2014上海市数学(文)卷文档版(有答案)-2014年普通高等学校招生统一考试
大纲版数学(文)卷文档版(有答案)-2014年普通高等学校招生统一考试
2014年普通高等学校统一考试(大纲)文科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合M={1,2,4,6,8},N={2,3,5,6,7},则MN 中元素的个数为( )A. 2B. 3C. 5D. 7 【答案】B(2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B. 35 C. -35 D. -45【答案】D(3)不等式组(2)01x x x +>⎧⎨<⎩的解集为( )A. {21}x x -<<-B. {10}x x -<<C. {01}x x <<D. {1}x x > 【答案】C(4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 6 C. 13 D. 3【答案】B(5)函数y =ln 1)(x >-1)的反函数是( )A. 3(1)(1)x y e x =->-B. 3(1)(1)x y e x =->-C. 3(1)()x y e x R =-∈D. 3(1)()x y e x R =-∈. 【答案】D(6)已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2 【答案】B(7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A. 60种B. 70种C. 75种D. 150种 【答案】C(8)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 64【答案】C(9)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2,过F 2的直线l 交C 与A 、B 两点,若△AF 1B的周长为C 的方程为( )A. 22132x y +=B. 2213x y += C. 221128x y += D. 221124x y += 【答案】A(10)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )A.814πB. 16πC. 9πD. 274π【答案】A(11)双曲线C:22221(0,0)x y a b a b-=>>的离心率为2C 的焦距等于( )A. 2B. C.4D.【答案】C(12)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 【答案】D二、填空题:本大题共4个小题,每个小题5分。
2014上海市数学(理)卷文档版(有答案)-2014年普通高等学校招生统一考试
2014年上海市高考数学试卷(理科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z +z ⋅=___________.3. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 设⎩⎨⎧+∞∈-∞∈=],,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为_____________.5. 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7. 已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 .8. 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .9. 若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).11. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += .12. 设常数a 使方程s i n 3c o s x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= .13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)817. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 18. ⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则a 的取值范围为().(A)[-1,2] (B)[-1,0] (C)[1,2] (D) [0,2]三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面学科网展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V .xkb120.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。
2014年上海高考数学文理科卷解析版
李老师作品数学(理)2014 第1页(共4页)2014年全国普通高等学校招生统一考试上海 数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是____________.12π 2. 若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭____________.考点:复数代数形式的乘除运算分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可 解答:解:复数z=1+2i,其中i 是虚数单位11(12)(12)612z zi i i z ⎛⎫+⋅=++-= ⎪-⎝⎭3. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为分析215y +=的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p ,再由抛物线的性质求出它的准线方程2 解答215y =,故它的右焦点坐标是(2,0),215y =故P=4∴抛物线的准线方程为x=-2.4. 设2,(,),(),[,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为____________.5. 若实数,x y 满足1xy =,则222x y +的最小值为____________. 分析:由已知可得y =1=得222222x y x x+=+≥。
得x =答案是6. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为__________(结果用反三角函数值表示)3径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.cos θ==得arccos θ=半径的3倍,是解答的关键.7. 已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是____________.∴C 与极轴的交点到极点的距离是13ρ=8. 设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q =________.分析:由已知条件推导出11111a a a a q q=---由此能求出q 的值.411111112(1)lim 111011n x a q aa a a q a a qq qq q q q →∞⎛⎫-=--=-- ⎪--⎝⎭∴+-=--==得或(舍)9. 若32()f x x x-=-,则满足()0f x <的x 的取值范围是_____________.()036621()0,1x x x x f x x -<<==得得;是增函数得x 得解集为10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_______________(结果用最简分数表示). 恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案. 解答:解:在未来的连续10天中随机选择3天共有310120C =种情况,其中选择的3天恰好为连续3天的情况有8种, 115= 11. 已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=__________.5}{}22,,a b a b=2201b a b b a b⎨⎨⎨====⎪⎪⎩⎩⎩或得:或 ∵ab ≠0,∴a ≠0且b ≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a 2,a=b 2,则两式相减得a 2-b 2=b-a , ∵互异的复数a ,b , ∴b-a ≠0,即a+b=-1, 故答案为:-1.的关键,注意要进行分类讨论. 12. 设常数a 使方程sin cos x x a =在闭区间[0,2]π上恰有三个解123,,x x x ,则123xx x ++=____________.分析:先利用两角和公式对函数解析式化简,画出函数2sin()3y x π=+的图象,直线与三角函数图象恰有三个交点,进而求得此时x 1,x 2,x 3最后相加即可.123sin 0,,2323x x x x πππ⎛⎫+==== ⎪⎝⎭12373x x x π++=13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分. 若() 4.2E ξ=,6 则小白得5分的概率至少为____________.此能求出结果.则由题意知小白得4分的概率为1-x ,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分, E (ξ)=4.2, ∴4(1-x )+5x=4.2, 解得x=0.2. 故答案为:0.2.变量的数学期望的合理运用14. 已知曲线:C x =,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P和l上的Q 使得0AP AQ +=,则m 的取值范围为____________. 分析:通过曲线方程判断曲线特征,通过0AP AQ +=说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.解答:解:曲线:C x =[]2,0p x ∈-对于点A (m ,0),存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标x=6,[]62,32xpm +=∈ 故答案为:[2,3]7P 2P 5P 6P 7P 8P 4P 3P 1BA二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设,a b ∈R ,则“4a b +>”是“2a >且2b >”的[答]( )(A) 充分条件. (B) 必要条件.16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为[答]( ) (A) 1. (B) 2. (C) 4.(D) 8.计算可得答案.则A (2,0,0),B (2,0,1),P 1(1,0,1),P 2(0,0,1),P 3(2,1,1),P 4(1,1,1),P 5(0,1,1),P 6(2,2,1),P 7(1,2,1),8 P 8(0,2,1),11(1,2,,8)AB AP i ==故选择A数量积运算是解题的常用手段.17. 已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x和y 的方程组11221,1a xb y a x b y +=⎧⎨+=⎩的解的情况是[答]( )(A) 无论12,,k P P 如何,总是无解. (B) 无论12,,k P P 如何,总有唯一解. (C) 存在,,k P P ,使之恰有两解.(D) 存在,,k P P ,使之有无穷多解.111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上且斜率存在。
