人教版九年级上册数学中考真题分类(填空题)专练:第24章 圆的综合(四)
人教版九年级数学上册 第24章 圆 综合训练(含答案)
人教版 九年级数学 第24章 圆 综合训练一、选择题1. 半径为6,圆心角为120°的扇形的面积是( )A . 3πB . 6πC . 9πD . 12π2. 把一个圆形纸片至少对折________次,才可以确定圆心( )A .1B .2C .3D .无数次3. 如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( )A .∠BB .∠C C .∠DEBD .∠D4. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°5. 一元硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大为( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm6. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( )A .60°B .90°C .120°D .180°7. (2019•吉林)如图,在中,所对的圆周角,若为上一点,,则的度数为A .30°B .45°C .55°D .60°8. 如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若⊙AOF =40°,则⊙F 的度数是( )A .20°B .35°C .40° D.55°二、填空题9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为 .10. 如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =________°.11. 如图,边长为1的正方形ABCD 的对角线相交于点O ,以点A 为圆心,以1为半径画圆,则点O ,B ,C ,D 中,点________在⊙A 内,点________在⊙A 上,点________在⊙A 外.O AB 50ACB ∠=︒P AB 55AOP ∠=︒POB ∠12. 如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB ︵上的点D 处,折痕交OA 于点C ,则AD ︵的长为________.13. (2020·玉林)如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD /E /F /处,此时边AD /与对角线AC 重叠,则图中阴影部分的面积是 .14. 如图,在Rt △ABC 中,∠C =90°,BC =3,点O 在AB 上,OB =2,以OB 长为半径的⊙O 与AC 相切于点D ,交BC 于点F ,OE ⊥BC 于点E ,则弦BF 的长为________.三、解答题15. 如图,AB 是⊙O 的直径,弦CD 与AB 相交,D 为AB ︵的中点. (1)求∠ABD 的大小;(2)若AC =6,BD =5 2,求BC 的长.16. 如图,⊙C =90°,以AC 为半径的⊙C 与AB 相交于点D .若AC =3,BC =4,求BD 的长.17. 如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E.求证:AD =BE.18. ⊙2020·⊙⊙⊙⊙⊙⊙⊙O ⊙⊙⊙P ⊙AB ⊙⊙⊙⊙⊙AD ⊙PC ⊙⊙⊙⊙⊙⊙⊙⊙M ⊙BC ⊙⊙⊙AD ⊙PD ⊙⊙⊙⊙E ⊙N ⊙⊙⊙BD ⊙MN ⊙⊙1⊙⊙⊙⊙N ⊙BE ⊙⊙⊙⊙(2)若O 的半径为8,AB 的度数为90 ,求线段MN 的长.人教版九年级数学第24章圆综合训练-答案一、选择题1. 【答案】D【解析】由扇形的面积公式可得:S=120×π×62360=12π.2. 【答案】B3. 【答案】D4. 【答案】C5. 【答案】A[解析] 正六边形外接圆的直径等于正六边形边长的2倍.6. 【答案】D7. 【答案】 B【解析】∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=4 5°,故选B.8. 【答案】B二、填空题9. 【答案】2[解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】40[解析] ∵∠BCD=180°-∠A=125°,∠CBF=∠A+∠E=85°,∴∠F=∠BCD-∠CBF=125°-85°=40°.11. 【答案】O B,D C[解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO =DO.设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x =22(负值已舍去), ∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外. 12. 【答案】5π [解析] 连接OD.由折叠的性质知OB =DB.又∵OB =OD ,∴OD =OB =DB , ∴△OBD 是等边三角形,∴∠BOD =60°,∴∠AOD =50°,∴AD ︵的长=50π·18180=5π.13. 【答案】3π【解析】先观察图中阴影部分的面积应该等于哪几个规则图形面积的和或差,然后再根据公式进行计算.∵六边形ABCDEF 是正六边形 ∴每个内角的度数为180°-3606=120°,且AB =BC ,∴∠F AB =∠E =∠B =120°,∵AB =BC ,∴∠CAB =∠ACB =30°,∵任何正六边形都有一个外接圆,∴四边形ADEF 是正六边形外接圆中的内接四边形且AD 为直径,∴AD =6,∠E +∠F AD =180°,∴∠F AD =60°,∴∠DAC =120°-∠F AD -∠CAB =30°,由旋转的性质得:四边形AD /E /F /≌四边形ADEF ,则图中阴影部分的面积=四边形ADEF 的面积+扇形ADD '的面积-四边形AD /E /F /的面积=扇形ADD '的面积=2306360π⨯=3π;故答案为:3π.14. 【答案】2 [解析] 如图,连接OD.∵OE ⊥BF 于点E ,∴BE =12BF.∵AC 是⊙O 的切线,∴OD ⊥AC ,∴∠ODC =∠C =∠OEC =90°,∴四边形ODCE 是矩形,∴EC =OD =OB =2.又∵BC =3,∴BE =BC -EC =3-2=1,∴BF =2BE =2.三、解答题15. 【答案】解:(1)∵D 为AB ︵的中点,∴AD ︵=BD ︵.∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ABD =∠DAB =45°.(2)由(1)知AD ︵=BD ︵,∴AD =BD =5 2.又∵∠ADB =90°,∴AB =AD2+BD2=10.∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB2-AC2=102-62=8.16. 【答案】解:∵在⊙ABC 中,∠ACB =90°,AC =3,BC =4,∴AB =AC 2+BC 2=32+42=5.如图,过点C 作CE ⊥AB 于点E ,则AD =2AE .∵CE =AC ·BC AB =125,∴在Rt △ACE 中,AE =AC 2-CE 2=32-⎝ ⎛⎭⎪⎫1252=95,∴AD =2AE =2×95=185,∴BD =AB -AD =5-185=75.17. 【答案】证明:如图,连接OC.∵AC ︵=CB ︵,∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E ,∴∠CDO =∠CEO =90°.在△COD 与△COE 中,⎩⎪⎨⎪⎧∠AOC =∠BOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS),∴OD =OE.又∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE.18. 【答案】解:(1)连接AC .∵弧AP=弧PB ,∴∠1=∠2,∠3=∠4∵CP ⊥AD ,∴∠CME =∠CMA =90°∴∠A =∠5,∵∠A =∠B ,∠5=∠6,∴∠6=∠B ,∵∠3=∠4,DN =DN ,∴△DNE ≌△DNB∴EN =BN ,∴N 为BE 的中心.(2)∵弧AB 的度数为90°∴∠AOB =90°∵OA =OB∴AB ==∵AM =ME ,EN =BN∴12MN AB == 【解析】(1)可先证DE =DB ,∠ADP =∠BDP ,根据三线合一可证N 为BE 的中点.(2)利用MN 为△ABE 的中位线,可得AB =2MN ,进而求得MN 的长.。
中考真题九年级数学上册第二十四章圆24
24.4 弧长和扇形面积一.选择题(共20小题)1.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.3.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣4.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.5.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A. 2B.C.πm2D.2πm26.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)π m2B.40π m2C.(30+5)π m2D.55π m28.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣810.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.π C.2πD.π11.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣13.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π14.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π15.圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12π B.15π C.24π D.30π16.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm217.如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π18.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm19.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.1820.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π二.填空题(共10小题)21.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.23.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)24.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.25.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.27.如图,在△ABC中,∠B=30°,∠C=45°,AD是BC边上的高,AB=4cm,分别以B、C 为圆心,以BD、CD为半径画弧,交边AB、AC于点E、F,则图中阴影部分的面积是cm2.28.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.29.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.30.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三.解答题(共5小题)31.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.32.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE 交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).34.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E (1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)35.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.A.8.B.9.A.10.A.11.D.12.A.13.C.14.A.15.B.16.C.17.B.18.A.19.C.20.C.二.填空题(共10小题)21.π.22.2π23.12π.24.﹣.25..26.20.27.(2+2﹣π).28.9.29.π.30..三.解答题(共5小题)31.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.32.解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.33.解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.34.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∴扇形ABG的面积==.35.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.。
人教版 九年级数学 第24章 圆 综合训练(含答案)
人教版九年级数学第24章圆综合训练一、选择题(本大题共10道小题)1. 若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π2. 已知半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.相切或相交3. 如图,在半径为的☉O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4△的内切圆的半径为4. (2019•娄底)如图,边长为23的等边ABCA.1 B3C.2 D.35. 如图,四边形ABCD 是半圆O 的内接四边形,AB 是直径,DC ︵=CB ︵.若∠C =110°,则∠ABC 的度数为( )A .55°B .60°C .65°D .70°6.如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8C .5 2D .5 37. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 38. 以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边长作三角形,则该三角形的面积是()A.38 B.34 C.24 D.289. 甲、乙、丙三个牧民用同样长为l米的铁丝各围一块草地放牧,甲牧民围成面积为S1的圆形草地,乙牧民围成面积为S2的正方形草地,丙牧民围成面积为S3的矩形(不是正方形)草地,则下列结论正确的是()A.S1>S3>S2B.S2>S1>S3C.S3>S1>S2D.S1>S2>S310. 如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定二、填空题(本大题共7道小题)11. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.12. 如图,在矩形ABCD中,AB=6,BC=2.8,⊙O是以AB为直径的圆,则直线CD与⊙O的位置关系是________.13. 如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.14. ⊙O的半径为R,点O到直线l的距离为d,R,d是关于x的方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为________.15. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结16. (2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120 ,点A与点B 的距离为23,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为__________.17. 如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),则圆心P的坐标为________.三、解答题(本大题共4道小题)18. 如图,两个正方形彼此相邻且内接于半圆.若小正方形的面积为16 cm2,求该半圆的半径.19. 如图,已知平面直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A ,B ,C 三点的圆弧所在圆的圆心M 的坐标:(________,________); (2)判断点D(5,-2)与⊙M 的位置关系.20. (2020·内江)如图,AB是⊙O 的直径,C 是⊙O 上一点,OD BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若243DF BC ==,,求线段EF 的长; (3)在(2)的条件下,求阴影部分的面积.21. 如图,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.(1)如图①,当点C运动到点O时,求PT的长;(2)如图②,当点C运动到点A时,连接PO,BT,求证:PO∥BT;(3)如图③,设PT2=y,AC=x,求y与x之间的函数解析式及y的最小值.人教版九年级数学第24章圆综合训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=,得l==3π.故选C.2. 