Topological cluster state quantum computing
第一届凝聚态物理会议
第一届凝聚态物理会议The 1st Conference on Condensed Matter Physics2015年7月15日- 17日清华大学目录01 会议概况02 组织委员会04 会议日程•总日程•大会报告•分会场报告•海报会场会议概况为了配合凝聚态物理在中国的迅速发展和国际地位的全面提升,进一步加强国内科研工作者在不同前沿领域的交流,推进国内和国际在凝聚态物理领域的相互交流和合作,为青年学生和研究人员学习和了解国际前沿进展创造更广泛的交流平台,拟定在过去已经成功举办了13届的“凝聚态理论与材料计算国际会议”系列会议的基础上,拓宽会议的主题,特别是加强凝聚态物理实验和理论的交流与融合,于2015年7月15日-17日在北京举办“第一届凝聚态物理会议”年会。
2015年第一届凝聚态物理会议是由清华大学物理系、中国科学院物理研究所、北京大学物理学院、量子物质科学协同创新中心联合主办。
这是国内首次在凝聚态物理方面举办的大型学术交流会。
本次会议是凝聚态理论与材料计算国际会议的延续和拓展,旨在增进国内外物理学者的学术交流,分享前沿科研成果,提高国内凝聚态物理的科研水平,扩大学术声誉。
第一届凝聚态物理会议将于2015年7月15日-17日在清华大学举行。
会议主题包括:拓扑量子态和多铁性、超导和多体物理、能源和低维物理、Quantum many-body theory and statistical physics、计算凝聚态物理、量子信息及其它与凝聚态物理的交叉领域等六个主题。
本次会议共设30个专题分会,将以大会特邀报告、分会特邀报告、口头报告和张贴海报等形式进行交流探讨。
组织委员会主办单位•清华大学物理系•中国科学院物理研究所•北京大学物理学院•量子物质科学协同创新中心顾问委员会:(按姓氏拼音序)崔田、杜瑞瑞、冯世平、龚新高、解士杰、李东海、李建新、林海青、李树深、陆卫、卢仲毅、吕力、沈保根、沈健、沈志勋、苏刚、王恩哥、王孝群、王玉鹏、向涛、薛其坤、张富春、张振宇组织委员会•清华大学物理系:陈曦、薛其坤•中科院物理研究所:胡江平、戴希、方忠、丁洪、周兴江、向涛•北京大学物理学院:谢心澄分会场负责人•拓扑量子态和多铁性:胡江平、陈曦、吕力、戴希、翁红明、寇谡鹏、吴从军•超导和多体物理:孙力玲、杨义峰、刘俊明、雒建林、袁辉球、李永庆、万歆、周毅•能源和低维物理:张振宇、李泓、陈弘、赵怀周、张远波•Quantum many-body theory and statistical physics:孟子扬、张广铭、郭文安、姚宏•计算凝聚态物理:姚裕贵、段文晖、龚新高、孟胜•量子信息及其它与凝聚态物理的交叉领域:范珩、田琳、翟荟、崔晓玲会议协调人•清华大学物理系:任俊(总协调人)•中国科学院物理研究所:齐建为、刘青梅•会务组:黄文艳、唐林、井小苏、周丹、骆洁、甘翠云、付德永、杨红、肖琳、胡文婷赞助单位•清华大学物理系•量子物质科学协同创新中心•中国科学院物理研究所•北京大学物理学院2015年第一届凝聚态物理会议分会场主题:A.拓扑量子态和多铁性A1拓扑半金属IA2拓扑半金属IIA3拓扑超导体和Majorana 费米子A4多铁性材料模拟与计算A5多铁性体系B.超导和多体物理B1铬基和锰基超导体B2极端条件下的超导行为B3铁基超导B4凝聚物质的激发态和动力学理论和实验B5重费米子物理C.能源和低维物理C1锂电池中的物理C2二维材料C3二维电子系统中的物理C4硅烯的最新进展C5热电中的新物理D.Quantum many-body theory and statistical physicsD1 Recent developments in strongly correlated quantum systems ID2 Recent developments in strongly correlated quantum systems IID3 Recent developments in strongly correlated quantum systems IIID4 Recent developments in strongly correlated quantum systems IVD5 Recent developments in strongly correlated quantum systems V注意事项:为了尊重外籍邀请报告人,如无特殊情况,D分会场报告请用英文。
IT行业专用英语单词荟萃
IT行业专用英语单词荟萃IT行业专用英语单词荟萃machine 机械;机器machine address 机器地址machine code 机器代码machine control system (MCS) 机械控制系统machine dependent 从属于机器的machine efficiency 机器效率machine language 机器语言machine, arbitration state 判优状态机器machine, asynchronous state 异步状态机器machine, auto answering 自动电话接听机machine, component placement 元件置放机machine, in-line placement 顺序式元件置放机machine, perfect 理想机器machine, pick-and-place 取放机器machine, state 状态机器machine, wave soldering 波峰式焊锡机machine, write-state (WSM) 写入状态机器machine-dependent 从属于机器machine-independent 独立于机器macro 宏指令macro cell 宏小区macro diversity 宏分集macro function 宏功能macro library 宏程序库macro, key 关键宏macro-assembler 宏汇编程序macro-blocks 宏模块macrophysics 宏观物理学magnesium titanate 钛酸镁magnet 磁石;磁铁钛酸体magnet, artificial 人造磁铁magnet, bar 条形磁铁magnet, molecular 分子磁magnet, permanent 永久磁体magnet, plastic 塑料磁体magnet, rubber 橡胶磁体magnet, temporary 暂时磁体magnetic axis 磁轴magnetic bubble memory 磁泡存储器magnetic circuit 磁路magnetic core memory 磁心存储器magnetic declination 磁偏角magnetic dip 磁力线magnetic domain 磁畴magnetic equator 磁赤道magnetic field 磁场magnetic field intensity 磁场强度magnetic flux 磁通量magnetic flux density 磁通量密度magnetic force 磁力magnetic hysteresis 磁滞现象magnetic induction 磁感应magnetic materials 磁性物质magnetic meridian 磁子午线magnetic moment 磁矩magnetic monopole 磁单极magnetic resistance 磁阻magnetic saturation 磁饱和magnetic shielding 磁屏magnetic susceptibility 磁化率magnetic tunnel junction (MTJ) 磁性隧道连接magnetic variation 磁变magnetic wave 磁波magnetic-flux density 磁通量密度magnetic-north pole 磁北极magnetic-south pole 磁南极magnetically soft material 软磁材料magnetism 磁性;磁学magnetism, residual 剩磁magnetism, terrestrial 地磁magnetite 磁铁矿magnetization 磁化magneto 磁力magneto signaling 磁电机信令magneto-optical disk 磁光盘magneto-optical drive 磁光驱动magnetometer 磁强针magnetometer, deflection 偏转磁强针magnetomotive force 磁动势magnetoresistive 磁阻的magnetron 磁控管magnetron gauge 磁控管计量器magnification power 放大率magnification, angular 角放大率magnifying power 放大率magnitude 大小;强度;等级mail server 邮件服务器mail store 邮件存储;邮箱mail, electronic 电子邮递mail, voice 声音邮递mailbox 邮箱mailbox service 邮箱服务main anode 主阳极main board 主机板main cross-connect 主群组交叉连接main distribution frame (MDF) 主配线架main exciter 主激发器main terminal 主终端mainframe 大型电脑mainframe computer 大型电脑mains 总线;电源maintainability 维修能力maintenance 维修;检修maintenance, preventative (PM) 预防性检修major diatonic scale 自然音阶major failure 主要故障majority carrier 多数载流子make-break operation 通-断操作malfunction 故障;失灵malicious call identification (MCI) 恶意呼叫识别man-machine interface 人机接口man-machine language (MML) 人机语言managed network services (MNS) 受控网络服务managed objects for IP mobility support (MOIPS) 为IP移动支持的管理对象management information base (MIB) 管理信息基本原则management information format (MIF) 管理信息格式management information system (MIS) 管理信息系统management, configuration 配置管理management, distributed data (DDM) 分布式数据管理management, dynamic storage 动态存储器管理management, file transfer access and (FTAM) 文件传送存取及管理management, integrated network (INM) 综合网络管理management, library 程序库管理management, network 网络管理management, on-chip dynamic memory 片上动态存储器管理management, power 功率管理management, process 过程管理;工艺管理management, station (SMT) 站管理management, total quality (TQM) 整体品质管理manager, expanded memory (EMM) 扩充存储器管理器manager, presentation 表示管理程序mandatory extension mechanism 强制扩充机制manometer 流体压强计manual 手动;人工控制manufacturability 可生产性manufacturability analysis tool (MAT) 工艺性分析工具;可制造性分析工具manufacturability, design-for- (DFM) 使设计具可制造能力manufacturing automation protocol (MAP) 制造自动化协定manufacturing defects analyzer 制造缺陷分析程序(分析器)manufacturing for reliability (MFR) 可靠性制造manufacturing phase 制造阶段manufacturing planning and control system 制造规划及控制系统manufacturing resources planning (MRP) 制造信息规划manufacturing, computer-aided (CAM) 电脑辅助生产manufacturing, computer-integrated (CIM) 电脑综合制造manuscript 原图;加工图map 映射;图;图像;变换map, attach 附带变换map, bit- 位映射图map, detach 分离变换map, numerical 数值变换mappable 可变换mapped, direct- 直接变换mapper 变换器mapping 映射;变换mapping, function 功能变换mapping, sequential 顺序映射mapping, topological 拓朴绘图margin 边缘;界限margin, noise 噪音容限margin, phase 相位边缘marginal timing error 边际定时错误mark 记号mark scanning 特徵扫描mark, fiducial 定位标记;基准标志marker 记号;标记markup language 标识语言; 记帐语言maser 微波激射mask 掩膜mask programmable 掩模可编程mask tooling 掩膜加工mask, flat-tension (FTM) 固定张力掩膜mask, solder 阻焊剂;焊锡掩膜;绿漆masked gate array 掩膜式门阵列maskless array synthesizer (MAS) 无掩膜的阵列合成器mass 质量mass flow controller 大流量控制器mass number 质量数mass rest, 静止质量mass, atomic 原子质量mass, center of 质量中心mass, critical 临界质量mass, gravitational 引力质量mass, inertial 惯性质量mass, spectrum 质谱mass, thermal 热质量mass-energy relation 质能关系mass-flow controller (MFC) 主流动控制器master 主;主控;主控器;控制master antenna (MATV) 主天线[电视]master device 主控器件;主器件master switch 主开关master telemetry unit (MTU) 主遥测设备master, bus 总线主控器master-slave determination 主从判断master-slave synchronization 主从同步master/slave operation 主从操作matched condition 匹配条件matching device 匹配器件material handling 物料处理material management system 物料管理系统material safety data sheet (MSDS) 材料安全数据表material, encapsulating 灌封材料material, passivation 钝化物料materials, magnetic 磁性物质math coprocessor 算术协处理器matrix 矩阵matrix circuit 矩阵电路matrix, active (AM) 动态矩阵matrix, adjacency 相邻矩阵matrix, diode 二极管矩阵matrix, high-quality (HQM) 高品质矩阵matrix, lower-triangular 下三角形矩阵matrix, simple 简单矩阵matrix, symmetric 对称矩阵matrix, transpose 转置矩阵matrix, upper-triangular 上三角形矩阵max‘s algorithm 最大值算法maximal displacement 最大位移,最大偏差maximal length 最大长度maximum average power 最大平均功率maximum capacity 最大容量maximum demand 最大需求maximum distance separable (MDS) 最大距离可分的maximum friction 最大摩擦maximum load 最大负载maximum power transfer 最大功率输送maximum time interval error (MITE) 最大时间间隔误差maximum transmission unit (MTU) 最大传输单元maxwell 麦克斯韦maze router 迷宫路由器mean free path 平均自由通路mean free time 平均自由时间mean terrain level 平均地面高度mean time between failures (MTBF) 平均失效时间mean time to repair (MTTR) 平均维修时间mean value 平均值mean-squared error (MSE) 均方差误means, electrochemical 电化学方法measling 生白点,生白斑measurement 测量;量度measurement, parametric 参数式测量measurement, phase-coherent 相位一致测量mechanical 机械的mechanical advantage 机械利益mechanical consideration 机械特性考虑mechanical deformation 机械变形mechanical efficiency 机械效率mechanical energy 机械能mechanical equivalent of heat 热功当量mechanical filter 机械式滤波器mechanical force 机械力mechanical strength 机械强度mechanical wobble 机械晃动mechanical, electro- 机电式mechanics 力学mechanics, quantum 量子力学mechanics, wave 波动力学mechanism 机制;机械装置;机构mechanism, decision 决策机能mechanism, image transfer (ITM) 图像转移机制mechanism, trap 陷阱机制mechanism, write-through 透写式机制media 媒介;媒体media access control (MAC) 媒体存取控制media access unit (MAU) 媒体存取单元media control interface (MCI) 媒体控制接口media streaming 媒体数据流式传输media-dependent interface (MDI) 媒体独立接口median 中线medium 介质;媒体medium attachment unit (MAU) 媒体附属单元IT专业英语词典-37n-well diode n阱二极管nack (negative acknowledgement) 否定应答name server 名称服务器nano- (n) 毫微:纳nanobot 毫微瓦,纳级泥塞nanocode 纳代码nanoinstruction 纳指令nanometer (nm) 毫微米nanophase materials 纳相材料nanosecond (ns) 毫微秒nanotechnology 纳 (10-9 ) 技术narrow band 窄频带narrow-band amplifier 窄频放大器narrow-band axis 窄频轴narrow-band filter 窄频带滤波器national ISDN-1 国家综合业务数字网-1national center for supercomputing applications (NCSA) 国家超级计算应用中心, 国家计算中心national society of cable television engineers (nscte) 国家有线电视工程师协会nationwide paging network 全球寻呼网络natural air cooling 自然空气冷却natural frequency 自然频率natural glitch filter 自然干扰过滤器natural oscillation 自然振荡navigation 导引;导航navigation software 导引软体;导航软体near infrared 近红外线near video on demand (NVOD) 近似视频点播,仿视频点播near-body capacitance 近体电容near-end crosstalk 近端交越干扰near-letter quality 接近优质字符near-letter-quality printing 接近优质字符打印nearly instantaneous companded audio multiplexing(NICAM) 近瞬时压缩扩展音频多工技术;丽音广播系统negate 否定;非negation 否定;非negative acknowledge character 否认字符negative bias 负偏压negative charge 负电荷negative electrode 负电极negative feedback 负反馈negative gate drive 非门驱动negative ion 负离子negative logic 负逻辑negative potential 负电位negative pressure 负压力negative regulator 负[压]调节器negative resist 负电阻,负阻negative resistance 负电阻negative sequence 负序列negative supply generator 负供应产生器negative temperature coefficient (NTC) 负温度系数negative transient 负瞬态negative-edge (脉冲)负沿,(脉冲)下降沿negative-true 假-真(逻辑)nematic 向列nematic, twisted (TN) 扭曲向列neodymium 钕neon 氖neper 奈培nested 嵌套nesting 箝套net 网net force 净力net moment 净力矩net pattern 网模式net, parasitic 寄生网netcitizen 网民; 网上公民netiquette 网上礼仪netizen 从事网络的人netlist 排线表列netlist comparator 排线表列比较器network 网络network access points (NAP) 网络接入点network access server 网络接入服务器network adapter 网络适配器network address translator (NAT) 网络地址转换器,网络地址翻译器network administrator 网络管理员network architecture 网络结构network attached resource computer (ARCnet) 附加资料电脑网络network computing system (NCS) 网络运算系统network control program (NCP) 网络控制程序network control protocol (NCP) 网络控制协议network element 网络部件network file system (NFS) 网络文件系统network function 网络函数network information center (NIC) 网络信息中心network interface card (NIC) 网络接口卡network interface unit (niu) 网络接口单元network layer 网络层network linear bus 网络线性总线network management 网络管理network management system 网络管理系统network management unit (NMU) 网络管理单元network master 网络主机network model 网络模型network news transfer protocol (nntp) 网络新闻传输协议network node interface (NNI) 网络节点接口network operating system (NOS) 网络操作系统network processing unit (NPU) 网络处理单元network server 网络伺服器network service provider (NSP) 网络服务提供者network station 网络站network subsystem (NSS) 网络子系统network terminal unit (NTU) 网络终端单元network termination (NT) 网络终端network termination - level 1 (NT1) 第一层次网络终端network termination - level 2 (NT2) 第二层次网络终端network time protocol (NTP) 网络时间协议network user identification (NUI) 网络用户标识network, backbone 中枢网络network, baseband 基频带网络network, branch 分支网络network, broadband 宽频带网络network, circuit switched data (CSDN) 电路交换数据网络network, digital 数字网络network, distributed 分布式网络network, distributed operating multi-access interactive(DOMAIN) 分布式作业多重存取交谈网络network, distributed system (DSN) 分布式系统网络network, enterprise 企业网络network, ethernet 以太网络IT专业英语词典-36mode, answer 回应模式mode, asynchronous balanced (ABM) 异步平衡模式mode, asynchronous receiving 异步接收模式mode, asynchronous response (ARM) 异步反应模式mode, asynchronous sending 异步发送模式mode, asynchronous transfer (ATM) 异步传输模式mode, auto-detect 自动检测模式mode, auto-zero 自动归零模式mode, block 区块模式;资料段模式mode, burst 脉冲模式;资料组模式mode, command 命令状态mode, continuous current 连续电流模式mode, control 控制状态;控制模式mode, current 电流模式mode, dot join 光点汇集模式mode, dot roll 光点延伸模式mode, doze 休止模式mode, exception 异常状态;异常模式mode, freeze 冻结状态;冻结模式mode, global 通用模式mode, graphics 图像模式mode, hibernation 冬眠模式mode, interactive 互动模式;交谈模式mode, kernel 核心模式mode, normal 正常状态;正常模式mode, originate 发信状态mode, power-down 省电状态;省电模式mode, privileged 特许状态;特许模式mode, protected 保护状态;保护模式mode, real 真实状态;真实模式mode, realtime 实时状态mode, receiving 接收模式mode, ring 环状模式mode, saturation 饱和状态mode, sending 发送模式mode, sleep 休止模式mode, standby 候命状态;预备状态mode, switch 开关式mode, tandem 复式状态mode, text 文字模式mode, virtual 虚拟状态;虚拟模式model 模式;模型model verification 模型验证model, basic access 基本存取模式model, behavioral simulation 性能模拟模型model, detailed 精细模型model, ideal gas 理想气体模型model, reference 参考模型model, state-average 状态平均模型model-based spectral analysis (MBSA) 基于模型的光谱分析modem 调制解调器modem pooling 公用MODEM组modem, dumb 基本型调制解调器modem, intelligent 智能型调制解调器modem, optical 光学调制解调器modem, smart 聪敏型调制解调器modification 改进;修正;修改modified modified-frequency modulation (MMFM) 改进修改频率调制modified modular jack (MMJ) 改进型模块插座modified refractivity 修正的折射率modified-frequency modulation (MFM) 改进频率调制modifier 修改程序modifier, address 地址修改程序modular 模数的,模块的modular connector 模块式连接器modulation 调制modulation rate 调制[速]率modulation reference level 调制参考水平modulation section 调制部分modulation transfer function (MTF) 调制传输功能modulation, adaptive differential pulse code (ADPCM) 配接差动脉冲编码调制modulation, amplitude (AM) 振幅调制modulation, collector 集极调制modulation, differential pulse code (DPCM) 差动脉冲编码调制modulation, frequency (FM) 频率调制modulation, intensity 密度调制modulation, modified modified-frequency (MMFM) 改进修改频率调制modulation, modified-frequency 改进频率调制modulation, phase (PM) 相位调制modulation, pulse (PM) 脉冲调制modulation, pulse code (PCM) 脉冲编码调制modulation, pulse frequency (PFM) 脉冲频率调制modulation, pulse length (PLM) 