7)根据离心率的定义及椭圆中a ,b ,c 的关系可知,e =c a =c 2a 2=a 2-b 2a 2=1-⎝ ⎛⎭⎪⎫b a 2,所以e 越接近于1,则c 越接近于a ,从而b =a 2-c 2就越小;e 越接近于0,则c 越接近于0,从而b 越接近于a .那么e 的大小与椭圆的扁圆程度有什么关系?提示:e 越大,椭圆越扁;e 越小,椭圆越圆.2.归纳总结,核心必记 椭圆的简单几何性质焦点 的位置焦点在x 轴上焦点在y 轴上图形标准 方程焦点 的位置 焦点在x 轴上 焦点在y 轴上 范围 -a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点 A 1(-a ,0),A 2(a ,0), B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0)轴长 短轴长=2b ,长轴长=2a焦点 F 1(-c ,0),F 2(c ,0) F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=2c对称性 对称轴x 轴和y 轴,对称中心(0,0)离心率e =ca(0<e <1) (1)借助椭圆图形分析,你认为椭圆上到对称中心距离最近和最远的点各是哪些? 提示:短轴端点B 1和B 2到中心O 的距离最近;长轴端点A 1和A 2到中心O 的距离最远. (2)借助椭圆图形分析,你认为椭圆上的点到焦点距离的最大值和最小值各是何值? 提示:点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离分别是椭圆上的点与焦点F 1的最大距离和最小距离,分别为a +c 和a -c .(3)如何用a ,b 表示离心率?提示:由e =c a 得e 2=c 2a 2=a 2-b 2a2,∴e=1-⎝⎛⎭⎪⎫ba2.∴e=1-b2a2.[课前反思](1)椭圆的几何性质:;(2)椭圆的离心率与椭圆的扁圆程度的关系是:.讲一讲1.求椭圆4x2+9y2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.[尝试解答] 将椭圆方程变形为x29+y24=1,∴a=3,b=2.∴c=a2-b2=9-4= 5.∴椭圆的长轴长和焦距分别为2a=6,2c=25,焦点坐标为F1(-5,0),F2(5,0),顶点坐标为A1(-3,0),A2(3,0),B1(0,-2),B2(0,2),离心率e=ca=53.解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系和定义,求椭圆的基本量.练一练1.求椭圆m2x2+4m2y2=1(m>0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解:椭圆的方程m2x2+4m2y2=1(m>0),可转化为x21m2+y214m2=1.∵m 2<4m 2, ∴1m 2>14m 2,∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m .∴椭圆的长轴长2a =2m ,短轴长2b =1m,焦点坐标为⎝ ⎛⎭⎪⎫-32m,0,⎝⎛⎭⎪⎫32m,0,顶点坐标为⎝ ⎛⎭⎪⎫1m ,0,⎝ ⎛⎭⎪⎫-1m ,0,⎝⎛⎭⎪⎫0,-12m ,⎝ ⎛⎭⎪⎫0,12m .离心率e =c a =32m 1m=32.讲一讲2.求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的5倍,且过点A (5,0); (2)离心率e =35,焦距为12.[尝试解答] (1)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎨⎧2a =5×2b ,25a 2+0b2=1,解得⎩⎨⎧a =5,b =1. 故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),由题意,得⎩⎨⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎨⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1. 综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.(2)由e =c a =35,2c =12,得a =10,c =6,∴b 2=a 2-c 2=64.当焦点在x 轴上时,所求椭圆的标准方程为x 2100+y 264=1;当焦点在y 轴上时,所求椭圆的标准方程为y 2100+x 264=1.综上所述,所求椭圆的标准方程为x 2100+y 264=1或y 2100+x 264=1.(1)根据椭圆的几何性质求标准方程,通常采用待定系数法,其步骤仍然是“先定型,后计算”,即首先确定焦点位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.(2)在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定其所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长、焦距时,则不能确定焦点的位置,这时应对两种情况分别求解并进行取舍.练一练2.求满足下列条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且经过点A (2,3);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解:(1)若椭圆的焦点在x 轴上,设标准方程为x 24b 2+y 2b2=1(b >0),∵椭圆过点A (2,3),∴1b 2+9b2=1,b 2=10.∴方程为x 240+y 210=1.若椭圆的焦点在y 轴上.设椭圆方程为y 24b 2+x 2b2=1(b >0),∵椭圆过点A (2,3),∴94b 2+4b 2=1,b 2=254.∴方程为y 225+4x 225=1.综上所述,椭圆的标准方程为x 240+y 210=1或y 225+4x 225=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,∴⎩⎪⎨⎪⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.讲一讲3.