九年级下册数学第27章
华东师大版九年级数学下册第27章圆27.圆周角习题课件
2.如图,已知☉O的两条弦AB,CD相交于AB的中点E,且AB=4, DE=CE+3,则CD的长为( )
A.4
B.5
C.8
D.10
【解析】选B.连结AC,BD,如图, ∵∠A=∠D ,∠C=∠B, ∴△AEC∽△DEB,
AE CE, DE BE
∴AE·BE=CE·DE. 设CE=x,则DE=3+x. ∴x(x+3)=2×2, 解得,x=1或x=-4(不合题意,应舍去). ∴CE=1,∴CD=3+1+1=5.
在Rt△ABD中, BD AD 6 4 3,
cos 30 3 2
在Rt△BCD中,DC BDsin 30 4 3 1 2 3.
2
答案: 2 3
4.如图,AB,CD是☉O的弦,AB⊥CD,BE是☉O的直径.若AC=3, 则DE=________.
【解析】连结AE,∵BE是⊙O的直径, ∴∠BAE=90°,即AB⊥AE. ∵AB⊥CD,∴AE∥CD, ∴∠ACD+∠CAE=180°. ∵四边形ACDE是⊙O的内接四边形, ∴∠CAE+∠CDE=180°, ∴∠ACD=∠CDE,
∴∠ACD=∠ABC,
∴△ACD∽△CBD,
CD AD . BD CD
∵AD=9,BD=4,∴CD=6.
在☉O中,∠PCN=∠NQP,∠CPQ=∠QNC,
∴△PEC∽△NEQ,
PE CE , NE QE
∴PE·QE=CE·NE,
同理,在☉C中,可得,PE·QE=DE·ME, 设CE=x,则DE=6-x, 则(6-x)(x+6)=x(6-x+6), 解得x=3. 所以,CE=3,DE=6-3=3,EM=6+3=9. 所以PE·EQ=3×9=27.
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-根据已知信息,尝试找到相似三角形;
-运用相似三角形的性质,列出比例关系,解决问题。
c)难点三:相似三角形性质在几何证明中的应用。可通过以下步骤进行讲解:
-分析题目要求,确定需要证明的结论;
-利用相似三角形的性质,找到合适的证明方法;
-举例说明,如:证明在相似三角形中,角平分线、中线、高线等成比例。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形的模型,并测量它们的对应边长,验证成比例的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期
一、教学内容
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期
1.理解相似三角形的定义及判定方法;
2.掌握相似三角形的基本性质:对应角相等、对应边成比例;
3.应用相似三角形的性质解决实际问题;
4.学习相似三角形在生活中的应用,如摄影、建筑设计等领域;
-引导学生观察两个三角形,寻找已知信息;
-根据已知信息,选择合适的相似判定方法(AA、SSS、SAS);
九年级数学下册 第27章二次函数27.3 实践与探索第2课时习题课件 华东师大版
(2)根据1的分析,作出二次函数y=x2+2x-3的图象.
(3)根据图象找出二次函数与x轴的交点的坐标分别为: A_(_-3__,0_)__;B_(_1_,0__) _. (4)根据以上分析可知一元二次方程x2+2x-3=0的解为: x1=-_3__;x2=1__.
【总结提升】利用函数图象求ax2+bx+c=0(a≠0)的近似解的两
图象与x轴只有一个
交点
(
b
, 0)
2a
图象与x轴没有交点
方法 技巧
转 化 法
知识点 2 利用函数图象求一元二次方程(组)的解 【例2】利用函数图象,求方程x2+2x-3=0的解. 【解题探究】(1)如何利用二次函数y=ax2+bx+c的图象确定一元 二次方程ax2+bx+c=0的解? 提示:画出二次函数y=ax2+bx+c的图象,找到二次函数图象与x 轴的交点的横坐标,所得的横坐标的值就是一元二次方程 ax2+bx+c=0的解.
知识点 1 二次函数与一元二次方程、一元二次不等式的关系 【例1】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象 解答下列问题: (1)写出方程ax2+bx+c=0的两个根. (2)写出不等式ax2+bx+c>0的解集. (3)写出y随x的增大而减小的自变 量x的取值范围. (4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.