脉冲长度调制modulation, pulse width (PWM) 脉冲宽度调制modulation, quadrature 正交调制modulation, quadrature amplitude (QAM) 正交振幅调制modulation, residual frequency 残留的频率调制modulation, self-phase (SPM) 自相位调制modulatior 调制器modulator, differential phase shift-keyed 差动相位变换调制器modulator, electro-optic 电光调制器modulator, pulse 脉冲调制器module 模组module generation 模块生成module identification line (MODID) 模组识别线路module, audio mixing (AMU) 声频混合模组module, multichip (MCM) 多芯片模组module, single-in-line memory (SIMM) 单列存储器模组module, sub- 次模组module, translator 转换程序模组modulo (mod) 模数modulus 模数modulus of elasticity 弹性模数modulus, bulk 容变弹性模数modulus, shear 切变模量molar heat capacity 克分子热容mold flash 模子溢料;模子毛刺mole (mol) 克分子molecular action 分子作用molecular beam 分子束molecular force 分子力molecular kinetic theory 分子运动理论molecular magnet 分子磁molecular theory 分子理论molecular weight 分子量molecular-beam epitaxy 分子束外延molecule 分子molecule, polar 极向分子molten carbonate fuel cell (MCFC) 熔融碳酸盐燃料电池moment arm 力矩臂moment of couple 力偶moment of force 力矩moment of momentum 动量矩moment, anti-clockwise 反时针力矩moment, clockwise 顺时针力矩moment, effective magnetic 有效磁矩moment, electric dipole 电偶极矩moment, magnetic 磁矩moment, net 净力矩momentum 动量momentum, angular 角动量momentum, conservation of 动量守恒momentum, conservation of angular 角动量守恒momentum, moment of 动量矩monitor 监视器monitor, black-and-white 黑白监视器monitor, color 彩色监视器monitor, power waveform 电子波形监察仪mono-channel universal serial controller (MUSC) 单通道通用串行控制器mono-mode optical fiber 单模光纤monochromatic 单色monochromatic light 单色光monochrome 单色monochrome display adapter (MDA) 单色显示配接器monochrome super-twisted 单色超级扭曲monolithic 单片monolithic microwave integrated circuit (MMIC) 单片式微波集成电路monomer 单基体monopole 单极子monopole, magnetic 磁单极moore‘s law 摩尔定律morphology, surface 表面形态mosaic 马赛克most significant bit 最大有效数字motherboard 母板motion 运动motion Picture Experts Group 1 (MPEG-1) 活动图象专家组规范1motion Picture Experts Group 2 (MPEG-2) 活动图象专家组规范2motion Picture Experts Group 4 (MPEG-4) 活动图象专家组规范4motion estimator 运动估算量,移动估算器motion vector 运动矢量motion, acceleration in circular 圆运动中之加速度motion, angular 角运动motion, angular harmonic 角谐运动motion, circular 圆周运动motion, curvilinear 曲线运动motion, period 周期运动motion, projectile 抛体运动motion, rectilinear 直线运动motion, relative 相对运动motion, simple harmonic 简谐运动motion, uniform circular 均匀圆周运动motion, wave 波动motor 马达;电动机motor controller 电动机控制器;马达控制器motor, brushless 无刷式马达motor, direct current 直流马达motor, disc spindle 碟式转轴马达motor, servo 伺服马达motor, spin 旋转马达motor, step 步进马达motor, voice coil 音圈马达mount 安装;装设;装置mounter, chip 芯片安装器;片式元件组装机mounting hole 安装孔mouse 鼠标器mouse, optical 光学鼠标器move 搬移movement, substrate dopant 基板渗染运动moving standard deviation (MSD) 移动标准偏差,移动标准漂移moving-coil galvanometer 圈转电流计multi-block transfer 多重资料组传送多信道, 多点分布业务multi-dimensional 多维multi-gap color filter 多隙彩色滤波器multi-layer transient voltage suppressor 多层瞬态电压抑制器multi-physical media 多重实体媒介multi-protocol 多重协定multi-protocol operation 多重协定作业multi-protocol serial communication interface (MSCI) 多重协定串行通讯接口multi-protocol serial communications 多重协定串行通讯multi-purpose 多用途multi-range 多量程multi-register 多重暂存器multi-register bank 多重暂存器组multi-register set (MRS) 多重暂存器集multi-segmented 多重分区的multi-slope conversion 多重斜率转换multi-station access unit (MAU) 多站存取单元multi-tone power ratio (MTPR) 多路音调功率比,多音功率比multi-user 多用户multi-user dimension (MUD) 多用户空间multi-user domain 多用户域multi-vendor interface protocol (MVIP) 多制造商接口协议multiburst 多重脉冲multicast 多路广播,多播,组播multicast address resolution server (MARS) 多播地址解析服务器multicast address resolution service (MARS) 多播地址解析服务multichip integrated circuit 多芯片集成电路multichip module (MCM) 多芯片模组multidrop 分支multidrop connection 分支式连接multidrop parallel bus 分支平行总线multifiber cable 多纤光缆multifrequency (MFC) 多频率multifrequency dialing 多频率拨号multifrequency signaling 多频率信令multifunction 多功能multifunction card 多功能卡multifunction channel 多功能通道multilayer 多层的multilayer board 多层板multilayer ceramic 多层陶瓷multilayer substrate 多层基片,多层衬底multimaster 多控制multimaster arbitration 多控制判优multimedia 多媒体multimedia cable network system (MCNS) 多媒体电缆网络系统multimedia personal computer 多媒体个人电脑multimeter 万用表multimeter, digital (DMM) 数字万用表multimode fiber 多模光纤multipath 多径干扰multipath error 多径误码multiple algorithm 多重算法multiple apertur 多孔径multiple array programmable logic (MAPL) 多阵列可编程逻辑multiple backbone network 多重中枢网络multiple bus master device 多重总线控制器件multiple channel 多通道multiple channel access (MCA) 多通道存取multiple channel amplifier 多通道放大器multiple configuration 复式配置multiple instruction/multiple data (MIMD) 多重指令/多重数据multiple memory planes 多重存储器层multiple metal layer tape 多金属层带multiple passes 多次通过multiple reflection 多次反射multiple reuse pattern (MRP) 多重使用模式multiple service-class support 多重服务级支持multiple system operator 多系统操作员, 复联系统操作员multiple time programmable 可多次编程的multiple track 多磁道multiplex 多工;多路multiplexed analog component (MAC) 多工模拟元件multiplexed analog compression (MAC) 多工模拟压缩multiplexed non- 非多工式multiplexed pixel input port 多工图素输入端口multiplexer (MUX) 多工器multiplexer, two-input 双输入多工器multiplexing, frequency-division (FDM) 分频多工multiplexing, nearly-instantaneously companded audio(NICAM) 近瞬时压缩扩展音频多工技术multiplexing, statistical 统计多工multiplexing, time division (TDM) 划时多工multiplexing, time-compression (TCM) 时间压缩多工multiplexing, variable-rate adaptive (VRAM) 可变速率配接多工multiplexing, wavelength-division (WDM) 分波长多工multiplication factor 倍增因素multiplier 乘法器;倍加器multiplier, current 电流倍增器multiply and accumulate unit (MAU) 乘法及累积单元multiply instruction 乘法指令multiplying converter 乘法转换器multipoint 多点连接multipoint control unit (MCU) 多点控制单元multipole 多极multiprocessing, Parallel Reduced Instruction Set (PRISM) 并行的精简指令集多处理方式multiprocessor 多处理器multiprocessor architecture extension (MPAX) 多处理器延伸架构multiprocessor synchronization 多处理器同步化multiprogramming 多重编程multipulse LPC (MPLPC) 多脉冲线性预测编码multipulse maximum likelihood quantization (MP-MLQ) 多脉冲最大似然量化,多脉冲最大可能量化multipurpose internet mail extensions (MIME) 多用途Internet 邮件扩展multirate DSL (MDSL) 多速率数子用户线multisystem 多线路系统multisystem extension interface (MXI) 多系统延伸接口multisystem extension interface bus (MXIbus) 多系统延伸接口总线multitasking 多任务multitasking operating system 多任务作业系统multitasking system 多任务系统multiturn rotary encoder 多匝旋转编码器,多圈回转编码器multiuser 多用户music synthesizer 音乐合成器musical instrument digital interface (MIDI) 乐器数字接口musical scale 音阶mute 哑音muting 噪声抑制mutual inductance 互感mutual synchronization 互同步myopia 近视IT专业英语词典-35medium density polyethylene (MDPE) 中等密度聚乙烯medium wave (MW) 中波medium, optically denser 光密介质medium, optically thinner 光疏介质medium-scale integrated circuit (MSI) 中规模集成电路mega- (M) 百万mega-cycle 百万周期megabit (Mb) 百万位megabyte (MB) 百万字节megacell 百万储存单元megapixel 百万图素megger 高阻表,高阻计melting point 溶点;熔点melting, latent heat of 溶解潜热member, full 正式会员membrane switch 薄膜开关memorandum of understanding (MoU) 谅解备忘录memory 存储器memory available 可用存储器memory bank 存储器组memory bank interleaving 存储器组交错memory bus 存储器总线memory cell 存储器存储单元memory cell array 存储器存储单元阵列memory control unit (MCU) 存储器控制单元memory controller (MEMC) 存储器控制器memory counter 存储器计数器memory device 存储器器件memory effect 记忆效应memory integrated circuit 存储器集成电路,内存集成电路memory management unit (MMU) 存储器管理单元memory mapped input/output 存储器映射输入/输出memory plane 存储器层memory pointer 存储器指标memory reference 存储器参考memory refresh 存储器更新memory resident 存储器驻留memory segmentation 存储器分段memory space 存储器空间memory subsystem 存储器子系统memory word 存储[器]字memory, associative 关联存储器memory, bubble 磁泡存储器memory, byte-oriented 面向字节存储器memory, compact disc read only (CD ROM) 光碟只读存储器memory, content addressable (CAM) 内容可定址存储器memory, conventional 常规存储器memory, demand-paged virtual 需求分页虚拟存储器memory, dual-access 双重存取存储器memory, dual-port 双端口存储器memory, dual-port random access 双端口随机存取存储器memory, dynamic random access (DRAM) 动态随机存取存储器memory, electrically erasable programmable read only(EEPROM) 电气拭除式可编程只读存储器memory, electrically erasable read only (EEROM) 电气拭除式只读存储器memory, erasable programmable read only (EPROM) 可拭除式可编程只读存储器memory, error correcting 错误纠正存储器memory, expanded 扩充存储器memory, extended 延伸存储器memory, external 外存存储器;外置存储器memory, ferroelectric random access (FRAM) 铁电随机存取存储器memory, flash 快闪存储器memory, four-way interleaved 四路交错存储器memory, frame buffer 画面缓冲器存储器memory, high 高地址存储器memory, interleaving 存储器交错memory, internal 内存存储器;内置存储器memory, least recently used (LRU) 最近最少使用存储器memory, magnetic bubble 磁泡存储器memory, magnetic core 磁心存储器memory, nonvolatile random access 非易失性随机存取存储器memory, page 分页存储器memory, physical 实质存储器memory, processor specific (PSM) 特殊处理器存储器memory, programmable read only (PROM) 可编程只读存储器memory, random access (RAM) 随机存取存储器memory, read only (ROM) 只读存储器memory, shadow random access 阴影随机存取存储器memory, shared 分享存储器memory, static random access (SRAM) 静态随机存取存储器memory, static-column page-mode 静态纵列分页式存储器memory, tag 标志存储器memory, vector 向量存储器memory, video 视频存储器memory, video random access (VRAM) 视频随机存取存储器memory, virtual 虚拟存储器memory-mapped input/output 存储区标示输入/输出memory-resident database (MRD) 存储器驻留数据库memory-resident program 存储器驻留程序meniscus 月形透镜,凹凸透镜menu 功能表;操作指引menu, hierarchical 层次结构式操作指引menu, pop-up 弹出式操作指引menu, pull-down 下拉式操作指引menu-driven 操作指引驱动mercury lamp 水银灯merge 合并merge sort 合并式排序meridian, magnetic 磁子午线merit figure 效益指数mesh 网;网孔mesh network topology 网格网络技术,网状网络技术mesh pattern 网状mesh porosity 网孔孔隙度mesh size 网目大小,筛眼大小,筛孔尺寸mesochronous 均步的,平均同步的mesomorphic 多相的mesomorphic substances 多相物质meson 介子message 信息message descriptor list 信息描述符列表message digest algorithm (MD5) 报文分类算法message identifier 信息识别码message protocol 信息协定message sequence charts (MSC) 报文序列表,报文流水卡message switching 报文交换,报文转接message transfer part (MTP) 报文传送部分message unit 信息单元message-based device 信息类器件message-oriented middleware 面向报文的中间设备(中间件)messaging application programming interface (MAPI) 信息应用编程接口meta signaling 元信令meta-stable 元稳定性的,亚稳定的`,准稳的metabase 元数据库metadata 元数据metafile 元文件metal composition 金属复合物metal content 金属含量metal electrode face bonding (MELF) 金属电极表面黏合metal electrode leadless face (MELF) 金属电极无引线面metal fatigue 金属疲劳metal interconnect 金属互连metal, double-layer (DLM) 双层金属metal, single-layer (SLM) 单层金属metal, triple-layer (TLM) 三层金属metal-core board 金属芯板metal-in-gap (MIG) 金属夹层metal-oxide semiconductor (MOS) 金属氧化半导体metal-oxide surge arrestor (MOSA) 金属氧化浪涌稳定器metal-oxide varistor (MOV) 金属氧化压敏电阻metalanguage 元语言metalization layer 金属化层metallic bond 金属键metallic thermometer 金属温度计metallization 金属化metallized polyester-film capacitor 金属聚脂膜电容器metallized polypropylene capacitor 金属聚丙烯电容器meter 表;计;仪表meter (m) 米meter, panel 面板仪表meter, phase 相位表meter, signal-level (SLM) 信号电平计metering 测光method, access 存取方法method, basic telecommunications access (BTAM) 基本远程通讯存取法method, boundary tag (BTM) 边缘标志法method, boundary-element (BEM) 临界元素法method, common access (CAM) 共同存取方法method, gradient projection 梯度投影法method, index sequential access 索引顺序存取法method, queued telecommunications access (QTAM) 队列远程通讯存取法method, telecommunications access (TCAM) 远程通讯存取法method, teleprocessing access (TPAM) 远程信息处理存取法method, virtual telecommunications access (VTAM) 虚拟远程通讯存取法methodology 方法论;方法学metric 公制的metric system 十进制metrology 度量衡学;计量学metropolitan area network (MAN) 域网络mho 姆欧mica sheet 云母片micro cell 微小区micro connectors 微连接器micro electromechanical systems (MEMS) 微机电系统micro imaging 缩微成像,显微摄像micro- 微micro-channel autodecode bus controller 微通道自动解码总线控制器micro-channel bus architecture (MCA) 微通道总线架构micro-instruction 微指令microarchitecture 微体系结构microbend 微弯曲,微型弯头microcellular 微型蜂窝电话microchip 微芯片microcode 微编码microcomputer 微电脑microcomputer, single-chip (SCM) 单芯片微电脑microcontroller 微控制器microdrive 微驱动,微动microfarad 微法拉microhenry 微亨利micrometer 测微计micron 微米microphone 传声器;微音器microphonics 低颤噪效应microphysics 微观物理学microprocessor 微处理器microprocessor without interlocked pipeline stages(MIPS) 没有互锁管线阶段的微处理器microprocessor, digital signal 数字信号微处理器microprocessor, digital tuning 数字调频微处理器microprogramming 微编程microscope 显微镜microscope, electron 电子显微镜microscope, scanning electron 扫描式电子显微镜microscope, scanning tunneling (STM) 扫描隧道显微镜microsecond 微秒microstructure of material 材料的微观结构microvia 通过微波microvolt 微伏特microwatt 微瓦microwave 微波microwave communications 微波通信microwave control interface 微波控制接口microwave integrated circuit (MIC) 微波集成电路microwave link 微波链路microwave radio 微波无线电[通信]microwire 微细线middle wave (MW) 中波middleware 中件migration, stress 应力迁移milli- (m) 毫milliampere (mA) 毫安millibar 毫巴milligram (mg) 毫克millihenry (mH) 毫亨利milliliter (ml) 毫升millimeter (mm) 毫米milling system 研磨系统million floating-point operations per second (MFLOPS) 每秒百万次浮点运算million instruction bytes per second (MIBS) 每秒百万指令字节million instructions per second (MIPS) 每秒百万条指令million samples per second 每秒百万次取样millisecond (ms) 毫秒millivolt (mV) 毫伏特milliwatt (mW) 毫瓦mime 多用途Internet邮件扩充mini-circular connector 迷你圆型连接器mini-computer 小型电脑miniature small-outline package (MSOP) 超小型外形封装,微型外形封装minimal encapsulation 最小封装,最小包装minimal phase 最小相位minimum bend radius 最小弯曲半径minimum deviation 最小偏向minimum distance code 最小远程代码minimum load 最小负载minimum mean square error (MMSE) 最小均方差minimum-shift keying (MSK) 最小变换调制minor cycle 次周期minor failure 轻微故障minute 分mirror 镜mirror effect 镜像效应mirror, aspherical 非球面镜mirror, concave 凹镜mirror, convergent 会聚镜mirror, convex 凸镜mirror, divergent 发散球面镜mirror, spherical 球面镜mirroring 反射misalignment 移位misfire 点火不良mismatch 不匹配misorientation 极向错误misregistration 定位失准misrouted calls 错误指向呼叫miss 落空;错失miss ratio 失配率;落空率;错失率missing bit 缺失位mission-critical application 临界任务应用程序mission-critical server 临界任务服务程序;临界任务服务器mixed logic 混合逻辑。
物理专业英语词汇(T)