【答案】D[解析] 若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,可知圆心O到直线l的距离小于10,即小于半径,所以直线l与⊙O相交.3. 【答案】C[解析]过点O作OF⊥CD于点F,OG⊥AB于G,连接OB,OD,OE,如图所示,则DF=CF,AG=BG=AB=3,∴EG=AG-AE=2.在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2.∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=.在Rt△ODF中,DF===,∴CD=2DF=2.故选C.4. 【答案】A【解析】设ABC△的内心为O,连接AO、BO,CO的延长线交AB于H,如图,∵ABC △为等边三角形,∴CH 平分BCA ∠,AO 平分BCA ∠,∵ABC △为等边三角形, ∴60CAB ∠=︒,CH AB ⊥,∴30OAH ∠=︒,132AH BH AB ===, 在Rt AOH △中,∵tan tan 30OH OAH AH ∠==︒,∴331OH =⨯=,即ABC △内切圆的半径为1.故选A .5. 【答案】A[解析] 如图,连接AC.∵四边形ABCD 是半圆的内接四边形, ∴∠DAB =180°-∠BCD =70°. ∵DC ︵=CB ︵,∴∠CAB =12∠DAB =35°. ∵AB 是半圆O 的直径, ∴∠ACB =90°,∴∠ABC =90°-∠CAB =55°. 故选A.6. 【答案】B[解析] 如图,延长AO 交⊙O 于点E ,连接BE ,则∠AOB +∠BOE =180°. 又∵∠AOB +∠COD =180°, ∴∠BOE =∠COD , ∴BE =CD =6.∵AE 为⊙O 的直径,∴∠ABE =90°, ∴AB =AE 2-BE 2=8.7. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB 2-OE 2=62-22=4 2, ∴AB =8 2.故选B.8. 【答案】D[解析] 如图①,∵OC =1,∴OD =12;如图②,∵OB =1,∴OE =22;如图③,∵OA =1,∴OD =32,则该三角形的三边长分别为12,22,32.∵(12)2+(22)2=(32)2,∴该三角形是以12,22为直角边长,32为斜边长的直角三角形, ∴该三角形的面积是12×12×22=28.故选D.9. 【答案】D [解析] 本题中甲的草地:2πr =l ,r =l 2π,S 1=π·r 2=l 24π;乙的草地:S 2=l 4×l 4=l 216;丙的草地:设一边长为x ,则S 3=x (l 2-x )=-x 2+l 2x .只有当x =l 4时,S 3取得最大值,此时S 3=l 216,但此时矩形为正方形,不符合题意.所以S 1>S 2>S 3.10. 【答案】C二、填空题(本大题共7道小题)11. 【答案】1612. 【答案】相交 [解析] 设AB 的中点为O ,则点O 到CD 的距离为2.8.因为⊙O 的半径为3,3>2.8,所以直线CD 与⊙O 的位置关系是相交.13. 【答案】2π [解析] 设扇形的半径是R , 则60·π·R2360=6π,解得R =6(负值已舍去).设扇形的弧长是l ,则12lR =6π,即3l =6π,解得l =2π.故答案为2π.14. 【答案】4 [解析] ∵R ,d 是关于x 的方程x2-4x +m =0的两根,且直线l 与⊙O 相切,∴d =R ,∴方程有两个相等的实数根,即Δ=16-4m =0,解得m =4.15. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.16. 【答案】43【解析】如图,连接AB ,过O 作OM AB 于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,AM =2OA =, ∵240π22π180r ⨯=,∴43r =,故答案为:43.17. 【答案】(-4,-7) [解析] 过点P 作PH ⊥MN 于点H ,连接PM ,则MH =12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).三、解答题(本大题共4道小题)18. 【答案】解:如图,连接OA ,OB .根据正方形的面积公式可得小正方形的边长为4 cm.设大正方形的边长为x cm ,则OD =12x cm.根据勾股定理,得OA 2=OD 2+AD 2,OB 2=OC 2+BC 2.又∵OA =OB ,∴(12x )2+x 2=(12x +4)2+42,解得x 1=8,x 2=-4(不符合题意,舍去),∴大正方形的边长为8 cm ,OD =4 cm ,∴OA 2=OD 2+AD 2=42+82=80,∴OA =80=4 5(cm).故该半圆的半径为4 5 cm.19. 【答案】解:(1)2 0(2)∵⊙M 的半径AM =22+42=2 5,线段MD =(5-2)2+22=13<2 5,∴点D 在⊙M 内.20. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°,∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4, ∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8, ∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =2112048432360π⨯⨯- 161633π=-,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S -阴影四边形扇形OBC 代入数值即可求解.21. 【答案】254解:(1)连接OT .∵PT 为⊙O 的切线,∴OT ⊥PT ,∴在Rt △PTO 中,PT =PO 2-OT 2=3.(2)证明:连接AT ,OT .∵PT 为⊙O 的切线,∴PT ⊥OT ,∴∠PTO =90°=∠P AO .在Rt△P AO和Rt△PTO中,∵PO=PO,OA=OT,∴Rt△P AO≌Rt△PTO,∴P A=PT,∠APO=∠TPO,∴PO⊥AT.∵AB是⊙O的直径,∴∠ATB是直角,即BT⊥AT,∴PO∥BT.(3)连接PO,OT.∵PT为⊙O的切线,∴PT⊥OT.∵AC=x,∴CO=OA-AC=4-x.在Rt△PCO中,PO2=PC2+CO2=52+(4-x)2.在Rt△POT中,PO2=PT2+OT2=PT2+42,∴PT2+42=52+(4-x)2,即y+42=52+(4-x)2,∴y=9+(4-x)2=x2-8x+25=(x-4)2+9(0≤x≤4),∴当x=4时,y有最小值9.∴y与x之间的函数解析式为y=x2-8x+25(0≤x≤4),y的最小值是9.。
人教版 九年级数学 第24章 圆 综合训练(含答案)
亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。
当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。
今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。
请同学们认真、规范答题!老师期待与你一起分享你的学习成果!人教版 九年级数学 第24章 圆 综合训练一、选择题1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A. 10B. 2 3C. 13D. 3 22. 如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则☉O 的半径为 ( )A .2B .3C .4D .4-3. 如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 的度数是( )A .40°B .45°C .50°D .60°4. 已知⊙O 的半径为2,点P 到圆心O 的距离为4,则点P 在( )A .⊙O 内B .⊙O 上C .⊙O 外D .无法确定5. 在⊙O 中,M 为AB ︵的中点,则下列结论正确的是( )A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小关系不能确定6. (2020·攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( )A'AA. 2πB. 34πC. πD. 3π7. 如图,将两张完全相同的正六边形纸片(边长为2a )重合在一起,下面一张纸片保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分的面积之比是( )A .5∶2B .3∶2C .3∶1D .2∶18. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10. (2020·福建)一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)11. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.12. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.13. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.14. 如图,AB 是⊙O 的直径,O 是圆心,BC 与⊙O 相切于点B ,CO 交⊙O 于点D ,且BC=8,CD =4,那么⊙O 的半径为________.15. 如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形,则原来的纸带宽为________.16. 如图,圆锥的母线长OA =6,底面圆的半径为32,一只小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处,则小虫所走的最短路程为________.(结果保留根号)三、解答题17. 如图所示,AB ,CD 是⊙O 的两条直径,弦BE =BD.求证:AC ︵=BE ︵.18. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG . (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.19. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系; (2)求证:ED =BD ;(3)若∠BAC =90°,△ABC 的外接圆的直径是6,求BD 的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 第24章 圆 综合训练-答案一、选择题 1. 【答案】C2. 【答案】A ∵圆分别与边AB ,AC 相切,∴∠BAO=∠CAO=∠BAC=30°,∴∠AOC=90°,∴OC=AC=4. ∵OE ⊥AC ,∴OE=OC=2,∴☉O 的半径为2.故选A .3. 【答案】A ∴∠B =∠A =50°,∴∠AOB =180°-50°-50°=80°. ∵C 是AB︵的中点,∴∠BOC =12∠AOB =40°.故选A.4. 【答案】C5. 【答案】C ∵AM +BM >AB ,∴AB <2AM.故选C.6. 【答案】D7. 【答案】C∴空白部分与阴影部分的面积之比是=6 3a2∶2 3a2=3∶1.8. 【答案】B∴OE=DE-OD=4-2=2.在Rt△OEB中,BE=OB2-OE2=62-22=4 2,∴AB=8 2.故选B.二、填空题9. 【答案】20∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB,∴∠BAD=20°.10. 【答案】 411. 【答案】25 612. 【答案】60°13. 【答案】15又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.14. 【答案】615. 【答案】316. 【答案】36 2∵圆锥底面圆的半径为32, ∴圆锥的底面周长为2π×32=3π.设圆锥的侧面展开图圆心角为n °,则n π×6180=3π,解得n =90,即∠AOA ′=90°. 又∵OA =OA ′=6, ∴AA ′=2OA =6 2. 三、解答题17. 【答案】证明:∵AB ,CD 是⊙O 的两条直径, ∴∠AOC =∠BOD ,∴AC =BD. 又∵BE =BD , ∴AC =BE ,∴AC ︵=BE ︵.18. 【答案】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =AD =2,∠ABC =90°. ∵△BEC 绕点B 逆时针旋转90°得△BFA , ∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°, AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG , ∴∠AFB +∠CFG =∠AFG =90°,AF =FG , ∴∠CFG =∠FAB =∠ECB ,CE =FG , ∴CE 綊FG ,∴四边形EFGC 是平行四边形, ∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB.∵△BFA ≌△BEC ,∴BF =BE =12AB =1,∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线, ∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.19. 【答案】解:(1)设⊙E 切BC 于点M ,连接EM ,则EM ⊥BC .又线段AE 的延长线交BC 于点F ,∠AFC ≠90°,∴EF >EM ,∴点F 在△ABC 的内切圆⊙E 外. (2)证明:∵点E 是△ABC 的内心, ∴∠BAD =∠CAD ,∠ABE =∠CBE . ∵∠CBD =∠CAD ,∴∠BAD =∠CBD . ∵∠BED =∠ABE +∠BAD ,∠EBD =∠CBE + ∠CBD ,∴∠BED =∠EBD ,∴ED =BD . (3)如图①,连接CD . 设△ABC 的外接圆为⊙O .∵∠BAC =90°,∴BC 是⊙O 的直径, ∴∠BDC =90°.∵⊙O 的直径是6,∴BC =6.∵E 为△ABC 的内切圆的圆心,本文使用Word 编辑,排版工整,可根据需要自行修改、打印,使用方便。
人教版数学九年级上册第24章圆的综合训练提高题(含答案)
圆的综合训练提高题一.选择题1.已知⊙O的半径为2cm,点P在⊙O内,则OP可能等于()A.1cm B.2cm C.2.5cm D.3cm2.如图,⊙O是△ABC的外接圆,则图中与∠A互余的角为()A.∠ABC B.∠OBC C.∠ACB D.∠OBA3.如图,AB是O的直径,AB=8,点M在O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.74.如图,点A,B,C,D四个点均在⊙O上,AO∥DC,∠AOD=20°,则∠B为()A.40°B.60°C.80°D.70°5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,=.则∠DAC等于()A.70°B.45°C.30°D.25°6.如图,AB,BC是⊙O的两条弦, AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB 的长为()A.8 B.10 C.D.7.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为()A.27﹣9B.18C.54﹣18D.548.如图,以AB为直径的半圆上有一点C,∠C=25°,则的度数为()A.25°B.30°C.50°D.65°9.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.27°B.36°C.46°D.63°10.如图,在⊙O中,弦AB、CD所对的圆心角分别是∠AOB、∠COD,若∠AOB和∠COD互补,且AB=2,CD=4,则⊙O的半径是()A.B.2 C.D. 411.如图,AB是⊙O的直径,BC是⊙O的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°12.如图,C是半圆⊙O内一点,直径AB的长为4cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过的区域(图中阴影部分)的面积为()A.πB.πC.4πD. +π二.填空题13.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=.14.已知点P为⊙O内一点,过点P的弦中,最长为10,最短为6,则OP=.15.如图,在⊙O的内接四边形ABCD中,AB=AD,点E在弧AD上,则∠E=125°,则∠C =°.16.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是.17.如图,PA,PB分别与⊙O相切于点A、B,若PA=4,∠P=60°,则⊙O的半径为.18.如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为.三.解答题19.如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O 的切线,交CD的延长线于点E.(1)判定直线CD与⊙O的位置关系,并说明你的理由;(2)若CB=4,CD=8,求ED的长.20.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连接AC,过点D 作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线;(3)若AB=12,AD=6,连接OD,求扇形BOD的面积.21.如图AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD =∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF.22.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.23.在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.