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e . [尝试解答] 由A (-a ,0),B (0,b ),得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b =bax ,即bx -ay +ab =0. 又F 1(-c ,0),由点到直线的距离公式可得 d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0,即8⎝ ⎛⎭⎪⎫c a 2-14c a +5=0.∴8e 2-14e +5=0.解得e=12或e =54(舍去).综上可知,椭圆的离心率e =12.求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c ,可直接利用e=ca求解.若已知a ,b 或b ,c ,可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =c a求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.练一练3.如图,已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的一点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆的中心)时,求椭圆的离心率.解:由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则由题意可知P ⎝⎛⎭⎪⎫-c ,b 2a .∵△PF 1O ∽△BOA ,∴PF 1BO =F 1OOA . ∴b 2a b =ca,即b =c , ∴a 2=2c 2,∴e =c a =22.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的几何性质及椭圆离心率的求法,难点是求椭圆的离心率.2.由椭圆的几何性质求标准方程时易忽视椭圆的焦点位置,这也是本节课的易错点. 3.本节课要重点掌握的规律方法(1)已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式,见讲1. (2)根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法,见讲2.(3)求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用,见讲3.课时达标训练(七) [即时达标对点练]题组1 由椭圆的标准方程研究几何性质1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是 ( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6 D .10、6、0.6解析:选B 把椭圆的方程写成标准方程为x 29+y 225=1,知a =5,b =3,c =4.∴2a =10,2b =6,ca=0.8.2.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D 由题意知,其焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69.3.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( )A .a 2=25,b 2=16B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.题组2 由椭圆的几何性质求标准方程4.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴3等分,则此椭圆的方程是( )A.x 281+y 272=1B.x 281+y 29=1C.x 281+y 245=1D.x 281+y 236=1 解析:选A 因为2a =18,2c =13×2a =6,所以a =9,c =3,b 2=81-9=72.5.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上.若焦距为4,则m 等于( )A .4B .5C .7D .8解析:选D 由题意得m -2>10-m 且10-m >0,于是6<m <10,再由(m -2)-(10-m )=22,得m =8.6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,两个焦点分别为F 1和F 2,椭圆G 上一点到F 1和F 2的距离之和为12.则椭圆G 的方程为_______________________.解析:依题意可设椭圆G 的方程为x 2a 2+y 2b2=1,a >b >0,半焦距为c ,∵椭圆G 的离心为率为32,∴c a =32⇒c =32a . ∵椭圆G 上一点到F 1和F 2的距离之和为12, ∴2a =12⇒a =6.∴c =33,b =a 2-c 2=3, ∴椭圆G 的方程为x 236+y 29=1. 答案:x 236+y 29=1题组3 椭圆的离心率7.椭圆x 2+4y 2=4的离心率为( ) A.32 B.34 C.22 D.23解析:选A 化为标准方程为x 24+y 2=1,a 2=4,b 2=1,c 2=3,∴e =c a =32.8.椭圆的短半轴长为3,焦点到长轴的一个端点的距离等于9,则椭圆的离心率为( ) A.513 B.35 C.45 D.1213解析:选C 由题意,得⎩⎨⎧b =3,a -c =9,或⎩⎨⎧b =3,a +c =9.当a -c =9时,由b 2=9得a 2-c 2=9=(a -c )(a +c ),a +c =1,则a =5,c =-4(不合题意).当a +c =9时,解得⎩⎨⎧a =5,c =4,故e =45.9.A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为正三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.解:如图,连接BF 2.∵△AF 1F 2为正三角形, 且B 为线段AF 1的中点, ∴F 2B ⊥AF 1.又∵∠BF 2F 1=30°,|F 1F 2|=2c , ∴|BF 1|=c ,|BF 2|=3c , 根据椭圆定义得|BF 1|+|BF 2|=2a ,即c +3c =2a , ∴ca=3-1.