物理专业英语词汇(T)物理专业英语词汇(T)物理专业英语词汇(T)t matrixt 矩阵t networkt 型网络t quarkt 夸克table表tachometer转速计tachyon快子tadpole diagram蝌蚪图tail of comet彗尾tamm dancoff approximation塔姆丹科夫近似tamm dancoff equation塔姆丹科夫方程tamm state塔姆能级tandem electrostatic generator范德格喇夫串列式静电加速器tandem mirror串联镜tandem van de graaff accelerator范德格喇夫串列式静电加速器tangent line切线tangential cpmponent切线分量tangential resistance接切阻力tangential stress切向应力tangential velocity切向速度tani foldy transformation谷福尔德变换tantalum钽tantalum electrolytic capacitor钽电解电容器tape带tape recording纸带记录target靶tau lepton轻子tau neutrino中微子taurus金牛座tautochrone等时曲线tautochronism等时性tautomeric transformation互变转换tautomerism互变现象taylor number泰勒数taylor's flow泰勒流tea lasertea 激光器tearing instability撕裂不稳定性technetium锝technical atmosphere工程大气压technicolor彩色电影technics技术technique技术telecentric system远心系统telecontrol遥控telemeter测远计telemetering遥测telemetry遥测法telephone receiver收话器听筒telephoto lens远距照相镜头telephotographic objective远距照相镜头telephotometry光度遥测法telescope望远镜telescopic meteor望远镜燎telescopium望远镜座telethermometer遥测温度表television电视television camera电视摄象机television microscope电视显微镜television receiver电视接收机television set电视接收机telluric line大气吸收谱线tellurium碲temperature温度temperature coefficient温度系数temperature correction温度汀正temperature difference温差temperature distribution温度分布temperature effect温度效应temperature factor温度因数temperature gradient温度梯度temperature green function温度格林函数temperature radiation温度辐射temperature regulator温度第器temperature rise温升temperature scale温标temperature sensor温度传感器temperature transducer温度换能器温度传感器temperature wave温度波tempering回火temporary star新星tensiometer张力计tension张力tensor张量tensor force张量力tensor meson张量介子tensor polarization张量极化tensor product张量乘积tera兆兆terbium铽term项term separation项分裂term splitting项分裂term symbol项的符号term value光谱项值terminal端子terminal equipment终端设备terminal voltage终端电压terrestrial current地电流terrestrial electricity地电terrestrial heat flow地热流terrestrial magnetic field地磁场terrestrial magnetism地磁terrestrial planet类地行星terrestrial radiation地面辐射tesla特斯拉tesla coil特斯拉感应圈tesla transformer特斯拉感应圈testing statistical hypothesis统计假说的检验tetragonal system正方系tetrahedral angle四面角tetrahedron四面形tetrode四极管tevatron垓电子伏加速器texture织构thallium铊theodolite经纬仪theorem of parallel axes平行轴定理theoretical astronomy理论天文学theoretical astrophysics理论天体物理学theoretical nuclear physics理论核物理学theoretical physics理论物理学theory理论theory of atomic structure原子结构论theory of continental drift大陆漂移论theory of electrons电子论theory of elementary particles基本粒子理论theory of expanding universe膨胀宇宙论theory of fermi liquid费密铃理论theory of games对策论theory of gamow condon gurney伽莫夫康登古尔内理论theory of gravity引力论theory of heat热学theory of liquids液体理论theory of magnetism磁学理论theory of non local field非定域场论theory of nuclear structure核结构理论theory of perturbation微扰理论theory of probability概率论theory of relativity相对论theory of scattering散射理论theory of tidal evolution潮汐演化论theory of valence原子价理论thermal analysis热分析thermal balance热平衡thermal blooming热晕thermal breeder热增殖堆thermal breeder reactor热增殖堆thermal capacity热容量thermal column热柱thermal conduction热传导thermal conductivity热导率thermal conductivity gage热导真空计thermal conductor导热体thermal convection热对流thermal creep热蠕变thermal cycle热循环thermal desorption热解吸thermal diffuse scattering热弥漫散射thermal diffusion热扩散thermal diffusion coefficient热扩散系数thermal diffusivity热扩散性thermal dissociation热离解thermal distribution热分布thermal e.m.f.热电动势thermal efficiency热效率thermal electron热电子thermal energy热能thermal engine热机thermal equilibrium热平衡thermal excitation热激发thermal expansion热膨胀thermal fatigue热疲劳thermal instability热不稳定性thermal insulation热绝缘thermal ionization热电离thermal lens effect热透镜效应thermal motion热运动thermal neutron热中子thermal noise热噪声thermal output of reactor反应堆热功率thermal physics热物理学thermal power热功率thermal radiation热辐射thermal reactor热堆thermal shock热冲击thermal spike热峰thermal stability热的稳定性thermal switch热控开关thermal transmission传热thermal transpiration热发散thermal treatment热处理thermal unit热单位thermalization热化thermion热电子thermionic current热离子电流thermionic emission热电子发射thermionic rectifier热离子整流thermionic tube热离子管thermistor热敏电阻thermistor thermometer热敏电阻温度计thermistor vacuum gage热敏电阻真空计thermoacoustic refrigeration热声致冷thermoacoustics热声学thermoanalysis热分析thermobarometer温度气压表thermocapillarity热毛细现象thermochromism热色现象thermocouple热电偶thermocouple gage热电偶真空计thermocouple junction热电偶接头thermodiffusion热扩散thermodynamic characteristic function热力学特性函数thermodynamic critical field热力学临界磁场thermodynamic efficiency热力学效率thermodynamic equation of state热力学物态方程thermodynamic equilibrium热力学平衡thermodynamic function热力学函数thermodynamic inequality热力学不等式thermodynamic limit热力学极限thermodynamic model热力学模型thermodynamic potential热力学势thermodynamic quantity热力学变量thermodynamic stability热力学稳定性thermodynamic state热力学状态thermodynamic system热力学系统thermodynamic temperature热力学温度thermodynamic temperature scale热力学温标thermodynamic variable热力学变量thermodynamic weight热力学权重thermodynamics热力学thermodynamics of irreversible processes不可逆过程热力学thermoelastic wave热弹性波thermoelectric current热电流thermoelectric diagram热电图thermoelectric effect热电效应thermoelectric element温差电偶thermoelectric phenomenon热电现象thermoelectric power温差电势率thermoelectric pyrometer热电高温计thermoelectric series热电序thermoelectric thermometer热电温度计thermoelectric transducer热电变换器thermoelectric type热电型thermoelectricity温差电thermoelectromotive force热电动势thermoelectron热电子thermogalvanometer热电偶电疗thermogramm温度记录图thermograph自记式温度计thermogravimetric analysis热重量分析thermohydrodynamics热铃动力学thermoluminescence热致发光thermoluminescence dosimeter热致发光剂量计thermolysis热解thermomagnetic effect热磁效应thermomechanical effect热机械效应thermometer温度计thermometry测温法thermomolecular pressure热分子压强thermonuclear reaction热核反应thermonuclear reactor热核堆thermonuclear temperature热核温度thermopile温差电堆thermoplastic热塑性材料thermoplastic material热塑性材料thermorelay温差电偶继电器thermoremanent magnetization热剩余磁化强度thermosetting resin热固尸thermosphere热成层thermostat恒温器thermotropic liquid crystal热致液晶thick film integrated circuit膜集成电路thick lens厚透镜thickness厚度thickness gage测厚计thin film薄膜thin film integrated circuit薄膜集成电路thin film superconductor超导薄膜thin film transistor薄膜晶体管thin lens薄透镜third harmonic generation第三谐波发生third law of thermodynamics热力学第三定律third sound第三次声波thirring model瑟林模型thixotropy触变性thomas fermi model托马斯费密模型thomas precession托马斯旋进thomas reiche kuhn's sum rule托马斯赖克库扼和定则thomson effect汤姆逊效应thomson principle汤姆逊原理thomson scattering汤姆逊散射thomson's atom model汤姆逊原子模型thorium钍thorium reactor钍堆three body force三体力three body problem三体问题three color photometry三色光度学three dimensional hologram三维全息照相three level maser三能级微波激射器three phase current三相电流three primary colors三原色threshold condition阈值条件threshold detector阈值探测器threshold dose临界剂量threshold energy阈能threshold frequency临界频率threshold of audibility最小可听值threshold of hearing最小可听值threshold value阈值threshold voltage阈电压threshold wavelength临界波长throttling节流节力throughput透射能thulium铥thunder雷thyratron闸淋thyristor晶闸管tidal action潮汐酌tidal friction潮汐摩擦tidal hypothesis潮汐假说tidal motion潮汐运动tidal wave潮波tide generating forces引潮力tides潮汐tight binding approximation紧密耦合近似tight coupling method紧密耦合法tilt boundary倾斜晶界timbre音品time时间time constant时间常数time correlation function时间相关函数time delay relay延时继电器时间继电器time interval时间间隔time lag时滞time lag relay时滞继电器time measurement测时time of flight mass spectrometer飞行时间质谱仪time of flight method飞行时间法time of flight spectrometer飞行时间谱仪time of flight spectrometry飞行时间谱学time of relaxation弛豫时间time ordered product时序乘积time reflection时间反演time relay时滞继电器time resolved spectrum时间分辨谱time resolving power时间分辨能力time response时间特性time reversal invariance时间反转不变性time to amplitude converter时幅变换器tin锡tintometer色度计titanium钛titanium oxide钛氧化物titanium oxide capacitor钛氧化物电容器tld热致发光剂量计toda lattice户田点阵toepler pump托普勒泵tokamak托卡马克tolansky's method托兰斯基方法tolerance dose容许剂量tone音tone color音品tone quality音质top回转仪top quarkt 夸克topological algebra拓扑代数topological defect拓扑缺陷topological group拓扑群topological quantum field theory拓扑量子场论topological quantum number拓扑量子数topological space拓扑空间topology拓扑学torch discharge火焰状放电toricellian vacuum托里折利真空tornado陆龙卷toroidal field环向磁场torque转矩torr托torricelli vacuum托里折利真空torsion扭转torsion balance扭秤torsion electrometer扭转静电计torsion moment扭矩torsion pendulum扭摆torsion seismometer扭转震计torsional oscillation扭转振动torsional rigidity扭转刚度torsional strength抗扭强度torsional stress扭转应力torsional vibration扭转振动torsional wave扭转波total absorption总吸收量total absorption coefficient总吸收系数total current总电流total eclipse全食total energy总能量total intensity总强度total radiation temperature总辐射温度total reflecting prism全反射棱镜total reflection全反射toughness坚韧tourmaline电气石tower telescope塔式望远镜townsend coefficient汤森系数townsend discharge汤森放电trace径迹tracer示踪原子tracer atom示踪原子tracer element示踪元素tracer isotope示踪同位素tracer method示踪法tracer technique示踪法track径迹track chamber径迹室train of waves波列trajectory轨道transcription转录transducer变换器换能器transfer转移transfer equation传递方程transfer function转递函数transfer matrix转移矩阵transfer ratio传递比transferred momentum传递动量transformation变换transformation group变换群transformation of coordinates坐标变换transformation theory变换论transformer变压器transient过渡现象transient current瞬态电流transient equiliblium动态平衡transient equilibrium瞬态平衡transient motion瞬态运动transient phenomenon过渡现象transient response瞬态响应transient stability瞬态稳定性transient state瞬态transient time过渡时间transistor晶体管transistor transistor logic晶体管晶体管逻辑transition跃迁transition curve转变曲线transition element过渡元素transition energy转变能transition layer过渡层transition matrix跃迁矩阵transition metal过渡金属transition point转变点transition probability跃迁概率transition radiation跃迁辐射transition state过渡状态transition temperature转变温度transition zone过渡区translation平移translation energy平动能translation group平移群translation invariance平移不变性translation lattice平移点阵translation motion平移translucency半透迷translucent body半透缅transmission传递transmission coefficient透射系数transmission electron diffraction透射电子衍射transmission electron microscope透射电子显微镜transmission factor透射系数transmission grating透射光栅transmission line输电线transmission of heat热传导transmission of light透光性transmission resonance透射共振transmissivity透射transmittance透射transmittancy相对透射比transmitting antenna发射天线transmitting tube发送管transmutation转变transonic flow跨声速流transonic speed跨声速度transparence透迷transparency透迷transparent body透缅transphasor光敏晶体管transport coefficient输运系数transport equation输运方程transport number迁移数transport phenomenon输运现象transport process输运过程transport theory迁移理论transuranic element超铀元素transversal wave横波transverse electric wave横电波transverse expansion横膨胀transverse field横场transverse magnetic wave横磁波transverse mode横模transverse polarization横向极化transverse relaxation横向弛豫transverse vibration横振动transverse wave横波trap阱trapped electron俘获电子trapped ion method俘获离子法trapped particle捕获粒子traveling wave amplifier行波放大器traveling wave tube行波管traveling wave type accelerator guide行波型加速屁导travelling wave行波tree graph始triad三价物trial and error method试凑法trial charge试探电荷triangle anomaly三角图反常triangle of forces力的三角形triangular lattice三角形栅格triangular magnetic structure三角形磁结构triangulum三角座triangulum australe南三角座triatomic molecule三原子分子triboelectricity摩擦电tribology摩擦学triboluminescence摩擦发光tribophysics摩擦物理学triboplasma摩擦等离子体trichromatic coefficient三原色系数trichromatic coordinates三色坐标trichromatic equation三原色方程trichromatic system三原色系triclinic lattice三斜点阵triclinic system三斜系tricritical point三重临界点trifid nebula三叶星云trigger触发器trigger circuit触发电路trigonal system菱形系trimolecular reaction三分子反应triode三极管triode ionization gage三极管电离真空计triode type ion pump三极管型离子泵triple bond三重键triple mirror隅角棱镜triple point三重临界点triplet三重线triplet state三重态tristimulus values标准三色值tritium氚tritium nucleus氚核triton氚核trochoidal focusing mass spectrometer摆线聚焦质谱仪trochoidal wave摆线波trojan group脱罗央群trojans脱罗央群tropic回归线tropopause对零顶troposphere对零true electric charge真电荷true noon视午true solar time真太阳时true sun真太阳truth quarkt 夸克tsunami海震tube管tube of electric flux电通量管tube of magnetic induction磁感应管tubing导管tucana杜鹃座tunable laser可党激光器tunable semiconductor laser可党半导体激光器tunable solid state laser可党固体激光器tuned amplifier党放大器tungsten钨tungsten filament钨丝tungsten halogen lamp卤化钨灯tungsten lamp钨丝灯tuning党tuning fork音叉tuning fork oscillator音叉振荡器tunnel balance空气动力天秤tunnel diode隧道二极管tunnel effect隧道效应tunnel junction隧道结tunneling隧穿tunneling spectroscopy隧道效应光谱学turbid medium混浊介质turbidimetry混浊度测定法turbidity浊度turbidity coefficient浊度系数turbidity factor浊度因子turbo molecular pump涡轮分子泵turbulence湍流紊流turbulent diffusion湍俩散turbulent flow湍怜turbulent heating紊劣热turbulent motion湍动turing machine图灵计算机turn ratio匝数比twin boundary孪晶边界twin crystal孪晶twin structure孪晶结构twinning孪生twinning deformation孪生畸变twinning plane孪晶面twins孪晶twist boundary扭转晶界two beam approximation双束近似two beam interference双光束干涉two dimensional compound二维化合物two dimensional crystal二维晶体two dimensional crystal nucleus二维晶核two dimensional electron system二维电子系two dimensional flow二维流平面流two dimensional lattice二维点阵two fluid model二铃模型two photon absorption双光子吸收two photon transition双光子跃迁two stream instability二束不稳定性two time green's function双时格林函数two wave approximation双波近似twyman green interferometer特外曼格林干涉仪tyndall phenomenon丁达尔效应type doublet型双重态type superconductivity第一类超导性;第二类超导性typhoon台风物理专业英语词汇(T) 相关内容:。
一维磁性原子链系统中的Majorana费米子态