参考答案一.选择题1.解:∵⊙O的半径为2cm,点P在⊙O内,∴线段OP<2cm,∴OP可能等于1cm,故选:A.2.解:连接OC,过O作OE⊥BC与E,∵OB=OC,∴∠BOE=BOC,∵∠A=,∴∠A=∠BOE,∵∠BOE+∠OBC=90°,∴∠A+∠OBC=90°,∴图中与∠A互余的角为∠OBC,故选:B.3.解:如图,作点M关于A的对称点K,连接AK,OK,PK,OM,ON,NK.则∠MAB=∠KAB=20°,∵OA=OM=OK,∴∠AMO﹣∠OA M=∠OAK=∠OKA=20°,∴∠MOB=∠A+∠OMA=40°,∠BOK=∠OAK+∠OKA=40°,∵=,∴∠MON=∠NOB=20°,∴∠KON=60°,∵ON=OK,∴△NKO是等边三角形,∴NK=ON=4,∵M,K关于AB对称,∴PM=PK,∴PM+PM=PK+PM≥NK=4,∴PM+PN的最小值为4,∴△PMN的周长的最小值=PM+PN+MN=5,故选:B.4.解:连接OC,如图,∵AO∥DC,∴∠ODC=∠AOD=20°,∵OD=OC,∴∠OCD=∠ODC=20°,∴∠DOC=180°﹣20°﹣20°=140°,∴∠AOC=20°+140°=160°,∴∠B=∠AOC=80°.故选:C.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣30°=60°,∴∠D=180°﹣∠B=120°,∵=,∴AD=CD,∴∠DAC=∠DCA=(180°﹣120°)=30°.故选:C.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6﹣3)=12﹣6,∴FM=(6﹣12+6)=3﹣3,∴阴影部分的面积=4S=4×(3﹣3)×3=54﹣18;△AFM故选:C.8.解:∵OC=OA,∴∠A=∠C=25°,∴∠BOC=2∠A=50°,∴的度数为50°.故选:C.9.解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=54°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠ABE=36°.故选:B.10.解:作直径DE,连接CE,如图,∵∠AOB+∠COD=180°,∠COD+∠COE=180°,∴∠AOB=∠COE,∴=,∴CE=AB=2,∵DE为直径,∴∠DCE=90°,∴DE==2,∴OD=,即⊙O的半径是.故选:C.11.解:∵BC 是⊙O 的切线,∴∠OBC =90°,∵OC =AB ,OA =OB ,∴OB =OC ,∴∠C =30°.故选:B .12.解:∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B ′OC ′=60°,△BCO =△B ′C ′O ,∴∠B ′OC =60°,∠C ′B ′O =30°,∴∠B ′OB =120°,∵AB =4cm ,∴OB 21cm ,OC ′=1,∴B ′C ′=,∴S 扇形B ′OB ==π,S 扇形C ′OC ==π,∴阴影部分面积=S扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣π=π; 故选:B . 二.填空题(共6小题)13.解:∵∠AOE =78°,∴劣弧的度数为78°,∵AB 是⊙O 的直径,∴劣弧的度数为180°﹣78°=102°,∵点C 、D 是弧BE 的三等分点,∴∠COE=×102°=68°,故答案为:68°.14.解:如图所示,CD⊥AB于点P.根据题意,得AB=10,CD=6.∵CD⊥AB,∴CP=CD=3.根据勾股定理,得OP===34.故答案为:4.15.解:∵四边形ABCD是圆内接四边形,∠E=125°,∴∠ABD=180°﹣125°=55°.∵AB=AD,∴∠ADB=∠ABD=55°.∴∠BAD=180°﹣2×55°=70°∵四边形ABDE是圆内接四边形,∴∠C=180°﹣70°=110°.故答案为:110.16.解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.17.解:连接OA,OP,如图,∵PA,PB分别与⊙O相切于点A、B,∴∠APO=∠BPO=∠P=×60°=30°,OA⊥PA,在Rt△OAP中,OA=,即⊙O的半径为,故答案为:.18.解:∵直线y=﹣x+6与x轴、y轴分别交于A、B两点,∴A(8,0),B(0,6),∴OA=8,OB=6,AB=10,∵点P是以C(﹣1,0)为圆心,1为半径的圆上一点,过C作CM⊥AB于M,连接BC,∴S=×10×CM=6×8+×1×6,△ABC∴CM=,当P,C,M在一条直线时,PM最大,即△PAB的面积最大,即PM=1+=,∴△PAB面积的最大值=××10=32,故答案为:32.三.解答题(共6小题)19.(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CE,∵D为⊙O的一点,∴直线CD是⊙O的切线;(2)解:∵CD是⊙O的切线,∴CD2=BC•AC,∵CB=4,CD=8,∴82=4AC,∴AC=16,∴AB=AC﹣BC=16﹣4=12,∵AB是圆O的直径,∴OD=OB=6,∴OC=OB+BC=10,∵过点A作的⊙O切线交CD的延长线于点E,∴EA⊥AC,∵OD⊥CE,∴∠ODC=∠EAC=90°,∵∠OCD=∠ECA,∴△OCD∽△ECA,∴=,即=,∴EC=20,∴ED=EC﹣CD=20﹣8=12.20.证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线;(3)∵AB=12,AD=6,∴sin B===,∴∠B=60°,∴∠BOD=60°,∴S==6π.扇形BOD21.解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF.22.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.23.解:(1)∵当运动时间为t秒时,PA=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ=(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB =90°,∴∠DPQ =90°.∴DP ⊥PQ .∴DP 为圆Q 的切线.(Ⅲ)当⊙Q 正好与四边形DPQC 的DC 边相切时,如图2所示.由题意可知:PB =5﹣t ,BQ =2t ,PQ =CQ =10﹣2t .在Rt △PQB 中,由勾股定理可知:PQ 2=PB 2+QB 2,即(5﹣t )2+(2t )2=(10﹣2t )2.解得:t 1=﹣15+10,t 2=﹣15﹣10(舍去).综上所述可知当t =0或t =﹣15+10时,⊙Q 与四边形DPQC 的一边相切. 24.(1)证明:∵AH =AC ,AF 平分线∠CAH∴∠HAF =∠CAF ,AF ⊥EC ,∴∠HAF +∠ACH =90°∵∠ACB =90°,即∠BCE +∠ACH =90°,∴∠HAF =∠BCE ,∵E 为的中点,∴,∴∠EBD =∠BCE ,∴∠HAF =∠EBD ,∴BE ∥AF ;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.。
人教版九年级上册数学中考真题分类(填空题)专练:第24章 圆的综合(四)
人教版九年级上册数学中考真题分类(填空题)专练:第24章圆的综合(四)1.(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.2.(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.3.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.4.(2020•金昌)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).5.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.6.(2020•凉山州)如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为.7.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.8.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.9.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.10.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA1B1C1D1E1F1的长度是.11.(2020•枣庄)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.12.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.13.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.14.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.15.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.参考答案1.解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1×π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.2.解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.故答案为:4.3.解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.4.解:设扇形的半径为R,弧长为l,根据扇形面积公式得;=,解得:R=1,∵扇形的面积=lR=,解得:l=π.故答案为:.5.解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′D最小,即:E′C+E′D=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最小值为2+=.故答案为:.6.解:连接OC、OD、CD.∵点C,D为半圆的三等分点,∴∠AOC=∠COD=∠BOD=60°,∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC,∴CD∥AB,∵△COD和△CBD等底等高,∴S△COD=S△BCD.∴阴影部分的面积=S扇形COD,∵阴影部分的面积是π,∴=π,∴r=3,故答案为3.7.解:设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∴∠B4B3D=180°﹣108°=72°,∵A3A4∥B3B4,∴∠EDA3=∠B4B3D=72°,∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,故答案为:48.8.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.9.解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.10.解:的长==,的长==,的长==,的长==,的长==,的长==,∴曲线FA1B1C1D1E1F1的长度=++…+==7π,故答案为7π.11.解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∵=,∴∠B=∠AOP=27°.故答案为:27°.12.解:设这个圆锥的侧面展开图的圆心角为n°,根据题意得2π×2.5=,解得n=100,即这个圆锥的侧面展开图的圆心角为100°.故答案为:100.13.解:设这个圆锥的底面圆半径为rcm,根据题意得2πr=,解得r=5(cm).故答案为:5.14.解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD=×+2×﹣=﹣8故答案为﹣8.15.解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.。
人教版数学九年级上册:24《圆》专题练习(附答案)
word版初中数学第二十四章《圆》专题练习目录专题1 与圆周角有关的辅助线作法 (1)专题2圆周角定理 (3)专题3 证明切线的两种常用方法 (4)专题4与切线长有关的教材变式 (5)专题5与圆的切线有关的计算与证明 (6)专题6 求阴影部分的面积 (8)专题1 与圆周角有关的辅助线作法类型1 构造同弧或等弧所对的圆周角或圆心角1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵的中点,则∠D 的度数是( )A .70°B .55°C .35.5°D .35°2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( )A .40°B .50°C .20°D .35°3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50°B .55°C .60°D .65°4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85°类型2 利用直径构造直角三角形5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 .6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = .7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 .8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .类型3 构造圆内接四边形9.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60°C.80° D.100°10.如图,已知A,B,C,D是⊙O上的四个点,⊙O的直径AB=2 3.若∠ACD=120°,则线段AD的长为.专题2 圆周角定理1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA =∠CPA ,判断△ABC 的形状,并证明你的结论.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.专题3 证明切线的两种常用方法类型1 直线与圆有交点:连半径,证垂直 (一)借助角度转换证垂直1.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP =AC ,且∠B =2∠P.求证:PA 是⊙O 的切线.(二)利用平行证垂直2.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且点C 为BF ︵的中点,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D.求证:CD 是⊙O 的切线.(三)利用全等证垂直3.如图,AB 是⊙O 的直径,BC ⊥AB 于点B ,连接OC 交⊙O 于点E ,弦AD ∥OC.求证: (1)DE ︵=BE ︵; (2)CD 是⊙O 的切线.(四)利用勾股定理的逆定理证垂直4.(南充中考改编)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB =2,PC =4.求证:PC 是⊙O 的切线.类型2 不确定直线与圆是否有交点:作垂直,证半径5.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E.求证:AC 是⊙O 的切线.专题4 与切线长有关的教材变式1.如图,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,若∠BOC =90°,求证:AB ∥CD.2.如图,⊙O的直径AB=12 cm,AM和BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C 两点.设AD=x,BC=y,求y关于x的函数解析式.3.如图,Rt△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,且AC=13,AB=12,∠ABC=90°,则⊙O 的半径为.4.如图,△ABC的周长为18,其内切圆⊙O分别切三边于D,E,F三点,AF=3,FC=4,则BE=.5.已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为()A.32B.32C. 3 D.2 3专题5 与圆的切线有关的计算与证明1.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是优弧ABC ︵上不与点A ,点C 重合的一个动点,连接AD ,CD.若∠APB =80°,则∠ADC 的度数是( )A .15°B .20°C .25°D .30°2.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( )A.3+12 B.3-32 C.3+13 D.3-333.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 24.如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得BD =DF ,连接CF ,BE.求证: (1)DB =DE ;(2)直线CF 为⊙O 的切线.5.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.6.如图,PA,PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O 的半径为1,求菱形ACBP 的面积.7.如图,⊙O 是边长为6的等边△ABC 的外接圆,点D 为BC ︵的中点,过点D 作DE ∥BC ,DE 交AC 的延长线于点E ,连接AD ,CD.