2020高考数学三轮冲刺分层练习 第04讲 指数函数与对数函数
(带答案)高中数学第四章指数函数与对数函数知识总结例题
(每日一练)高中数学第四章指数函数与对数函数知识总结例题高中数学第四章指数函数与对数函数知识总结例题单选题1、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C2、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12C .12,13,√3,54,D .13,12,54,√3, 答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13. 故选:C .3、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f (x )=lg (x 2+1)在[0,+∞)上为增函数,f (3x −2)>f (x −4)⇒f (|3x −2|)>f (|x −4|)⇒|3x −2|>|x −4|, 解得x <−1或x >32,故选:D .6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞) 答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.7、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答.奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B8、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意; 当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点,则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点,因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.9、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( ) A .a mn =√a m nB .(a 12+a −12)2=a +a −1C .a−m n=√a mnD .a 0=1答案:B解析:由指数运算公式直接计算并判断. 由m ,n 都是正整数,且n >1,a >0,、得(a 12+a −12)2=(a 12)2+2a 12⋅a −12+(a −12)2=a +a −1+2,故B 选项错误, 故选:B.10、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34) 答案:D分析:作出函数y=f(x)的图象和直线y=t,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c的性质、范围,从而可求得结论.作出函数y=f(x)的图象和直线y=t,它们的交点的横坐标即为g(x)的零点,如图,则1−2a=2b−1,4<c<5,2a+2b=2,2c∈(16,32),所以18<2a+2b+2c<34.故选:D.小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.多选题11、设函数f(x)=ax2+bx+c(a,b,c∈R,a>0),则下列说法正确的是()A.若f(x)=x有实根,则方程f(f(x))=x有实根B.若f(x)=x无实根,则方程f(f(x))=x无实根)<0,则函数y=f(x)与y=f(f(x))都恰有2个零点C.若f(−b2a))<0,则函数y=f(x)与y=f(f(x))都恰有2零点D.若f(f(−b2a答案:ABD分析:直接利用代入法可判断A选项的正误;推导出f(x)−x>0对任意的x∈R恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点,D 选项正确.故选:ABD.小提示:思路点睛:对于复合函数y =f [g (x )]的零点个数问题,求解思路如下: (1)确定内层函数u =g (x )和外层函数y =f (u ); (2)确定外层函数y =f (u )的零点u =u i (i =1,2,3,⋯,n );(3)确定直线u =u i (i =1,2,3,⋯,n )与内层函数u =g (x )图象的交点个数分别为a 1、a 2、a 3、⋯、a n ,则函数y =f [g (x )]的零点个数为a 1+a 2+a 3+⋯+a n .12、关于函数f(x)=ln(1+x)−ln(3−x),下列结论正确的是( ) A .f(x)在(−1,3)上单调递增B .y =f(x)的图象关于直线x =1对称 C .y =f(x)的图象关于点(1,0)对称D .f(x)的值域为R 答案:ACD分析:先求出函数f(x)的定义域,化简f(x)得f(x)=ln x+13−x , 令t(x)=x+13−x ,根据复合函数的单调性和值域;化简函数得到f(1+x)=−f(1−x),f(1+x)≠f(1−x),所以得到y =f(x)的图象关于点(1,0)对称,最终得到答案.函数f(x)的定义域是(-1,3),f(x)=ln x+13−x .令t(x)=x+13−x =−4x−3−1(x ≠3),易知t(x)在(-1,3)上单调递增, 所以t(x)>t(−1)=0,所以f(x)=lnt(x)在(-1,3)上单调递增, 且值域为R .故A ,D 正确.当x ∈(−2,2)时,1+x ∈(−1,3),1−x ∈(−1,3),f(1+x)=ln 2+x2−x ,f(1−x)=ln 2−x2+x ,所以f(1+x)=−f(1−x),f(1+x)≠f(1−x).