一维磁性原子链系统中的Majorana费米子态杨双波【摘要】对处于螺旋形磁场及横向均匀磁场的一维磁性原子链模型,在平均场近似下通过自洽地求解Bogoliubov-de-Genes方程我们计算了系统的能谱.我们发现在一定参数值的范围内能谱随螺旋形磁场振幅值演化呈现能量为零的Majorana 费米子态.我们计算了局域态密度发现对Majorana费米子其态密度的峰值出现在链的两端(或中点)位置.我们计算了波函数其空间分布,发现它与局域态密度的结果一致.%For a model of one dimensional magnetic atomic chain in both a helical magnetic field and a transverse uniform magnetic field,we calculate its energy spectrum by solving Bogoliubov-de-Genes equation selfconsistently in the mean field approximation. We find that for a certain parameter setting,energy spectrum evolving with amplitude of helical magnetic field,appears Majorana fermion eigenstates. We calculate local density of states,and find that the local density of states for Majorana fermion shows peaks at the both ends(or at middle)of the magnetic atomic chain. We calculate wave function,and its spatial distribution agrees with local density of states.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2017(040)003【总页数】8页(P110-117)【关键词】Majorana费米子;磁性原子链;BdG方程;局域态密度【作者】杨双波【作者单位】南京师范大学物理科学与技术学院,江苏省大规模复杂系统数值模拟重点实验室,江苏南京210023【正文语种】中文【中图分类】O413.1Majorana fermion[1] which is a particle of the same as its own antiparticle,has been attracting great attention. Firstly,because of Majorana fermion being connected with topological phase concept,secondly because of its topological character,it provides a platform of potential application in topological quantum computing and quantum storing[2-4]. So experimentally and theoretically search for physical system of Majorana fermion has been a very hot research topic. The purpose of all these researches is to generate a topological superconductor,so that the Majorana fermion appears as a single excitation at the boundary. Recently,Majorana fermion has been studied for a model of an atomic chain in a helical magnetic field in close proximity to a s-wave superconductor[5-7],and the result shows that at a certain parameter setting,the Majorana fermion is localized at the both end of the magnetic atomic chain. This is a spatially uniform system,after a gauge transformation,the Hamiltonian of the system will become an invariant form for space displacement. In this paper we modified this system by adding a new Zeeman term in the original Hamiltonian,which correspondsto a uniform magnetic field h perpendicular to the atomic chain being applied to the original system. Because of the new Zeeman term,the system is nonuniform spatially,we will study the structure of the Majorana fermion for the system of h≠0.In this paper,we get the system eigenenergies and eigenvectors by numerically solving BdG equation,and then we study the birth and the localization in space of the Majorana fermion by calculating the spatially resolved local density of states and wave function. The structure of the paper is as the following,the Model and theory is in section 1,the result of numerical calculation and discussion is in section 2,the summary of the paper is in section 3.Consider a N-atom atomic chain in a helical magnetic filed or magnetic structure. The magnetic filed at site n is =B0(cosnθ+sinnθ),where θ is the angle made by the magnetic fields at the adjacent sites of the atomic chain,the whole atomic chain is in proximity to the surface of a s-wave superconductor,and in the transverse direction of the atomic chain a uniform magnetic field h is applied. The Hamiltonian of this magnetic atomic chain in mean field approximation is given byH=tx(cn+1α+h.c.)-μcnα+(cnβ+Δ(n)(+h.c.)+h(σz)ααcnα,where tx is the jumping amplitude for electron between two adjacent sites,μ is chemical potential,Δ(n)is the superconductor pairing potential or order parameter at sit n,h is the weak uniform magnetic field for tuning system energy spectrum. or cnα is the operator to creat or annihilate an electron of spin α respectively at site n, is pauli matrix vec tor,and h.c. standfor complex conjugate. By introducing Nambu spinor representationψi=(ci↑,ci↓,,-)T,then Hamiltonian(1)can be written as BdG form,i.e.H=Hijψj,where Hij is the BdG Hamiltonian at site i,which can be written as where Kij=tx(δi+1,j+δi-1,j)-μδij,γij=(h-B0cosiθ)δij. This is a 4N×4N matrix,whose energy eigenvalue εn and eigenfunctionψn(i)=(un(↑,i),un(↓,i),vn(↓,i),vn(↑,i))T, for i=1,2,…,N,is determined by eigenvalue equationand boundary condition. In mean field approximation the order parameter at site i takes the form[8]and the mean number of electron at site i iswhere fn=1/(1+eεn/kBT) is the Fermi distribution,T is temperature in Kelvin. The total number of electron isincluding spin up and spin down electrons. To determine eigenenergy,eigenfunction,order parameter,we need to selfconsistently solve eigenvalue equation(3)with(4)-(6). In this paper,we deal with the case of temperature T=0,then the order parameter and the mean number of electron in site i are given bySpecial case:h=0 and Δ(i)=Δ0,a constant. The Hamiltonian in(1)can be transformed into spatially unform form by a gauge transformation. The topologically nontrivial region of the parameter set is given bywhere Majorana fermion corresponds to εn=0. As |h|≠0,Hamiltonian in(1)is nonuniform in space,and the nontrivial region of parameter set can not be obtained analytically.In this paper we deal with open boundary condition with and without themiddle magnetic domain wall,and at the magnetic domain wall we replace θ by -θ. We have also studied under the periodic boundary condition,and found the result has no significant changes.We first study the character of the Majorana fermion as the order parameter Δ and chemical potential μ are constants,then we study the influence of nonuniform Δ(i)on the result of Majorana fermion by doing selfconsistent calculation. In calculation,we choose the number of site N for the atomic chain according to the angle θ,so that the magnetic field at the both ends of the atomic chain points to the same direction.2.1 Energy Spectrum and Wave FunctionsFor a one-dimensional magnetic atomic chain with magnetic domain wall in the middle,the parameter set is chosen asΔ0=1.0,tx=1.0,μ=2.5,h=0.1,θ=π/2,and length of the chain is chosen asN=81 sites. For every value of B0 in the interval[1.0,4.0],we diagonalize the 4N×4N BdG Hamiltonian matrix(2),we get 4N energy eigenvalues and 4N eigenvectors. In open boundary condition,the energy spectrum is shown in Fig.1. For B0 in the interval[1.486 6,3.996 8],we can see that thereexists eigenstates whose eigenenergy εn=0,and these eigenstates are Majorana fermions. The interval for the existense of Majorana fermion in the case of h=0.1 is very close to the interval[1.476,4.039]calculatedfrom(9)for the h=0 case. For Majorana fer mion at B0=2.1,εn=0,shown in red dot in Fig.1,we calculate its wave functionun(↑,i),un(↓,i),vn(↑,i),vn(↓,i),the result is shown in Fig.2(a-d). We can see that the amplitude of the wave function concentrates on the both ends and themiddle of the atomic chain. In Fig.3,we show wave function for the same magnetic atomic chain without magnetic domain wall in the middle,the amplitude of the wave function concentrates on both ends of the magnetic atomic chain. This is similar to the previous result for the 1-dimensional magnetic atomic chain without uniform magnetic field,h=0.2.2 Local Density of States and Total Density of StatesIn this subsection,we study the space distribution of density ofstates(DOS),which is called local density of states(LDOS)and is defined as ρ(ε,i)is a function of energy and space position,and the total density of states(TDOS)can be written as,i.e.,the arithmetic mean of local density of states,a function of energy only. In numerical calculation,we replace δ by a Lorentz function. Fo r parameter setting h=0.1,tx=1.0,Δ=1.0,μ=2.5,θ=π/2,N=81,and B0=2.1,the local density of states for a Majorana fermion and the mean number of electrons on each site are shown in Fig.4(a-d)for the magnetic atomic chain with magnetic domain wall in the middle. Fig.4(a)shows the local density of states ρ(ε,i)in a 3D-plot;Fig.4(b)shows the local density of states ρ(ε,i)in a 2D contour plot;Fig.4(c)shows the local density of states for Majorana fermion ρ(ε=0,i);Fig.4(d)shows the mean number of electron on each si te of atomic chain<n(i)>. We can see from the Fig.4 that the Majorana fermion is localized at two ends and middle for the magnetic atomic chain with magnetic domain wall in the middle. The mean number of electrons on each site of the atomic chain is around 1.5. In Fig.5(a-d)we show theresult for the same magnetic atomic chain without magnetic domain wall in the middle,then we see density of states for Majorana fermion is peaked only at both ends of the magnetic atomic chain.2.3 The Self-consistent ResultAs the order parameter Δ(i)is space position i dependent,we calculate the energy spectrum and local density of states by selfconsistently solving the eigenvalue equation(3)with equations(7)and(8). For parameter seth=0.1,tx=1.0,μ=2.5,U0=4.0,θ=π/2,N=81,the selfconsistently calculated energy spectrum is shown in Fig.6,the Majorana fermion region can be seen,is still there,but the interval is shorten. The local density of states and mean numbers of electron on each site for Majorana fermion at B0=1.57 are shown in Fig.7(a-d)and Fig.9(a-d). By comparison with Fig.4(a-d),we find the main characters are same,but peak position for selfconsistent result moved inside a little bit. We calculate the selfconsistent wave function for Majorana fermion,and the results are shown in Fig.8(a-d)and Fig.10(a-d). The amplitude is significiently large at both ends for magnetic atomic chain without magnetic domain wall,and significiently large at both ends and middle for a magnetic chain with magnetic domain wall in the middle. This agrees with the result of local density of states.In mean field approximation,and by numerically solving Bogoliubov-de-Genes(BdG)equation,this paper studies the birth,and the localization in space of the Majorana fermion in a one dimensional atomic chain in helical magnetic field,and a uniform magnetic field h which is perpendicular to the atomic chain. Studies find that at a certain parameter setting,theevolution of the energy spectrum with helical magnetic field amplitude B0 appears the zero energy eigenstates,which corresponding to the Majorana fermion. We calculate the local density of states,and find that the local density of states for the Majorana fermion has two peaks on the both end of the magnetic atomic chain. When a magnetic domain wall is applied at the middle of the maqgnetic atomic chain,the Majorana fermion shows peaks at both ends and the middle of the magnetic chain. As the order parameter is a function of space coordinate,we do selfconsistent calculation,and find that by comparing with the result of nonselfconsistent calculation,the energy spectrum and the shape of the local density of states are changed a little bit,but the main character does not change. [1] MAJORANA E. Symmetric theory of electron and positrons[J]. Nuovo Cimento,1937,14(1):171-181.[2] WILCZEK F. Majorana returns[J]. Nat Phys,2009,5(9):614-618.[3] NAYAK C,SIMON S H,STERN A,et al. Non-Abelian anyons and topological quantum computation[J]. Rev Mod Phys,2008,80(3):1 083-1 159.[4] ALICEA J. New directions in the persuit of Majorana fermions in solid state system[J]. Rep Prog Phys,2012,75(7):076501-1-36.[5] NADJ-PERGE S,DROZDOV I K,BERNEVIG B A,et al. Proposal for realizing Majorana fermions in chain of magnetic atoms on a superconductor [J]. Phys Rev B,2013,88(2):020407-1-5(R).[6] PÖYHÖNEN K,WESTSTRÖM A,RÖNTYNEN J,et al. Majorana state in helical shiba chain and ladders[J]. Phys Rev B,2014,89(11):115109-1-7.[7] VAZIFEH M M,FRANZ M. Self-organized topological state with Majorana fermions[J]. Phys Rev Lett,2013,111(20):206802-1-5.[8] SACRAMENTO P D,DUGAEV V K,VIEIRA V R. Magnetic impurities in a superconductors:effect of domainwall and interference[J]. Phys RevB,2007,76(1):014512-1-21.[9] EBISU H,YADA K,KASAI H,et al. Odd frequency pairing in topological superconductivity in a one dimensional magnetic chain[J]. Phys RevB,2015,91(5):054518-1-15.【相关文献】Received data:2016-11-17.Corresponding author:Yang Shuangbo,professor,majored in nonlinear physics and low dimensionalsystem.E-mail:*********************.cndoi:10.3969/j.issn.1001-4616.2017.03.016CLC number:O413.1 Document codeA Article ID1001-4616(2017)03-0110-08。
第十八届全国凝聚态理论与统计物理学术会议
12:00-13:30 13:30-14:40
午餐、小憩 分会报告(含分会邀请报告)
14:40-15:00 15:00-16:10
茶歇 分会报告(含分会邀请报告)
16:10-17:30 17:30-18:30 18:30 20:00-21:00 2014 年 7 月 29 日 8:30 9:00-10:30 10:30-11:00 11:00-12:00
副 主 任:段文晖 秘 书:陈 焱
委员: 谢心澄 陈 焱 罗洪刚 张 红 段文晖 董 兵 杨文力 钟建新 陈晓松 陈 鸿 张胜利 曾 雉 戴 希 李建新 解士杰 徐东生 常 凯 吴明卫 郑以松 赵 鸿 林海青 万 歆 汪子丹 卢仲毅 刘正猷 刘仁保 李新奇 龚新高 周焕强 姚道新 吴大琪 汤雷翰
三.会议筹备组 筹备组:周焕强 胡炳全 曹三永 Murray Batchelor 秘书:胡炳全 史倩倩 联系地址: 重庆市沙坪坝区沙正街 174 号, 重庆大学现代物理中心 (邮编 400044) E-mail: bqhu@ shiqianqian@
目录
1. 会议日程简表 2. 会议详细日程安排 3. 大会邀请报告、分会邀请报告、分会一般报告和张贴报告编码规则 4. 大会邀请报告: 题目与摘要 5. 分会邀请报告和一般报告: 题目与摘要 6. 张贴报告: 题目与摘要 7. 通讯录
第十八届全国凝聚态理论与统计物理学术会议
日
日期 2014 年 7 月 26 日 2014 年 7 月 27 日 时间 全天 签到、注册
午餐&小憩 地点:重庆大学学生第 1 食堂 2 楼大厅(见校园引导标识、或会 议相关地图)
2014 年 7 月 27 日第二单元:分会报告(第一分会场) 地点:民主湖报告厅 13:30-14:00 主题:1 主持人:罗洪刚(兰州大学)
八卦一下量子机器学习的历史
八卦一下量子机器学习的历史人工智能和量子信息在讲量子机器学习之前我们先来八卦一下人工智能和量子信息。
1956,达特茅斯,十位大牛聚集于此,麦卡锡(John McCarthy)给这个活动起了个别出心裁的名字:“人工智能夏季研讨会”(Summer Research Project on Artificial Intelligence),现在被普遍认为是人工智能的起点。
AI的历史是非常曲折的,从符号派到联结派,从逻辑推理到统计学习,从经历70年代和80年代两次大规模的政府经费削减,到90年代开始提出神经网络,默默无闻直到2006年Hinton提出深层神经网络的层级预训练方法,从专注于算法到李飞飞引入ImageNet,大家开始注意到数据的重要性,大数据的土壤加上计算力的摩尔定律迎来了现在深度学习的火热。
量子信息的历史则更为悠久和艰难。
这一切都可以归结到1935年,爱因斯坦,波多尔斯基和罗森在“Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”一文中提出了EPR悖论,从而引出了量子纠缠这个概念。
回溯到更早一点,1927年第五次索尔维会议,世界上最主要的物理学家聚在一起讨论新近表述的量子理论。
会议上爱因斯坦和波尔起了争执,爱因斯坦用“上帝不会掷骰子”的观点来反对海森堡的不确定性原理,而玻尔反驳道,“爱因斯坦,不要告诉上帝怎么做”。
这一论战持续了很多年,伴随着量子力学的发展,直到爱因斯坦在1955年去世。
爱因斯坦直到去世也还一直坚持这个世界没有随机性这种东西,所有的物理规律都是确定性的,给定初态和演化规律,物理学家就能推算出任意时刻系统的状态。
而量子力学生来就伴随了不确定性,一只猫在没测量前可以同时“生”和'死',不具备一个确定的状态,只有测量后这只猫才具备“生”和'死'其中的一种状态,至于具体是哪一种状态量子力学只能告诉我们每一种态的概率,给不出一个确定的结果。
Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
this composition, the film is nearly
Quantum Hall effect (QHE), a quantized version of the Hall effect (1), was observed in two-dimensional (2D) electron systems more than 30 years ago (2, 3). In QHE the Hall resistance, which is the voltage across the transverse direction of a conductor divided by the longitudinal current, is quantized into plateaus of height h/νe2, with h being Planck's constant, e the electron's charge, and ν an integer (2) or a certain fraction (3). In these systems, the QHE is a consequence of the formation of well-defined Landau levels, and thus only possible in high mobility samples and strong external magnetic fields. However, there have been numerous proposals to realize QHE without applying any magnetic field (4–11). Among these proposals, using the thin film of a magnetic topological insulator (TI) (6–9, 11), a new class of quantum matter discovered recently (12, 13), is one of the most promising routes.
几何阻挫磁体简介000
PM
阻挫磁体的判据: f
CW
TF
5
S0 / kB lnW
特征:基态存在很大的简并度 传统反铁磁体:
f
CW
TF
~1
Square Lattice:
Td ~ 2CW Td ~ 0.75CW
Triangular Lattice:
•多重简并基态
Triangular Lattice
三角晶格:6重简并 2重简并(FM) Kagome Lattice
→AFM+Spin
Liquid
→AFM
例2:ZnCr2O4
AFM → Quasispin Glass
问题1:几何阻挫磁体是否存在亚铁磁体?
First experimental realization of spin Ladder with FM Legs
问题2:几何阻挫自旋玻璃与传统自旋玻璃区别?
PRL,106, 247202 (2011
1.ACr2O4 (A=Zn,Cd,Hg) 几何阻挫磁体(Tetragonal Lattice)
•Cr3+ 占据四面体顶角
•Cr3+ 自旋占据t2g轨道, 只有自旋—晶格耦合
Cd
Cr
c
b
a
•强磁场诱导磁相变
强磁场调制“自旋—晶格”耦合
Orthorhombic(Fddd)
量子临界行为
磁场诱导量子相变
?
?