(1)DE 与⊙O 的位置关系是相切; (2)求△ADC 的内切圆半径r.专题6 求阴影部分的面积类型1 直接利用公式求面积1.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( ) A.π2 m 2 B.32π m 2 C .π m 2 D .2π m 2类型2 利用和差法求面积2.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D.若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43π D.23π3.如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-44.如图,分别以五边形ABCDE 的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( )A.32π B .3π C.72π D .2π5.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是( )A.2π3 B .23-π3 C .23-2π3 D .43-2π36.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )A .18+36πB .24+18πC .18+18πD .12+18π7.如图,在平行四边形ABCD 中,AB <AD ,∠D =30°,CD =4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为 .8.如图,在Rt △ABC ,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .类型3 利用等积转化法求面积9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .Π C.π3 D.2π310.如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变 B.由大变小C.由小变大 D.先由小变大,后由大变小11.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC =10 cm,∠BAC=36°,则图中阴影部分的面积为()A.5π cm2 B.10π cm2 C.15π cm2 D.20π cm212.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD =6,EF=8.则图中阴影部分的面积是()A.252π B.10π C.24+4π D.24+5π13.如图,在△ACB中,∠BAC=90°,AC=2,AB=3,现将△ACB绕点A逆时针旋转90°得到△AC1B1,则阴影部分的面积为.参考答案:专题1 与圆周角有关的辅助线作法1.D2.A3.D4.D5.110°__.67.1.829.D11.3.专题2 圆周角定理——教材P90T14的变式与应用1.解:△ABC是等腰三角形,理由:∵四边形APBC是圆内接四边形,∴∠EPA=∠ACB.∵∠EPA=∠CPA,∠CPA=∠ABC,∴∠ACB=∠ABC.∴AB=AC.∴△ABC是等腰三角形.2.解:(1)证明:∵∠ABC=∠APC=60°,∠BAC=∠APC=60°,∴∠ABC=∠BAC=60°.∴△ABC是等边三角形.(2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.证明:(1)∵∠ACB =∠ADB =45°, ∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形.∴2AC=CE.∴2AC=DE+CD=BC+CD.专题3 证明切线的两种常用方法1.证明:连接OA,AD.∵∠B=2∠P,∠B=∠ADC.∴∠ADC=2∠P.又∵AP=AC,∴∠P=∠ACP.∴∠ADC=2∠ACP.∵CD为直径,∴∠DAC=90°.∴∠ADC=60°,∠ACD=30°.∴△ADO为等边三角形.∴∠AOP=60°.而∠P=∠ACP=30°,∴∠OAP=90°.∴OA⊥PA.又∵AO为⊙O的半径,∴PA是⊙O的切线.2.证明:连接OC,∵CF ︵=CB ︵,OA =OC , ∴∠DAC =∠BAC =∠ACO. ∴AD ∥OC. ∵CD ⊥AF 于点D , ∴∠DCO =90°. 又∵OC 为⊙O 的半径, ∴CD 为⊙O 的切线. 3.证明:(1)连接OD. ∵AD ∥OC ,∴∠DAO =∠COB ,∠ADO =∠DOC. 又∵OA =OD ,∴∠DAO =∠ADO. ∴∠COB =∠COD. ∴DE ︵=BE ︵.(2)由(1)知∠DOE =∠BOE , 在△COD 和△COB 中, ⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC ,OD =OB ,∴△COD ≌△COB (SAS ). ∴∠CDO =∠B.又∵BC ⊥AB ,∴∠CDO =∠B =90°.∵点D在⊙O上,∴CD是⊙O的切线.4.证明:连接OC.∵⊙O的半径为3,∴OC=OB=3.又∵BP=2,∴OP=5.在△OCP中,OC2+PC2=32+42=52=OP2,∴△OCP为直角三角形,∠OCP=90°.∴OC⊥PC.∵C是⊙O上一点,∴PC为⊙O的切线.5.证明:连接OA,OD,作OF⊥AC于点F,垂足为F. ∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC.∵AB与⊙O相切于点D,∴OD⊥AB.而OF⊥AC,∴OF=OD.∴AC是⊙O的切线.专题4 与切线长有关的教材变式1.证明:∵∠BOC=90°,∴∠OBC+∠OCB=90°.又∵BE与BF为⊙O的切线,∴BO为∠EBF的平分线.∴∠OBE=∠OBF.同理可得∠OCB=∠OCG.∴∠OBE+∠OCG=90°.∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°.∴AB∥CD.2.解:过点D作DF⊥BC于点F.∵AD,BC分别是⊙O的切线,∴∠OAD=∠OBF=90°.又∵DF⊥BC,∴四边形ABFD为矩形.∴DF=AB=12 cm,BF=AD.∵AD,BC,DC分别为⊙O的切线,∴DE=DA=x,CE=CB=y.∴DC=x+y,CF=y-x.在Rt △DCF 中,由勾股定理,得DC 2=CF 2+DF 2,即(x +y )2=(y -x )2+122,整理,得xy =36.∴y =36x. ∴y 关于x 的函数解析式y =36x(x>0). 3.2.4.2.5.C专题5 与圆的切线有关的计算与证明1.C2.B3.B4.证明:(1)∵E 为△ABC 的内心,∴∠DAC =∠DAB ,∠CBE =∠EBA.又∵∠DBC =∠DAC ,∠DBE =∠DBC +∠CBE ,∠DEB =∠EAB +∠EBA ,∴∠DBE =∠DEB.∴DB =DE.(2)连接OD.∵BD =DF ,O 是BC 的中点,∴OD ∥CF.又∵BC 为⊙O 的直径,OB =OD ,∴∠ODB =∠DBO =∠DAC =45°.∴∠OCF =∠BOD =90°.∴OC ⊥CF.又∵OC 为⊙O 的半径,∴直线CF 为⊙O 的切线.5.解:(1)证明:过点O 作OD ⊥PB ,连接OC.∵AP 与⊙O 相切,∴OC ⊥AP.又∵OP 平分∠APB ,∴OD =OC.∴PB 是⊙O 的切线.(2)过点C 作CF ⊥PE 于点F.在Rt △OCP 中,OP =OC2+CP2=5.∵S △OCP =12OC ·CP =12OP ·CF ,∴CF =125. 在Rt △COF 中,OF =CO2-CF2=95. ∴FE =3+95=245.在Rt △CFE 中,CE =CF2+EF2=1255. 6.解:(1)证明:连接AO ,BO.∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,PA =PB ,∠APO =∠BPO =12∠APB =30°. ∴∠AOP =60°.∵OA =OC ,∴∠OAC =∠OCA.∴∠AOP =∠CAO +∠ACO.∴∠ACO =30°.∴∠ACO =∠APO.∴AC =AP.同理BC =PB ,∴AC =BC =BP =AP.∴四边形ACBP 是菱形.(2)连接AB 交PC 于点D ,则AD ⊥PC.在Rt △AOD 中,∠AOD =60°,∴∠OAD =30°.∴OD =12OA =12. ∴AD =OA2-OD2=12-(12)2=32.∴PA =2AD =3,AB =2AD = 3.∴OP =OA2+PA2=2,PC =OP +OC =2+1=3.∴菱形ACBP 的面积为12AB ·PC =332. 7.解:∵D 为BC ︵的中点,∴BD ︵=DC ︵.∴∠BAD =∠DAC =30°.又∵AB =AC ,∴AD 垂直平分BC.∴AD 为⊙O 的直径.∴∠ACD =90°.在Rt △ACD 中,∠DAC =30°,设DC =x ,则AD =2x.由勾股定理,得AD 2=DC 2+AC 2,即(2x )2=x 2+62.解得x =2 3.∴DC =23,AD =4 3.作Rt △ADC 的内切圆⊙O ′,分别切AD ,AC ,DC 于点F ,G ,H ,易知CG =CH =r , ∴AG =AF =6-r ,DH =DF =23-r.∵AF +DF =AD ,∴6-r +23-r =4 3.∴r =3- 3.专题6 求阴影部分的面积1.A2.A3.A4.C5.C6.C73823 9.D10.A11.B12.A13.94π.。
人教版九年级数学上册 第24章 圆 综合达标检测【含答案】
人教版九年级数学上册第24章圆综合达标检测一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,⊙O的直径为10,若圆心O为坐标原点,则点P(﹣8,6)与⊙O 的位置关系是()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.如图,点C是半圆O的直径AB的延长线上一点.CD与半圆O相切,D为切点,过点D作DE∥AB交半圆O于点E.若四边形OCDE是平行四边形,CD=4,则ED的长为()A.4B.4C.2D.33.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°4.若一个三角形的三边长分别为3,4,5,则这个三角形的外接圆的半径是()A.1B.2.4C.2.5D.55.在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆必定()A.与x轴相切、与y轴相离B.与x轴、y轴都相离C.与x轴相离、与y轴相切D.与x轴、y轴都相切6.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A(0,a)、B(﹣3,2)、C (c,m)、D(d,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(3,2)7.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.348.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A.πB.πC.D.π9.如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm10.如图,点D是△ABC中BC边的中点,DE⊥AC于E,以AB为直径的⊙O经过D,连接AD,有下列结论:①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.其中正确的结论是()A.①②B.①②③C.②③D.①②③④二.填空题(共7小题,满分21分,每小题3分)11.如图是央行发布的建国70周年纪念银币的背面图案,这枚纪念币的周长是21.98厘米,它的直径是厘米,面积是平方厘米(π取3.14).12.如图,五边形ABCD内接于⊙O,若AC=AD,∠B+∠E=230°,则∠ACD的度数是.13.如图是一个圆锥形雪糕冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm.则这个冰淇淋外壳的侧面积等于cm(结果保留π)14.如图,在平面直角坐标系中,已知点A(0,1)、B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最大值是15.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.16.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是.17.石拱桥是中国传统桥梁四大基本形式之一,如图,已知一石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,求水面宽AB=m.三.解答题(共7小题,满分46分)18.(6分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.求证:∠BCO=∠D;19.(6分)已知如图所示,P为直径AB上一点,EF,CD为过点P的两条弦,且∠DPB=∠EPB;(1)求证:;(2)求证:CE=DF.20.(6分)已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,OH=.(1)求⊙O的半径;(2)求出劣弧AC的长(结果保留π).21.(6分)如图,PC是⊙O的弦,作OB⊥PC于点E,交⊙O于点B,延长OB到点A,连接AC,OP,使∠A=∠P.(1)求证:AC是⊙O的切线;(2)若BE=2,PC=4,求AC的长.22.(6分)如图所示,已知A,B两点的坐标分别为(2,0),(0,10),P是△AOB外接圆⊙C上的一点,OP交AB于点D.(1)当OP⊥AB时,求OP;(2)当∠AOP=30°时,求AP.23.(8分)如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.24.(8分)△ABC的内切圆分别切BC、CA、AB于点D、E、F,过点F作BC的平行线分别交直线DA、DE于点H、G.求证:FH=HG.答案一.选择题1.B.2.B.3.B.4.C.5.A.6.D.7.C.8.B.9.D.10.D.二.填空题11.7,π.12.65°13.36π14.6,15.5m+2n≠9.16.6﹣π.17.8.三.解答题18.证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;19.证明:(1)作ON⊥EF,OM⊥CD,∵∠DPB=∠EPB;∴ON=OM,∴CD=EF,∴=,﹣=﹣,即.(2)证明:∵∴CE=DF.20..21.(1)证明:连接OC,如图,∵OP=OC,∴∠P=∠OCP,∵∠P=∠A,∴∠A=∠OCP,∵OB⊥PC,∴∠A+∠ACP=90°,∴∠ACP+∠OCP=90°,即∠OCA=90°,∴OC⊥AC,∴AC是⊙O的切线;(2)解:∵OB⊥PC,∴PE=CE=PC=2,设⊙O的半径为r,则OE=r﹣2,在Rt△OCE中,(2)2+(r﹣2)2=r2,解得r=4,∴OE=2,OC=4,∴∠OCE=30°,∠COE=60°,在Rt△AOC中,AC=OC=4.22.解:(1)∵A,B两点的坐标分别为(2,0),(0,10),∴AO=2,OB=10,∵AO⊥BO,∴AB==4,∵OP⊥AB,∴=,OD=DP,∴OD=,∴OP=2OD=;(2)连接CP,∵∠AOP=30°,∴∠ACP=60°,∵CP=CA,∴△ACP为等边三角形,∴AP=AC=AB=2.23.(1)证明:连接AB,∵OP⊥BC,∴BO=CO,∴AB=AC,又∵AC=AD,∴AB=AD,∴∠ABD=∠ADB,又∵∠ABD=∠ACF,∴∠ACF=∠ADB.(2)解:过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,则AN=m,∴∠ANB=∠AMC=90°,在△ABN和△ACM中,∴Rt△ABN≌Rt△ACM(AAS)∴BN=CM,AN=AM,又∵∠ANF=∠AMF=90°,在Rt△AFN和Rt△AFM中,∴Rt△AFN≌Rt△AFM(HL),∴NF=MF,∴BF+CF=BN+NF+CM﹣MF,=BN+CM=2BN=n,∴BN=,∴在Rt△ABN中,AB2=BN2+AN2=m2+=m2+,在Rt△ACD中,CD2=AB2+AC2=2AB2=2m2+,∴CD=.(3)解:的值不发生变化,过点D作DH⊥AO于H,过点D作DQ⊥BC于Q,∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°,∴∠OAC=∠ADH,在△DHA和△AOC中,∴Rt△DHA≌Rt△AOC(AAS),∴DH=AO,AH=OC,又∵BO=OC,∴HO=AH+AO=OB+DH,而DH=OQ,HO=DQ,∴DQ=OB+OQ=BQ,∴∠DBQ=45°,又∵DH∥BC,∴∠HDE=45°,∴△DHE为等腰直角三角形,∴=,∴=.24.证明:过点A作BC的平行线分别交直线DE、DF于点P、Q,∵△ABC的内切圆分别切BC、CA、AB于点D、E、F,∴∠BDF=∠BFD,又∵∠APF=∠BDF,∠AFP=∠BFD,∠PF A=∠BFD,∴∠APF=∠AFP,∴AP=AF,同理AQ=AE,又∵AF=AE,∴P A=AQ,∵△APD∽△HFD,∴,同理,∴,∴HF=HG.。