2014年高考上海卷数学(文)试卷解析(精编版)(解析版)
2014年上海市高考数学试卷(文科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .4. 若抛物线y 2=2px的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 【答案】2x =-.【解析】椭圆22195x y +=的右焦点为(2,0),因此22p=,4p =,准线方程为2x =-. 【考点】椭圆与抛物线的几何性质.5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24⨯-⨯=.【解析】由题意割去的两个小长方体的体积为2(51)324【考点】三视图,几何体的体积..9. 设,0, ()1,0,x a xf xx xx-+≤⎧⎪=⎨+>⎪⎩若(0)f是()f x的最小值,则a的取值范围是.【答案】(,2]-∞【解析】由题意,当0x>时,()f x的极小值为(1)2f=,当0x≤时,()f x极小值为(0)f a=,(0)f是()f x的最小值,则2a≤.【考点】函数的最值问题..10.设无穷等比数列{na}的公比为q,若)(lim431++=∞→aaan,则q= .12. 方程sin31x x+=在区间[0,2]π上的所有解的和等于.【答案】73π【解析】原方程可变形为2sin()13xπ+=,即1sin()32xπ+=,(1),36kx k k Zπππ+=+-⋅∈,由于[0,2]x π∈,所以12x π=,2116x π=,所以1273x x π+=. 【考点】解三角方程.13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .【答案】[2,3]【解析】由0AP AQ +=知A 是PQ 的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.【考点】向量的坐标运算.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件 【答案】B【解析】若2,2a b >>,则4a b +>,但当4,1a b ==时也有4a b +>,故本题就选B . 【考点】充分学科网必要条件.17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP 与OQ 不平行,因此12210a b a b -≠,所以二元一次方程组112211a x b y a x b y +=⎧⎨+=⎩一定有唯一解.选B.【考点】向量的平行与二元一次方程组的解.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aax f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)? (2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?【答案】(1)28.28CD ≈米;(2)26.93CD ≈米. 【解析】22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线. ⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-+∞;(3)证明见解析. 【解析】(3)由题得,设(,)M x y 22(2)1x y x +-=, 化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅= 当过原点的直线斜率不存在时,其方程为0x =.因为对任意的0y R ∈,点0(0,)y 不是方程222[(2)]1x y x +-⋅=的解,所以直线0x =与曲线E 没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线y 轴是E 分隔线.【考点】新定义,直线与曲线的公共点问题.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比; (3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.。
2014学年高考文科数学年上海卷答案
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广西南宁市2014年初中毕业升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高3m 时水位变化记作3m ,那么水位下降3m 时水位变化记作 ( ) A .3mB .3mC .6mD .6m 2.下列图形中,是轴对称图形的是( )ABCD3.南宁东高铁火车站位于南宁市青秀区凤岭北路,火车站总建筑面积约为267 000平方米,其中数据267 000用科学记数法表示为( )A .426.710 B .42.6710 C .52.6710D .60.267104在实数范围内有意义,则实数x 的取值范围是 ( )A .2x >B .2x ≥C .2x >D .2x ≥- 5.下列运算正确的是( )A .236a a aB .236()x xC .623m m m D .642a a6.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图所示,若油面的宽160cm AB ,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm7.数据1,2,4,0,5,3,5的中位数和众数分别是( )A .3和2B .3和3C .0和5D .3和58.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形9.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打6折,设购买种子数量为x 千克,付款金额y 元,则y 与x 的函数关系的图象大致是( )ABCD10.如图,已知二次函数22y x x ,当1x a <<时,y 随x 的增大而增大,则实数a 的取值范围是( )A .1a >B .11a <≤C .0a >D .12a <<11.如图,在□ABCD 中,点E 是AD 的中点,延长BC 到点F ,使:1:2CF BC ,连接DF ,EC .若5AB ,8AD ,4sin 5B ,则DF 的长等于( )ABCD.12.已知点A 在双曲线2y x上,点B 在直线4y x 上,且A ,B 两点关于y 轴对称,设点A 的坐标为(,)m n ,则m nn m的值是 ( )A .10B .8C .6D .4毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.比较大小:5 3(填“>”“<”或“ ”). 14.如图,已知直线a b ∥,1120,则2 的度数是.15.因式分解:226a a .16.第45届世界体操锦标赛将于2014年10月3日至12日在南宁市隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是 .17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30的方向,则海岛C 到航线AB 的距离CD 等于 海里.18.如图,ABC △是等腰直角三角形,AC BC a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切于点E ,F ,与AB 分别交于点G ,H ,且EH 的延长线和CB 的延长线交于点D ,则CD 的长为 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:2(1)4sin 45|3|.20.(本小题满分6分) 解方程:22124x x x .21.(本小题满分8分)如图,ABC △三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C . (1)请画出ABC △向左平移5个单位长度后得到111A B C △;(2)请画出ABC △关于原点对称的222A B C △;(3)在x 轴上求作一点P ,使PAB △的周长最小,请画出PAB △,并直接写出点P 的坐标.22.(本小题满分8分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:图1图2(1)这次抽样调查中,一共抽查了多少名学生? (2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”的减压方式的人数.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分8分)如图,AB FC ∥,D 是AB 上一点,DF 交AC 于点E ,DE FE ,分别延长FD 和CB 交于点G .(1)求证:ADE CFE △≌△; (2)若2GB ,4BC ,求AB 的长.24.(本小题满分10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1 200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?25.(本小题满分10分)如图1,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,90AEF ,AE EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC .图1图2(1)试判断BE 与FH 的数量关系,并说明理由; (2)求证:90ACF ;(3)连接AF ,过A ,E ,F 三点作圆,如图2.若4EC ,15CEF ,求 AE 的长.26.(本小题满分10分)在平面直角坐标系中,抛物线2(1)y x k x k 与直线1y kx 交于A ,B 两点,点A 在点B 的左侧.图1图2(1)如图1,当1k 时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出ABP △面积的最大值及此时点P 的坐标;(3)如图2,抛物线 21(0)y x k x k k >与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线1y kx 上是否存在唯一一点Q ,使得90OQC ?若存在,请求出此时k的值;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2014年上海市高考数学试卷(文科)学生版
