2018北师大版数学九年级上册课件:中考重热点突破(六)
北师大版九年级数学重难点梳理
北师大版九年级数学重难点梳理The latest revision on November 22, 2020北师大版九年级数学重难点梳理(上册)第一章特殊平行四边第一节菱形的性质与判定重难点:1.掌握菱形的概念、性质以及判定方法,理解菱形与平行四边形之间的联系。
2.会用菱形的性质和判定方法来进行有关的论证和计算,会用菱形的对角线来计算菱形的面积。
3.通过菱形与平行四边形关系的研究,进一步加深对“特殊”与“一般”的关系。
第二节矩形的性质与判定重难点:1.探索并掌握矩形性质及矩形的判定定理2.矩形的轴对称性3.直角三角形斜边上的中线的性质4.矩形的判定(难点)第三节正方形的性质与判定重难点:1.掌握正方形的概念、性质及判定方法,学会证明过程中所运用的归纳、概括以及转化等数学思想方法。
2.能够用综合法证明正方形的性质定理和判定定理以及其他相关结论,经历探索、猜想、证明的过程,发展推理论证能力。
第二章一元二次方程第一节认识一元二次方程重难点:1.理解一元二次方程的概念,会判断一个方程是不是一元二次方程。
2.会将一元二次方程转化为一般形式,并能指出各项系数及常数项。
3.会用估算的方法求一元二次方程的近似解。
(难点)第二节用配方法求解一元二次方程重难点:1.用直接开平方法解一元二次方程2.配方法解一元二次方程3.配方法的应用(难点)4.求解简单的实际问题第三节用公式法求解一元二次方程重难点:1.一元二次方程的求根公式(难点)2.公式法解一元二次方程3.一元二次方程ax2+bx+c=0(a≠0)的根的情况第四节用因式分解法求解一元二次方程重难点:1.因式分解法解一元二次方程2.选择适当的方法解一元二次方程(难点)第五节一元二次方程的根与系数的关系重难点:1.知道一元二次方程的根与系数的关系。
能运用根与系数的关系求一元二次方程的两根之和,两根之积及与两根有关的代数式的值。
2.能运用根与系数的关系由已知一元二次方程的一个根求出另一个根或由方程的根确定一元二次方程的系数。
【中考小复习配套课件】北师大九年级上第六章频率与概率
数学·新课标(BS)
上册第六章复习 ┃ 考点攻略
[解析] 要确定选择哪个袋子成功的机会大, 应 计算从每个袋子中取出黑球的概率的大小.在甲袋 9 9 中, 取出黑球) P( = = ; 在乙袋中, 取出黑球) P( 21+9 30 90 = 9 9 9 = . 因为 < , 所以选择乙袋成功 190+90+10 29 30 29
考查意图
反比例函数
统计与概率
2,4,5,6,7,11,13,17,18,19,22,23
1,3,8,9,12,14,15,20,21
综合
10,16,24
分类讨论、数形结合
亮点
第16题属于探索图形规律,第24题结合动点考查反比例函数的性质.
数学·新课标(BS)
上册阶段综合测试三(月考)┃ 试卷讲练 【针对第8题训练 】 1.从-2,-1,2这三个数中任取两个不同的数作为点的坐 1 标,该点在第四象限的概率是________. 3
难
代数 知识与 技能 几何 统计与概率 投影与视图
9、10、16、23、24
2、6、7、11、17、20、23、24 4、5、8、10、13、14、16、21、22 9、15、19 1、3、12、18
数学·新课标(BS)
九年级上册综合测试┃ 试卷讲练
思想方法
亮点
从特殊到一般,数形结合思想 第10题结合动点考查,第14题考查图形的拼接,第16题考查 图形规律探索,第22题以阅读理解的方式考查学生的认知能力 和理解能力.
[注意] 用列表法或树状图法求概率时应注意各种情况发生的 可能性务必相同.