人教版 九年级数学 第24章 圆 综合训练(含答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版九年级数学第24章圆综合训练一、选择题1. 把一个圆形纸片至少对折________次,才可以确定圆心()A.1 B.2 C.3 D.无数次2. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形3. (2020·云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆椎的底面圆的半径是()A.B.1 C.D.4. 一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为()A.6 dm B.5 dm C.4 dm D.3 dm5. 如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与点I重合,则图中阴影部分的周长为()A .4.5B .4C .3D .26.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD =30°,CD =43,则S 阴影=()A . 2πB . 83πC . 43πD . 38π7. 如图,⊙O 的半径为8 cm ,把劣弧AB 沿AB 折叠,使劣弧AB 经过圆心O ,再把劣弧CD 沿CD 折叠,使劣弧CD 经过AB 的中点E ,则折痕CD 的长为( )A .8 cmB .8 3 cmC .27 cmD .47 cm8.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( ) A .π3 B .π2 C .π D .2π二、填空题9.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为________厘米(结果保留π).10. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.11. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.12. 如图所示,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是________.13. 如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A.若∠MAB=30°,则∠B=________°.14. (2020·重庆B卷)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,23AB ,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题15. 已知一个圆锥的轴截面△ABC(如图0)是等边三角形,它的表面积为75π cm2,求这个圆锥的底面圆的半径和母线长.16. 如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D =2∠A.(1)求∠D的度数;(2)若CD=2,求BD的长.17.(2020·泰州)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90 ,求线段MN的长.18. 如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2 3,弦BM 平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O的半径;(2)求证:AB+BC=BM.人教版九年级数学第24章圆综合训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形.故选A.3. 【答案】D.【解析】设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.所以该圆椎的底面圆的半径是.4. 【答案】B[解析] 如图,连接OD,OB,则O,C,D三点在一条直线上.因为CD垂直平分AB,AB=8 dm,所以BD=4 dm,OD=(OC-2)dm.由勾股定理,得42+(OC-2)2=OC2,解得OC=5(dm).故选B.5. 【答案】B[解析] 设CA,CB平移后分别交AB于点M,N,连接AI,BI.由平移可知AC ∥MI ,∴∠CAI =∠AIM.∵∠CAI =∠BAI ,∴∠BAI =∠AIM ,∴AM =MI.同理BN =NI.∴△MNI 的周长=MI +NI +MN =AM +BN +MN =AB =4.故选B.6.【答案】B【解析】如解图,连接OC ,设CD 与OB 交于点E ,∵在⊙O 中,弦CD ⊥AB ,∴CE =DE =23,∵∠BCD =30°,∴∠BOD =2∠BCD =60°,在Rt △EOD 中,O E =DEtan60°=2,∴OD =4,∴BE =OB -OE =4-2=2,在△DOE 和△CBE 中,CE =DE ,∠CEB =∠DEO ,OE =BE ,∴△DOE ≌△CBE ,∴S 阴影=S 扇形OBD =60×π×42360=83π.7. 【答案】D [解析] 如图,作CD 关于AB 对称的弦C ′D ′,连接OE 并延长,交CD 于点F ,交C ′D ′于点F ′.由题意可得OF ′⊥C ′D ′,且OF ′=34×8=6(cm),所以C ′F ′=OC ′2-OF ′2= 2 7 cm ,所以CD =C ′D ′=2C ′F ′=4 7cm.8.【答案】C 【解析】如解图,连接OE 、OF ,∵AB 为⊙O 的直径,AB =12,∴AO =OB =6,∵⊙O 与DC 相切于点E ,∴∠OEC =90°,∵在▱ABCD 中,∠C =60°,AB ∥D C ,∴∠A =∠C =60°,∠AOE =∠OEC =90°,∵在△AOF 中,∠A =60°,AO =FO ,∴△AOF 是等边三角形,即∠AOF =∠A =60°,∴∠EOF =∠AOE -∠AOF =90°-60°=30°,弧EF 的长=30π×6180=π.解图二、填空题9. 【答案】20π【解析】由弧长公式得,l BC ︵的长=120π×30180=20π.10. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】π-2[解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(22)2-12×2×2 =π-2.13. 【答案】6014. 【答案】3-π【解析】本题考查了菱形的性质和扇形面积的计算,∵在菱形ABCD 中,∠ABC =120°,∴AC ⊥BD ,∠ABO =12×120°=60°. 在Rt △AOB 中,∠AOB =90°,∠OAB =90°-60°=30°,AB =23,∴OB =3,AO =()()22233-=2,∴S △AOB =12×2×3=3.在△OEB 中,∵OE =OB ,∠ABO =60°,∴△OEB 是等边三角形,∴∠EOB =60°,∠EOF =90°-60°=30°.∵S △OEB =12×3×32=33,S 扇形EOF =4π,∴S 阴影部分=4×(3-334-4π)=3-π.因此本题答案为3-π.三、解答题15. 【答案】解:∵轴截面△ABC 是等边三角形, ∴AC =BC =2OC.由题意,得π·OC·AC +π·OC2=75π, ∴3π·OC2=75π,∴OC2=25. ∵OC>0,∴OC =5 cm , ∴AC =2OC =2×5=10(cm).即这个圆锥的底面圆的半径为5 cm ,母线长为10 cm.16. 【答案】解:(1)连接OC.∵OA =OC ,∴∠A =∠OCA , ∴∠COD =∠A +∠OCA =2∠A. ∵∠D =2∠A ,∴∠COD =∠D. ∵PD 与⊙O 相切于点C , ∴OC ⊥PD ,即∠OCD =90°, ∴∠D =12×(180°-90°)=45°.(2)由(1)可知∠COD =∠D ,∴OC =CD =2. 由勾股定理,得OD =22+22=2 2, ∴BD =OD -OB =2 2-2.17. 【答案】解:(1)连接AC . ∵弧AP=弧PB ,∴∠1=∠2,∠3=∠4∵CP ⊥AD ,∴∠CME =∠CMA =90° ∴∠A =∠5,∵∠A =∠B ,∠5=∠6, ∴∠6=∠B ,∵∠3=∠4,DN =DN , ∴△DNE ≌△DNB∴EN =BN ,∴N 为BE 的中心.(2)∵弧AB 的度数为90° ∴∠AOB =90° ∵OA =OB∴282AB OA == ∵AM =ME ,EN =BN∴1422MN AB ==【解析】(1)可先证DE =DB ,∠ADP =∠BDP ,根据三线合一可证N 为BE 的中点.(2)利用MN 为△ABE 的中位线,可得AB =2MN ,进而求得MN 的长.18. 【答案】解:(1)连接OA,OC,过点O作OH⊥AC于点H,如图①.∵∠ABC=120°,∴∠AMC=180°-∠ABC=60°,∴∠AOC=2∠AMC=120°.∵OH⊥AC,∴AH=CH=12AC=3,∠AOH=12∠AOC=60°,∴∠OAH=30°,∴OH=12OA.在Rt△AOH中,由勾股定理,得OH2+AH2=OA2,即(12OA)2+(3)2=OA2,解得OA=2(负值已舍去),故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图②.∵∠ABC=120°,BM平分∠ABC,∴∠MBC=∠ABM=12∠ABC=60°.又∵BE=BC,∴△EBC是等边三角形,∴EC=BC=BE,∠BCE=60°,∴∠BCD+∠DCE=60°.∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD.初中数学**精品文档**经过大海的一番磨砺,卵石才变得更加美丽光滑。
最新人教版初中九年级上册数学第24章《圆综合》练习题含答案
F第24章圆综合练习题一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1.如图,BD为⊙O的直径,AC为弦,AB AC=,AD交BC于E,2AE=,4ED=.(1)求证:ABE ADB△∽△,并求AB的长;(2)延长DB到F,使BF BO=,连接FA,判断直线FA与⊙O的位置关系,并说明理由. 1.解:AB AC=,ABC C∴=∠∠.C D=∠∠,ABC D∴=∠∠.又BAE DAB=∠∠,ABE ADB∴△∽△.AB AEAD AB∴=.()()224212AB AD AE AE ED AE∴==+=+⨯=.AB∴=.(2)直线FA与O 相切.连接OA.BD 为O的直径,90BAD∴=∠.在Rt ABD∆中,由勾股定理,得BD====1122BF BO BD∴===⨯=.2AB=BF BO AB∴==.(或BF BO AB OA∴===,AOB∴∆是等边三角形,F BAF∠=∠.60OBA OAB∴∠=∠=︒,30F BAF∠=∠=︒.)90OAF∴=∠.OA∴⊥AF.又点A在圆上,∴直线FA与O相切.2. 已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.2.(1)证明:连接DO .∵ABC ∆是等边三角形 ,∴∠C =60°,∠A =60°, ∵OA =OD , ∴OAD ∆是等边三角形. ∴∠ADO =60°. ∵DF ⊥BC ,∴∠CDF =30°.∴∠FDO =180°-∠ADO -∠CDF = 90°.∴DF 为⊙O 的切线.(2)∵OAD ∆是等边三角形,∴CD =AD =AO =21AB =2. Rt CDF ∆中,∠CDF =30°,∴CF =21CD =1. ∴DF =322=-CF CD . (3)连接OE ,由(2)同理可知E 为CB 中点,∴2=CE .∵1=CF ,∴1=EF . ∴233)(21=⋅+=DF OD EF S FDOE 直角梯形. ∴ππ323602602=⨯=DOES 扇形.∴π32233-=-DOE FDOE S S 扇形直角梯形.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥. (1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.FEDCBOA3、(1)证明:连接AC ,如图CF AD ⊥,AE CD ⊥且CF AE ,过圆心OAC AD ∴=,AC CD =,ACD ∴△是等边三角形. 30FCD ∴∠=在Rt COE △中,12OE OC =,12OE OB ∴=∴点E 为OB 的中点(2)解:在OCE t ∆R 中8AB =,142OC AB ∴==又BE OE =,2OE ∴=3241622=-=-=∴OE OC CE 243CD CE ∴==4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D . (1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP :PO 的值.4. (1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°. ∵CD ⊥OC ,∴∠DCQ =∠BCO =30°, ∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形.(2)解:设⊙O 的半径为1,则AB =2,OC =1,AC =121=AB ,BC =3. ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3.∵AQ =AC +CQ =1+3,AP =23121+=AQ , ∴BP =AB -AP =2332312-=+- PO =AP -AO =2131231-=-+, ∴BP ∶PO =3.5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C ,交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若6AD AE ==,BC 的长.5.解:(1)连接OE , ∵E 为DF 的中点,∴DE EF =. ∴ OBE CBE ∠=∠.∵OE OB =,∴OEB OBE ∠=∠.∴ OEB CBE ∠=∠.∴OE ∥BC . ∵BC ⊥AC , ∴∠C=90°. ∴ ∠AEO =∠C =90°. 即OE ⊥AC . 又OE 为半圆O 的半径,∴ AC 是半圆O 的切线. (2)设O 的半径为x ,∵OE AC ⊥,∴222(6)x x +-=. ∴3x =. ∴12AB AD OD OB =++=. ∵OE ∥BC ,∴AOE ABC △∽△.∴AO OE AB BC =. 即9312BC= ∴4BC =.6.如图,ABC △内接于⊙O ,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2=AP ·AD (1)求证:AB AC =;(2)如果60ABC ∠=,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.6.解:(1)证明:联结BP .∵ AB 2=AP·AD ,∴AB AP =AD AB. ∵ ∠BAD=∠PAB ,∴ △ABD ∽△APB , ∴ ∠ABC=∠APB ,∵∠ACB=∠APB , ∴ ∠ABC=∠ACB .∴ AB=AC.(2)由(1)知AB=AC . ∵∠ABC=60°,∴△ABC 是等边三角形.∴∠BAC=60°, ∵P 为弧AC 的中点,∴∠ABP=∠PAC=12 ∠ABC=30°,∴∠BAP=90°, ∴ BP 是⊙O 的直径, ∴ BP =2, ∴ AP =12BP=1,D在Rt △PAB 中,由勾股定理得 AB 2= BP 2-AP 2=3, ∴ AD=AB 2AP=3.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线; (2)若BD =5, DC =3, 求AC 的长.7.(1)证明: 如图1,连接OD .∵ OA =OD , AD 平分∠BAC ,∴ ∠ODA =∠OAD , ∠OAD =∠CAD . ∴ ∠ODA =∠CAD . ∴ OD //AC . ∴ ∠ODB =∠C =90︒.∴ BC 是⊙O 的切线. 图1(2)解法一: 如图2,过D 作DE ⊥AB 于E .∴ ∠AED =∠C =90︒.又∵ AD =AD , ∠EAD =∠CAD , ∴ △AED ≌△ACD . ∴ AE =AC , DE =DC =3.在Rt △BED 中,∠BED =90︒,由勾股定理,得BE =422=-DE BD . 图2 设AC =x (x >0), 则AE =x .在Rt △ABC 中,∠C =90︒, BC =BD +DC =8, AB =x +4, 由勾股定理,得x 2 +82= (x +4) 2. 解得x =6. 即 AC =6. 解法二: 如图3,延长AC 到E ,使得AE =AB .∵ AD =AD , ∠EAD =∠BAD ,∴ △AED ≌△ABD . ∴ ED =BD=5.在Rt △DCE 中,∠DCE =90︒, 由勾股定理,得CE =422=-DC DE . ………… ……………5分 图3在Rt △ABC 中,∠ACB =90︒, BC =BD +DC =8, 由勾股定理,得 AC 2 +BC 2= AB 2. 即 AC 2 +82=(AC +4) 2.解得 AC =6.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC.(1)求证:∠ACO=∠BCD ;(2)若BE=2,CD=8,求AB 和AC 的长.8、证明:(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,∴. ∴∠A=∠2.又∵OA=OC ,∴∠1=∠A .∴∠1=∠2.即:∠ACO=∠BCD .解:(2)由(1)问可知,∠A=∠2,∠AEC=∠CEB.∴△ACE ∽△CBE . ∴.CEAEBE CE =∴CE 2=BE·AE . 又CD=8,∴CE=DE=4.∴AE=8.∴AB=10.∴AC=.548022==+CE AE9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD 于E ,且BE AE =. (1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.A BCDEO GFO G FHA BC DE9.解:(1)延长AD 与⊙O 交于点G .∵ 直径BC ⊥弦AG 于点D ,∴ . ∴ ∠AFB =∠BAE .∵ AE =BE ,∴ ∠ABE =∠BAE .∴ ∠ABE =∠AFB . ∴ AB =AF . (2)在Rt △EDB 中,sin ∠FBC =53=BE ED . 设ED =3x ,BE =5x ,则AE =5x ,AD =8x ,在Rt △EDB 中,由勾股定理得BD =4x . 在Rt △ADB 中,由勾股定理得BD 2+AD 2=AB 2.∵ AB =45,∴ 222)54()8()4(=+x x .∴ x =1(负舍).∴ AD =8x =8.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。
九年级上册数学第24章《圆》分类练习试卷及答案解析
A.相离B.相切C.相交D,相切或相交
4.两圆半径分别为6.5的和3馆,圆心距为3.5M,那么两圆的位置关系是〔〕
A.相交B.外切C.内切D,内含
5.两圆的半径分别为2和5,圆心距为7,那么这两圆的位置关系为〔〕
A.外离.B.外切.C.相交.D.内切.