2014 年上海市高考数学试卷(文科)一、填空 (本大 共 14 , 分 56 分)考生 在答 相 的空格内直接填写 果,每个空格填 得4 分,否 一律得零分。
1.(4 分)(2014?上海)函数 y=1 2cos 2( 2x )的最小正周期是.2.( 4 分)(2014?上海)若复数 z=1+2i ,此中 i 是虚数 位, (z+ )? = .3.(4 分)( 上海) 常数a ∈R ,函数 f ( x ) =| x 2a| ,若 f ( 2) 2014? 1|+| x=1, f (1)= .4.(4 分)(2014?上海)若抛物 y 2=2px 的焦点与的右焦点重合, 抛物 的准 方程 .5.(4 分)(2014?上海)某校高一、高二、高三分 有学生1600 名, 1200 名,800 名. 认识 校高中学生的牙 健康状况,按各年 的学生数 行分 抽 ,若高三抽取20 名学生, 高一、高二共需抽取的学生数 ..( 分)( 2014? 上海)若 数 , 足xy=1, x 2+2y 2的最小.6 4 x y7.(4 分)(2014?上海)若 的 面 是底面 的3 倍, 其母 与 所成角的大小( 果用反三角函数 表示)8.(4 分)(2014?上海)在 方体中割去两个小 方体后的几何体的三 如所示, 切割掉的两个小 方体的体 之和等于.9.(4 分)(2014?上海) f (x )=,,若 f (0)是 f (x )的最小, >, a 的取 范.10.(4 分)( 2014?上海) 无 等比数列 { a n } 的公比 q ,若 a 1=(a 3+a 4+⋯a n ),q=.11.( 4 分)( 2014?上海)若 f(x)=,足 f( x)< 0 的 x 的取范是.12.( 4 分)(2014?上海)方程 sinx+cosx=1 在区 [ 0,2π] 上的全部解的和等于.13.( 4 分)( 2014?上海)化安全意,某商在将来的10 天中随机3天行急分散演,的 3 天恰巧 3 天的概率是(果用最分数表示).14.(4 分)(2014?上海)已知曲:,直 l:x=6,若于点 A(m,C x=),存在C 上的点P 和 l上的Q使得 +=, m 的取范.二、(共 4 ,分 20 分)每有且只有一个正确答案,得 5 分,否一律得零分15.( 5 分)(2014?上海) a, b∈ R,“a+b>4”是“a>2 且 b>2”的()A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件16.( 5分)(2014?上海)已知互异的复数a, b足ab≠0,会合 { a, b} ={ a2,b2} ,a+b=()A.2B.1C.0D. 117.( 5 分)(2014?上海)如,四个 1 的小正方形排成一个大正方形,AB 是大正方形的一条, P(i i=1,2,⋯,7)是小正方形的其他点,?(i=1,2,⋯,7)的不一样的个数()A.7B.5C.3D.118.( 5 分)(2014?上海)已知 P1(a1,b1)与 P2(a2, b2)是直 y=kx+1(k常数)上两个不一样的点,则对于x 和 y 的方程组的解的状况是()A.不论 k,P1,P2怎样,老是无解B.不论 k,P1,P2怎样,总有独一解C.存在 k,P1,P2,使之恰有两解D.存在 k,P1,P2,使之有无量多解三、解答题(共 5 小题,满分 74 分)19.( 12 分)( 2014?上海)底面边长为2 的正三棱锥 P﹣ABC,其表面睁开图是三角形 P1P2P3,如图,求△ P1P2 P3的各边长及此三棱锥的体积 V.20.( 14 分)( 2014?上海)设常数 a≥0,函数 f( x)=.(1)若 a=4,求函数 y=f( x)的反函数 y=f﹣1(x);(2)依据 a 的不一样取值,议论函数 y=f(x)的奇偶性,并说明原因.21.( 14 分)( 2014?上海)如图,某企业要在A、 B 两地连线上的定点 C 处建筑广告牌 CD,此中 D 为顶端, AC 长 35 米, CB 长 80 米,设点 A、 B 在同一水平面上,从 A 和 B 看 D 的仰角分别为α和β.(1)设计中 CD是铅垂方向,若要求α≥2β,问 CD的长至多为多少(结果精准到 0.01 米)?(2)施工达成后,CD 与铅垂方向有误差,此刻实测得α=38.12,°β=18.45,°求CD的长(结果精准到 0.01 米).22.( 16 分)(2014?上海)在平面直角坐标系 xOy 中,对于直线 l:ax+by+c=0 和点P1(x1,y1),P2( x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点 P1,P2被直 l 分开,若曲 C 与直 l 没有公共点,且曲 C 上存在点P1、P2被直 l 分开,称直 l 曲 C 的一条分开.(1)求:点 A(1,2),B( 1,0)被直 x+y 1=0 分开;(2)若直 y=kx 是曲 x2 4y2=1 的分开,求数 k 的取范;(3)点 M 到点 Q(0,2)的距离与到 y 的距离之 1,点 M 的迹E,求 E 的方程,并明 y 曲 E 的分开.23.( 18 分)( 2014?上海)已知数列 { a n} 足a n≤a n+1≤3a n,n∈N*,a1=1.( 1)若 a2=2,a3=x, a4=9,求 x 的取范;( 2)若{ a n} 是等比数列,且 a m=,求正整数m的最小,以及m取最小相 { a n} 的公比;( 3)若 a1, a2,⋯a100成等差数列,求数列a1, a2,⋯a100的公差的取范。
2014年上海高考文科数学试题详解
2014年普通高等学校招生统一考试上海市数学试题(文科)详解满分150分;考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数212cos (2)y x =-的最小正周期是 .考点:三角恒等变形、三角函数的周期解答:因为212cos (2)cos4y x x =-=-,所以2T π=.难度:容易题2.若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭. 考点:复数的四则运算,共轭运算解答:此题先根据分配律去括号可简化计算,即11516z z z z z ⎛⎫+⋅=⋅+=+= ⎪⎝⎭难度:容易题3.设常数a R ∈,函数2()1f x x x a =-+-.若(2)1f =,则(1)f = .考点:解方程、求函数值解答:由()(2)1413f a f =⇒=⇒= 难度:容易题4.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 . 考点:圆锥曲线的标准方程解答:知抛物线的焦点坐标为()2,0,则其准线方程为:2x =- 难度:容易题5.某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 .考点:分层抽样解答:高一、高二共有学生2800名,按40:1的比例,需抽取学生数为70人。
难度:容易题6.若实数,x y 满足1xy =,则222x y +的最小值为 .考点:基本不等式解答:222222112=222x y x x x x ⎛⎫⎛⎫++≥⋅ ⎪ ⎪⎝⎭⎝⎭,即22222x y +≥难度:容易题7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成的角的大小为 (结果用反三角函数值表示).考点:圆锥的侧面展开图解答:如图:21=,=,3,arcsin 3rl r l r ππα=∴=侧面积底面积可得 难度:容易题8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 .考点:三视图解答:由三视图知,切割掉的两个小长方体可拼成一个 长宽高分别为4、3、2的长方体,所以其体积为24. 难度:容易题9.设,0,()1,0.x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 . 考点:函数的单调性及最值解答:()()()()min min 0,0;0,12;2x f x f a x f x f a ≤==>==∴≤时时即可 难度:中等题10.设无穷等比数列{}n a 的公比为q ,若134lim()n n a a a a →∞=+++,则q = .考点:无穷等比数列各项的和解答:()22111515101,122a q a q q q orq q q -+--=∴+-=∴==>-舍 难度:中等题 11.若2132()f x x x-=-,则满足()0f x <的x 的取值范围是 .考点:幂函数的单调性 解答:2123321()=,f x x x x x-=--∴其定义域为()0,,+∞ 又23y x =是增函数,12y x -=是减函数,2132()f x x x -∴=-是增函数,又()10f =,()0f x ∴<,即为()()1f x f <,0 1.x ∴<< 难度:中等题12.方程sin 3cos 1x x +=在区间[0,2]π上的所有的解的和等于 .考点:三角方程 解答:()sin 3cos 1,2sin 1,1336k x x x x k ππππ⎛⎫+=∴+=∴+=+- ⎪⎝⎭难度:中等题13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).αlr考点:组合、概率解答:未来的连续10天中随机选择3天的所有情况有310C 种;未来的连续10天中选择的3天恰好为连续3天的所有情况有8种;则所求概率为3108115C = 难度:中等题14.已知曲线24:y x C --=,直线:6l x =.