数学·新课标(BS)
上册第六章复习 ┃ 知识归类 2.投针试验 (1)获得复杂随机事件发生的概率的方法是试验估计. (2)投针试验可以用来估计圆周率π的值. (3)具有广泛应用性的蒙特卡罗方法主要应用了概率和统计 两部分知识. 3.试验估算
【北师大版】初中九年级数学上册第4章图形的相似课件
第四章图形的相似
1.成比例线段
在实际生活中,我们经常会看到许多形状相同的 图片。
如图,用同一张底片洗出的不同尺寸 的照片中,汽车的形状还相同吗?
如图,几个足球的形状相同吗? 他们的大小呢?
你能在下面这些图形中找出形状相同的图形吗? 这些形状相同的图形有什么不同?
大小 不同。
(4)使∠ABC=∠
与同伴交流,你 们所画的三角形
相似吗?
AD EF∴
.
EF BC
∴EF2=AD·BC=3×4=12,
A E
D F
2 3 ∴EF= .
∵四边形AEFD∽四边形EBCF, B
C
∴AE:EB=AD:EF=32: 3 = 3 :2.
当堂 练习
1.下列命题中,正确C的是( )
A.所有的等腰三角形都相似 B.所有的直角三角形都相似 C.所有的等边三角形都相似
原来矩形的长边与短边的比是多少?
解:根据题意,得AE 1 AB, 2
AD AB . AE AD
将AE 1 AB代入 AD AB ,得
2
AE AD
AB2 AD2
2,
开平方,得 AB (2 AB 2舍去)
AD
AD
原来矩形长边与短边的比为 2∶1.
已知a、b、c、d是成比线段,a=4cm, b=6cm,d=9cm,则c=____
地图上,图上距离与它所表示的实际距离的比通 常称为比例尺,如1∶10000,意为图上是1cm,实
际距离为10000cm.
一条线段的长度是另一条线段的5倍,求这两条线
5∶1段的比。
一条线段的长度是另一条线段长度的 3 ,求这
两条线段的比。
5
北师大版九年级上册数学全册课件(2020最新整理)
D
∴AC=2OA= 6 3 (菱形的对角线相互平分).
归纳 若菱形有一个内角为60°,那么60°角的两边与较 短的对角线可构成等边三角形,且两条对角线把菱形分成 四个全等的含30°角的直角三角形.
2020/12/28
当堂练习
1.菱形具有而一般平行四边形不具有的性质是 ( C )
A.对角相等
B.对边相等
问题1: 观察上图中的这些平行四边形,你能发现它们有什么 样的共同特征?
平行四边形
菱形
菱形:有一组邻边相等的平行四边形叫做菱形.
2020/12/28
问题2: 菱形与平行四边形有什么关系?
平行四边形集合 平行四边形
菱形集合
归纳 菱形是特殊的平行四边形,它具有平行四边形的所有 性质,但平行四边形不一定是菱形.
O B
C
归纳 菱形中已知边长或对角线,求相关长度问题,一般利 用菱形的对角线垂直平分,再结合勾股定理解题.
2020/12/28
典例精析
例2:如图,在菱形ABCD中,对角线AC与BD相交于点O,
∠BAD=60°,BD =6,求菱形的边长AB和对角线AC的长.
解:∵四边形ABCD是菱形,
∴AC⊥BD(菱形的对角线互相垂直)
2020/12/28
7.如图,在菱形ABCD中,对角线AC与BD 相交
于点O. 已知AB=5cm,AO=4cm,求BD的长.
B
解:∵四边形ABCD是菱形,
O
A
C
∴AC⊥BD (菱形的两条对角线互相垂直). D
∴∠AOB=90°.
∴BO= AB2 AO2=3(cm).
∴BD=2BO=2×3=6(cm).