九年级上册第
知识点一:点与圆、直线与圆、圆与圆的位置关系
1...的半径为5,圆心.的坐标为〔0, 0〕,点尸的坐标是〔4, 3〕,那么点尸在.〕
A.内B.上C.外D,不确定
2.假设.0半径为1,点尸到圆心.的距离为W关于的方程3-2e4=0有两个实数根,那么 点?在〔〕
A...的内部B.0.上
C.的外部D.在..上或.0的内部
ቤተ መጻሕፍቲ ባይዱ4题图
5.如下图,.0的直径和弦Q?相交于点属 月f=lcm,属=5cm,/DEB=60:求切的长.
知识点三:切线的性质及判定
1.如图,月6和月.与圆.分别相切于点3和点.,点,是圆.上一点,假设/胡C=74°,那么乙必C
等于〔〕
A.46°B.53°C.74°D.106°
知识点二:弦、弦心距、圆心角、圆周角之间的关系
1.如图,皿是.的直径,弦SLA5,垂足为必,以下结论不成立的是〔〕
3.如图,..的半径是2,四是.0的弦,点尸是弦相上的动点,且1W灼2,那么弦相 所对的圆周角的度数是〔〕
A.60°B.120°C.60° 或 120°D,30° 或 150°
4 .如图,AB、4:都是圆.的弦,.归_孙ONA.AC,垂足分别为M N,如果MV=3,那么6.
人教版九年级上册数学 单元练习题:第二十四章 圆(含解析答案)
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB 的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O 交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。
人教版 九年级数学 上册 第24章 圆 综合训练(含答案)
人教版九年级数学上册第24章圆综合训练一、选择题1. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点2. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°3. 如图0,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2 3,则图中阴影部分的面积为()A.4π B.2πC.π D.2π34. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 35. 2019·滨州如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°6. 小明用图中的扇形纸片作一个圆锥的侧面.已知该扇形的半径是5 cm,弧长是6π cm,那么这个圆锥的高是()A.4 cm B.6 cm C.8 cm D.12 cm7. 在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定8. 改编如图①所示物体由两个圆锥组成,在从正面看到的形状图中(如图②),∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. 3 C.32 D. 29. 下列用尺规等分圆周的作法正确的有()①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆.A.4个B.3个C.2个D.1个10. 如图,⊙C的半径为1,圆心的坐标为(3,4),P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是()A.9 B.16 C.25 D.36二、填空题11. 如图1,已知△ABC的外心为O,BC=10,∠BAC=60°,分别以AB,AC 为腰向三角形外作等腰直角三角形ABD与ACE,连接BE,CD交于点P,则OP长的最小值是________.12. (2019•娄底)如图,C、D两点在以AB为直径的圆上,,,则__________.13. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.14. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.15. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.16. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.17. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.18. 如图,在Rt △ABC 中,∠C =90°,BC =3,点O 在AB 上,OB =2,以OB长为半径的⊙O 与AC 相切于点D ,交BC 于点F ,OE ⊥BC 于点E ,则弦BF 的长为________.三、解答题19. 如图,AB 是⊙O的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF. (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.20. 如图,以△ABC 的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD =AB ,∠D =30°, (1)求证:直线AD 是⊙O 的切线;(2)若直径BC =4,求图中阴影部分的面积.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22. 已知:如图4所示,∠PAC =30°,在射线AC 上顺次截取AD =3 cm ,DB =10 cm ,以DB 为直径作⊙O 交射线AP 于E ,F 两点,求圆心O 到AP 的距离及EF 的长.23. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB. (1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.人教版 九年级数学 上册 第24章 圆 综合训练-答案一、选择题1. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.2. 【答案】D3. 【答案】D[解析] 如图,连接OD.∵CD⊥AB,∴CE=DE=3,∠CEO=∠DEO=90°.又∵OE=OE,∴△COE≌△DOE,故S△COE=S△DOE,即可得阴影部分的面积等于扇形OBD的面积.∵∠CDB=30°,∴∠COB=60°,∴∠OCD=30°,∴OE=12OC.在Rt△COE中,CE=3,由勾股定理可得OC=2,∴OD=2.∵△COE≌△DOE,∴∠DOE=∠COE=60°,∴S扇形OBD=60π·22360=23π,即阴影部分的面积为2π3.故选D.4. 【答案】C5. 【答案】B[解析] 如图,连接AD.∵AB为⊙O的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.6. 【答案】A[解析] 设圆锥的底面圆的半径是r cm ,则2πr =6π,解得r =3,则圆锥的高是52-32=4(cm).7.【答案】A 【解析】如解图,在Rt △ABC 中,AC =4,BC =3,由勾股定理得AB =5.过C 作CD ⊥AB 于D ,则S △ABC =12AC ·BC =12AB ·CD ,解得CD =2.4<2.5,∴直线AB 与⊙C 相交.解图8. 【答案】D[解析] ∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 的长为R ,则BD 的长为2R.∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ,∴下面圆锥的侧面积为12·2R ·2R = 2.故选D.9. 【答案】A10. 【答案】B[解析] 如图,连接OC 交⊙C 于点P ′.∵圆心C 的坐标为(3,4),点P 的坐标为(m ,n ), ∴OC =5,OP =m2+n2,∴m 2+n 2是点P 到原点的距离的平方,∴当点P 运动到线段OC 上,即点P ′处时,点P 离原点最近,即m 2+n 2取得最小值,此时OP =OC -PC =5-1=4,即m 2+n 2=16.二、填空题11. 【答案】5-533 [解析] ∵∠BAD =∠CAE =90°,∴∠DAC =∠BAE .在△DAC 和△BAE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△DAC ≌△BAE (SAS), ∴∠ADC =∠ABE ,从而∠PDB +∠PBD =90°, 即∠DPB =90°,从而∠BPC =90°, ∴点P 在以BC 为直径的圆上.如图,过点O 作OH ⊥BC 于点H ,连接OB ,OC . ∵△ABC 的外心为O ,∠BAC =60°, ∴∠BOC =120°.又∵BC =10, ∴OH =53 3,∴OP 长的最小值是5-53 3.12. 【答案】1【解析】∵AB 为直径,∴,∵,∴.故答案为:1.13. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根,∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.14. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.15. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.16. 【答案】t =2或-1≤t <1 [解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C 或从直线过点A 开始到直线过点B 结束(不包括直线过点A ).直线y =x +t 与x 轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.17. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.18. 【答案】2 [解析] 如图,连接OD.∵OE ⊥BF 于点E ,∴BE =12BF.∵AC 是⊙O 的切线,∴OD ⊥AC ,∴∠ODC =∠C =∠OEC =90°, ∴四边形ODCE 是矩形,∴EC =OD =OB =2.又∵BC =3,∴BE =BC -EC =3-2=1,∴BF =2BE =2.三、解答题19. 【答案】解:(1)证明:∵C 为BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF.在△BFG 和△CDG 中,⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG(AAS).(2)解法一:如图①,连接OF.设⊙O 的半径为r.∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,BD2=AB2-AD2,即BD2=(2r)2-22.在Rt △OEF 中,OF2=OE2+EF2,即EF2=r2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵,∴BD =CF ,∴BD2=CF2=(2EF)2=4EF2,即(2r)2-22=4[r2-(r -2)2],解得r =1(不合题意,舍去)或r =3,∴BF2=EF2+BE2=32-(3-2)2+22=12,∴BF =2 3.解法二:如图②,连接OC ,交BD 于点H.∵C 是BD ︵的中点,∴OC ⊥BD ,∴DH =BH.∵OA =OB ,∴OH =12AD =1.∵∠COE =∠BOH ,∠OEC =∠OHB =90°,OC =OB ,∴△COE ≌△BOH(AAS),∴OE=OH=1,∴OC=OB=OE+BE=3.∵CF⊥AB,∴CE=EF=OC2-OE2=32-12=2 2,∴BF=BE2+EF2=22+(2 2)2=2 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD=AB,∠D=30°,∴∠B=∠D=30°,∴∠DAB=120°.∵BC是⊙O的直径,∴∠BAC=90°,∴∠DAC=30°,∴∠BCA=60°.∵AO=CO,∴△ACO是等边三角形,∴∠CAO=60°,∴∠DAO=∠CAO+∠DAC=90°,即AD⊥AO.又∵AO是⊙O的半径,∴直线AD是⊙O的切线.(2)由(1)知Rt△ADO中,AO=2,∠D=30°,∴OD=2AO=4,∴AD=2 3,∴SRt△ADO=12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】解: 如图,过点O 作OG ⊥AP 于点G ,连接OF.∵DB =10 cm ,∴OD =OF =5 cm ,∴AO =AD +OD =3+5=8(cm).∵∠PAC =30°,∴OG =12AO =12×8=4(cm).∵OG ⊥EF ,∴EG =GF =12EF.∵GF =OF2-OG2=52-42=3(cm),∴EF =2GF =6 cm ,∴圆心O 到AP 的距离为4 cm ,EF 的长为6 cm.23. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.。
人教版九年级数学上《第二十四章圆》单元测试题含答案
第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。
人教版 九年级数学上册 第24章 圆 综合复习(含答案)
人教版 九年级数学 第24章 圆 综合复习一、选择题(本大题共10道小题)1. 已知⊙O 的半径为5 cm ,P 是⊙O 内一点,则OP 的长可能是( )A .4 cmB .5 cmC .6 cmD .7 cm2. 在数轴上,点A 所表示的实数为5,点B 所表示的实数为a ,⊙A 的半径为3,要使点B 在⊙A 内,则实数a 的取值范围是( ) A .a >2B .a >8C .2<a <8D .a <2或a >83. 已知半径为10的⊙O 和直线l 上一点A ,且OA =10,则直线l 与⊙O 的位置关系是( ) A .相切 B .相交 C .相离 D .相切或相交4. 如图,在半径为5的⊙O 中,弦AB =6,OP ⊥AB ,垂足为P ,则OP 的长为( )A .3B .2.5C .4D .3.55. 2020·武汉模拟在Rt⊙ABC 中,∠BAC =90°,AB =8,AC =6,以点A 为圆心,4.8为半径的圆与直线BC 的公共点的个数为( ) A .0B .1C .2D .不能确定6. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若⊙CED =52⊙COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π7. 如图是由7个全等的正六边形组成的网格,正六边形的顶点称为格点,⊙ABC的顶点都在格点上,设定AB 边如图所示,则使⊙ABC 是直角三角形的格点有( )A .10个B .8个C .6个D .4个8. 如图,以AD 为直径的半圆O 经过Rt⊙ABC 斜边AB 的两个端点,交直角边AC 于点E.B ,E 是半圆弧的三等分点,BE ︵的长为2π3,则图中阴影部分的面积为( )图A.π9 B.3π9C.3 32-3π2D.3 32-2π39. 运用图形变化的方法研究下列问题:如图,AB是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A.252π B .10π C .24+4π D .24+5π10.⊙⊙⊙⊙⊙⊙O ⊙⊙⊙⊙5⊙⊙AB ⊙CD ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙AOB ⊙⊙COD ⊙⊙⊙AOB ⊙⊙COD ⊙⊙⊙⊙CD ⊙6⊙⊙⊙AB ⊙⊙⊙( )A⊙6 B⊙8 C⊙5 2 D⊙5 3二、填空题(本大题共7道小题)11. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.12. 如图,已知扇形OAB 的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.13. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. 一个圆锥形漏斗,某同学用三角尺测得其高度的尺寸(单位:cm)如图所示,则该圆锥形漏斗的侧面积为________cm 2.16. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与⊙ABC 的边有且只有两个公共点时,DO 的取值范围为________.17. 佳佳对科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折(如图①所示),旋转放置,做成科学方舟模型(如图②所示).图①中正五边形的边心距OB 为2,图②中AC 为科学方舟船头A 到船底的距离,请你计算AC +12AB =________.三、解答题(本大题共4道小题)18. 如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E.求证:AD =BE.19. 