【总结提升】
关键要点
二次 函数 与一 元二 次方 程的 关系
b2-4ac
一元二次方程 二次函数 ax2+bx+c=0 y=ax2+bx+c
华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
d<r
点P在圆内;
[注意]点与圆的位置关系可以转 化为点到圆心的距离与半径之间
d=r
点P在圆上;
的关系;反过来,也可以通过这
种数量关系判断点与圆的位置关
d>r
点P在圆外.
系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的
位置关系
相离
相切
图形
d与r的关系 公共点个数 公共点名称 直线名称
பைடு நூலகம்
d>r 0个
d=r 1个 切点 切线
相交
d<r 2个 交点 割线
三、 圆的基本性质 1. 圆的对称性 圆是轴对称图形,它的任意一条_______所在的直直径线都是它的对称轴.
(3)边长a,边心距r的正n边形的面积为
S
1 nar 2
1 lr. 2
其中l为正n边形的周长.
考点一 圆周角定理
例1 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是
()
B
A. 72° B.54° C. 45° D.36 °
A
B
C
D
针对训练
1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一
3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆 的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
新人教版九年级数学下册《第二十七章 相似 》全章教案
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
新人教版九年级数学下册 第27章 相似 课件
图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 缩小 得到的,实际的建筑物 _________ 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
• 认识形状相同的图形。
• 对相似图形概念的理解。
• 抓住形状相同的图形的特征,认
识其内涵。
回顾旧知
全等图形
A' B
A
B'
C'
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
它们的大小不一定相等,
形状相同.
知识要点
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
不规则四边形
B
A
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对 应 角 有 什 么 D 关 系?
对应边有什么关系? C1
人教版数学九年级下册第二十七章《相似》教材分析课件共62张
(2016年)29. 在平面直角坐标系xOy中,点P的坐标为(x1,y1)点Q的坐标为(x2,y2),且x1≠x2,y1≠ y2若P、Q为 某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”。下图为点P,Q 的 “相关矩形”的示意图。 (1)已知点A的坐标为(1,0),
这三道题没有涉及相似的知识,但都是在坐标系中给 间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
出图形新定义,然后按着特殊到一般的方法研究相关 ①在点P1( ,0),P2( , ),P3( ,0)中,⊙O的关联点是;
②点P在直线y = - x上,若P为⊙O的关联点,求点P的横坐标的取值范围;
第二十七章《相似》教材分析
《相似》教材分析 一、看要求 二、品教材
三、说教法 四、谈落实
看要求
1.课标对图形的相似的具体要求:
图形与几何
图形与变化
图形的相似
(1)了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似,了解相似多边形和相似比的含义。
基本实践活动:测物体的高度(课本39页,54页),测河宽 (课本40页),制作艺术字(课本54页)等.
说教法
(一)重视知识间联系,注重数学思想方法的教学。
数学思想是数学知识的精髓,在运用数学知识的过 程中,起着指导作用.数学方法是数学思想的具体 体现,是学习和运用数学知识的工具.下面就相似 中涉及的常见数学思想作如下总结:
M
ABCD 面积的1/9 ?
DN
A
(2)是否存在时刻t,使以A,M,N为顶点的三角
形与△ACD相似?若存在,求t的值;若不存在,
人教版九年级数学下册第二十七章27
五、作业布置
为了巩固学生对相似三角形判定与性质的理解和应用,特布置以下作业:
1.请同学们完成课本第27.2.1节后的习题1、2、3,注意运用相似三角形的判定方法解决问题,并在解题过程中标注关键步骤和所用定理。
2.设计一道实际生活中的问题,要求运用相似三角形的性质进行解答。例如:测量建筑物的高度、求解三角形中未知线段的长度等。请同学们将问题及解答过程记录下来,下节课与同学们分享。
二、学情分析
九年级学生已经具备了一定的几何基础,掌握了三角形的基本概念和性质,能够运用这些知识解决一些简单问题。在此基础上,学生对相似三角形的认识处于初步阶段,对于相似三角形的判定方法和性质需要进一步引导和深化。在教学过程中,教师要关注以下几点:
1.学生对相似三角形概念的理解程度,部分学生可能对其含义理解不透,需要通过具体实例和直观演示来加深理解。
4.通过实际例题的讲解和练习,培养学生将理论知识应用于实际问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于思考的精神,增强学生面对困难时的自信心。
3.培养学生养成良好的学习习惯,如预习、复习、总结等,提高学生的学习效率。
4.培养学生认识到数学在生活中的重要作用,增强学生的应用意识,使学生能够运用所学知识为社会服务。
4.小组合作,拓展延伸:将学生分成小组,讨论以下问题:相似三角形在生活中的应用、相似三角形与其他几何知识的联系等。通过合作交流,培养学生的团队协作能力和拓展思维。
5.课堂小结,总结提升:对本节课所学知识进行总结,让学生明确相似三角形的判定方法和性质,以及如何运用这些知识解决实际问题。
人教版九年级数学下册《第二十七章 相似》教案
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。
完整版华师大版九年级下册数学第27章 圆含答案