Magnetic Field-induced quantum phase transition: 概念:Noncollinear spin structure ———— Collinear spin Structure (First Order Transition) Example: Pyrochlore Lttice
物理专业词汇(T)
物理专业词汇(T)t matrix t 矩阵t network t 型网络t quark t 夸克table 表tachometer 转速计tachyon 快子tadpole diagram 蝌蚪图tail of comet 彗尾tamm dancoff approximation 塔姆丹科夫近似tamm dancoff equation 塔姆丹科夫方程tamm state 塔姆能级tandem electrostatic generator 范德格喇夫串列式静电加速器tandem mirror 串联镜tandem van de graaff accelerator 范德格喇夫串列式静电加速器tangent line 切线tangential cpmponent 切线分量tangential resistance 接切阻力tangential stress 切向应力tangential velocity 切向速度tani foldy transformation 谷福尔德变换tantalum 钽tantalum electrolytic capacitor 钽电解电容器tape 带tape recording 纸带记录target 靶tau lepton 轻子tau neutrino 中微子taurus 金牛座tautochrone 等时曲线tautochronism 等时性tautomeric transformation 互变转换tautomerism 互变现象taylor number 泰勒数taylor's flow 泰勒流tea laser tea 激光器tearing instability 撕裂不稳定性technetium 锝technical atmosphere 工程大气压technicolor 彩色电影technics 技术technique 技术telecentric system 远心系统telecontrol 遥控telemeter 测远计telemetering 遥测telemetry 遥测法telephone receiver 收话器听筒telephoto lens 远距照相镜头telephotographic objective 远距照相镜头telephotometry 光度遥测法telescope 望远镜telescopic meteor 望远镜燎telescopium 望远镜座telethermometer 遥测温度表television 电视television camera 电视摄象机television microscope 电视显微镜television receiver 电视接收机television set 电视接收机telluric line 大气吸收谱线tellurium 碲temperature 温度temperature coefficient 温度系数temperature correction 温度汀正temperature difference 温差temperature distribution 温度分布temperature effect 温度效应temperature factor 温度因数temperature gradient 温度梯度temperature green function 温度格林函数temperature radiation 温度辐射temperature regulator 温度第器temperature rise 温升temperature scale 温标temperature sensor 温度传感器temperature transducer 温度换能器温度传感器temperature wave 温度波tempering 回火temporary star 新星tensiometer 张力计tension 张力tensor 张量tensor force 张量力tensor meson 张量介子tensor polarization 张量极化tensor product 张量乘积tera 兆兆terbium 铽term 项term separation 项分裂term splitting 项分裂term symbol项的符号term value 光谱项值terminal 端子terminal equipment 终端设备terminal voltage 终端电压terrestrial current 地电流terrestrial electricity 地电terrestrial heat flow 地热流terrestrial magnetic field 地磁场terrestrial magnetism 地磁terrestrial planet 类地行星terrestrial radiation 地面辐射tesla 特斯拉tesla coil 特斯拉感应圈tesla transformer 特斯拉感应圈testing statistical hypothesis 统计假说的检验tetragonal system 正方系tetrahedral angle 四面角tetrahedron 四面形tetrode 四极管tevatron 垓电子伏加速器texture 织构thallium 铊theodolite 经纬仪theorem of parallel axes 平行轴定理theoretical astronomy 理论天文学theoretical astrophysics 理论天体物理学theoretical nuclear physics 理论核物理学theoretical physics 理论物理学theory 理论theory of atomic structure 原子结构论theory of continental drift 大陆漂移论theory of electrons 电子论theory of elementary particles 基本粒子理论theory of expanding universe 膨胀宇宙论theory of fermi liquid 费密铃理论theory of games 对策论theory of gamow condon gurney 伽莫夫康登古尔内理论theory of gravity 引力论theory of heat 热学theory of liquids 液体理论theory of magnetism 磁学理论theory of non local field 非定域场论theory of nuclear structure 核结构理论theory of perturbation 微扰理论theory of probability 概率论theory of relativity 相对论theory of scattering 散射理论theory of tidal evolution 潮汐演化论theory of valence 原子价理论thermal analysis 热分析thermal balance 热平衡thermal blooming 热晕thermal breeder 热增殖堆thermal breeder reactor 热增殖堆thermal capacity 热容量thermal column 热柱thermal conduction 热传导thermal conductivity 热导率thermal conductivity gage 热导真空计thermal conductor 导热体thermal convection 热对流thermal creep 热蠕变thermal cycle 热循环thermal desorption 热解吸thermal diffuse scattering 热弥漫散射thermal diffusion 热扩散thermal diffusion coefficient 热扩散系数thermal diffusivity 热扩散性thermal dissociation 热离解thermal distribution 热分布thermal e.m.f. 热电动势thermal efficiency 热效率thermal electron 热电子thermal energy 热能thermal engine 热机thermal equilibrium 热平衡thermal excitation 热激发thermal expansion 热膨胀thermal fatigue 热疲劳thermal instability 热不稳定性thermal insulation 热绝缘thermal ionization 热电离thermal lens effect 热透镜效应thermal motion 热运动thermal neutron 热中子thermal noise 热噪声thermal output of reactor 反应堆热功率thermal physics 热物理学thermal power 热功率thermal radiation 热辐射thermal reactor 热堆thermal shock 热冲击thermal spike 热峰thermal stability 热的稳定性thermal switch 热控开关thermal transmission 传热thermal transpiration 热发散thermal treatment 热处理thermal unit 热单位thermalization 热化thermion 热电子thermionic current 热离子电流thermionic emission 热电子发射thermionic rectifier 热离子整流thermionic tube 热离子管thermistor 热敏电阻thermistor thermometer 热敏电阻温度计thermistor vacuum gage 热敏电阻真空计thermoacoustic refrigeration 热声致冷thermoacoustics 热声学thermoanalysis 热分析thermobarometer 温度气压表thermocapillarity 热毛细现象thermochromism 热色现象thermocouple 热电偶thermocouple gage 热电偶真空计thermocouple junction 热电偶接头thermodiffusion 热扩散thermodynamic characteristic function 热力学特性函数thermodynamic critical field 热力学临界磁场thermodynamic efficiency 热力学效率thermodynamic equation of state 热力学物态方程thermodynamic equilibrium 热力学平衡thermodynamic function 热力学函数thermodynamic inequality 热力学不等式thermodynamic limit 热力学极限thermodynamic model 热力学模型thermodynamic potential 热力学势thermodynamic quantity 热力学变量thermodynamic stability 热力学稳定性thermodynamic state 热力学状态thermodynamic system 热力学系统thermodynamic temperature 热力学温度thermodynamic temperature scale 热力学温标thermodynamic variable 热力学变量thermodynamic weight 热力学权重thermodynamics 热力学thermodynamics of irreversible processes 不可逆过程热力学thermoelastic wave 热弹性波thermoelectric current 热电流thermoelectric diagram 热电图thermoelectric effect 热电效应thermoelectric element 温差电偶thermoelectric phenomenon 热电现象thermoelectric power 温差电势率thermoelectric pyrometer 热电高温计thermoelectric series 热电序thermoelectric thermometer 热电温度计thermoelectric transducer 热电变换器thermoelectric type 热电型thermoelectricity 温差电thermoelectromotive force 热电动势thermoelectron 热电子thermogalvanometer 热电偶电疗thermogramm 温度记录图thermograph 自记式温度计thermogravimetric analysis 热重量分析thermohydrodynamics 热铃动力学thermoluminescence 热致发光thermoluminescence dosimeter 热致发光剂量计thermolysis 热解thermomagnetic effect 热磁效应thermomechanical effect 热机械效应thermometer 温度计thermometry 测温法thermomolecular pressure 热分子压强thermonuclear reaction 热核反应thermonuclear reactor 热核堆thermonuclear temperature 热核温度thermopile 温差电堆thermoplastic 热塑性材料thermoplastic material 热塑性材料thermorelay 温差电偶继电器thermoremanent magnetization 热剩余磁化强度thermosetting resin 热固尸thermosphere 热成层thermostat 恒温器thermotropic liquid crystal 热致液晶thick film integrated circuit 膜集成电路thick lens 厚透镜thickness 厚度thickness gage 测厚计thin film 薄膜thin film integrated circuit 薄膜集成电路thin film superconductor 超导薄膜thin film transistor 薄膜晶体管thin lens 薄透镜third harmonic generation 第三谐波发生third law of thermodynamics 热力学第三定律third sound 第三次声波thirring model 瑟林模型thixotropy 触变性thomas fermi model 托马斯费密模型thomas precession 托马斯旋进thomas reiche kuhn's sum rule 托马斯赖克库扼和定则thomson effect 汤姆逊效应thomson principle 汤姆逊原理thomson scattering 汤姆逊散射thomson's atom model 汤姆逊原子模型thorium 钍thorium reactor 钍堆three body force 三体力three body problem 三体问题three color photometry 三色光度学three dimensional hologram 三维全息照相three level maser 三能级微波激射器three phase current 三相电流three primary colors 三原色threshold condition 阈值条件threshold detector 阈值探测器threshold dose 临界剂量threshold energy 阈能threshold frequency 临界频率threshold of audibility 最小可听值threshold of hearing 最小可听值threshold value 阈值threshold voltage 阈电压threshold wavelength 临界波长throttling 节流节力throughput 透射能thulium 铥thunder 雷thyratron 闸淋thyristor 晶闸管tidal action 潮汐酌tidal friction 潮汐摩擦tidal hypothesis 潮汐假说tidal motion 潮汐运动tidal wave 潮波tide generating forces 引潮力tides 潮汐tight binding approximation 紧密耦合近似tight coupling method 紧密耦合法tilt boundary 倾斜晶界timbre 音品time 时间time constant 时间常数time correlation function 时间相关函数time delay relay 延时继电器时间继电器time interval 时间间隔time lag 时滞time lag relay 时滞继电器time measurement 测时time of flight mass spectrometer 飞行时间质谱仪time of flight method 飞行时间法time of flight spectrometer 飞行时间谱仪time of flight spectrometry 飞行时间谱学time of relaxation 弛豫时间time ordered product 时序乘积time reflection 时间反演time relay 时滞继电器time resolved spectrum 时间分辨谱time resolving power 时间分辨能力time response 时间特性time reversal invariance 时间反转不变性time to amplitude converter 时幅变换器tin 锡tintometer 色度计titanium 钛titanium oxide 钛氧化物titanium oxide capacitor 钛氧化物电容器tld 热致发光剂量计toda lattice 户田点阵toepler pump 托普勒泵tokamak 托卡马克tolansky's method 托兰斯基方法tolerance dose 容许剂量tone 音tone color 音品tone quality 音质top 回转仪top quark t 夸克topological algebra 拓扑代数topological defect 拓扑缺陷topological group 拓扑群topological quantum field theory 拓扑量子场论topological quantum number 拓扑量子数topological space 拓扑空间topology 拓扑学torch discharge 火焰状放电toricellian vacuum 托里折利真空tornado 陆龙卷toroidal field 环向磁场torque 转矩torr 托torricelli vacuum 托里折利真空torsion 扭转torsion balance 扭秤torsion electrometer 扭转静电计torsion moment 扭矩torsion pendulum 扭摆torsion seismometer 扭转震计torsional oscillation 扭转振动torsional rigidity 扭转刚度torsional strength 抗扭强度torsional stress 扭转应力torsional vibration 扭转振动torsional wave 扭转波total absorption 总吸收量total absorption coefficient 总吸收系数total current 总电流total eclipse 全食total energy 总能量total intensity 总强度total radiation temperature 总辐射温度total reflecting prism 全反射棱镜total reflection 全反射toughness 坚韧tourmaline 电气石tower telescope 塔式望远镜townsend coefficient 汤森系数townsend discharge 汤森放电trace 径迹tracer 示踪原子tracer atom 示踪原子tracer element 示踪元素tracer isotope 示踪同位素tracer method 示踪法tracer technique 示踪法track 径迹track chamber 径迹室train of waves 波列trajectory 轨道transcription 转录transducer 变换器换能器transfer 转移transfer equation 传递方程transfer function 转递函数transfer matrix 转移矩阵transfer ratio 传递比transferred momentum 传递动量transformation 变换transformation group 变换群transformation of coordinates 坐标变换transformation theory 变换论transformer 变压器transient 过渡现象transient current 瞬态电流transient equiliblium 动态平衡transient equilibrium 瞬态平衡transient motion 瞬态运动transient phenomenon 过渡现象transient response 瞬态响应transient stability 瞬态稳定性transient state 瞬态transient time 过渡时间transistor 晶体管transistor transistor logic 晶体管晶体管逻辑transition 跃迁transition curve 转变曲线transition element 过渡元素transition energy 转变能transition layer 过渡层transition matrix 跃迁矩阵transition metal 过渡金属transition point 转变点transition probability 跃迁概率transition radiation 跃迁辐射transition state 过渡状态transition temperature 转变温度transition zone 过渡区translation 平移translation energy 平动能translation group 平移群translation invariance 平移不变性translation lattice 平移点阵translation motion 平移translucency 半透迷translucent body 半透缅transmission 传递transmission coefficient 透射系数transmission electron diffraction 透射电子衍射transmission electron microscope 透射电子显微镜transmission factor 透射系数transmission grating 透射光栅transmission line 输电线transmission of heat 热传导transmission of light 透光性transmission resonance 透射共振transmissivity 透射transmittance 透射transmittancy 相对透射比transmitting antenna 发射天线transmitting tube 发送管transmutation 转变transonic flow 跨声速流transonic speed 跨声速度transparence 透迷transparency 透迷transparent body 透缅transphasor 光敏晶体管transport coefficient 输运系数transport equation 输运方程transport number 迁移数transport phenomenon 输运现象transport process 输运过程transport theory 迁移理论transuranic element 超铀元素transversal wave 横波transverse electric wave 横电波transverse expansion 横膨胀transverse field 横场transverse magnetic wave 横磁波transverse mode 横模transverse polarization 横向极化transverse relaxation 横向弛豫transverse vibration 横振动transverse wave 横波trap 阱trapped electron 俘获电子trapped ion method 俘获离子法trapped particle 捕获粒子traveling wave amplifier 行波放大器traveling wave tube 行波管traveling wave type accelerator guide 行波型加速屁导travelling wave 行波tree graph 始triad 三价物trial and error method 试凑法trial charge 试探电荷triangle anomaly 三角图反常triangle of forces 力的三角形triangular lattice 三角形栅格triangular magnetic structure 三角形磁结构triangulum 三角座triangulum australe 南三角座triatomic molecule 三原子分子triboelectricity 摩擦电tribology 摩擦学triboluminescence 摩擦发光tribophysics 摩擦物理学triboplasma 摩擦等离子体trichromatic coefficient 三原色系数trichromatic coordinates 三色坐标trichromatic equation 三原色方程trichromatic system 三原色系triclinic lattice 三斜点阵triclinic system 三斜系tricritical point 三重临界点trifid nebula 三叶星云trigger 触发器trigger circuit 触发电路trigonal system 菱形系trimolecular reaction 三分子反应triode 三极管triode ionization gage 三极管电离真空计triode type ion pump 三极管型离子泵triple bond 三重键triple mirror 隅角棱镜triple point 三重临界点triplet 三重线triplet state 三重态tristimulus values 标准三色值tritium 氚tritium nucleus 氚核triton 氚核trochoidal focusing mass spectrometer 摆线聚焦质谱仪trochoidal wave 摆线波trojan group 脱罗央群trojans 脱罗央群tropic 回归线tropopause 对零顶troposphere 对零true electric charge 真电荷true noon 视午true solar time 真太阳时true sun 真太阳truth quark t 夸克tsunami 海震tube 管tube of electric flux 电通量管tube of magnetic induction 磁感应管tubing 导管tucana 杜鹃座tunable laser 可党激光器tunable semiconductor laser 可党半导体激光器tunable solid state laser 可党固体激光器tuned amplifier 党放大器tungsten 钨tungsten filament 钨丝tungsten halogen lamp 卤化钨灯tungsten lamp 钨丝灯tuning 党tuning fork 音叉tuning fork oscillator 音叉振荡器tunnel balance 空气动力天秤tunnel diode 隧道二极管tunnel effect 隧道效应tunnel junction 隧道结tunneling 隧穿tunneling spectroscopy 隧道效应光谱学turbid medium 混浊介质turbidimetry 混浊度测定法turbidity 浊度turbidity coefficient 浊度系数turbidity factor 浊度因子turbo molecular pump 涡轮分子泵turbulence 湍流紊流turbulent diffusion 湍俩散turbulent flow 湍怜turbulent heating 紊劣热turbulent motion 湍动turing machine 图灵计算机turn ratio 匝数比twin boundary 孪晶边界twin crystal 孪晶twin structure 孪晶结构twinning 孪生twinning deformation 孪生畸变twinning plane 孪晶面twins 孪晶twist boundary 扭转晶界two beam approximation 双束近似two beam interference 双光束干涉two dimensional compound 二维化合物two dimensional crystal 二维晶体two dimensional crystal nucleus 二维晶核two dimensional electron system 二维电子系two dimensional flow 二维流平面流two dimensional lattice 二维点阵two fluid model 二铃模型two photon absorption 双光子吸收two photon transition 双光子跃迁two stream instability 二束不稳定性two time green's function 双时格林函数two wave approximation 双波近似twyman green interferometer 特外曼格林干涉仪tyndall phenomenon 丁达尔效应type doublet 型双重态type superconductivity 第一类超导性;第二类超导性typhoon 台风From: /word/sxwl/2009-02-03/67426.html。