定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图2,在损矩形ABCD 中,∠ABC =∠ADC =90°,则该损矩形的直径是线段________.(2)①在损矩形ABCD 内是否存在点O ,使得A ,B ,C ,D 四个点都在以点O 为圆心的同一个圆上?如果有,请指出点O 的具体位置;②如图2,直接写出符合损矩形ABCD 的两个结论(不再添加任何线段或点).20. 已知AB =4 cm ,画图并用文字说明满足下列条件的图形.(1)到点A 和点B 的距离都等于3 cm 的所有点组成的图形; (2)到点A 和点B 的距离都不大于3 cm 的所有点组成的图形;(3)到点A 的距离大于3 cm ,且到点B 的距离小于3 cm 的所有点组成的图形.21. 如图①,在等腰三角形ABC 中,∠BAC =120°,AD 平分∠BAC ,且AD =6,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F. (1)求由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠(如图②),求这个圆锥的高h.人教版九年级数学第24章圆综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】C3. 【答案】D[解析] 若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,可知圆心O到直线l的距离小于10,即小于半径,所以直线l与⊙O相交.4. 【答案】C5. 【答案】B6. 【答案】D7. 【答案】A[解析] 如图,当AB是直角边时,点C共有6个位置,即有6个直角三角形;当AB是斜边时,点C共有4个位置,即有4个直角三角形.综上所述,使⊙ABC是直角三角形的格点有6+4=10(个).故选A.8. 【答案】D9. 【答案】A[解析] 如图,连接OC,OD,OE,OF.∵AB ∥CD ,∴S⊙ACD =S⊙OCD ,∴AB 上方的阴影面积=S 扇形OCD. 同理,AB 下方的阴影面积=S 扇形OEF.延长EO 交⊙O 于点G ,连接FG ,则∠EFG =90°. ∴FG =EG2-EF2=102-82=6. ∵CD =6,∴FG =CD ,∴∠FOG =∠COD ,∴S 扇形OCD =S 扇形OFG ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OFG +S 扇形OEF =S 半圆=12π×52=252π.故选A.10. 【答案】B[解析] 如图,延长AO 交⊙O 于点E ,连接BE ,则⊙AOB +⊙BOE =180°. 又⊙⊙AOB +⊙COD =180°, ⊙⊙BOE =⊙COD , ⊙BE =CD =6.⊙AE 为⊙O 的直径,⊙⊙ABE =90°, ⊙AB =AE 2-BE 2=8.二、填空题(本大题共7道小题)11. 【答案】312. 【答案】2π[解析] 设扇形的半径是R ,则60·π·R2360=6π,解得R =6(负值已舍去).设扇形的弧长是l ,则12lR =6π,即3l =6π,解得l =2π.故答案为2π.13. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根, ∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.14. 【答案】6π[解析] 由题意易知⊙AOB =90°,OA =OB ,⊙⊙ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15. 【答案】15π16. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D 为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与⊙ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与⊙ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过⊙ABC 的顶点A 时,⊙O 与⊙ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与⊙ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与⊙ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与⊙ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.17. 【答案】52 2 [解析] 如图①,连接OF ,OE .由题意,知AB ⊥EF ,则S 正五边形AGFED =5×S △OEF =5×(12EF ·OB )=2.5×2EF =5 2BE .如图②,连接AE .S 正五边形AGFED =2×S 四边形ABED =2×(S △ABE +S △ADE )=2×(12AB ·BE +12DE ·AC )=AB ·BE +DE ·AC =AB ·BE +2BE ·AC =BE ·(AB +2AC ),∴5 2BE =BE ·(AB +2AC ). ∴AB +2AC =5 2,∴AC +12AB =52 2.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC.∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E , ∴∠CDO =∠CEO =90°. 在⊙COD 与⊙COE 中,⎩⎨⎧∠AOC =∠BOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS),∴OD =OE. 又∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE.19. 【答案】解:(1)AC(2)①在损矩形ABCD 内存在点O ,使得A ,B ,C ,D 四个点都在以点O 为圆心的同一个圆上,O 是线段AC 的中点.②答案不唯一,如损矩形ABCD 是圆内接四边形,∠ADB =∠ACB 等.20. 【答案】解:(1)如图①中的点C 和点D.(2)如图①中的阴影部分(包括边界).(3)如图②中的阴影部分(不包括边界).21. 【答案】解:(1)∵在等腰三角形ABC 中,∠BAC =120°,∴AB =AC ,∠B =∠C =30°.∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD.在Rt⊙ABD 中,由∠B =30°,AD =6,可得AB =12,BD =6 3,∴BC =2BD =12 3,∴由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积=S⊙ABC -S 扇形AEF =12×6×12 3-120·π·62360=36 3-12π.(2)设圆锥的底面圆的半径为r.根据题意,得2πr =120·π·6180,解得r =2,∴这个圆锥的高h =62-22=4 2.。
人教版 九年级数学上册 第24章 圆 综合复习题(含答案)
人教版九年级数学上册第24章圆综合复习题一、选择题(本大题共10道小题)1. 如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°2. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π3. 有下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的有() A.1个B.2个C.3个D.4个4. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是()A.30 cm2B.60π cm2C.30π cm2D.48π cm25. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A .⊙O 1B .⊙O 2C .⊙O 3D .⊙O 46. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED= 52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π7.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( ) A . 33 B . 43 C . 53 D . 638. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3π B.3πC.32 3πD .4π9.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A .π3B .π2 C .π D .2π10. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 3二、填空题(本大题共5道小题)11.如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于4,则⊙O 的面积等于________.12.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________°.13.在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.14. 2019·兴化期中 已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.15. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)三、解答题(本大题共4道小题)16. 在△ABC 中,AB =AC =10,BC =16,⊙A 的半径为7,判断⊙A 与直线BC 的位置关系,并说明理由.17. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比; (2)圆锥的全面积.18. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .19.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC 的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.人教版九年级数学上册第24章圆综合复习题-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.2. 【答案】B[解析] 连接OA,OC,则∠OAE=∠OCD=90°.∵五边形ABCDE 为正五边形,∴∠E=∠D=108°,∴∠AOC=540°-∠OAE-∠OCD-∠E-∠D=144°,∴劣弧AC的长度为144180×π×1=45π.3. 【答案】B4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】B 【解析】如解图,延长CO交⊙O于点A′,连接A′B.设∠BAC=α,则∠BOC=2∠BAC=2α,∵∠BAC+∠BOC=180°,∴α+2α=180°,∴α=60°.∴∠BA′C=∠BAC =60°,∵CA′为直径,∴∠A′BC=90°,则在Rt△A′BC中,BC=A′C·sin∠BA′C=2×4×32=43.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=12AC=12AO,∴∠AOD=30°,OD=3 3.作BF =AC ,E 为BF 的中点. 同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为nπR 180=90π×3 3180=3 32π.9.【答案】C【解析】如解图,连接OE 、OF ,∵AB 为⊙O 的直径,AB =12,∴AO =OB =6,∵⊙O 与DC 相切于点E ,∴∠OEC =90°,∵在▱ABCD 中,∠C =60°,AB ∥D C ,∴∠A =∠C =60°,∠AOE =∠OEC =90°,∵在△AOF 中,∠A =60°,AO =FO ,∴△AOF 是等边三角形,即∠AOF =∠A =60°,∴∠EOF =∠AOE -∠AOF =90°-60°=30°,弧EF 的长=30π×6180=π.解图10. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB2-OE2=62-22=4 2,∴AB =8 2.故选B.二、填空题(本大题共5道小题)11.【答案】2π 【解析】由题意得,正方形的边长AB =2,则⊙O 的半径为2×22=2,∴⊙O 的面积是(2)2π=2π.12.【答案】120【解析】圆锥的侧面展开图是扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.设扇形的圆心角为n°,则2π×2=nπ·6180,解得n=120.13. 【答案】24【解析】设AB切⊙O于点E,如解图,连接EO并延长交CD于点M,∵C⊙O=26π=2πr,∴r=13,∵AB∥CD,且AB与CD之间的距离为18,∴OM=18-r=5,∵AB为⊙O的切线,∴∠CMO=∠AEO=90°,∴在Rt△CMO中,CM=OC2-OM2=12,∴CD=2CM=24.解图14. 【答案】0<DO<33或2 33<DO<3[解析] ∵等边三角形ABC的边长为2,D为BC的中点,∴AD⊥BC,BD=1,AD= 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.15. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).三、解答题(本大题共4道小题)16. 【答案】解:⊙A 与直线BC 相交. 理由:过点A 作AD ⊥BC 于点D , 则BD =CD =8. ∵AB =AC =10, ∴AD =6. ∵6<7,∴⊙A 与直线BC 相交.17. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r , 根据题意得2πr =180πl180, 所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1. (2)因为r 2+(3 3)2=l 2,即r 2+(3 3)2=4r 2,解得r =3(负值已舍去), 所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.18. 【答案】证明:如图,延长AD 交⊙O 于点E , ∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD . ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD .19. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG ,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD ≌△EGD ,∠EBC =∠ECB ,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG =45°,β=∠ACB =135°,∴∠ECB =45°,∠CEB =90°,△ECD 、△BEC 、△A BG 都是等腰直角三角形,由CD 的长,可得出BE 和CE 的长,再由题干条件△A BE 的面积是△ABC 的面积的4倍可得出AC 的长,利用勾股定理在△ABE 中求出AB 的长,再利用勾股定理在△ABG 求出AG 的长,即可求出半径长.①(1)①β=90°+α,γ=180°-αword版初中数学证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)11 / 11。
人教版 九年级数学上册 第24章 圆 综合训练(含答案)