若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0=+AQ AP ,则m 的取值范围为 .考点:圆的方程、能成立问题解答:∵曲线24:y x C --=,即:C ()2240x y x +=≤,∵0=+AQ AP ,∴点(,0)A m 即为P Q、中点;设()6Q y ,,∵(,0)A m ,则()26,P m y --,∵点P 在曲线C 上,∴()()()()2222264264260260m y m y m m ⎧⎧-+-=-=--⎪⎪⇒⎨⎨-≤-≤⎪⎪⎩⎩ 难度:较难题二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( )(A) 充分非必要条件 (B) 必要非充分条件 (C) 充分必要条件(D) 既非充分又非必要条件考点:充分条件、必要条件 解答:必要非充分条件,选B 难度:容易题16.已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=( )(A) 2 (B) 1 (C) 0 (D) 1- 考点:集合的相等、复数范围内1的立方根解答:⑴若22,,a a b b ⎧=⎪⎨=⎪⎩ 则0,1,0,1,a a b b ==⎧⎧⎨⎨==⎩⎩0,1,1,0,a a b b ==⎧⎧⎨⎨==⎩⎩(舍);⑵若22,,a b b a ⎧=⎪⎨=⎪⎩则4a a =, 那么0a =(舍)或1a =(舍)或13,2213,22i a i b ⎧=-+⎪⎪⎨⎪=--⎪⎩或13,2213,22ia ib ⎧=--⎪⎪⎨⎪=-+⎪⎩ 综合上述,1a b +=-.选D难度:中等题17.如图,四个边长为1的小正方体排成一个大正方形,AB 是大正方形的一条边,)7,,2,1( =i P i 是小正方形的其余顶点,则)7,,2,1( =⋅i AP AB i 的不同值的个数为( )(A) 7 (B) 5 (C) 3 (D) 1考点:向量的数量积、向量的投影解答:结合图形,观察i AP 在AB 上的投影即可:136APAP AP 、、在AB 上的投影相同;47AP AP 、在AB 上的投影相同;25AP AP 、在AB 上的投影相同;故)7,,2,1( =⋅i AP AB i 的不同值的个数为3,选C 难度:中等题18.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( ) (A) 无论12,,k P P 如何,总是无解 (B) 无论12,,k P P 如何,总有唯一解 (C) 存在12,,k P P ,使之恰有两解(D) 存在12,,k P P ,使之有无穷多解考点:直线的方程、二元一次方程的行列式解法解答:把11(,)P a b 代入直线1y kx =+得111b ka =+,即111ka b -+=.同理可得221ka b -+=.则,1x k y =-=是方程组11221,1.a xb y a x b y +=⎧⎨+=⎩的解.若,1x k y =-=不是方程组11221,1.a x b y a x b y +=⎧⎨+=⎩的唯一解,则方程组11221,1.a x b y a x b y +=⎧⎨+=⎩ 有无数解则1212,a a b b ==,与已知矛盾综上,方程组11221,1.a xb y a x b y +=⎧⎨+=⎩总有唯一解,选B.难度:较难题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求123PP P ∆的各边长及此三棱锥的体积V .考点:棱锥的体积、空间想象能力解答:依题意:123PP P ∆是边长为4的正三角形,折叠后是棱长为2的正四面体P ABC -(如图).设顶点P 在底面ABC 内的投影为O ,连接BO ,则O为ABC ∆的重心,PO ⊥底面ABC .323,33BO AB =⋅= 难度:容易题20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.OCBAP设常数0≥a ,函数aax f x x -+=22)(.(1)若4a =,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由. 考点:反函数、函数的奇偶性解答:(1)因为2424x x y +=-,所以()4121x y y +=-,得1y <-或1y >,且212log 1y x y +=+-.因此,所求反函数为121()2log ,1x fx x -+=+-()(),11,x ∈-∞-+∞.(2)①当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;②当1a =时,21()21x x f x +=-,定义域为()(),00,-∞+∞,2121()()2121x xx x f x f x --++-==-=---,故函数()y f x =为奇函数;③当0a >且1a ≠时,定义域为()()22,log log ,a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数.难度:容易题21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米.设点AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.1218.45αβ==,,求CD 的长(结果精确到0.01米).考点:解斜三角形解答:(1)设CD h =,则tan ,tan 3580h hαβ==.因2αβ≥,所以22tan tan tan 21tan βαββ≥=-,即2280351()80h h h ⋅≥-,4020228.282h ≤=≈(米) (2)在ABD ∆中,由已知,56.57αβ+=,115AB =,由正弦定理得()sin sin BD ABααβ=+ ,解得85.064BD ≈(米). 在BCD ∆中,由余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅, 解得26.93CD ≈(米).所以,CD 的长约为26.93米.难度:中等题22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线:0l ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++.若0η<,则称点12,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(1)求证;点(1,2),(1,0)A B -被直线10x y +-=分隔;(2)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求E 的方程,并证明y 轴为曲线E 的分隔线.考点:定义法求曲线方程、数形结合思想 解答:(1)证明:因为40η=-<,所以点,A B 被直线10x y +-=分隔.(2)解:直线y kx =与曲线2241x y -=没有公共点的充要条件是方程组2241x y y kx⎧-=⎨=⎩无解,即12k ≥.当12k ≥时,对于直线y kx =,曲线2241x y -=上的点()1,0-和()1,0满足20k η=-<,即点()1,0-和()1,0被y kx =分隔.故实数k 的取值范围是11(,][,)22-∞-+∞.(3)证明:设M 的坐标为(,)x y ,则曲线E 的方程为22(2)1x y x +-⋅=.对任意的0y ,()00,y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点()1,2-和()1,2对于y 轴满足0η<,即点()1,2-和()1,2被y 轴分隔.所以y 轴为曲线E 的分隔线. 难度:中等题23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1133n n n a a a +≤≤,*n N ∈,11a =.(1)若2342,,9a a x a ===,求x 的取值范围; (2)设{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比; (3)若10021,,,a a a 成等差数列,求数列10021,,,a a a 的公差的取值范围. 考点:等差数列、等比数列与不等式综合 解答:(1)由条件得263x ≤≤且933xx ≤≤,解得36x ≤≤.所以x 的取值范围是[3,6]x ∈. (2)设{}n a 的公比为q .由133n n a a ≤,且110n n a a q -=≠,得0n a >.因为1133n n n a a a +≤≤,所以133q ≤≤.从而111111()10003m m m a q q ---==≥,131000m -≥,解得8m ≥.8m =时,711[,3]10003q =∈.所以,m 的最小值为8,8m =时,{}n a 的公比为741010. (3)设数列10021,,,a a a 的公差为d .由133n n n a a d a ≤+≤,得223n n a d a -≤≤,99,,2,1 =n . ①当0d >时,129899a a a a >>>> ,所以102d a <≤,即02d <≤. ②当0d =时,9998211a a a a =====,符合条件.③ 当0d <时,129899a a a a <<<< ,所以9999223a d a -≤≤,2(198)2(198)3d d d -+≤≤+,又0d <,所以20199d -≤<. 综上,10021,,,a a a 的公差的取值范围为2[,2]199-. 难度:较难题。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版
2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。
2014年全国高考文科数学试题及答案-上海卷
2014年上海市高考数学试卷(文科)考生注意:1、本试卷共4页,23道试题,满分150分.考试时间120分钟.2、本试卷分设试卷和答题纸。
试卷包括试题与答题要求。
作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分。