华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,PA=,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定2、如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32B.34C.36D.383、已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3, AB=8,则tan∠OPA的值为()A.3B.C. 或D.3或4、如图,是的弦,点在上,已知,则等于()A.40°B.50C.60°D.80°5、如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O 的半径是()A.2.5B.2C.2.4D.36、如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.7、下列语句中,正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个8、点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A.8B.10.5C.D.129、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.45°B.40°C.50°D.65°10、如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA,CB分别相交于点P、Q,则线段PQ长度的最小值是()A.2B.C.D.11、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°12、如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为()A.5B.C.D.13、下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心14、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.45°B.60°C.65°D.70°15、若刻度尺与⊙O按如图位置摆放,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),⊙O的半径是5cm,则圆心O到刻度尺的距离为()A.5cmB.4cmC.3cmD.2cm二、填空题(共10题,共计30分)16、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为________.17、如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为________.18、如图,点P是⊙ 的直径BA的延长线上一点,PC切⊙ 于点C,若,PB=6,则PC等于 ________.19、如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为________20、如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.21、如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为________22、如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.23、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)24、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是________度.25、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O所经过的路线长是________ 米.三、解答题(共5题,共计25分)26、计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= ×底面积×高,π取3)27、阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,①连接OP,作线段OP的垂直平分线MN交OP于点C.②以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.③作直线PA,PB.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,写出依据.请写出证明过程.________28、如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.29、如图,A,B是⊙O上两点,∠AOB=120°,C为弧AB的中点,求证:四边形OACB是菱形.30、如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、A5、A6、A8、A9、B10、B11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
九年级数学下册第27章相似27.2相似三角形2相似三角形应用举例第1课时习题课件新人教版
【解析】∵DE∥AB,∴∠A=∠E,∠B=∠D,
∴△ABC∽△EDC,∴ B C 即A B .
DC ED
∴AB=870 m.
290 AB . 10 30
答:湖两岸的距离AB是870 m.
【想一想错在哪?】如图,某一时刻,身高为1.6 m的小明站 在离墙1 m的地方,发现自己在太阳光下的影子有一部分在地 面上,另一部分在墙上,墙上的部分影子长为0.2 m,同时他 又量得附近一棵大树的影子长为10 m,求这棵大树的高度.
【互动探究】求灯罩的半径时,还有什么方法?
提示:利用相似三角形的性质,得到MN=4 r,在Rt△OMN中应用
3
勾股定理列方程求解.
【总结提升】利用相似三角形测量物体高度的一般步骤 1.画出示意图,利用平行光线、影子、标杆等构造相似三角形. 2.测量与表示未知量的线段相对应的边长,以及另外一组对应 边的长度. 3.利用相似三角形的性质列出包括以上四个量的比例式,解出 未知量. 4.检验并得到答案.
知识点 2 应用相似三角形测量宽度 【例2】如图,为了估算河的宽度,我们可以在河对岸选定一个 目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再 选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得 BD=110 m,DC=55 m,EC=52 m,求两岸间的大致距离AB.
x 30
路灯甲的高为9 m. 答案:9
3.如图,铁道口的栏杆短臂长1 m,长臂长16 m.当短臂端点 下降0.5 m时,长臂端点升高____m(杆的宽度忽略不计).
【解析】设长臂上升的高度为x m,根据题意得 0 .5 1 ,
x 16
解得x=8. 答案:8
4.如图,小明为了测量一高楼MN的高,在离N点20 m的A处放了 一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点, 若AC=1.5 m,小明的眼睛离地面的高度为1.6 m,请你帮助小 明计算一下楼房的高度(精确到0.1 m).