人教版九年级数学第24章圆综合训练一、选择题(本大题共10道小题)1. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB长为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8-πB.16-2πC.8-2πD.8-π2. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等3. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线4. 在半径为6 cm的圆中,长为2π cm的弧所对的圆周角的度数为() A.30°B.45°C.60°D.90°5. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A .PA=PB B .∠BPD=∠APDC .AB ⊥PD D .AB 平分PD6. 2019·安徽月考如图,正五边形ABCDE 内接于⊙O ,过点A 作⊙O 的切线交对角线DB 的延长线于点F ,则下列结论不成立的是( )A .AE ∥BFB .AF ∥CDC .DF =3AFD .AB =BF7. 已知A ,B ,C 为平面上的三点,AB =2,BC =3,AC =5,则( )A .可以画一个圆,使A ,B ,C 都在圆周上 B .可以画一个圆,使A ,B 在圆周上,C 在圆内 C .可以画一个圆,使A ,C 在圆周上,B 在圆外D .可以画一个圆,使A ,C 在圆周上,B 在圆内8. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶99. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm10. 如图,△ABC的内心为I,连接AI并延长交△ABC的外接圆于点D,则线段DI与DB的关系是()A.DI=DB B.DI>DBC.DI<DB D.不确定二、填空题(本大题共6道小题)11. 如图,点A,B,C在☉O上,BC=6,∠BAC=30°,则☉O的半径为.12. 若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是________.13. 如图,⊙O的半径为3,P是CB延长线上一点,OP=5,PA切⊙O于点A,则PA=________.14. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.15. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.16. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形的边长为 6 cm,则该莱洛三角形的周长为________ cm.三、解答题(本大题共5道小题)17. 如图,已知AB是半圆O的直径,弦CD∥AB,点P,Q分别在线段OC,CD上,且DQ=OP.求证:AP=OQ.18. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比;(2)圆锥的全面积.19.如图,AB为⊙O的直径,C,D是半圆O的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.20.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD长为半径画弧,交BC于点F,以点C为圆心,CD长为半径画弧,与AC,BC分别交于点E,G.求阴影部分的面积.21. 如图,△ABC是等边三角形,AO⊥BC,垂足为O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长.人教版九年级数学第24章圆综合训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=·AD·AB=8,S扇形ABE==2π,∴S阴影=S△ABD-S扇形ABE=8-2π.故选C.2. 【答案】B3. 【答案】B4. 【答案】A[解析] 设长为2π cm的弧所对的圆心角的度数为n°,则nπR180=2π,解得n=60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.5. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.6. 【答案】C7. 【答案】D[解析] 由题意可知A,B,C三点在同一直线上,且点B在点A,C之间,因此过点A,C可以画一个圆,且点B在圆内.8. 【答案】D9. 【答案】C10. 【答案】A[解析] 连接BI,如图.∵△ABC的内心为I,∴∠1=∠2,∠5=∠6.∵∠3=∠1,∴∠3=∠2.∵∠4=∠2+∠6,∠DBI=∠3+∠5,∴∠4=∠DBI,∴DI=DB.故选A.二、填空题(本大题共6道小题)11. 【答案】6[解析]连接OB,OC.∵∠BOC=2∠BAC=60°,OB=OC,∴△BOC 是等边三角形,∴OB=BC=6,故答案为6.12. 【答案】3[解析] 设该圆锥底面圆的半径是r,则πr×5=15π,解得r=3.13. 【答案】4[解析] ∵PA切⊙O于点A,∴OA⊥PA.∵在Rt△OPA中,OP=5,OA=3,∴PA=OP2-OA2=4.14. 【答案】10或70[解析]作OD⊥AB于C,OD交☉O于点D,连接OB.由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.15. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S扇形OAB-S△OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.16. 【答案】6π[解析] 以边长为半径画弧,这三段弧的半径为正三角形的边长,即6 cm,圆心角为正三角形的内角度数,即60°,所以每段弧的长度为60·π·6 180=2π(cm),所以该莱洛三角形的周长为2π×3=6π(cm).三、解答题(本大题共5道小题)17. 【答案】证明:连接OD.∵OC=OD,∴∠C=∠D.∵CD ∥AB ,∴∠C =∠AOP , ∴∠D =∠AOP.又∵OP =DQ ,OA =OD , ∴△AOP ≌△ODQ , ∴AP =OQ.18. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r , 根据题意得2πr =180πl180, 所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1. (2)因为r 2+(3 3)2=l 2,即r 2+(3 3)2=4r 2,解得r =3(负值已舍去), 所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.19. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.20. 【答案】解:连接CD .∵△ABC 是等腰直角三角形,D 是斜边AB 的中点, ∴CD ⊥AB .由已知,得AB =16 2,∠DBF =45°, ∴BF =BD =12AB =CD =8 2,∴阴影部分的面积是16×162-45π×(8 2)2360-[12×16×162-45π×(8 2)2360]=64(分米2).答:阴影部分的面积是64平方分米.21. 【答案】解:(1)证明:如图,过点O 作OM ⊥AB ,垂足为M. ∵⊙O 与AC 相切于点D ,∴OD ⊥AC.∵△ABC 是等边三角形,∴AB =AC. 又∵AO ⊥BC , ∴∠DAO =∠MAO. 又∵OM ⊥AB ,OD ⊥AC , ∴OM =OD ,∴AB 与⊙O 相切.(2)如图,过点O 作ON ⊥BE ,垂足为N ,连接OF.依题意得O是BC的中点,∴OB=2.∵在Rt△OBM中,∠ABC=60°,OB=2,∴BM=1,OM= 3.∵BE⊥AB,OM⊥AB,ON⊥BE,∴四边形OMBN是矩形,∴ON=BM=1,BN=OM= 3.在Rt△NOF中,∵OF=OM=3,ON=1,∴由勾股定理得NF=2,∴BF=BN+NF=3+ 2.11。
人教版数学九年级上册第24章《圆》综合复习测试题
A BC O第3题图人教版数学九年级上册第24章《圆》综合复习测试题一、选择题(每小题3分,共30分) 1、下列说法正确的是( )A 垂直于半径的直线是圆的切线B 经过三点一定可以作圆C 圆的切线垂直于圆的半径D 每个三角形都有一个内切圆 2、如图,⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( )A 3cmB 4cmC 5cmD 6cm3、如图,A 、B 、C 三点在⊙O 上,若∠AOB =80°,则∠ACB 等于( ) A 160° B 80° C 40° D 20°4、如图,⊙O 的直径CD 垂直于弦EF ,垂足为G ,若∠EOD=40°,则∠DCF 等于( ) A 80° B 50° C 40° D 20°5、若两圆半径分别为R 和r(R>r),圆心距为d ,且R 2+d 2=r 2+2Rd ,则两圆的位置关系为( ) A 内切 B 内切或外切 C 外切 D 相交6、圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是( ) A 180° B 200° C 225° D 2167、如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为 ( )A ⎪⎪⎭⎫⎝⎛-5823, B ()13,- C ⎪⎭⎫⎝⎛-5954, D ()31,-8、⊙O 中,半径OA 等于弦AB ,过B 作⊙O 的切线BC ,取BC=AB ,OC 交⊙O 于E ,AC交⊙O 于点D ,则DE 所对的圆心角的度数为( ) A 15° B 20° C 30° D 45°第2题图第4题图第15题 9、如图,弦CD 垂直于⊙O 的直径AB ,垂足为H,且CD =BD AB 的长为( )A 2B 3C 4D 510、如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( ) A AD =BDB ∠ACB =∠AOECAE BEDOD =DE二、填空题(每小题3分,共30分)11、如果⊙O 的直径为10cm,弦AB=6cm,那么圆心O 到弦AB 的距离为______cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学中考真题分类(填空题)专练:
第24章圆的综合(四)
1.(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.
2.(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.3.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.4.(2020•金昌)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).
5.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.
6.(2020•凉山州)如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为.
7.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.
8.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.
9.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.
10.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA1B1C1D1E1F1的长度是.
11.(2020•枣庄)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.
12.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.
13.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.
14.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.
15.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.
参考答案1.解:∵圆锥的侧面展开图是扇形,
∴S侧=πrl=3×1×π=3π,
∴该圆锥的侧面展开图的面积为3π.
故答案为:3π.
2.解:∵S侧=πrl,
∴3πl=12π,
∴l=4.
答:这个圆锥的母线长为4.
故答案为:4.
3.解:如图,
∵弦BC垂直平分半径OA,
∴OD:OB=1:2,
∴∠BOD=60°,
∴∠BOC=120°,
∴弦BC所对的圆周角等于60°或120°.
故答案为:60°或120°.
4.解:设扇形的半径为R,弧长为l,
根据扇形面积公式得;=,
解得:R=1,
∵扇形的面积=lR=,
解得:l=π.
故答案为:.
5.解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,
此时E′C+E′D最小,即:E′C+E′D=CD′,
由题意得,∠COD=∠DOB=∠BOD′=30°,
∴∠COD′=90°,
∴CD′===2,
的长l==,
∴阴影部分周长的最小值为2+=.
故答案为:.
6.解:连接OC、OD、CD.
∵点C,D为半圆的三等分点,
∴∠AOC=∠COD=∠BOD=60°,
∵OC=OD,
∴△COD是等边三角形,
∴∠OCD=60°,
∴∠OCD=∠AOC,
∴CD∥AB,
∵△COD和△CBD等底等高,
∴S△COD=S△BCD.
∴阴影部分的面积=S扇形COD,
∵阴影部分的面积是π,
∴=π,
∴r=3,
故答案为3.
7.解:设l交A1A2于E、交A4A3于D,如图所示:
∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,
∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,
∴∠B2B3B4==108°,
∴∠B4B3D=180°﹣108°=72°,
∵A3A4∥B3B4,
∴∠EDA3=∠B4B3D=72°,
∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,
故答案为:48.
8.解:∵直线a⊥b,O为直线b上一动点,
∴⊙O与直线a相切时,切点为H,
∴OH=1cm,
当点O在点H的左侧,⊙O与直线a相切时,如图1所示:
OP=PH﹣OH=4﹣1=3(cm);
当点O在点H的右侧,⊙O与直线a相切时,如图2所示:
OP=PH+OH=4+1=5(cm);
∴⊙O与直线a相切,OP的长为3cm或5cm,
故答案为:3cm或5cm.
9.解:连接OC、OD,如图所示:
∵ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
∵DG⊥PC,
∴∠PGD=90°,
∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,
故答案为:54.
10.解:的长==,
的长==,
的长==,
的长==,
的长==,
的长==,
∴曲线FA1B1C1D1E1F1的长度=++…+==7π,故答案为7π.
11.解:∵PA切⊙O于点A,
∴∠OAP=90°,
∵∠P=36°,
∴∠AOP=54°,
∵=,
∴∠B=∠AOP=27°.
故答案为:27°.
12.解:设这个圆锥的侧面展开图的圆心角为n°,
根据题意得2π×2.5=,解得n=100,
即这个圆锥的侧面展开图的圆心角为100°.
故答案为:100.
13.解:设这个圆锥的底面圆半径为rcm,
根据题意得2πr=,
解得r=5(cm).
故答案为:5.
14.解:连接OA,
∵∠ABO=60°,OA=OB,
∴△AOB是等边三角形,
∵AB=8,
∴⊙O的半径为8,
∵AD∥OB,
∴∠DAO=∠AOB=60°,
∵OA=OD,
∴∠AOD=60°,
∵∠AOB=∠AOD=60°,
∴∠DOE=60°,
∵DC⊥BE于点C,
∴CD=OD=4,OC==4,∴BC=8+4=12,
S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD
=×+2×﹣
=﹣8
故答案为﹣8.
15.解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,
∵∠BCA=50°,
∴∠ADB=∠BCA=50°,
故答案为:50.
1、最困难的事就是认识自己。
20.10.210.2.202009:2809:28:58Oct-2009:28
2、自知之明是最难得的知识。
二〇二〇年十月二日2020年10月2日星期五
3、越是无能的人,越喜欢挑剔别人。
09:2810.2.202009:2810.2.202009:2809:28:5810.2.202009:2810.2.2020
4、与肝胆人共事,无字句处读书。
10.2.202010.2.202009:2809:2809:28:5809:28:58
5、三军可夺帅也。
Friday, October 2, 2020October 20Friday, October 2, 202010/2/2020
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
9时28分9时28分2-Oct-2010.2.2020
7、人生就是学校。
20.10.220.10.220.10.2。
2020
年10月2日星期五二〇二〇年十月二日 8、你让爱生命吗,那么不要浪费时间。
09:2809:28:5810.2.2020Friday, October 2, 2020
亲爱的用户: 烟雨江南,画屏如展。
在那桃花盛开的地方,在这醉
人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。