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数12z i =+,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线22y px =的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为______. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6. 若实数,x y 满足1xy =,则2x +22y 的最小值为______________. 7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .10.设无穷等比数列{n a }的公比为q ,若134lim(...)n n a a a a →∞=+++,则q= .11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1x x +=在区间[0,2]π上的所有解的和等于 .13. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线:6l x =.若对于点(,0)A m 存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b +=( )(A )2 (B )1 (C )0 (D )1- 17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =L 是小正方形的其余顶点,则(1,2,,7)i AB AP i ⋅=u u u r u u u r L 的不同值的个数为( ) (A )7 (B )5 (C )3 (D )1 18. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A) 无论12,,k P P 如何,总是无解 (B) 无论12,,k P P 如何,总有唯一解 (C) 存在12,,k P P ,使之恰有两解 (D) 存在12,,k P P ,使之有无穷多解三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -, 其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分。
全国高考上海市数学文试卷及答案精校版
2014年上海市高考数学试卷(文科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1x x +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( ) (A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 三.解答题(本大题共5题,满分74分) 19、(本题满分12分)底面边长为2的正三棱锥P ABC -, zxxk 其表面展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V.20.(本题满分14分)本题有2个小题, 第一小题满分6分,第二小题满分1分。
2014年普通高等学校招生全国统一考试(上海卷)
…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………stresses of living close to others. Grooming helped to __62__ the pressure and calm everybody down.But as the groups got bigger and bigger, the amount of time spent in grooming activities also had to be __63__ to maintain its effectiveness. Clearly, a more __64__ kind of grooming was needed, and thus language evolved as a kind of vocal (有声的)grooming which allowed humans to develop relationship with ever-larger groups by exchanging information over a wider network of individuals than would be possible by one-to-one __65__ contact.51. A. claim B. description C. gossip D. language 52. A. occasionally B. habitually C. independently D. originally 53. A. social B. political C. historical D. cultural 54. A. admirersB. mastersC. usersD. wasters55. A. vital B. sensitive C. ideal D. difficult 56. A. confirms B. rejects C. outlines D. broadens 57. A. for instanceB. in additionC. on the contraryD. as a result58. A. motivation B. appearance C. emotionD. behaviour59. A. attack B. contact C. inspection D. assistance 60. A. recalls B. denies C. concludes D. confesses61. A. prospect B. responsibility C. leadership D. protection62. A. measure B. show C. maintain D. ease 63. A. saved B. extended C. consumed D. gained 64. A. common B. efficient C. scientific D. Thoughtful 65. A. indirect B. daily C. physical D. secretSection BDirections:Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)Most people agree that honesty is a good thing. But does Mother Nature agree? Animals can't talk, but can they lie in other ways? Can they lie with their bodies and behavior? Animal experts may not call it lying, but they do agree that many animals, from birds to chimpanzees,behave dishonestly to fool other animals. Why? Dishonesty often helps them survive.Many kinds of birds are very successful at fooling other animals. For example, a bird called the plover sometimes pretends to be hurt in order to protect its young. When a predator (猎食动物)gets close to its nest, the plover leads the predator away from the nest. How? It pretends to have a broken wing. The predator follows the "hurt" adult, leaving the baby birds safe in the nest.Another kind of bird, the scrub jay, buries its food so it always has something to eat. Scrub jays are also thieves. They watch where others bury their food and steal it. But clever scrub jays seem to know when a thief is watching them. So they go back later, unbury the food, and bury it again somewhere else.Birds called cuckoos have found a way to have babies without doing much work. How? They don't make nests. Instead, they get into other birds' nests secretly. Then they lay their eggs and fly away. When the baby birds come out, their adoptive parents feed them.Chimpanzees, or chimps, can also be sneaky. After a fight, the losing chimp will give its hand to the other. When the winning chimp puts out its hand, too, the chimps are friendly again. But an animal expert once saw a losing chimp take the winner's hand and start fighting again.Chimps are sneaky in other ways, too. When chimps find food that they love, such as bananas, it is natural for them to cry out. Then other chimps come running. But some clever chimps learn to cry…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………very softly when they find food. That way, other chimps don't hear them, and they don't need to share their food.As children, many of us learn the saying "You can't fool Mother Nature." But maybe you can't trust her, either.66. A plover protects its young from a predator