新人教版数学九年级下册第27章27.3位似图形的概念及画法(教案)
-举例:已知一个三角形,按位似比2:1放大,画出放大后的三角形;理解位似变换在实际问题中的应用,如地图的缩放。
2.教学难点
-位似图形的识别与判断:对于某些复杂的位似图形,学生可能难以直观地判断它们之间的位似关系,需要掌握一定的方法和技巧。
-位似性质在几何证明中的应用:位似性质在解决几何问题时具有重要作用,但学生在运用过程中可能遇到困难。
-突破方法:通过典型例题,引导学生运用位似性质进行几何证明,总结解题方法;加强练习,提高学生的几何证明能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《位似图形的概念及画法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体放大或缩小的情况?”(如照片的放大、地图的缩小等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索位似图形的奥秘。
-能够运用所学知识,构建位似图形模型。
-能够结合实际情境,发现并提出与位似图形相关的问题。
三、教学难点与重点
1.教学重点
-位似图形的定义与性质:位似图形的比值、对应点、对应边、对应角是本节课的核心内容。通过实例和练习,使学生掌握位似图形的基本概念,能够识别和应用位似性质。
-举例:比较两个位似三角形的边长比例,理解位似比的概念;找出位似图形的对应点、对应边、对应角,并说明它们之间的关系。
-位似图形在生活中的应用实例
4.练习与巩固
-判断两个图形是否位似
-已知位似比,画出一个图形的位似图形
-应用位似变换解决实际问习题1、2、3
九年级数学人教版下册第二十七章相似三角形应用举例课件
意一组对应边的长度; (3)画出示意图,利用相似三角形的性质,列出以上包括
未知量在内的四个量的比例式,解出未知量; (4)检验并得出答案.
3 【中考·济南】济南大明湖畔的“超然楼”被称为“江
北第一楼”,某校数学社团的同学对超然楼的高度进行 了测量,如图,他们在A处仰望塔顶,测得仰角为30°, 再往楼的方向前进60 m至B处,测得仰角为60°,若学 生的身高忽略不计,3≈1.7,结果精确到1 m,则该楼的
高度CD约为( B )
A.47 m B.51 m C.53 m D.54 m
A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭 台阶BC等高的台阶DE(DE=BC=0.5米,A,B,C三点共 线),把一面镜子水平放置在平台上的点G处,测得CG= 15米,然后沿直线CG后退到点E处,这时恰好在镜子里看 到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭
的高度AB约为( A )
DE BE
BC
新知小结
测量方法:测量不能到达顶部的物体的高度时, 常常利用光线构造相似三角形(如同一时刻,物高与 影长)来解决.常见的测量方式有四种,如图所示.
(1)由于太阳在不停地移动,影子的长也随着太阳的 移动而发生变化.因此,度量影子的长一定要在 同一时刻下进行,否则就会影响结果的准确性.
利用标杆或直尺测量物体的高度也叫目测,在 日常生活中有着广泛的应用,必要时可以用自己的 身高和臂长等作为测量工具.
合作探究
例2 如图,左、右并排的两棵大树的高分别为AB = 8 m和 CD = 12 m,两树底部的距离BD = 5 m,一个人估计 自己眼睛距地面1. 6 m. 她沿着正对这两棵树的一条水 平直路l从左向右前进,当她与左边较低的树的距离小 于多少时,就看不到右边较高的树的顶端C了?