C.45°
D.30°
九年级数学上册 第6单元复习课件 北师大版
第26章复习 ┃ 知识归类
4.池塘里有多少条鱼 一个口袋中有m个黑球(已知)和若干个白球,如果不许将球 倒出来数,则有两种方法可以估计出其中的白球数x:
第26章复习 ┃ 知识归类
法一:从口袋中随机摸出一球,记下其颜色,再把它放回口袋 中,通过多次试验,我们可以估计出从口袋中随机摸出一球,它为 m 黑球的概率,而这个概率应等于 .据此可估计出白球 m+x 数 x. 法二:利用抽样调查方法,通过多次抽样调查,求出样本中黑 球数与总球数比值的“ 平均水平 ”, 这个“ 平均水平 ”应 m 近似于 ,据此,我们也可以估计出 x 的值. m+x
►
C.1200条 D.600条
第26章复习 ┃ 考点攻略
[解析] C 当试验的所有可能结果不是有限个,或各种可能 结果发生的可能性不相等时,我们可以通过统计频率来估计概 率.有些实际问题,往往需要用频率来估计概率的思想来解决. 30 5 设鱼塘中鱼的条数可估计为 x,则 = ,解得 x=1200. x 200
第26章复习 ┃ 考点攻略
方法技巧 这个问题可以转化为一般问题:为了估计水塘中的鱼数,养 鱼者首先从鱼塘中捕获 n 条鱼,在每一条鱼身上做好记号后把这 些鱼放归鱼塘.再从鱼塘中打捞 a 条鱼,如果在这 a 条鱼中有 b an 条鱼是有记号的,则鱼塘中鱼的条数可估计为 . b
第26章复习 ┃ 考点攻略 ► 考点二 利用概率帮助说理
第26章复习 ┃ 知识归类
┃知识归纳┃
1.频率与概率
(1)当试验次数很大时,试验频率稳定在相应的 概率 附 近.因此,我们可以通过多次试验,用一个事件发生的 频率 来 估计这一事件发生的 概率 .
(2)涉及两步试验的随机事件发生的概率,有两种基本的计 算方法,它们分别是 树状图法 、 列表法 .
北师大版九年级上册数学复 习知识点及例题
性角 质
对 角 线
四个角都是 直角
互相平分且 相等
对角相等
四个角都是直角
互相垂直平分, 且每条对角线平 分一组对角
互相垂直平分且相等,每 条对角线平分一组对角
判定
·有三个角 是直角; ·是平行四 边形且有一 个角是直角; ·是平行四
·四边相等的四 边形; ·是平行四边形 且有一组邻边相 等; ·是平行四边形
·是矩形,且有一组邻 边相等; ·是菱形,且有一个角 是直角。
边形且两条 且两条对角线互 对角线相等. 相垂直。
对称性
既是轴对称图形,又是中心对称图形
一.矩形 矩形定义:有一角是直角的平行四边形叫做矩形.
【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质
性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等,具有平行四边形的所以性质。;
①有一组邻边相等的平行四边形 (菱形) ②有一个角是直角的平行四边形 (矩形) 正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的
菱形. 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫
做正方形. 正方形是中心对称图形,对称中心是对角线的交点,正方形
又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有 四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们 性质的综合,正方形的性质总结如下:
边:对边平行,四边相等; 角:四个角都是直角; 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角 形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等 的等腰直角三角形,这是正方形的特殊性质.
2.5一元二次方程的根与系数的关系 课件 北师大版数学九年级上册
感悟新知
(4)x11 +x12=x1x+1x2x2; (5)xx21+xx12=x22x+1x2x21=(x1+x2x)12x-2 2 x1x2; (6) |x1 -x2 |= (x1-x2)2 = (x1+x2)2-4 x1x2 .