by______.A. getting closer to its youngB. driving away the adult predatorC. leaving its young in another nestD. pretending to be injured67. By "Chimpanzees, or chimps, can also be sneaky " (paragraph 5), the author means______.A. chimps are ready to attack othersB. chimps are sometimes dishonestC. chimps are jealous of the winnersD. chimps can be selfish too 68. Which of the following is true according to the passage?A. Some chimps lower their cry to keep food away from others.B. The losing chimp won the fight by taking the winner's hand.C. Cuckoos fool their adoptive parents by making no nests.D. Some clever scrub jays often steal their food back. 69. Which of the following might be the best title of the passage?A. Do animals lie?B. Does Mother Nature fool animals?C. How do animals learn to lie?D. How does honesty help animals survive?(B)Let's say you want to hit the gym more regularly this year. How do you make that happen? Consider putting the habit loop to use.Here's how it works:A habit is a 3-step process. First, there's a cue, something that tells your brain to operate automatically. Then there's a routine. And finally, a reward, which helps your brain learn to desire the behavior. It's what you can use to create-or break-habits of your own. Here's how to apply it: Choose a cue, like leaving your running shoes by the door, then pick. a reward-say, a piece of chocolate when you get home from the gym. That way, the cue and the reward become interconnected. Finally, when you see the shoes, your brain will start longing for the reward, which will make it easier to work out day after day. The best part? In a couple of weeks, you won't need the chocolate at all. Your brain will come to see the workout itself as the reward. Which isthe whole point, right?第11页,总11页。
2014年上海高考数学文理科卷解析版
数学(理)2014 第1页(共4页)2014年全国普通高等学校招生统一考试上海 数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是____________.2142T ππ==2. 若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭____________. 11(12)(12)612z z i i i z ⎛⎫+⋅=++-= ⎪-⎝⎭3. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为____________.准线方程为x=-2.4. 设2,(,),(),[,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩ 若(2)4f =,则a 的取值范围为____________.答案为:(-∞,2].5. 若实数,x y 满足1xy =,则222x y +的最小值为____________.答案是6. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为__________(结果用反三角函数值表示)得1arccos3θ= 7. 已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离2是____________.是13ρ=8. 设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q =________.11111112(1)lim 11101122n x a q a a a a q a a qq qq q q q →∞⎛⎫-=--=-- ⎪--⎝⎭∴+-=--==得或(舍) 9. 若2132()f x x x-=-,则满足()0f x <的x 的取值范围是_____________.()2551036621()0,1x x x x f x x -<<==得得;是增函数得x 得解集为10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_______________(结果用最简分数表示).115= 11. 已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=__________. 答案为:-1.12. 设常数a使方程sin x x a +=在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++=____________.12373x x x π++=13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分. 若() 4.2E ξ=,则小白得5分的概率至少为____________. 答案为:0.2.3P 2P 5P 6P 7P 8P 4P 3P 1BA14. 已知曲线:4C x y =--,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P 和l上的Q 使得0APAQ +=,则m 的取值范围为____________. 分析:通过曲线方程判断曲线特征,通过0AP AQ +=说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.解答:解:曲线:C x =[]2,0p x ∈-对于点A (m ,0),存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标x=6,[]62,32xpm +=∈二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设,a b ∈R ,则“4a b +>”是“2a >且2b >”的[答]( )(A) 充分条件. (B) 必要条件.16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB4是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为[答]( )(A) 1. (B) 2. (C) 4.(D) 8.考点:平面向量数量积的运算.分析:建立空适当的间直角坐标系,利用坐标计算可得答案.解答:解:如图建立空间直角坐标系, 则A (2,0,0),B (2,0,1),P 1(1,0,1),P 2(0,0,1),P 3(2,1,1),P 4(1,1,1),P 5(0,1,1),P 6(2,2,1),P 7(1,2,1), P 8(0,2,1),11(1,2,,8)AB AP i == 故选择A点评:本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17. 已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x和y 的方程组11221,1a x b y a x b y +=⎧⎨+=⎩的解的情况是[答]( )(A) 无论12,,k P P 如何,总是无解. (B) 无论12,,k P P 如何,总有唯一解. (C) 存在12,,k P P ,使之恰有两解.(D) 存在12,,k P P ,使之有无穷多解.考点:一次函数的性质与图象.分析:判断直线的斜率存在,通过点在直线上,推出a 1,b 1,P 2,a 2,b 2的关系,然后求解方程组的解即可. 解答:因为111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上且斜率存在。
2014年上海高考文科数学试卷(含答案)