人教版初3数学9年级下册 第27章(相似)几何的五大模型(三)风筝模型和蝴蝶模型(含答案)
几何的五大模型之风筝模型和蝴蝶模型☆基础题1、如图,S△AOB=24平方厘米,S△AOD=18平方厘米,S△COD=12平方厘米,则S△COB为多少平方厘米?2、如图,S四边形ABCD=52平方厘米,S△AO B=7平方厘米,S△AOD=6平方厘米,则S△COB为多少平方厘米?3、如图,S四边形ABCD=56平方厘米,S△AOB=8平方厘米,S△AOD=6平方厘米,则S△COB为多少平方厘米?4、如图,S△ACB=27平方厘米,S△ACD=18平方厘米,DO=15厘米,则BO多少厘米?5、梯形ABCD中,对角线AC,BD交于点O.AB垂直AC,并且已知AO=4厘米,AB=5厘米,那么三角形DOC的面积是多少平方厘米?☆☆提高题1、如图,S△ACB=24平方厘米,S△ACD=16平方厘米,S△ABD=25平方厘米,则S△COB为多少平方厘米?2、如图,S△ACB=48平方厘米,S△ACD=32平方厘米,S△ABD=45平方厘米,则S△COB为多少平方厘米?3、梯形ABCD中,对角线AC,BD交于点O,AB垂直AC,并且已知AO=6厘米,BO=10厘米,那么三角形DOC的面积是多少平方厘米?4、图中大平行四边形被分成若干小块,其中四块的面积已经标出,那么中间的四边形GQHS的面积是多少?5、图中大平行四边形被分成若干小块,其中四块的面积已经标出,那么中间的四边形GQHS的面积是多少?6、如图,四边形ABCD与四边形CPMN都是平行四边形,若三角形DFP与三角形AEF的面积分别是21和49,则三角形BEN的面积为多少?7、如图,四边形ABCD与四边形CPMN都是平行四边形,若三角形DFP与三角形AEF的面积分别是23和53,则三角形BEN的面积为多少?☆☆☆竞赛题1、已知梯形ABCD的面积是32,AD:BC=1:3,E是BC上一点,请问红色阴影部分的面积与蓝色阴影部分面积之差是多少?2、已知梯形ABCD的面积是48,AD:BC=1:2,E是BC上一点,请问红色阴影部分的面积与蓝色阴影部分面积之差是多少?3、如图所示,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别是2、5、8平方厘米,求四边形OFBC的面积?几何的五大模型之风筝模型和蝴蝶模型能力达标卷答案解析☆基础题1、答案:16平方厘米解析:在四边形ABCD中,根据风筝模型得:S△AOD:S△AOB=S△COD:S△COB,即18:24=12:S△COB,S△COB=24×12÷18=16(平方厘米)2、答案:21平方厘米解析:在四边形ABCD中,根据风筝模型得:S△AOD:S△AOB=S△COD:S△COB=6:7,S△COD+S△COB=52—(6+7)=39(平方厘米),所以S△COB=39×767+=21(平方厘米)3、答案:24平方厘米解析:在四边形ABCD中,根据风筝模型得:S△AOD:S△AOB=S△COD:S△COB=6:8=3:4,S△COD+S△COB=56—(6+8)=42(平方厘米),所以S△COB=42×434+=24(平方厘米)4、答案:22.5厘米解析:在四边形ABCD中,根据风筝模型得:DO:BO=S△ACD:S△ACB=18:27=2:3,所以BO=15÷2×3=22.5(厘米)5、答案:10平方厘米解析:在梯形ABCD中,根据蝴蝶定理得:S△DOC=S△AOB=4×5÷2=10(平方厘米)☆☆提高题1、答案:9平方厘米解析:在四边形ABCD中,根据风筝模型得:DO:BO=S△ACD:S△ACB=16:24=2:3,则:S△AOB=35S△ABD=35×25=15(平方厘米),则S△COB=S△ACB—S△AOB=24—15=9(平方厘米)2、答案:21平方厘米解析:在四边形ABCD中,根据风筝模型得:DO:BO=S△ACD:S△ACB=32:48=2:3,则S△AOB=35S△ABD=35×45=27(平方厘米),则S△COB=S△ACB—S△AOB=48—27=21(平方厘米)3、答案:24平方厘米解析:在梯形ABCD中,根据蝴蝶定理得:S△DOC=S△AOB在直角三角形AOB中,根据勾股定理得:AB2=OB2—OA2=102—62=64=82,所以AB=8所以:S△DOC=S△AOB=6×8÷2=24(平方厘米)4、答案:17解析:如下图,连接EF、GH和IJ在平行四边形ABEF中,根据蝴蝶模型得:S△ABP=S△EPF=6,在平行四边形EFGH 中,S△EQF=S△GQH=13—6=7;在平行四边形IDCJ中,S△DCT=S△IJT=5,在平行四边形GIJH中,S△GSH=S△ISJ=15—5=10,所以S四边形GQHS=S△GQH+S△ISJ=7+10=175、答案:17解析:如下图,连接EF、GH和IJ在平行四边形ABEF中,根据蝴蝶模型得:S△ABP=S△EPF=6,在平行四边形EFGH 中,S△EQF=S△GQH=12—6=6;在平行四边形IDCJ中,S△DCT=S△IJT=5,在平行四边形GIJH中,S△GSH=S△ISJ=16—5=11,所以S四边形GQHS=S△GQH+S△ISJ=6+11=176、答案:28解析:如下图,连接AM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章《相似》检测题
一、选择题
1.已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( ) A1:2 B1:4 C2:1 D4:1
2.'若两个相似三角形的面积比为4:1,那么这两个三角形的周长比为( )
A.4:1
B.1:4
C.2:1
D.16:1 3.如图,五边形ABCDE 和五边形A 1B 1C 1D 1E 1是位似图形,且PA 1=3
2
PA ,则AB ׃A 1B 1等于( )A.