知1-讲
感悟新知
知1-练
例 1 【母题 教材P51习题T3】已知关于x 的一元二次方 程x2-6x+q=0 有一个根为2,求方程的另一个根 和q 的值.
b2-4ac ≥ 0 且x1·x2<0
x1+x2>0 x1+x2<0 x1+x2>0 x1+x2<0
两根同为正数 两根同为负数 两根异号,且正根的绝对值大 两根异号,且负根的绝对值大
感悟新知
知1-讲
2. 与两根有关的几个代数式的恒等变形 (1)x21+x22=x21+2 x1x2+x22-2 x1x2=(x1+x2)2-2 x1x2; (2)(x1-x2)2=(x1+x2)2-4 x1x2; (3)(x1+a)(x2+a)=x1x2+a(x1+x2)+a2;
感悟新知
∴-ba2-4·1a=1.∴b2=a2+4a. ∴t=10a-b2=-a2+6a=-(a-3)2+9. ∵-(a-3)2≤0, ∴t=-(a-3)2+9≤9,即 t 的最大值为 9.
知1-练
感悟新知
知2-讲
知识点 2 二次项系数为1 的一元二次方程的性质
1. 以x1,x2 为根的一元二次方程(未知数为x,二次项系
12,则以x1,x2 为根的一元二次方程是( )
A. x2-7x+12=0
B. x2+7x+12=0
C. x2+7x-12=0
D. x2-7x-12=0
感悟新知
北师大版九年级数学上册《认识一元二次方程》优质课课件(共18张PPT)
你还能找到其他的五个连续整数,使前三个数的平
方和等于后两个数的平方和吗?
一 般
化
如果设五个连续整数中的第一个数为x,那么后面四个数依
次可表示为: x+1 , x+2 , x+3 , x+4 .
根据题意,可得方程:
x2 + (x+1)2 + (x+ 2)2 =(x+3)2 + (x+4)2 .
你能化简这个方程吗?
☞ 做一做
挑战自我
解:如果设所求的宽为xm ,那么地毯中央长方形图
案的长(为8-2x) m,宽为(5-2x)m,根据题意,可得方
程:(8 - 2x) (5 - 2x) = 18. 你能化简这个方程吗?
8
x
x 数学
(8-2x)
x
化5
18m2
x
☞ 想一想
观察下面等式:
你能行吗?
102+112+122=132+142
一次项和常数项,a, b分别称为二次项系数和一次项系数.
☞ 探索思考
“行家”看“门 道”
下列方程哪些是一元二次方程? 解: (1)、 (4)
(1)7x2-6x=0
(2)2x2-5xy+6y=0
(3)2x2--31x -1 =0 (4) -y22 =0
(5)x2+2x-3=1+x2
☞ 想一想:
内涵与外延
方程
一般形式
二次项 一次项 常数 系 数系 数 项
3x2=5x-1 3x2-5x+1=0
3
(x+2)(x -
1)=6 1x2 +1x-8=0
1
-7x2 +4=0
4-7x2=0 或-7x2 +0 x+4=0 -7
或7x2 - 4=0
7
-5 1 1 -8 04 0 -4
北师大版九年级数学上册课件:第一章 全章热门考点整合应用 (共57张PPT)
设AF=x,则DF=BF=16-x.
在Rt△DAF中,AD2+AF2=DF2,
即122+x2=(16-x)2.整理得32x=112.
∴x= 7 .
2
∴DF=
25 2
.
∵在Rt△ABD中,DB2=AD2+AB2=122+162=400,
DB=20. DO= 1 DB=10. 2
在Rt△DOF中,
别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D 分别落在矩形ABCD外部的点A1,D1
处,求阴影部分图形的周长.
解: ∵在矩形ABCD中,AB=10,BC=5, ∴CD=AB=10,AD=BC=5. 又∵将矩形ABCD沿EF折叠,使点A,D分别落在 矩形ABCD外部的点A1,D1处,根据轴对称的性 质可得,A1E=AE,A1D1=AD,D1F=DF.
过点E作EN⊥AB于点N,如图,∵EP=
1 2
EF,
∴S菱形AEPM=AM·EN=EP·EN=
1 2
EF·EN=
1 2
S四边形EFBM.