拓扑绝缘体与拓扑半金属(方忠) [350658]
Edge States
TKNN
Z2
Chern number
Surface States
Femi points (in bulk)
2. 拓扑绝缘体:T-broken vs T-Invariant
QHE
QSHE in HgTe/CdTe (S. C. Zhang, SCIENCE 2006)
Fermi surface
No fermi surface
Ef
Femi points (in bulk) Fermi arcs (on surface)
Normal Insulators +
Topological Insulators (Weyl points at Boundary)
Our Subjects
Penetration Depth of Surface state, 2nm
Chiral Spin texture
W. Zhang, et.al., New J. Phys, 12, 065013 (2010)
2. TI Materials: Exp. evidence ARPES
Y. L. Chen,et.al. SCIENCE (2009) Bi2Te3
“twisted band”
2. 拓扑绝缘体:Bi2Te3, Bi2Se3, Sb2Te3
Predictions for Bi2Te3 family: Basic Properties
1. Found 70 years ago. Naturwissenschaften, 27, 133 (1939)
“能带 twist”
1. 简介:Surface state vs Graphene
拓扑绝缘体二维纳米结构与器件
doi:10.3866/PKU.WHXB 201208312[Review]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2012,28(10),2423-2435October Received:July 27,2012;Revised:August 31,2012;Published on Web:August 31,2012.∗Corresponding authors.PENG Hai-Lin,Email:hlpeng@.LIU Zhong-Fan,Email:zfliu@.The project was supported by the National Natural Science Foundation of China (51121091,21173004,11104003)and National Basic Research Program of China (2011CB921904).国家自然科学基金(51121091,21173004,11104003)和国家重大科学研究计划(2011CB921904)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica拓扑绝缘体二维纳米结构与器件李辉1,2彭海琳1,*刘忠范1,*(1北京大学化学与分子工程学院,北京大学纳米化学研究中心,北京100871;2中国科学院电工研究所,中国科学院太阳能热利用及光伏系统重点实验室,北京100190)摘要:拓扑绝缘体是一种全新的量子功能材料,具有绝缘性体能带结构和受时间反演对称性保护的自旋分辨的金属表面态,属于Dirac 粒子系统,将在新原理纳电子器件、自旋器件、量子计算、表面催化和清洁能源等方面有广泛的应用前景.理论和实验相继证实Sb 2Te 3,Bi 2Se 3和Bi 2Te 3单晶具有较大的体能隙和单一Dirac 锥表面态,已经迅速成为了拓扑绝缘体研究中的热点材料.然而,利用传统的高温烧结法所制成的拓扑绝缘体单晶块体样品常存在大量本征缺陷并被严重掺杂,拓扑表面态的新奇性质很容易被体载流子掩盖.拓扑绝缘体二维纳米结构具有超高比表面积和能带结构的可调控性,能显著降低体态载流子的比例和凸显拓扑表面态,并易于制备高结晶质量的单晶样品,各种低维异质结构以及平面器件.近年来,我们一直致力于发展拓扑绝缘体二维纳米结构的控制生长方法和物性研究.我们发展了拓扑绝缘体二维纳米结构的范德华外延方法,实现了高质量大比表面积的拓扑绝缘体二维纳米结构的可控制备,并实现了定点与定向的表面生长.开展拓扑绝缘体二维纳米结构的谱学研究,利用角分辨光电子能谱直接观察到拓扑绝缘体狄拉克锥形的表面电子能带结构,发现了拉曼强度与位移随层数的依赖关系.设计并构建拓扑绝缘体纳米结构器件,系统研究其新奇物性,观测到拓扑绝缘体Bi 2Se 3表面态的Aharonov-Bohm (AB)量子干涉效应等新奇量子现象,通过栅电压实现了拓扑绝缘体纳米薄片化学势的调控,并将拓扑绝缘体纳米结构应用于柔性透明导电薄膜.本文首先简单介绍拓扑绝缘体的发展现状,然后系统介绍我们开展的拓扑绝缘体二维纳米结构的范德华外延生长、谱学、电学输运特性以及透明柔性导电薄膜应用的研究,最后对该领域所面临的机遇和挑战进行简要的展望.关键词:拓扑绝缘体;狄拉克费米子;纳米结构;范德华外延;柔性透明导电薄膜中图分类号:O641Two-Dimensional Nanostructures of Topological Insulators andTheir DevicesLI Hui 1,2PENG Hai-Lin 1,*LIU Zhong-Fan 1,*(1Centre for Nanochemistry (CNC),College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences,Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,P .R.China )Abstract:Three-dimensional (3D)topological insulators are a new state of quantum matter that are insulating in the bulk but have current-carrying massless Dirac surface states.Nanostructured topological insulators,such as quasi-two-dimensional (2D)nanoribbons,nanoplates,and ultrathin films with extremely large surface-to-volume ratios,distinct edge/surface effects,and unique physicochemical properties,can have a large impact on fundamental research as well as in applications such as electronics,spintronics,photonics,and the energy sciences.Few-layer topological insulator nanostructures have very large2423Acta Phys.⁃Chim.Sin.2012V ol.28surface-to-volume ratios that can significantly enhance the contribution of exotic surface states,and their unique quasi-2D geometry also facilitates their integration into functional devices for manipulation and manufacturing.Here,we present our recent results on the controlled growth of quasi-2D nanostructures of topological insulators,as well as their novel functional devices.High quality quasi-2D nanostructures ofBi2Se3and Bi2Te3topological insulators have been synthesized by vapor-phase growth.Ultra-thin nanoplates of the topological insulators with uniform thickness down to a single layer have been grown on various substrates,including conductive graphene.A facile,high-yield method has been developed for growing single-crystal nanoplate arrays of Bi2Se3and Bi2Te3with well-aligned orientations,controlled thickness,and specific placement on mica substrates by van der Waals epitaxy.A systematic spectroscopic study,including angle-resolved photoemission spectroscopy(ARPES),micro-Raman spectroscopy,and micro-infrared spectroscopy,was carried out to investigate the quasi-2D nanostructuresof topological insulators.Pronounced Aharonov-Bohm(AB)interference effects were observed in the topological insulator nanoribbons,providing direct transport evidence of the robust,conducting surface states.Transport measurements of a single nanoplate device,with a high-k dielectric top gate,showed a significant decrease in the carrier concentration and a large tuning of the chemical potential with electrical gating.We also present the first experimental demonstration of near-infrared transparent flexible electrodes based on few-layer topological insulator Bi2Se3nanostructures that was epitaxially grown on amica substrate by van der Waals epitaxy.Topological insulator nanostructures show promise as transparent flexible electrodes because of their good near-infrared transparency and excellent conductivity,which is robust against surface contamination and bending.Our studies suggest that quasi-2D nanostructures of topological insulators show promise for future electronic and optoelectronic applications.Key Words:Topological insulator;Dirac fermion;Nanostructure;van der Waals epitaxy;Transparent flexible electrode1引言拓扑绝缘体是一类正在凝聚态物理、固体化学与材料领域掀起科学风暴的“明星”材料.1-3作为一种全新的量子物质,拓扑绝缘体不同于传统意义上的绝缘体和金属,其体材料是有能隙的绝缘体,而其表面是无能隙的金属态.4-10因内禀的自旋轨道相互作用,拓扑绝缘体的金属性表面态与因表面未饱和键或者是表面重构导致的表面态不同,具有线性色散关系且自旋与动量满足特定的手性关系.拓扑表面态形成一种无有效质量的二维电子气,受到很严格的拓扑保护,不会因为外来的扰动而失去金属性,具有独特的自旋和输运性质,载流子可在表面无散射、无能量损耗地传导.在基础物理研究上,拓扑绝缘体可以用来探索和发现新奇的量子效应,如量子化的反常霍尔效应、马拉约那(Majorana)费米子等.4,5此外,拓扑绝缘体可以用来发展未来新型量子功能材料,将在新原理纳电子器件、自旋电子器件、自容错的拓扑量子计算、表面催化及清洁能源等方面有着巨大的应用前景.1-5因此,在短短几年内,拓扑绝缘体的研究正在世界范围内蓬勃兴起.量子自旋霍尔相和狄拉克费米子这两个奇异的量子相在拓扑绝缘体中是高度耦合的.4-6通过对具有自旋-轨道耦合作用的样品施加纵向电场,会产生横向自旋流,即自旋向上和向下的电子分别沿横向相反的方向运动,从而在横向边界产生自旋积累,这种自旋也会产生量子霍尔效应,这就是量子自旋霍尔效应.6,10,11拓扑绝缘体内禀的自旋轨道相互作用起到了类似外场的作用,导致自旋流在表面无散射的传导(图1A和1B).2006年,斯坦福大学的Zhang等6首先提出在二维拓扑绝缘体HgTe/CdTe 量子阱体系可以实现量子自旋霍尔效应的理论预言.2007年,量子自旋霍尔效应在HgTe/CdTe量子阱器件上得到实验证实,10这一科研成果被Science 杂志评为2007年十大科学进展之一.随后,研究人员用电压探针证明自旋电流可在HgTe/CdTe量子阱样品的边界出现,而且无需外界施加的磁场.12继二维拓扑绝缘体之后,Kane,7Moore8和Zhang9等小组分别独立地理论预言了兼具绝缘体态和金属表面态的三维拓扑绝缘体的存在.其中Kane等13预测了Bi1-x Sb x合金是三维拓扑绝缘体.2008-2009年,普林斯顿大学的Hasan小组14,15率先从实验上证实了Bi1-x Sb x合金具有三维拓扑绝缘体的性质.他们利用角分辨光电子能谱研究了Bi1-x Sb x合金的体能带和表面能带结构,发现Bi1-x Sb x合金具有复杂的表面态2424李辉等:拓扑绝缘体二维纳米结构与器件No.10结构,表面具有奇数个狄拉克点.寻找体能隙大、表面态结构简单、组成为化学计量比、存在非常稳定、且容易合成的晶态拓扑绝缘体材料成为了物理学家、材料学家及化学家关注的焦点.2009年,Zhang 等16理论预言了三方相的V 2VI 3化合物(Sb 2Te 3,Bi 2Se 3,Bi 2Te 3)是三维拓扑绝缘体,其表面布里渊区k=0的Γ点具有单一的无能隙的狄拉克锥.这些理论预测被同时进行的实验所证实.普林斯顿大学的Hasan 小组17和斯坦福大学的Shen 小组18分别利用角分辨光电子能谱在Bi 2Se 3和Bi 2Te 3单晶中观察到了单个狄拉克锥型表面态的存在.此外,该类材料的体态存在能隙,比如Bi 2Se 3的体能隙约为0.3eV (等价于3600K),远远超出室温能量尺度,这说明有可能实现室温低能耗的自旋电子器件.尽管不断有理论预言新的拓扑绝缘体的存在,比如half-Heusler 和chalcopyrite 三元化合物等家族中被预测存在着大量拓扑绝缘体材料,19-23V 2VI 3晶体材料(Sb 2Te 3,Bi 2Se 3,Bi 2Te 3)仍然是目前的研究热点.然而,相对于常规绝缘体而言,拓扑绝缘体V 2VI 3的体能隙并不大,目前体能隙最大的拓扑绝缘体Bi 2Se 3也才0.3eV .事实上,通常利用高温烧结方法制备的单晶块体样品具有很大的本征缺陷密度并被严重掺杂,样品的费米能级往往位于体相的导带或者价带中,很难实现其体态的本征绝缘.由于单晶块体样品中的体相原子远多于其表面态原子,样品的电学特性将完全由大量的体态载流子所支配,这将制约深入研究拓扑绝缘体这种新的量子态及其器件物理.24拓扑绝缘体表面态本征物性的研究备受关注,是决定拓扑绝缘体未来的研究和应用潜力的关键问题之一.科学工作者正通过外场调控和化学掺杂等方法来调控拓扑绝缘体的费米能级位置,使费米能级只与表面态相交,以降低体态载流子的影响,凸显表面态相关的新奇物理现象.对于常用的拓扑绝缘体单晶块体样品,因样品的厚度远远大于电场的穿透深度,难以利用外场来调控单晶块体样品的费米能级.人们主要采取掺杂与化学改性对单晶块体样品的费米能级进行调控,比如在Bi 2Te 3中掺入Sn 和在Bi 2Se 3中掺入Ca 、Sb 、Mg 、Pb 等元素可以实现费米能级的调控.18,25-31虽然单晶块体样品的掺杂可改变其能带结构,但往往同时也降低了晶体的质量和载流子的迁移率,32导致掺杂的块体材料的电学测量结果并不乐观.比如,Ong 等33对体态绝缘的拓扑绝缘体Ca x Bi 2-x Se 3单晶进行了低温电磁测量,在毫米级大小的单晶样品中的电磁测量中发现一种反常的电磁涨落,其振幅远远大于普适电导涨落.分析结果表明这种涨落现象仍然来源于体相杂质载流子,而不是拓扑表面态.考虑到Ran 等34最近的理论计算预言——拓扑绝缘体晶体中存在的线位错将形成一维拓扑态,Ong 等33推测他们测得的这种电磁涨落可能与体材料的晶格位错等缺陷有关.由以上的分析可知,高质量材料的可控制备依然是拓扑绝缘体研究领域亟待解决的关键科学问题.发展新颖的材料制备方法制备高质量的拓扑绝缘体材料尤为重要.相比块体单晶材料,拓扑绝缘体的纳米材料尤其是二维纳米结构(如纳米带、纳米薄片、薄膜等)更具优势:24(1)纳米材料具有大的比表面积,其比表面积随样品尺寸的变小而显著增大;(2)少量的掺杂或化学改性可能显著调控拓扑绝缘体纳米材料的电学性质;(3)高质量的拓扑绝缘体低维纳米材料具有明确的晶体结构和组分,是构筑复杂纳米结构与纳米器件的理想基元,借助现代表征和测量技术,可以方便地研究器件中存在的材料和界面问题;(4)拓扑绝缘体材料的载流子浓度可利用纳米薄片或薄膜场效应管的场效应来调控,并可以制备成低维异质结构以及各种平面器件,有助图1(A,B)三维拓扑绝缘体的绝缘性体态和金属表面态的示意图;(C)三维拓扑绝缘体层状Bi 2X 3(X=Se,Te)的晶体结构图Fig.1(A,B)Schematic explanation for the reason why the surface of the insulating bulk exhibits metallic state due to polarized spins in three-dimensional topological insulator;(C)layered crystal structure of three-dimensional topological insulator Bi 2X 3(X=Se,Te)2425Acta Phys.⁃Chim.Sin.2012V ol.28于器件加工和集成.迄今为止,人们已经发展了“自上而下”(Top-Down)和“自下而上”(Bottom-Up)两大类方法来制备拓扑绝缘体二维纳米材料.3,35“自上而下”是从单晶块体样品中通过机械剥离或者化学剥离的方法获得单层或少层二维纳米材料,包括:显微机械剥离方法、36,37化学插层方法、38,39通过原子力显微镜(AFM)针尖进行剥离的方法40等.“自下而上”是通过化学反应从原子或者分子尺度上合成单层或少层二维纳米材料,包括分子束外延(MBE)、41-45化学气相沉积(CVD)、24,46,58物理气相沉积(PVD)、47-49湿化学合成50,51等.2009年开始,清华大学薛其坤教授的研究团队首次建立了在不同单晶基底上高质量拓扑绝缘体薄膜的MBE生长动力学,52实现了体相绝缘的拓扑绝缘体Bi2Se3薄膜的外延生长,并利用STM观察到MBE薄膜表面电子在原子台阶和杂质附近散射形成的驻波以及表面金属态的朗道量子化现象.53北京大学的彭海琳与斯坦福大学Cui等人合作,通过气-液-固(VLS)生长机制,利用简单易得的CVD装置制备了高质量的拓扑绝缘体纳米带,发现构筑具有大的比表面积的纳米结构可以有效降低体态载流子的贡献,并通过电学输运测量,首次观测到与拓扑绝缘体Bi2Se3表面电子态相关的Aharonov-Bohm(AB)量子干涉效应,证实了拓扑绝缘体中能产生AB效应的表面态电子波的存在.24这一工作给拓扑绝缘体在电学测量实验上的研究带来了新的转机,推动了拓扑绝缘体的实验进展.54随后,科研工作者迅速展开了拓扑绝缘体Bi2Se3、Bi2Te3和Sb2Te3纳米结构的制备和电学输运研究.2010年,Jarillo-Herrero等55通过微机械剥离的方法得到了厚度为17nm的砷掺杂的Bi2Se3纳米薄片,构建了场效应晶体管,通过在晶体管上构造高k值的顶栅,实现了对Bi2Se3准二维纳米材料表面电子态的外场调控,并观察到了类似石墨烯的双极化效应.2011年,Wang等31通过液相反应合成了Bi2Te3纳米带,通过场效应晶体管的顶栅实现了Bi2Te3纳米带费米能级的调控.通过顶栅电压把费米能级调节到了体态的带隙中,进而在Bi2Te3纳米带中直接观测到了表面电子态的AB干涉和SdH振荡.2011年,Cui等56在(Bi x Sb1-x)2Te3本征拓扑绝缘体二维纳米薄片中,发现了与石墨烯场效应晶体管类似的双极化场效应现象.围绕拓扑绝缘体二维纳米结构的可控生长方法与器件研究,根据Bi2Se3和Bi2Te3的层状各向异性晶体结构特点,我们提出和发展了拓扑绝缘体二维纳米结构的范德华外延(van der Waals epitaxy)生长方法,35,47,48,57通过对生长基底种类、基底温度、载气流量、粉源温度、压强等生长条件进行设计和优化,在不同基底(石墨烯、云母)上外延生长了高质量的少层拓扑绝缘体二维纳米结构,35,48,57实现层数、尺寸、定点与定向的控制,47并对少层拓扑绝缘体纳米结构进行系统的谱学与电学测量,24,35,48,49还对其在柔性透明导电薄膜上的应用进行了初步探索.57本文将对我们在拓扑绝缘体二维纳米结构的生长与器件等方面的成果进行归纳和总结,并对拓扑绝缘体未来的研究方向、实际应用前景进行展望.2拓扑绝缘体二维纳米材料的范德华外延层状的Bi2X3(X=Se,Te)是典型的三维拓扑绝缘体,其晶体结构属于D53d(R3m)为斜方晶系,沿着c 轴方向可视为层状六面体结构(图1C),59每层包括X-Bi-X-Bi-X(X=Se,Te)五个原子层(quintuple layer, QL),每QL的层厚约1nm.层内为强的共价键合,而层间为相对较弱的范德华相互作用.每层的上下表面为饱和键合的Se或Te,而层的边侧存在大量悬挂键.作为一种独特的气相沉积技术,范德华外延利用外延层和基底之间范德华力或静电力弱相互作用,生长高质量层状材料的外延技术(图2A).60,61范德华外延无需外延层与基底成键,外延层的应变能快速和有效的驰豫可有效减少外延层和基底晶格失配的影响,尤其适用于与基底晶格失配度大的层状结构的生长.许多二维层状晶体材料具有各向异性结构,层内是很强的共价结合,而层间为较弱的范德华相互作用;表面不含悬挂键,呈化学惰性,而边侧存在大量化学活性的悬挂键.62-65因此,这种各向异性成键特性决定了层内的生长速度远大于层间生长速度,理论上可以通过范德华外延的方法逐层生长高质量、层数可控的二维晶体材料.