32. B. 2
3
. C. 53. D. 35.
4、如图,在大小为4×4的正方形网格中,是相似三角形的是( ). A. ①和② B. ②和③ C. ①和③ D. ②和④
5.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为( )
A 20米
B 18米
C 16米
D 15米
6.如图2,点P 是ABC ∆的边AC 上一点,连结BP ,以下条件中,不能判定ABP ∆∽ACB ∆的是( )A.
AB AC AP AB = B .AB
AC
BP BC = C .C ABP ∠=∠ D .ABC APB ∠=∠ 7.如图3,为了测量一池塘的宽DE ,在岸边找一点C ,测得 CD=30m ,在DC 的延 长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB=6m ,则池塘的宽DE 为( )A 、25m B 、30m C 、36m D 、40m
8.如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长( ) A .163
B .8
C .10
D .16
9.如图7,在平行四边形ABCD 中,E 为CD 上一点,:2:3DE CE =,连结,,AE BE BD 且,AE BD 交于点F ,则S △DEF :S △ADF :S △ABF 等于( )
图
2
图
3 第3题图
E 1D
1C 1
B 1
A 1
B
D
A
C
P F E
D C
B
A 图7
D
图8
A .4:10:25
B . 4:9:25
C . 2:3:5
D . 2:5:25
10.如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠=︒A M C 30,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米(点M 、N 、C 在同一直线上),则窗户的高AB
为 ( )
A .3米
B .3米
C .2米
D .1.5米
11.某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的 一边在△ABC 的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 12. 如图7,AB 是O ⊙的直径,AD 是O ⊙的切线,点C
在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( ) A .
23 B
.32
C
D 二、填空题:
13.如图8是小明设计用手电来测量某古城墙高度的示意图. 点P 处放一水平的平面镜, 光线从点A 出发经平面镜反射后 刚好射到古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD , 且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是_____________
14.△ABC 三个顶点坐标分别为A (2,-2),B (4,-5),C (5,-2), 以原点O 为位似中心,将这个三角形放大为原来的2倍.相应坐标是__________________________________________
15.如图9,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若
60APD ∠=°,则CD 的长为____________
16、在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .
17、如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .
18、如图,Rt ABC △中,90ACB ∠=°,直线EF BD
∥,交AB 于点E ,交AC 于点G ,交
A
D C
P B
图9
60° A
D
E C
B 第17题 第18题
第16题
AD 于点F ,若13
AEG EBCG S S =
△四边形,则
CF
AD = . 三、解答题
19、如图,∠ACB =∠ADC =900
,AC =6,AD =2。
问当AB 的长为多少时,这两个直角三
角形相似?
20.如图15,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC . (1)求证:ABC POA △∽△; (2)若2OB =,7
2
OP =,求BC 的长.
21.如图16,在矩形ABCD 中,点E F 、分别在边AD DC 、上,
ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.
D
C
B
A
22.如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.
23.如图,△ABC 在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A (2,3),
C (6,2),并求出B 点坐标;
(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,
画出放大后的图形△A ′B ′C ′; (3)计算△A ′B ′C ′的面积S . .
24.如图,在
ABCD 中,AE ∶EB =2∶3. (1)求△AEF 和△CDF 的周长比; (2)若S △AEF =8cm 2,求S △CDF .
A B
C (第22题) 第27题图
A B C
D F E
25.如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A(3,0),B(0,3)两点, , 点C
为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D.
(1)求直线AB 的解析式;
(2)若S 梯形OBCD =
3
,求点C 的坐标; (3)在第一象限内是否存在点P,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.
26.正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点
在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM
MCN △∽△;
(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;
当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.。