2014年全国普通高等学校招生统一考试上海数学试卷(文史类)考生注意:1、本试卷共4页,23道试题,满分150分.考试时间120分钟.2、本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题) 在答题纸上,在试卷上作答一律不得分.3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码 贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、函数212cos (2)y x =-的最小正周期是 .2、若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭. 3、设常数a R ∈,函数2()1f x x x a =-+-.若(2)1f =,则(1)f = .4、若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 5、某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 .6、若实数,x y 满足1xy =,则222x y +的最小值为 .7、若圆锥的侧面积是底面积的3倍,则其母线与轴所成的角的大小为 (结果用反三角函数值表示).8、在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 . 9、设,0,()1,0.x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 . 10、设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q = .11、若2132()f x x x -=-,则满足()0f x <的x 的取值范围是 .12、方程sin 1x x =在区间[0,2]π上的所有的解的和等于 .13、为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).14、已知曲线:C x =:6l x =.若对于点(,0)A m ,存在C 上的点P 和l 上的Q使得0AP AQ +=,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( )(A) 充分非必要条件 (B) 必要非充分条件 (C) 充分必要条件 (D) 既非充分又非必要条件16、已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=( ) (A) 2 (B) 1 (C) 0 (D) 1-17、如图,四个边长为1的小正方体排成一个大正方形,AB 是大正方形的一条边,(1,2,,7)i P i =是小正方形的其余顶点, 则(1, 2, , 7)i AB AP i ⋅=的不同值的个数为( )(A) 7 (B) 5 (C) 3 (D) 118、已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A) 无论12,,k P P 如何,总是无解(B) 无论12,,k P P 如何,总有唯一解 (C) 存在12,,k P P ,使之恰有两解(D) 存在12,,k P P ,使之有无穷多解三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求123PP P ∆的各边长及此三棱锥的体积V .20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 设常数0≥a ,函数aa x f x x -+=22)(. (1)若4a =,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米, CB 长80米.设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.1218.45αβ==,,求CD 的长(结果精确到0.01米).22、(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线:0l ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++.若0η<,则称点12,P P 被直线l 分隔.若曲线C 与直线l 没有公共点, 且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(1)求证;点(1,2),(1,0)A B -被直线10x y +-=分隔;(2)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求E 的方程, 并证明y 轴为曲线E 的分隔线.23、(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1133n n n a a a +≤≤,*n N ∈,11a =.(1)若1342,,9a a x a ===,求x 的取值范围;(2)设{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.2014年全国普通高等学校招生统一考试上海数学试卷(文史类)参考答案一、填空题(第1题至第14题)1.2π 2.6 3.3 4.2x =- 5.70 6. 7.1arcsin 38.24 9.(],2-∞ 10 11.(0,1) 12.73π 13.115 14.[2,3]二、选择题(第15题至第18题)15.B 16.D 17.C 18.B三、解答题(第19题至第23题)19、[解]:在123PP P ∆中,13PA P A =,23PC PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123PP P ∆是等边三角形,各边长均为4.设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以AQ =,PQ ==.从而,13ABC V S PQ ∆=⋅= 20、[解]:(1)因为2424x x y +=-,所以()4121x y y +=-,得1y <-或1y >,且()241log 1y x y +=-. 因此,所求反函数为()1241()log 1x f x x -+=-,()(),11,x ∈-∞-+∞.(2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;当1a =时,21()21x x f x +=-,定义域为()(),00,-∞+∞,2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =为奇函数; 当0a >且1a ≠时,定义域为()()22,log log ,a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数.21、[解]:(1)记CD h =.根据已知得tan tan 20αβ≥>,tan 35h α=,tan 80h β=,所以2280035180hh h ⨯≥>⎛⎫- ⎪⎝⎭,解得28.28h ≤≈.因此,CD 的长至多约为28.28米. (2)在ABD ∆中,由已知,56.57αβ+=,115AB =,由正弦定理得()sin sin BD AB ααβ=+ ,解得85.064BD ≈. 在BCD ∆中,有余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅, 解得26.93CD ≈. 所以,CD 的长约为26.93米.22、[证]:(1)因为40η=-<,所以点,A B 被直线10x y +-=分隔.[解]:(2)直线y kx =与曲线2241x y -=有公共点的充要条件是方程组2241x y y kx ⎧-=⎨=⎩有解, 即12k <.因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即12k ≥. 当12k <时,对于直线y kx =,曲线2241x y -=上的点()1,0-和()1,0满足20k η=-<, 即点()1,0-和()1,0被y kx =分隔.故实数k 的取值范围是11(,][,)22-∞-+∞. [证]:(3)设M的坐标为(,)x y ,则曲线E 1x =,即22[(2)]1x y x +-⋅=.对任意的0y ,()00,y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点()1,2-和()1,2对于y 轴满足0η<,即点()1,2-和()1,2被y 轴分隔. 所以y 轴为曲线E 的分隔线. 23、[解]:(1)由条件得263x ≤≤且933x x ≤≤,解得36x ≤≤.所以x 的取值范围是[3,6]x ∈. (2)设{}n a 的公比为q .由133n n a a ≤,且110n n a a q -=≠,得0n a >. 因为1133n n n a a a +≤≤,所以133q ≤≤.从而111111()10003m m m a q q ---==≥,131000m -≥,解得8m≥. 8m =时,1[,3]3q =.所以,m 的最小值为8,8m =时,{}n a (3)设数列12100,,a a a 的公差为d .由133n n n a a d a ≤+≤,223n n a d a -≤≤,1,2,,99n =.① 当0d >时,999821a a a a >>>>,所以102d a <≤,即02d <≤. ② 当0d =时,999821a a a a ====,符合条件. ③ 当0d <时,999821a a a a <<<<,所以9999223a d a -≤≤,2(198)2(198)3d d d -+≤≤+, 又0d <,所以20199d -≤<. 综上,12100,,a a a 的公差的取值范围为2[,2]199-.。
2014年高考文科数学上海卷
数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前2014年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是 .2.若复数12i z =+,其中i 是虚数单位,则1()z z z+=g .3.设常数a ∈R ,函数2()|1|||f x x x a =-+-.若(2)1f =,则(1)f = .4.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 .5.某校高一、高二、高三分别有学生1 600名、1 200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 .6.若实数x ,y 满足1xy =,则222x y +的最小值为 .7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为 (结果用反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 .9.设,0,()1,0,x a x f x x x x -+⎧⎪=⎨+⎪⎩≤>若(0)f 是()f x 的最小值,则a 的取值范围为 . 10.设无穷等比数列{}n a 的公比为q .若134lim()n n a a a a →∞=+++…,则q = .11.若2132()f x x x -=-,则满足()0f x <的x 的取值范围是 . 12.方程sin 3cos 1x x +=在区间[0,2π]上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).14.已知曲线C :24x y =--,直线l :6x =.