范德华外延基底的表面物理化学性质对二维外延层的生长有重要影响.我们在非晶态SiO2基底上的生长结果表明,49基底上表面悬挂键的存在制约着大面积超薄的拓扑绝缘体二维纳米材料的生长.在SiO2基底上只能得到3层以上、取向不一致的Bi2X3(X=Se,Te)二维纳米薄片,横向尺寸最大约为20µm.表面化学惰性的层状单晶基底有助于制备2426李辉等:拓扑绝缘体二维纳米结构与器件No.10取向一致、大面积、高结晶质量、厚度达单层的拓扑绝缘体二维纳米材料.我们发现表面原子级平整、化学惰性的层状石墨烯和云母是理想的范德华外延基底,47,48,57可实现厚度可控、尺寸可控的高结晶质量的少层至单层拓扑绝缘体二维纳米结构和大面积薄膜的范德华外延,并首次实现了拓扑绝缘体二维纳米结构均匀阵列的定向与定点生长.47如图2B所示,在导电基底石墨烯上生长的三角形或六边形Bi 2Se 3纳米薄片定向排列.由于石墨烯表面的褶皱或缺陷等影响,少数纳米薄片的取向有一定的角度偏移.纳米薄片具有高的结晶质量,厚度均一、可达单层,可覆盖石墨烯整个畴区.在绝缘的云母基底上,范德华外延法制备的三角形或六边形Bi 2Se 3二维纳米薄片的取向完全一致(图2C),厚度均一,横向尺寸在几个到几十微米之间.通过精确控制生长条件,降低Bi 2X 3在基底上的成核密度和体系蒸气分压,可进一步增加纳米薄片的侧向尺寸.目前,单一厚度的Bi 2Te 3二维纳米单晶薄片的最大尺寸可达0.1mm (图2(E,F)),远大于用机械剥离、液相剥离及化学合成等方法制备的样品尺寸.进一步控制生长条件,可以在云母基底上外延得到Bi 2X 3的二维纳米薄膜.图2D 为约10nm 厚的Bi 2Se 3纳米薄膜的典型光学照片,表明整个纳米薄膜的厚度较为均一,而其表面上有取向一致的三角形或者六方形纳米岛状结构.拓扑绝缘体二维纳米阵列单晶的定向与定点控制生长有助于生长机理的探索和纳米器件的批量构建.在新鲜剥离、平整的云母表面上,拓扑绝缘体Bi 2X 3的成核具有随机性;而通过人为控制云母基底上的成核位点,将促使Bi 2X 3纳米结构的定点生长.因此,我们巧妙地利用“掩模版”和“等离子体刻蚀”选择性处理云母基底,控制成核位点,实现了拓扑绝缘体Bi 2X 3单晶纳米结构的定点控制生长.47我们首先设计各种形状的光刻模板,通过标准光刻方法,把光刻模板上的图形复制到事先在云母表面旋涂的聚甲基丙烯酸甲酯(PMMA)掩膜上,或者把铜网直接覆盖在云母表面,用氧等离子体对暴露的云母基底刻蚀,除去PMMA 或铜网掩膜版,进行Bi 2X 3二维纳米材料的生长.氧等离子体刻蚀后的云母表面形貌和化学组成发生一定的变化,66破坏了范德华外延生长的条件,而没有被刻蚀处理的云母表面区域仍然可以进行范德华外延生长,从而实现定点生长.图3A 和3B 分别显示了5×7和3×3Bi 2Se 3纳米薄片阵列定点生长的光学照片.图3C 和3D 显示了云母基底上Bi 2Te 3纳米薄片大面积阵列的光学照片和相应的AFM 高度成像.在绝缘透明的云母基底上大面积、高质量的拓扑绝缘体二维纳米结构生长的实现将为光谱测量、器件加工与电学测量提供很好的材料基础,而定点定向与层数的精确控制生长的实现将为速度更快、能耗更低的拓扑绝缘体纳电子图2(A)范德华外延示意图;(B)石墨烯上范德华外延生长的Bi 2Se 3纳米薄片的SEM 照片;(C)云母基底上范德华外延生长的Bi 2Se 3纳米薄片阵列的透过模式光学照片;(D)云母基底上外延生长的Bi 2Se 3纳米薄膜的透过模式光学照片,圆圈中的白色部分为云母基底;(E,F)云母基底上外延生长得到的厚度为6QL 、大尺寸单晶Bi 2Te 3纳米薄片的透过模式光学照片和AFM 像Fig.2(A)Scheme diagram of van der Waals epitaxy;(B)SEM image of Bi 2Se 3epitaxy on grapheme;(C)typical transmission-mode optical microscopy image of nanoplate arrays of Bi 2Se 3on transparent mica substrates;(D)typical transmission-mode optical microscopy image of large-area,few-layer Bi 2Se 3nanosheets grown on a mica substrate,the blank mica substrate is indicated by the black circle;(E,F)optical image and the corresponding AFM image of large-size Bi 2Te 3nanoplate single crystal with 6QL inthickness grown on micaSEM:scanning electron microscopy,OM:optical microscopy,AFM:atomic force microscopy,QL:quintuple layer.Reproduced from Refs.47,48,57.Copyright ©2012Nature Publishing Group,2010and 2012American Chemical Society.2427Acta Phys.⁃Chim.Sin.2012V ol.28器件的批量构建提供契机.3拓扑绝缘体二维纳米材料的谱学研究3.1角分辨光电子能谱拓扑绝缘体表面态的检测是研究拓扑绝缘体的新奇物性和制备拓扑绝缘体电子学器件的前提.角分辨光电子能谱(ARPES)是利用光电效应研究固体的电子结构的表面分析技术,即通过高能光子对材料的电子进行激发,测量激发电子的能量和动量,得到电子的能带结构,并同时测量费米能级附近电子的能量、运动方向和散射性质.目前,ARPES 是研究晶体表面电子结构,如能带、费米面以及多体相互作用的重要工具,也是探测拓扑绝缘体的表面态最直接最有效的实验手段之一.67拓扑绝缘体Bi 2Se 3、Bi 2Te 3和Sb 2Te 3的狄拉克锥形的表面电子结构已经相继被ARPES 直接观察到.我们与斯坦福大学的沈志勋教授小组、牛津大学的陈宇林博士合作,利用基于同步辐射光源的ARPES,研究了在管式炉CVD 系统中制备的Bi 2Se 3、Bi 2Te 3等二维纳米薄片的电子能带结构.47,57ARPES 结果表明,在室温大气下放置相当一段时间后,厚度约为10nm 的Bi 2Se 3和Bi 2Te 3二维纳米薄片仍然具有拓扑绝缘体的狄拉克表面电子能带结构的鲜明特征(图4(A,B)),这说明拓扑表面态具有很好稳定性.二维纳米薄片的费米能级与体态导带能级相交,表现为明显的电子掺杂.在体态导带区域,分布着与表面态共存的额外的量子阱态,可能是生长时存在缺陷或者暴露空气掺杂引起的.我们分析约10nm 厚的Bi 2Se 3二维纳米薄片的ARPES 数据,发现表面态与体态的载流子数目已基本一致.这一结果表明,由于纳米薄片具有大的比表面积,其体态载流子对样品整体导电性的贡献减少,而表面态载流子的贡献增大;随着厚度的减小,表面态的贡献将占主导作用.3.2拉曼光谱在研究固体样品的能带结构和准粒子动力学方面,光谱检测与ARPES 有一定互补性.光谱响应能探测带间跃迁,还能探测其它任何能够和光耦合的集体激发如声子的响应.其中,振动光谱法作为微细结构变化的灵敏探针,是揭示新型低维量子材图4(A)ARPES 测量的云母基底上Bi 2Se 3纳米薄片在Κ-Γ-Κ方向的能带结构图,Bi 2Se 3能带结构由导带(CB)和价带(VB)之间直接带隙的体态和具有Dirac 锥结构的表面电子态(SS)组成;(B)在特定结合能下,以k x 和k y 为函数的能带结构等能量图Fig.4(A)Electronic band dispersion along the Κ-Γ-Κdirection of large-scale Bi 2Se 3nanoplate aggregates grown on a mica substrate measured by ARPES.A direct band gap between the conduction band (CB)and valence band (VB)and Dirac-cone-typed surface state (SS)were identified;(B)constant-energy contour images of the band structure as functions of k x and k y at certainbinding energiesReproduced from Ref.47,Copyright ©2012AmericanChemicalSociety.图3(A)云母基底上定点生长的5×7圆形Bi 2Se 3纳米薄片阵列光学照片;(B)云母基底上定点生长的3×3三角形Bi 2Se 3纳米薄片阵列光学照片;(C)云母基底上定点生长的11×14Bi 2Te 3纳米薄片阵列的光学照片;(D)图C 虚线方形框中2×2Bi 2Te 3纳米薄片相应的AFM 像及其高度像Fig.3Optical microscopy images of (A)the 5×7round and (B)3×3triangular Bi 2Se 3nanoplate arrays on mica;(C)optical microscopy image of 11×14Bi 2Te 3nanoplate array on mica;(D)corresponding AFM image and high profile of the 2×2Bi 2Te 3nanoplate array shown in thedashed black box of (C)Reproduced from Ref.47,Copyright ©2012AmericanChemical Society.2428。
拓扑量子材料光电探测器研究进展
1 引 言
光电探测器作为现代光电子系统的核心元件 目前已广泛应用于光学成像、信息通讯、生物医 疗等众多领域[1-3],对军事国防和国民经济的发展 具有重要的推动作用。高性能的光电探测器离不 开高质量的光敏感材料,目前商业化的光电探测 器主要是由 Si 基、Ge 基、InGaAs、HgCdTe 等无机 半导体材料构成,但它们也存在着诸如探测能力 不足、造价昂贵、制备工艺复杂苛刻等不足。此 外,受光敏材料带隙限制,传统半导体材料的光电 探测能力往往只能覆盖一定波长区域,尤其是在 中远红外及太赫兹波段缺乏新颖高效的光敏材料。
在线阅读 View online: https:///10.37188/CO.2020-0096
您可能感兴趣的其他文章 Articles you may be interested in
基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究 Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction 中国光学. 2019, 12(5): 1057 https:///10.3788/CO.20191205.1057 新型二维材料在固体激光器中的应用研究进展 Advances in new two-dimensional materials and its application in solid-state lasers 中国光学. 2018, 11(1): 18 https:///10.3788/CO.20181101.0018 紫外增强硅基成像探测器进展 Silicon-based ultraviolet photodetection: progress and prospects 中国光学. 2019, 12(1): 19 https:///10.3788/CO.20191201.0019 集成PIN光敏元的CMOS探测器光电响应特性研究 Study on the photo response of a CMOS sensor integrated with PIN photodiodes 中国光学. 2019, 12(5): 1076 https:///10.3788/CO.20191205.1076 基于太赫兹量子级联激光器的实时成像研究进展 Progress in real-time imaging based on terahertz quantum-cascade lasers 中国光学. 2017, 10(1): 68 https:///10.3788/CO.20171001.0068 量子点液晶显示背光技术 Advances and prospects in quantum dots based backlights 中国光学. 2017, 10(5): 666 https:///10.3788/CO.20171005.0666
物理学英语词汇[整理版]
物理学英语词汇[整理版]一、基础物理学词汇1. 物理量(Physical quantity):描述物体性质和状态的量,如长度、质量、时间等。
2. 力(Force):作用于物体,使物体发生形变或改变运动状态的量。
3. 质量(Mass):物体所含物质的多少,是物体惯性大小的量度。
4. 重力(Gravity):地球对物体的吸引力,使物体受到向地心的作用力。
5. 速度(Velocity):物体在单位时间内移动的距离,具有大小和方向。
6. 加速度(Acceleration):物体速度变化的快慢,单位时间内速度的变化量。
7. 动能(Kinetic energy):物体由于运动而具有的能量。
8. 势能(Potential energy):物体由于位置关系而具有的能量。
9. 功(Work):力在物体上产生位移时所做的功。
10. 功率(Power):单位时间内完成的功,表示做功的快慢。
二、热学词汇1. 温度(Temperature):表示物体冷热程度的物理量。
2. 热量(Heat):物体间因温度差异而传递的能量。
3. 热传导(Thermal conduction):热量在物体内部从高温部分向低温部分传递的过程。
4. 热膨胀(Thermal expansion):物体受热时体积增大的现象。
5. 热容量(Heat capacity):物体吸收或释放热量时,温度变化的能力。
6. 热力学(Thermodynamics):研究热现象及其规律的物理学分支。
三、电磁学词汇1. 电荷(Electric charge):物体带有的电性质,分为正电荷和负电荷。
2. 电流(Electric current):电荷在单位时间内通过导体截面的量。
3. 电压(Voltage):电场力在单位电荷上所做的功,表示电势差。
4. 电阻(Resistance):导体对电流阻碍作用的大小。
5. 电容(Capacitance):电容器存储电荷的能力。
6. 电感(Inductance):线圈产生磁场的能力。
拓扑绝缘体.本科毕业论文
本科毕业论文〔本科毕业设计题目:新型拓扑绝缘材料的研究摘要拓扑绝缘体是一种新的量子物态,为近几年来凝聚态物理学的重要科学前沿之一,已经引起的巨大的研究热潮。
拓扑绝缘体具有新奇的性质,虽然与普通绝缘体一样具有能隙,但拓扑性质不同,在自旋一轨道耦合作用下,在其外表或与普通绝缘体的界面上会出现无能隙、自旋劈裂且具有线性色散关系的外表/界面态。
这些态受时间反演对称性保护,不会受到杂质和无序的影响,由无质量的狄拉克(Dirac)方程所描述。
从广义上来说,拓扑绝缘体可以分为两大类:一类是破坏时间反演的量子霍尔体系,另一类是新近发现的时间反演不变的拓扑绝缘体,这些材料的奇特物理性质存在着很好的应用前景。
理论上预言,拓扑绝缘体和磁性材料或超导材料的界面,还可能发现新的物质相和预言的Majorana费米子,它们在未来的自旋电子学和量子计算中将会有重要应用。
拓扑绝缘体还与近年的研究热点如量子霍尔效应、量子自旋霍尔效应等领域紧密相连,其根本特征都是利用物质中电子能带的拓扑性质来实现各种新奇的物理性质。
关键词:拓扑绝缘体,量子霍尔效应,量子自旋霍尔效应,Majorana费米子AbstractIn recent years, one of the important frontiers in condensed matter physics, topological insulators are a new quantum state, which has attract many researchers attention. Topological insulators show some novel properties, although normal insulator has the same energy gap, but topological properties are different. Under the action of spin-orbit coupling interaction, on the surface or or with normal insulator interface will appear gapless, spin-splitting and with the linear dispersion relation of surface or interface states. These states are conserved by the time reversal symmetry and are not affected by the effect of the impurities and disorder, which is described by the massless Dirac equation. Broadly defined, topological insulators can be separated into two categories: a class is destroy time reversal of the quantum Hall system, another kind is the newly discovered time reversal invariant topological insulators, peculiar physical properties of these materials exist very good application prospect. Theoretically predicted, the interface of topological insulators and magnetic or superconducting material, may also find new material phase and the prophecy of Majorana fermion, they will have important applications in the future spintronics and quantum computing . Topological insulators also are closely linked with the research hotspot in recent years, such as the quantum Hall effect, quantum spin Hall effect and other fields. Its basic characteristics are to achieve a variety of novel physical properties by using the topological property of the material of the electronic band.Keywords:Topological insulator;quantum hall effect;quantum spin-Hall effect;Majorana fermion目录引言 (1)第一章拓扑绝缘体简介 (2)1.1 绝缘体、导体和拓扑绝缘 (2)1.2 二维拓扑绝缘体 (3)1.3三维拓扑绝缘体 (3)第二章拓扑绝缘体的研究进展与现状 (5)2.1拓扑绝缘体研究进展 (5)2.2拓扑绝缘体的研究现状 (5)第三章拓扑绝缘体材料的制备方法与特性 (7)3.1 拓扑绝缘体Bi Se的结构 (7)233.2 拓扑绝缘体的制备Bi Se的制备 (8)233.3 SnTe拓扑晶态绝缘体制备 (8)3.4拓扑绝缘体的特性 (9)结论 (10)参考文献 (11)谢辞 (13)引言拓扑绝缘体是一种新的量子物态,为近几年来凝聚态物理学的重要科学前沿之一,已经引起的巨大的研究热潮。
凝聚态物理中的拓扑量子物态与信息处理
图1量子霍尔效应,横轴为磁场,左纵轴上为霍尔电阻Rxy,左纵轴下为纵向电阻Rxx,箭头标记为填充因子。
散。
这就好比在一条没有任何交通标识的公路上,运行方向各异的车辆最终会拥堵到一起,混乱不堪。
那么有没有办法为电子建立相应的“电子高速公路”?在电子高速公路上,不同方向的电子行走在自己的通道里,空间上互不干涉,那么一定会大大降低由于电子碰撞带来的热损耗。
随着半导体技术的发展,在金属氧化物半导体场效应图3 拓扑绝缘体中自旋极化的载流子输运通道示意图 [图出自:Science 318,766-770(2007)]【物理学家·名人名言】科学考两条腿走路,一是理论,一是实验。
密立根扑保护这一全新特性引入器件设计领域(图5),会带来能耗、性能等方面的巨大突破。
然而,尽管斯格明子作为信息载体所需要的写入、读取等操作都已独立在实验中得到实现,但要在同一器件实现这些关键操作还很困难,较为极端的实验条件离应用还有不小距离。
但我们仍然相信,斯格明子会像巨磁阻效应一样,给磁存储技术带来新的变革。
2019年谷歌在《自然》杂志上宣称他们的量子计算机已经实现了量子霸权(quantum supremacy)。
在这篇论文避免了单个信息存储后期的复杂度随数量的增加而增加;其次,产生分数量子霍尔效应的工艺来源于半导体异质结,与现有的硅半导体工艺能够较好地兼容。
因此5/2子霍尔态一直被认为是最有可能第一个实现拓扑量子计算的体系。
近年来,在高压调控的拓扑绝缘体和拓扑超导体异质结界面的研究,以及在量子线等人工结构中模拟非阿贝尔图 4 斯格明子和斯格明子晶格图 5 斯格明子赛道存储器件示意图图6 谷歌发布54比特sycamore计算机。
拓扑绝缘体简介
拓扑绝缘体简介作者:吕衍凤, 陈曦, 薛其坤, Lü Yanfeng, Chen Xi, Xue Qikun作者单位:低维量子物理国家重点实验室,清华大学物理系,北京100084刊名:物理与工程英文刊名:Physics and Engineering年,卷(期):2012,22(1)参考文献(22条)1.E.H.Hall查看详情[外文期刊] 18792.K.v.Klitzing;G.Dorda;M.Pepper查看详情[外文期刊] 19803.D.J.Thouless;M.Kohmoto;M.P.Nightingale;M.den Nijs查看详情[外文期刊] 19824.M.Z.Hasan;C.L.Kane查看详情 20105.X.-L.Qi;S.-C.Zhang查看详情 20106.C.L.Kane;E.J.Mele查看详情[外文期刊] 20057.B.A.Bernevig;T.L.Hughes;S.-C.Zhang Quantum spin Hall effect and topological phase transition in HgTe quantum wells[外文期刊] 2006(5806)8.M.K(o)nig;S.Wiedmann;C.Brune;A.Roth,H.Buhmann,L.W.Molenkamp,X.-L.Qi,S.-C.Zhang Quantum Spin Hall Insulator State in HgTe Quantum Wells[外文期刊] 2007(5851)9.L.Fu;C.L.Kane;E.J.Mele查看详情[外文期刊] 200710.D.Hsieh;D.Qian;L.Wray;Y.Xia,Y.S.Hor,R.J.Cava,M.Z.Hasan A topological Dirac insulator in a quantum spin Hall phase.[外文期刊] 2008(7190)11.D.Hsieh;Y.Xia;L.Wray;D.Qian,A.Pal,J.H.Dil,J.Osterwalder,F.Meier,G.Bihlmayer,C.L.Kane,Y.S.Hor,R.J.Cav a,M.Z.Hasan查看详情 200912.H.J.Zhang;C.X.Liu;X.L.Qi;X.Dai,Z.Fang,S.-C.Zhang查看详情 200913.Y.Xia;D.Qian;D.Hsieh;L.Wray,A.Pal,H.Lin,A.Bansil,D.Grauer,Y.S.Hor,R.J.Cava,M.Z.Hasan查看详情[外文期刊] 200914.J.Moore查看详情 200915.Y.L.Chen;J.G.Analytis;J.-H.Chu;Z.K.Liu,S.-K.Mo,X.L.Qi,H.J.Zhang,D.H.Lu,X.Dai,Z.Fang,S.C.Zhang,I.R.Fisher,Z.Hussain and Z.X.Shen查看详情 2009 16.Y.Y.Li;G.Wang;X.G.Zhu;M.H.Liu,C.Ye,X.Chen,Y.Y.Wang,K.He,L.L.Wang,X.C.Ma,H.J.Zhang,X.Dai,Z.Fang,X.C.X ie,Y.Liu,X.L.Qi,J.F.Jia,S.C.Zhang and Q.K.Xue查看详情 201017.T.Zhang;P.Cheng;X.Chen;J.F.Jia,X.C.Ma,K.He,L.L.Wang,H.J.Zhang,X.Dai,Z.Fang,X.C.Xie and Q.K.Xue查看详情 200918.P.Cheng;C.L.Song;T.Zhang;Y.Y.Zhang,Y.L.Wang,J.F.Jia,J.Wang,Y.Y.Wang,B.F.Zhu,X.Chen,K.He,L.L.Wang,X.D ai,Z.Fang,X.C.Xie,X.L.Qi,C.X.Liu,S.C.Zhang and Q.K.Xue查看详情[外文期刊] 201019.R.Yu;W.Zhang;H.J.Zhang;S.C.Zhang,X.Dai Z.Fang查看详情[外文期刊] 2010regime[外文期刊] 2008(1)21.L.Fu;C.L.Kane查看详情[外文期刊] 200922.J.C.Y.Teo;C.L.Kane查看详情[外文期刊] 2009引用本文格式:吕衍凤.陈曦.薛其坤.Lü Yanfeng.Chen Xi.Xue Qikun拓扑绝缘体简介[期刊论文]-物理与工程2012(1)。
拓扑绝缘体与量子反常霍尔效应_何珂
摘要
量子霍尔效应是一种可以在宏观尺度出现的量子现象 , 由二维电子系统在强磁场下
关键词
量子反常霍尔效应 量子霍尔效应 拓扑绝缘体 磁性掺杂
所具有的独特拓扑性质所引起. 长期以来人们一直希望能够实现不需外磁场的量子霍尔效 应 , 以便将其应用于低能耗电学器件. 磁性拓扑绝缘体薄膜可能具有的量子化的反常霍尔 效应即是一种可以在零磁场下出现的量子霍尔效应 . 本文介绍了拓扑绝缘体和量子反常霍 尔效应的概念发展及量子反常霍尔效应如何在磁性掺杂拓扑绝缘体中实验实现 , 并探讨了 量子反常霍尔效应在ห้องสมุดไป่ตู้能耗器件方面的应用前景.