返回
考点 2 三个图形 (矩形) 3.感知:如图①,在矩形ABCD中,点E是边BC的中
点,将△ABE沿AE折叠,使点B落在矩形ABCD内部 的点F处,连接AF并延长, 交CD于点G,连接FC, 易证∠GCF=∠GFC.
(2)当点D为AB的中点时,四边形BECD是什么特殊四
边形?请说明理由.
解: 四边形BECD是菱形. 理由:∵D为AB的中点,∴AD=BD. ∵CE=AD,∴BD=CE. 又∵BD∥CE,∴四边形BECD是平行四边形. ∵∠ACB=90°,D为AB的中点, ∴CD=BD. ∴四边形BECD是菱形.
∵点E是边BC的中点, ∴EC=BE. ∵EF=BE,∴EC=EF. ∴∠ECF=∠EFC. ∴∠ECG-∠ECF=∠EFG-∠EFC. ∴∠GCF=∠GFC.
北师大版九年级数学重难点梳理
了解锐角三角函数在测量、物理等领域的应用, 能够运用三角函数解决实际问题,如计算角度、 距离等。
圆的性质与定理
圆的基本性质
理解圆的基本概念,如圆心、半径、直径等,掌握圆的基本性质,如圆的对称性、圆心角 与弧的关系等。
圆的定理
熟悉与圆相关的定理,如垂径定理、切线长定理、割线定理等,能够运用这些定理解决与 圆相关的问题。
圆的应用
了解圆在几何图形中的应用,如计算面积、周长等,能够运用圆的知识解决实际问题。同 时,也要掌握与圆相关的综合问题解决方法,如圆与三角形、四边形等的综合问题。
04
数论部分重难点
整除与带余除法
整除的概念及性质
01
理解整除的定义,掌握整除的基本性质,如传递性、可加性等
。
带余除法定理及应用
02
掌握带余除法的定义及定理,能够运用带余除法解决相关问题
式分解法
一元二次方程根与系数的关系 (韦达定理)
一元二次方程的应用
二次函数
二次函数的定义及一般形式
二次函数的图象与性质:开 口方向、对称轴、顶点坐标
、最值等
02
01 03
二次函数的平移与对称
二次函数与一元二次方程的 联系
04
05
二次函数的应用
代数式的运算
整式的加减乘除运算
代数式的化简求值:直接代入法、整体代入法、特殊值 法等
经典计数问题
包括抽屉原理、容斥原理、鸽巢原理等,这些问题在解决一些看 似复杂的问题时非常有用。
概率初步知识与事件概率计算
概率的基本概念
古典概型与几何概型
概率是描述随机事件发生可能性大小的数 值,其取值范围在0到1之间。
古典概型是指每个样本点等可能出现且样 本空间有限的情况,几何概型则是指样本 点无限且等可能出现的情况。
专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册
专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。
2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k=,或表示为kyx=,其中k是不等于零的常数.一般地,形如kyx=(k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.注意:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx=()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y是x的反比例函数的是()A.xy=1B.y=C.y=D.y=【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A.y=3x﹣1B.y=﹣C.xy=5D.y=知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y=y1-y2,y1与x成反比例,y=5;当x=1时,y=-1;求当x=-1时,y的值.知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.03.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0题型2.反比例关系的应用k15.(2023春·上海浦东新·九年级校考阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,16.(2022秋·河北保定·九年级校联考阶段练习)写出下列函数关系式,指出其中的正比例函数和反比例函题型4.应用几何图形中的数量关系建立反比例函数关系19.(2022春·九年级课时练习)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【方法四】成果评定法一、单选题A.①②B.9.(2022春·九年级课时练习)下列选项中,能写成反比例函数的是(A.人的体重和身高B.正三角形的边长和面积二、填空题18.(2021春·全国·九年级专题练习)已知反比例函数的解析式为三、解答题19.(2023秋·九年级课时练习)下列例系数.。