∴椭圆的离心率e 为3-1.[能力提升综合练]1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 解析:选A 由题意可得21m =2×2,解得m =14. 2.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.52B.33 C.12 D.13解析:选B 记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c3,|PF 2|=4c3,则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33.3.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若,则椭圆的离心率是( )A.32 B.22 C.13 D.12解析:选D又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即aa +c =23,∴e =c a =12. 4.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又b =25,故m =20,得x 220+y 225=1.答案:x 220+y 225=15.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过P (-5,4),则椭圆的方程为________.解析:∵e =c a =55, ∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a 2=45.∴椭圆方程为x 245+y 236=1. 答案:x 245+y 236=16.已知F 1,F 2是椭圆的两个焦点,满足的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:设椭圆方程为x 2a 2+y 2b2=1(a >b >0).因为,所以MF 1⊥MF 2,所以点M 的轨迹是以O 为圆心,c 为半径的圆. 因为点M 总在椭圆内部,所以c <b , 所以c 2<b 2=a 2-c 2,所以2c 2<a 2,所以e 2<12,所以0<e <22.答案:⎝⎛⎭⎪⎫0,227.中心在原点,焦点在坐标轴上的椭圆上有M ⎝ ⎛⎭⎪⎫1,432,N ⎝ ⎛⎭⎪⎫-322,2两点,求椭圆的标准方程.解:当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).将点M ⎝ ⎛⎭⎪⎫1,432,N ⎝ ⎛⎭⎪⎫-322,2代入上式,得⎩⎪⎨⎪⎧12a 2+⎝ ⎛⎭⎪⎫4322b 2=1,⎝ ⎛⎭⎪⎫-3222a 2+(2)2b2=1, 解得⎩⎨⎧a 2=9,b 2=4.此时椭圆的标准方程为x 29+y 24=1.当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).将点M ⎝ ⎛⎭⎪⎫1,432,N ⎝ ⎛⎭⎪⎫-322,2代入上式得⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫4322a 2+12b 2=1,(2)2a 2+⎝ ⎛⎭⎪⎫-3222b2=1, 解得⎩⎨⎧a 2=4,b 2=9.因为a >b >0,所以舍去, 所以椭圆的标准方程为x 29+y 24=1.8.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm+3=1,由m >0,易知m >m m +3,∴a 2=m ,b 2=m m +3.∴c =a 2-b 2= m (m +2)m +3.由e =32,得m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0, 顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12.第3课时 直线与椭圆的位置关系(习题课)[思考1] 判断直线与圆的位置关系有哪几种方法?名师指津:(1)几何法:利用圆心到直线的距离d 与圆的半径的大小关系判断,d =r ⇔相切;d >r ⇔相离;d <r ⇔相交.(2)代数法:联立直线与圆的方程,利用方程组解的个数判断.[思考2] 能否利用判断直线与圆的位置关系的方法判断直线与椭圆的位置关系?名师指津:不能采用几何法,但是可以利用代数法判断直线与椭圆的位置关系. [思考3] 已知直线l 和椭圆C 的方程,如何判断直线与椭圆的位置关系?名师指津:判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.讲一讲1.已知椭圆4x 2+y 2=1及直线y =x +m .问m 为何值时,直线与椭圆相切、相交、相离. [尝试解答] 将y =x +m 代入4x 2+y 2=1,消去y 整理得5x 2+2mx +m 2-1=0.Δ=4m 2-20(m 2-1)=20-16m 2.当Δ=0时,得m =±52,直线与椭圆相切; 当Δ>0时,得-52<m <52,直线与椭圆相交;当Δ<0时,得m <-52或m >52,直线与椭圆相离.判断直线与椭圆的位置关系的方法练一练1.若直线y =kx +1与焦点在x 轴上的椭圆 x 25+y 2m=1总有公共点,求m 的取值范围.解:由⎩⎨⎧y =kx +1,x 25+y 2m=1,消去y ,整理得(m +5k 2)x 2+10kx +5(1-m )=0,所以Δ=100k 2-20(m +5k 2)(1-m )=20m (5k 2+m -1),因为直线与椭圆总有公共点, 所以Δ≥0对任意k ∈R 都成立, 因为m >0,所以5k 2≥1-m 恒成立, 所以1-m ≤0, 即m ≥1.又因为椭圆的焦点在x 轴上, 所以0<m <5, 综上,1≤m <5,即m 的取值范围是[1,5).[思考1] 若直线l 与圆C 相交于点A ,B ,如何求弦长|AB |?名师指津:(1)利用r 2=d 2+⎝ ⎛⎭⎪⎫l 22求解;(2)利用两点间的距离公式求解;(3)利用弦长公式|AB |=1+k 2|x 1-x 2|求解.[思考2] 若直线l :y =kx +m 与椭圆x 2a 2+y 2b2=1相交于A (x 1,y 1),B (x 2,y 2)两点,如何求|AB |的值?名师指津:|AB |=1+k 2|x 1-x 2|. 讲一讲2.已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程.