[6] 2
图 2 拓扑边缘态/表面态示意图
(a) 量子霍尔效应/量子反常霍尔效应的手性边缘态; (b) 量子自旋霍尔 效应的螺旋性边缘态; (c) 三维拓扑绝缘体的狄拉克表面态. (a), (b)中 长箭头代表电流方向, 短箭头代表自旋方向; (c)中箭头代表自旋方向
这个模型基于单原子层石墨的二维六角蜂窝型晶格 , 也就是后来人们所熟知的石墨烯 . 石墨烯具有在动 量空间呈狄拉克锥形色散关系的无能隙电子能带结 构 . Haldane 在石墨烯晶格中引入一个假想的周期磁 场 (但宏观没有净磁场 ), 这会导致其能带的狄拉克点 处打开一个能隙 , 从而转变成一个绝缘体 . 这个绝缘 体具有和 = 1 的量子霍尔系统类似的拓扑性质 , 因 此可以在没有外加磁场的情况下显示量子霍尔效应 . Haldane 模型是个离现实很远的模型 : 在当时单层石 墨烯还无法在实验上实现 , 这个工作也没有提出如 何在石墨烯中引入周期磁场 . 但是它首次使人们认 识到不依赖外磁场的拓扑量子材料存在的可能性 , 也为后来拓扑绝缘体和量子反常霍尔效应的很多重 要的理论发展奠定了基础 . 实际上有一种霍尔效应可以在没有外磁场的情 况下存在 , 这就是反常霍尔效应 (anomalous Hall effect, AHE)[7,8]. 在正常霍尔效应发现后不久 , 霍尔发 现铁磁材料的霍尔电阻与外磁场强度依赖关系呈非 线性 : 在低场下具有很大的斜率 . 这种低场下很强的 霍尔效应反映着铁磁材料的磁化强度随磁场的变化 , 这就是反常霍尔效应 . 如果铁磁薄膜具有垂直于膜 面的易磁化轴 , 外磁场为零时薄膜仍可以保持垂直 膜面的自发磁化 , 这样也可以在零磁场下测到霍尔 电阻 . 如果能够设法使反常量子霍尔效应量子化 , 也 就意味着可以在没有外磁场的情况下实现量子霍尔 效应 . 这种由铁磁材料自发磁化引起的不需要外磁 场的量子霍尔效应被称为量子反常霍尔效应 (quantum anomalous Hall effect, QAHE)(见图 1(b)).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0805.3202v 1 [q u a n t -p h ] 21 M a y 2008Topological cluster state quantum computingAustin G.Fowler 1and Kovid Goyal 21Institute for Quantum Computing,University of Waterloo,Waterloo,ON,N2L 3G1,CANADA and 2Institute for Quantum Information,California Institute of Technology,Pasadena,CA 91125,USA(Dated:May 21,2008)The quantum computing scheme described in [1,2],when viewed as a cluster state computation,features a 3-D cluster state,novel adjustable strength error correction capable of correcting general errors through the correction of Z errors only,a threshold error rate approaching 1%and low overhead arbitrarily long-range logical gates.In this work,we review the scheme in detail framing discussion solely in terms of the required 3-D cluster state and its stabilizers.I.INTRODUCTIONClassical computers manipulate bits that can be ex-clusively 0or 1.Quantum computers manipulate quan-tum bits (qubits)that can be placed in arbitrary su-perpositions α|0 +β|1 and entangled with one another (|00 +|11 )/√FIG.1:A3-D18qubit cluster state.This cell is tiled in3-D. mal error chains that begin and end on primal bound-aries are thus undetectable and have the potential to cause logical errors as discussed in Section III.Fig.3 contains examples of primal error chains connected to primal boundaries.Fig.3also contains dual boundaries —lattice boundaries that pass through the centers of primal cells.A primal error chain connected to a dual boundary is always detectable as it changes the parity of the boundary cell containing the endpoint.Fig.4shows eight primal cells and the location of one complete dual cell.Dual cells are centered on the corners of primal cells.Given an unlabeled lattice,the choice of which cells to call primal and which to call dual is completely arbitrary.Dual cells are used in an identical manner to primal cells,meaning they also detect the pres-ence of Z or M X errors on their face qubits.Fig.5shows a dual error chain starting and ending on dual bound-aries.In an analogous manner to primal error chains, the parity of the dual boundary cells containing the chain endpoints remains unchanged.Discussion of when such undetectable errors are dangerous will again be deferred until Section III.Primal and dual error correction occur independent of one another.At this stage it may seem strange that both appear to only focus on Z and M X errors.An X error that occurs just before an M X measurement has no effect on the measurement result or the underlying cluster state after the measurement.An X error that occurs during the preparation of the cluster state,as shown in Fig.6, is equivalent to one or more Z errors on the neighboring qubits as well as an X error just before measurement.As before,we can ignore the X error,and the error correc-tion scheme deals with Z errors.We are now in a position to describe how correction proceeds.Note that only the classical measurement re-sults will be corrected,not any remaining unmeasured qubits.Without loss of generality,let us focus on primal errors.The procedure for correcting dual errors is anal-ogous.Suppose we have a connected lattice of(primal)cells with both primal and dual boundaries.Identify one dimension of the lattice as simulated time.Suppose we measure all qubits in the lattice up to some given sim-ulated time t in the X basis and classically determine which cells in the measured region have odd parity.We need an algorithm to match odd parity cells with each other and with primal boundaries such that there is a high probability the matching corresponds to the errors that caused the odd parity cells.The algorithm we will use is called the minimum weight matching algorithm [15].The minimum weight matching algorithm takes a weighted graph with an even number of vertices and pro-duces a spanning list of disjoint edges with the property that no other list has lower total weight.The cells with odd parity become half the vertices we will feed into the algorithm.For every vertex in this list we add a vertex corresponding to the nearest point on the nearest primal boundary.We make an almost complete graph of these vertices according to the following rules:all boundary vertices are connected to all other boundary vertices with edge weight zero,odd parity cell vertices are connected to all odd parity cell vertices with edge weight equal to the sum of the absolute value of the differences of their three coordinates measured in cells,and odd parity cell vertices are connected to their nearest boundary vertex with edge weight equal to the number of cells that need to be passed through to reach the boundary plus one. When this graph is processed by the minimum weight matching algorithm,the resulting edge list is highly likely to enable correction of the odd parity cells in a manner that does not introduce logical errors.The classical mea-surement results along an arbitrary path connecting the relevant pairs of cells are bit-flipped resulting in all mea-sured cells having even parity.Note that in a large com-putation such corrective bit-flips would only be applied between pairs of vertices such that at least one vertex of the pair is located at a time earlier than some t−t c where t c depends on the size of the computation.This is to ensure that odd parity cells close to t have a chance to be matched with appropriate partner cell,which may not yet have been measured.III.LOGICAL INITIALIZATION ANDMEASUREMENTLogical qubits can be introduced into the3-D cluster state by making appropriate Z measurements.A con-nected region of the3-D cluster state measured in the Z basis is called a defect.Defects must have a boundary of a single type.Fig.7a shows an example of a minimum volume primal defect.Fig.7b shows a slightly larger example intended to emphasize that all qubits within the boundary of the defect are measured in the Z ba-sis.Note that in the absence of errors the parity of X measurements on all face qubits of a closed boundary is even.This last observation implies that the error correc-FIG.2:A cluster state comprised of64cells of the form shown in Fig.1.Three different Z or M X error chains of length1,2 and3are indicated by thick lines and enlarged qubits.Cells with odd parity are indicated with thick bounding lines.Most of the qubits in the cluster state have not been drawn for clarity.tion scheme can also cope in a natural manner with lostqubits—the parity of any closed boundary around any lost qubits can be checked instead of the individual cells.A primal qubit is a pair of primal defects typically arranged parallel to one another in the direction of sim-ulated time as shown in Fig.8.Note that we define a single time step to correspond to the measurement of asingle layer of the cluster state.We define a primal qubit to be in the|+L state if in a single even time step it is in the simultaneous+1eigenstate of each of the two operators consisting of a ring of single qubit Z operatorsencircling and on the boundary of each defect.Similarly, the simultaneous−1eigenstate of these two boundary operators is defined to be|−L .There is some redundancy in the way we have defined|+L and|−L .It would have been sufficient to focus on a single ring of Z operators around a single defect.Indeed, applying both of these Z rings simultaneously is the log-ical identity operation,with X L being just one of these rings,although it does not matter which ring.For later convenience,when we do not wish to specify which ring, we will use the notation X L.When we need to discuss exactly what operators are being applied,we will write either X1or X2.Furthermore,we choose the logical op-erators to lie on the boundary of the defect purely for ease of definition.While we must choose specific logical oper-ators,not a class of topologically equivalent operators as in general different operators have different eigenvalues since the system does not have any stabilizers consisting solely of Z terms,we could certainly have chosen different specific operators.Primal qubits can be initialized to|+L up to byprod-uct operators via a measurement pattern similar to that shown in Fig.9.Measuring the indicated qubits in the X basis leaves the defects in either the+1or−1eigenstate of X1and X2depending on the parity of the associated X measurements.If we denote the parity(or sum)of the X measurements associated with X1by s1,the state of the logical qubit after initialization will be Z s11Z s22|+L , with Z L=Z1Z2and{X1,Z1}={X2,Z2}=0.The operators Z1and Z2,while not physical unless at least one additional primal boundary is present in the system, are useful for keeping track of byproduct operators af-fecting a single defect.If an additional primal boundary is present,these operators can be represented by chains of Z starting on each defect and ending on this additionalFIG.3:A cluster state with both primal boundaries and dual boundaries,which consist of primal cells cut in half.Examples of the observable parity effects of primal error chains connected to the two types of boundaries are included with odd parity cells indicated by thick boundinglines.FIG.4:Location of a dual cell(shaded)relative to its sur-rounding primal cells.A dualcell contains exactly the ar-rangement of qubits shown in Fig.1.boundary.Note that in the absence of errors all surfaces of X measurements bounded by either X1or X2will have the same parity,as the X stabilizer associated with the six faces of a single cell can be used to arbitrarily deform FIG.5:An undetectable dual error chain connecting two dual boundaries.a surface without changing its parity.This implies that the initialization procedure is fault-tolerant when used in conjunction with the error correction described in Sec-tion II.Primal qubits can also be initialized to|0L up to byproduct operators via a measurement pattern similar5+++++FIG.6:Quantum circuit showing how X errors occurring at any point during the preparation of the cluster state are equivalent to potentially multiple Z errors and an X error just before measurement in the X basis,which can be ignored. to that shown in Fig.10.Note that Z L must be cho-sen.It must be a chain of Z in(preferably just one)odd time slice connecting two sections of defect,but there is still considerable freedom within this definition.Further details of the significance of this choice will be given in Section V.The parity s of the X and Z measurements in time slices earlier than the chosen logical operator de-termines the byproduct operator X s L.As drawn,Fig.10is not fault-tolerant.The defect is too narrow to provide any information about errors on the internal qubits measured in the Z basis.Fig.11 shows a larger defect and examples of odd parityfive sided dual cells resulting from X or M Z errors on qubits inside the defect.In addition to demonstrating that primal qubit initial-ization to|0L can be made fault-tolerant,Fig.11shows how appropriate error information is extracted on the surface of a primal defect to permit dual error correction to continue and vice versa.Furthermore,note that Z measurements deeper inside the defect than the outer-most layer are not used in any part of the computation or error correction procedure and as such their results can be discarded.Dual qubit initialization,expressed in terms of dual cells,looks absolutely identical to primal qubit initial-ization.The only difference lies in the interpretation of what the logical operators mean.Because dual cells can be thought of as primal cells one time step offset,a dual measurement pattern of the form shown in Fig.9initial-izes the dual qubit to|0L .Similarly,a dual measurement pattern of the form shown in Fig.10initializes the dual qubit to|+L .The definitions of all X and Z logical and byproduct operators are also reversed.With logical qubits and logical operators now defined, we can now discuss logical errors.In Fig.9,any chain of primal Z and M X errors connecting the two defects is undetectable and changes the state of the logical qubit from|+L to|−L .To make this unlikely,defects must be kept well separated.In Fig.10,any ring of dual Z and M X errors encircling one of the defects is undetectable and changes the state of the logical qubit from|0L to |1L .To make this unlikely,defects must have a suffi-ciently large perimeter.The situation is similar for dual qubits,with the meaning of the two types of logical errors interchanged.Now that we have initialization,logical measurement follows in a straightforward manner.Figs.9–10,reversed in time can be used to measure the logical operators of the qubit.The parity of the measurement results deter-mines the sign of the eigenvalue of the logical operator. Before concluding this section,a few words are in order to justify the choice of logical operators X L and Z L as atfirst glance they appear to commute.Fig.12contains the stabilizer manipulations necessary to show that in fact Z L X L=−X L Z L.Note the importance of both real and simulated time ordering.IV.STATE INJECTIONWe have discussed logical qubit initialization to states |+L and|0L ,measurement in the X L and Z L bases, logical errors and3-D cluster state error correction.We now turn our attention to state injection,specifically the preparation of logical states|0L +e iθ|1L .We assume familiarity with Theorem1of[6]which we state below without proof.Theorem1Let|φ be a cluster state as shown in Fig.13.Sup-pose that after measuring the middle qubits in some set of bases the n input and output qubits,now collectively in state|ψ ,obey the2n eigenvalue equations(X i)I(UX i U†)O|ψ =(−1)λx,i|ψ(Z i)I(UZ i U†)O|ψ =(−1)λz,i|ψ (1) where U is an n qubit unitary operator,(X i)I is a bit-flip of the i th input qubit,(UX i U†)O is an n qubit unitary op-erator acting on the output qubits,λx,i,λz,i∈{0,1}and 1≤i≤n.Then we can perform computation by start-ing with n qubits in an arbitrary state|ψin instead of the usual cluster state input qubits,creating the remainder of the cluster state as usual and then measuring the middle qubits in the set of bases described above and the input qubits in the X basis.If the results of the X measure-ments are{s i},the output qubits|ψout will then be in the state|ψout =UUΣ|ψin (2) where UΣis a byproduct operator given byUΣ=ni=1Xλz,iiZλx,i+s ii.(3)a.)b.)FIG.7:a.)Primal defect of minimum size created via a single Z measurement. b.)All qubits inside the boundary of larger defects are measured in the Z basis.FIG.8:A primal qubit consisting of two primal defects with X L=X1=X2and Z L indicated.Consider Fig.14.This is very similar to Fig.10but with a single M Z measurement removed(enlarged qubit). We define this single qubit to be our input cluster using the language of Theorem1from[6].Using the language of[2],this qubit is called an S-qubit.Fig.14also shows an output cluster.Qubits inside the two defects,which are measured in the Z basis,and all other qubits,which are measured in the X basis,form the middle cluster. After measuring the middle cluster,we are left with two classes of stabilizers linking either single qubit X on the input cluster X(I)with one of the rings of X operatorson the output cluster X(O)1,X(O)2or single qubit Z on the input cluster Z(I)with the chain of Z operators onthe output cluster Z(O)L.Explicitly,after measuring all middle cluster qubits we are left with the eigenvalue equa-tionsX(I)X(O)1|ψ =(−1)λ1|ψX(I)X(O)2|ψ =(−1)λ2|ψ2FIG.9:Initializing a primal qubit to the|+L state.After the indicated X measurements,the two defects are left in known eigenstates of their associated X L operators,X1and X2,which are both rings of single-qubit Zoperators.FIG.10:Initializing a primal qubit to the|0L state.After the indicated Z and X measurements,the U-shaped defect is left in a known eigenstate of the Z L operator,which is a specific chosen chain of single-qubit Z operators.Z(I)Z(O)L|ψ =(−1)λZ|ψ (4) whereλ1,λ2andλZ denote the appropriate sums of middle qubit measurements.Note that these sums are independent of the precise surface to use to connect the input and output clusters in the absence of errors. Note that,in contrast to Section III,the output X L operators are rings of X on an odd time step not rings of Z on an even time step.When organizing a cluster so that Theorem1applies,the X L operators must be such that measuring them gives information about the under-lying logical state at that point in time.While measuring a ring of Z on an even time step would certainly give in-formation about the underlying logical state,such a ring of measurements would not be fault-tolerant and would furthermore not be consistent with the logical gates de-scribed in Section V.With knowledge of the parity of all X measurements in the surface attached to the ring of X operators indicated in Fig.14,measurement of thefinal ring of X operators gives the parity of the X L operator as defined in Fig.9and does so in a manner that is lo-cally fault-tolerant and consistent with the logical gates we will describe.Keeping all of the above in mind,and denoting the result of measuring the S-qubit in the X basis by s,we can use Theorem1from[6]to infer that the measurement pattern of Fig.14maps the state of the S-qubit to a logical state encoded in two defects via the relation|ψ →XλZ L Zλ1+s1Zλ2+s2|ψL .(5) Note that given the dependence on s,and the close prox-imity of the two defects around the S-qubit,Fig.14is not fault-tolerant.If the S-qubit is prepared in an arbitrary stateα|0 +β|1 before being entangled with its neighboring qubits, an arbitrary logical stateα|0L +β|1L can be obtained. In practice,it is likely that the cluster state will be pre-paredfirst,implying that the S-qubit can only be ro-tated in the Z basis as such rotations commute with the controlled-Z operators used to construct the clus-FIG.11:Three examples of X or M Z errors on qubits measured in the Z basis inside a defect.The leftmost examples are errors on thefirst layer of qubits inside the defect which can be both detected and corrected by determining the parity offive sided dual cells touching the error.The rightmost example is sufficiently deep inside the defect that no nontrivial stabilizers intersect it and therefore the error can be ignored.ter state.Rotation before measurement could be re-placed with measurement in a rotated basis.Either way,this would limit the class of injectable states to (|0 +e iθ|1 )/√2via an S-qubit,up to byproduct operators,measuring the rings of X operators shown in Fig.15a will perform an X L measurement,but measuring the chain of X opera-tors and two Z operators shown in Fig.15b will provide no information about the logical state.Conversely,if the primal qubit was initialized to|0L ,measuring the chain of X operators and two Z operators shown in Fig.15will perform a Z L measurement with the rings of X measure-ments again providing no information about the logical state.This fact cannot be ignored if we wish to calculate the byproduct operators.With the above discussion in mind,consider Fig.16a. This shows appropriate input,middle and output clus-ters for logical qubits initialized to|+L or(|0L + e iθ|1L )/√FIG.12:Anticommutation of primal qubit logical operators X L (ring)and Z L (chain).Multiplying Z L by a ring of face stabilizers yields the second stabilizer configuration.Multi-plying by a ring of X operators completes the demonstration of anticommutation.input qubits middle qubits output qubitsFIG.13:Schematic of three disjoint sets of qubits coupled via an arbitrary network of controlled-Z gates.All middle qubits are initialized to |+ .the parity of the two Z measurements and chain of X measurements.Reversing the definitions of X L and Z L once more,we obtain a logical identity gate of the form|ψL →X λZ +s L Z λ11Z λ22|ψL .Note that the only difference between this mapping and that associated with Fig.16a is the calculation of byproduct operators associatedwitha.)b.)FIG.14:a.)Stabilizer connecting single-qubit Z on the input cluster (enlarged qubit)with Z L on the output cluster. b.)An example of a stabilizer connecting single-qubit X on the input cluster with a ring of X operators on the output cluster.a.)b.)FIG.15:a.)Odd time slice through a primal qubit.b.)Even time slice through a primal qubit.Only one of the indicated measurement patterns will ever give information about the state of a given logical qubit.The state the logical qubit was initialized to determines which pattern.Initial states |+L and (|0L +e iθ|1L )/√2FIG.16: a.)Appropriate input and output clusters and logical operator definitions for a logical qubit initialized to|+L or (|0L +e iθ|1L )/√2.The definitions required to discuss logical CNOT further are shown in Fig.17a.After selecting appropriate input and output clusters based on the state the primal qubit was initialized to and measuring the middle qubits,we are left withZ1d Z1d|ψL =(−1)λZ1d|ψLZ2d Z2d|ψL =(−1)λZ2d|ψLX1p X1p|ψL =(−1)λX1p|ψLX2p X2p|ψL =(−1)λX2p|ψLZ p(Z p⊗Z2d)|ψL =(−1)λZp|ψLX d(X d⊗X1p)|ψL =(−1)λXd|ψL (8) This corresponds to logical CNOT,which we denote by Λdp.Restricting our attention,for the moment,to pri-mal qubits initialized to(|0L +e iθ|1L )/√11s s a.)b.)c.)FIG.17: a.)Logical operator definitions and measurement parities used to discuss logical CNOT.b.)Stabilizer linking X d with X d X 1p that commutes with the X and Z measure-ments on its surface. c.)Similar stabilizer linking Z p with Z 2d Z p .(Z 2d Z p )λX 1p Z λX 1p+λX 2p2p X λZp +s Zp1pZ λXd +s Xd 2dΛdp |ψL(10)Note that calculating byproduct operators depends cru-cially on associating logical operators with specific ringsand chains of physical operators,not topologically equiv-alent classes of rings and chains.Note also that these rings and chains must be chosen such that the output cluster and output logical operators associated with one logical gate become the input cluster and input logical operators of the next logical gate.We do not yet quite have what we need —a logical0L ancilla +Lcontrol intarget inancilla dual a.)b.)M Z M Xcontrol out target outc.)control in control out target intarget out0L ancilla +Lcontrol intarget inancilla dual FIG.18: a.)Circuit comprised of logical gates described in the text that simulates logical CNOT between two primal qubits. b.)Equivalent braiding of defects. c.)Equivalent simplified braiding of defects.CNOT between two primal qubits.Consider Fig.18a [2].This shows how an additional primal and dual an-cilla qubit can be used to simulate logical CNOT between two primal qubits.Essentially,the first CNOT and as-sociated measurement converts the control primal qubit into a dual qubit,the second CNOT performs the neces-sary logical operation and the third CNOT converts the dual qubit back into a primal qubit.Fig.18b shows a braiding of defects equivalent to Fig.18a and a simplified braiding is shown in Fig.18c [2].Note that byproduct operators arising from all three CNOTs as well as the inherent randomness of both logical measurements must be tracked.Note that the discussion of this section does not depend on the direction of simulated time.Provided appropri-ate input and output clusters are tracked along with all measurements,all diagrams in this section can be arbi-trarily deformed,provided the topology is preserved,and arbitrarily oriented with respect to simulated time.VI.CONCLUSIONWe have presented a thorough review of [1,2],dis-cussing how a specific 3-D cluster state can be used to12 perform general error correction despite only detecting Zand M X errors directly and detailing fault-tolerant ini-tialization of|0L and|+L ,Z L and X L measurement,non fault-tolerant preparation of(|0L +e iθ|1L )/√。