若对于点(,0)A m ,存在C 上的点P 和l 上的点Q 使得AP AQ +=u u u r u u u r0,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设a ,b ∈R ,则“4a b +>”是“22a b >>且”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件16.已知互异的复数a ,b 满足0ab ≠,集合22{,}{,}a b a b =,则a b +=( )A .2B .1C .0D .1-17.如图,四个边长为1的小正方形排成一个大正方形,AB 是大正方形的一条边,(1,2,,7)i P i =L 是小正方形的其余顶点,则(1,2,,7)i AB AP i =u u u r u u u rg L 的不同值的个数为 ( ) A .7 B .5 C .3D .118.已知111(,)P a b 与222(,)P a b 是直线1y k x =+(k 为常数)上两个不同的点,则关于x y 和的方程组11221,1,a x b y a x b y +=⎧⎨+=⎩的解的情况是 ( )A .无论k ,1P ,2P 如何,总是无解B .无论k ,1P ,2P 如何,总有唯一解C .存在k ,1P ,2P ,使之恰有两解D .存在k ,1P ,2P ,使之有无穷多解姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)三、解答题(本大题共有5小题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图.求123PP P △的各边长及此三棱锥的体积V .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数2()2x x af x a +=-.(Ⅰ)若4a =,求函数()y f x =的反函数1()y f x -=;(Ⅱ)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35 米,CB 长80 米.设点A 、B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(Ⅰ)设计中CD 是铅垂方向.若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01 米)?(Ⅱ)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=o ,18.45β=o ,求CD 的长(结果精确到0.01 米).22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111(,)P x y ,222(,)P x y ,记1122()()ax by c ax by c η=++++.若0η<,则称点1P ,2P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点1P ,2P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(Ⅰ)求证:点(1,2)A ,(1,0)B -被直线10x y +-=分隔;(Ⅱ)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(Ⅲ)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E .求E 的方程,并证明y 轴为曲线E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =. (Ⅰ)若22a =,3a x =,49a =,求x 的取值范围; (Ⅱ)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(Ⅲ)若1a ,2a ,⋅⋅⋅,100a 成等差数列,求数列1a ,2a ,⋅⋅⋅,100a 的公差的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年上海市高考数学试卷(文科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z +z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1x x +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( )(A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -, xkb1其表面展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V.20.(本题满分14分)本题有2个小题,学科网第一小题满分6分,第二小题满分1分。
设常数0≥a ,函数a ax f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少学科网(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得xkb1,, 45.1812.38==βα求CD 的长(结果精确到0.01米)?22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔。
若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔;⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分隔线.23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=.(1)若2342,,9a a x a ===,求x 的取值范围;xkb1(2)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,学科网以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.上海数学(文)参考答案一、1. 2π2. 63. 34. 2x =-5.706. 227. 1arccos 3 8.249. (,2]-∞ 10. 512- 11. (0,1) 12. 73π 13. 115 14. [2,3]二、15. B 16.D 17.C 18.B19.解:∵由题得,三棱锥P ABC -是正三棱锥∴侧棱与底边所成角相同且底面ABC ∆是边长为2的正三角形∴由题得,3ABC BCA CAB π∠=∠=∠=,112233PBA PAB P BC PCB P AC PCA ∠=∠=∠=∠=∠=∠又∵,,A B C 三点恰好在123,,P P P 构成的123PP P ∆的三条边上 ∴1122333PBA P AB P BC P CB P AC PCA π∠=∠=∠=∠=∠=∠=∴1122332PA PB P B PC PC P A ======∴1213234PP PP P P ===,三棱锥P ABC -是边长为2的正四面体∴如右图所示作图,设顶点P 在底面ABC 内的投影为O ,连接BO ,并延长交AC 于D∴D 为AC 中点,O 为ABC ∆的重心,PO ⊥底面ABC∴22333BO BD ==,263PO =,11326222232233V =⋅⋅⋅⋅⋅=20.解:(1)由题得,248()1(,1)(1,)2424x x x f x +==+∈-∞-+∞--∴121()2log 1x f x x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞(2)∵2()2x x af x a +=-且0a ≥∴①当0a =时,()1,f x x R =∈,∴对任意的x R ∈都有()()f x f x =-,∴()y f x =为偶函数②当1a =时,21(),021x x f x x +=≠-,2112()2112x xx x f x --++-==--,∴对任意的0x ≠且x R ∈都有()()f x f x =--,∴()y f x =为奇函数③当0a ≠且1a ≠时,定义域为{2log ,}x x a x R ≠∈,∴定义域不关于原定对称,∴()y f x =为非奇非偶函数21.解:(1)由题得,∵2αβ≥,且022πβα<≤<,tan tan 2αβ∴≥即2403516400CDCDCD ≥-,解得,202CD ≤,∴28.28CD ≈米(2)由题得,18038.1218.45123.43ADC ∠=--=, ∵3580sin123.43sin18.45AD+=,∴43.61AD ≈米 ∵22235235cos38.12CD AD AD =+-⋅⋅⋅,∴26.93CD ≈米22.证明:(1)由题得,2(2)0η=⋅-<,∴(1,2),(1,0)A B -被直线10x y +-=分隔。
解:(2)由题得,直线y kx =与曲线2241x y -=无交点即222241(14)10x y k x ykx ⎧-=⇒--=⎨=⎩无解∴2140k -=或221404(14)0k k ⎧-≠⎨∆=-<⎩,∴11(,][,)22k ∈-∞-+∞证明:(理科)(3)由题得,设(,)M x y ,∴22(2)1x y x +-⋅=,化简得,点M 的轨迹方程为2221:(2),0E x y x x +-=≠。
①当过原点的直线斜率存在时,设方程为y kx =。
联立方程,2222221(2)1(1)44x y k x kx x xy kx ⎧+-=⎪⇒+-+=⎨⎪=⎩。
令22()(1)44F x k x kx =+-+,21()G x x =,显然()y F x =是开口朝上的二次函数∴由二次函数与幂函数的图像可得,()()F x G x =必定有解,不符合题意,舍去 ②当过原点的直线斜率不存在时,其方程为0x =。
显然0x =与曲线2221:(2),0E x y x x +-=≠没有交点,在曲线E 上找两点(1,2),(1,2)-。
∴110η=-⋅<,符合题意综上所述,仅存在一条直线0x =是E 的分割线。
证明:(文科)(3)由题得,设(,)M x y ,∴22(2)1x y x +-⋅=,化简得,点M 的轨迹方程为2221:(2),0E x y x x +-=≠。
显然0x =与曲线2221:(2),0E x y x x +-=≠没有交点,在曲线E 上找两点(1,2),(1,2)-。
∴110η=-⋅<,符合题意。
∴0x =是E 的分割线。
23.解:(1)由题得,263[3,6]933x x xx⎧≤≤⎪⎪⇒∈⎨⎪≤≤⎪⎩(文科)(2)∵1133n n n a a a +≤≤,且数列{}n a 是等比数列,11a =, ∴11133n n n q q q --≤≤,∴111()03(3)0n n q q q q --⎧-≥⎪⎨⎪-≤⎩,∴1[,3]3q ∈。