[尝试解答] (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎪⎨⎪⎧y =12x ,x 236+y 29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310. 所以线段AB 的长度为310.(2)法一:设l 的斜率为k ,则其方程为y -2=k (x -4).联立⎩⎨⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即y =-12x +4.(1)弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2·(x 1-x 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2 =1+1k2·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2.其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(2)解决椭圆中点弦问题的两种方法①根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.②点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,①x 22a 2+y 22b 2=1,②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB=-b 2x 0a 2y 0.练一练2.直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( )A.⎝ ⎛⎭⎪⎫23,53B.⎝ ⎛⎭⎪⎫43,73 C.⎝ ⎛⎭⎪⎫-23,13 D.⎝ ⎛⎭⎪⎫-132,-172解析:选C联立方程组⎩⎨⎧y =x +1,x 24+y 22=1,消去y 得3x 2+4x -2=0.设交点A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0), ∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13.∴所求中点的坐标为⎝ ⎛⎭⎪⎫-23,13.3.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且椭圆与直线x +2y +8=0相交于P ,Q ,且|PQ |=10,求椭圆方程.解:∵e =32,∴b 2=14a 2.∴椭圆方程为x 2+4y 2=a 2.与x +2y +8=0联立消去y ,得2x 2+16x +64-a 2=0,。
2.2.1椭圆的标准方程1
(2) x
2
y2 1 10Βιβλιοθήκη (3) 2 x y 1
2 2
(4) 5x 3 y 15
2 2
2013-2014 学年横岗高级中学数学选修 2-1 学案
5. 求出适合下列条件的椭圆的标准方程: (1)b=4,c=1,焦点在 x 轴上;
(2)a=5,b=4,焦点在 y 轴上;
(3)a=5,c=3,焦点在 x 轴上;
)
(4)焦点为 F 、 F2 (1,0) ,且 b=2. 1 (-1,0)
(5)焦点为 F 、 F2 (0, 2) ,且过点(3,0). 1 (0,-2)
三、能力提升
2 2 6.若椭圆 x y 1 上一点 P 到焦点 F 1 的距离为 6,则点 P 到另一个焦点 F2 的距离是 100 36
7.已知 F | F1F2 |=8, 动点 M 满足| MF1 |+| MF2 |=8,则点 M 的轨迹是 ( 1 、F2 是定点, (A)椭圆 (B)直线 (C)圆 (D)线段
二、知识运用 3.下列方程哪些是椭圆方程?若是,请指出它们的焦点在哪个坐标轴上.
x2 y 2 1 (1) 5 3
x2 y2 1 ( 2) 10
(3)
x2 y 2 1 2 2
(4) 3x2 4 y 2 12
4. 求下列椭圆的焦点坐标: (1)
x2 y 2 1 25 16
,其中两定点 F 1 、 F2 叫做椭圆的 , a、 b、 c 三者的关系是
, .
2. 平面内与两定点 F 1 (0,-3)、 F2 (0,3)的距离的和等于 10(大于 F 1 F2 )的点的轨迹也 是椭圆, 它的标准方程是 焦距 F1F2 为 , a= , b= , c= , 其中两定点 F F2 叫做椭圆的 1、 , a、 b、 c 三者的关系是 , .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCH 数学题库(学生学案) 班级 姓名 座号 等级
2.1椭圆(1)(学生学案)
2.1.1椭圆及其标准方程
例1:下列哪些是椭圆方程?如果是,请指出其焦点所在的坐标轴.
,
4002516)1(2
2
=+y x ,125
16
)
2(2
2
=-
x
y
,14
4
)
3(2
2
=+
y
x
,
19
4
)
4(2
2
-=+
x
y
.243)5(2
2
=+y x
例2: 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x
轴上;⑵4,a c ==在y
轴上;⑶10,a b c +==
例3(课本P34例1) 已知椭圆两个焦点的坐标分别是
()2,0-,()2,0,并且经过点53,2
2⎛⎫
-
⎪⎝⎭
,求它的标准方程.
例4.求适合下列条件的椭圆的标准方程:
(1)两个焦点坐标分别是)0,4(-、(4,0),椭圆上一点P 到两焦点的距离的和等于10;
(2)两个焦点的坐标分别是)2,0(-、(0,2),并且椭圆经过点)2
5
,23(-
. 五、布置作业:
A 组:
1、(课本P42习题2.1A 组:NO :1)
2、(课本P42习题2.1A 组:NO :2(1)(2)(3))
3、 已知两个焦点的坐标分别是(3,0),(3,0)-,椭圆上一
点P 到两焦点距离和等于8,求椭圆的标准方程
4、 (tb2514403)已知椭圆与椭圆
14
9
2
2
=+
y
x
共焦点,且
通过点(3,-2),求该椭圆的方程。
5、(tb2514302)已知椭圆14
2
2
=+
y
m
x
的焦距为2,
求该椭圆方程。
B 组: 1.已知椭圆0632
2
=-+m y mx 的一个焦点为(0,2)
,求m 的值. 2.方程
1)
1(2
2
2
2=-+
m y
m
x 表示焦点在y 轴上的椭圆,求
实数m 的取值范围.。