所以y =f(x)的图象关于点(1,0)对称.故B 错误,C 正确.故选:ACD .小提示:本题考查复合函数的性质,涉及到函数的单调性和对称性,属于基础题型.13、下列各式化简运算结果为1的是( ) A .log 53×log 32×log 25B .lg √2+12lg5 C .log √a a 2(a >0且a ≠1)D .e ln3−(0.125)−13答案:AD分析:根据指对数的运算性质依次分析各选项即可得答案. 解:对于A 选项,原式=lg3lg5×lg2lg3×lg5lg2=1; 对于B 选项,原式=12lg2+12lg5=12lg(2×5)=12;对于C 选项,原式=2lg √a a =2×2=4; 对于D 选项,原式=3−813=3−2=1. 故选:AD.14、(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) A .6B .9C .8D .7 答案:BC分析:因为每过滤一次杂质含量减少13,所以每过滤一次杂志剩余量为原来的23,由此列式可解得.设经过n 次过滤,产品达到市场要求,则 2100×(23)n⩽11000,即(23)n⩽120,由 nlg 23⩽−lg20,即 n(lg2−lg3)⩽−(1+lg2),得 n ⩾1+lg2lg3−lg2≈7.4, 故选BC .小提示:本题考查了指数不等式的解法,属于基础题.15、已知函数y =log a (x +c )(a,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1B .0<a <1C .c >1D .0<c <1 答案:BD分析:根据对数函数的图象判断.由图象知0<a <1,可以看作是y =log a x 向左移动c 个单位得到的,因此0<c <1, 故选:BD . 填空题16、已知函数f (x )=x 2−2|x |−1,若关于x 的方程f (x )=x +m 有四个根,则实数m 的取值范围为______. 答案:(−54,−1)分析:分离变量,画出特定函数的图像即可.由f (x )=x +m ,得m =f (x )−x =x 2−2|x |−x −1 令g (x )=x 2−2|x |−x −1={x 2−3x −1,x ≥0x 2+x −1,x <0,画出图像<m<−1时,方程m=f(x)−x有四解,由图可知,当−54即方程f(x)=x+m有四个根.,−1)故答案为:(−5417、已知a=lg5,用a表示lg20=__________.答案:2−a分析:直接利用对数的运算性质求解因为a=lg5,=lg100−lg5=2−a,所以lg20=lg1005所以答案是:2−a(x2−5x+6)的单调递减区间为___________.18、函数f(x)=log12答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x2−5x+6>0,解得x>3或x<2.t为减函数.令t=x2−5x+6,则y=log12(x2−5x+6)为增函数,所以t∈(−∞,2),t=x2−5x+6为减函数,f(x)=log12t∈(3,+∞),t=x2−5x+6为增函数,f(x)=log12(x2−5x+6)为减函数.所以函数f(x)=log12(x2−5x+6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)解答题19、已知函数f(x)=2x−12|x|.(1)若f(x)=2,求2x的值;(2)若2t f(2t)+mf(t)≥0,对于任意t∈[1,2]恒成立,求实数m的取值范围.答案:(1)√2+1;(2)m≥−5.分析:(1)当x<0时,f(x)=0≠2,舍去;当x⩾0时,f(x)=2x−12x=2,即(2x)2−2·2x−1=0,2x>0.基础即可得出.(2)当t∈[1,2]时,2t f(2t)+mf(t)⩾0,即2t(22t−122t )+m(2t−12t)⩾0,即m(22t−1)⩾−(24t−1).化简解出即可得出.解:(1)当x<0时,f(x)=0≠2,舍去;当x⩾0时,f(x)=2x−12x=2,即(2x)2−2·2x−1=0,2x>0.解得2x=1+√2,(2)当t∈[1,2]时,2t f(2t)+mf(t)⩾0,即2t(22t−122t )+m(2t−12t)⩾0,即m(22t−1)⩾−(24t−1).因为22t−1>0,所以m⩾−(22t+1).由t∈[1,2],所以−(22t+1)∈[−17,−5].故m的取值范围是[−5,+∞).20、已知函数f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )+g (x )=2x+1. (1)求函数f (x ),g (x )的解析式;(2)若对任意x ∈[1,+∞),不等式f (2x )≥mg (x )−2恒成立,求实数m 的最大值; 答案:(1)f(x)=2x +2−x ,g(x)=2x −2−x ;(2)4. 分析:(1)根据函数的奇偶性构造方程组可解得结果;(2)代入解析式,换元后化为m ≤t +4t对t ∈[32,+∞)恒成立,利用基本不等式求出t +4t的最小值可得解.(1)∵f (x )+g (x )=2⋅2x ,用−x 代替x 得f (−x )+g (−x )=2⋅2−x , 则{f(x)+g(x)=2⋅2x f(x)−g(x)=2⋅2−x, 解方程组得:f (x )=2x +2−x ,g (x )=2x −2−x .(2)由题意可得f(2x)=22x +2−2x =(2x −2−x )2+2≥m (2x −2−x )−2对任意x ∈[1,+∞)恒成立, 令t =2x −2−x ,x ∈[1,+∞),因为t =2x −2−x 在x ∈[1,+∞)单调递增,故t ≥32 则m ≤t 2+4t=t +4t对t ∈[32,+∞)恒成立因为t +4t≥2√t ⋅4t=4,当且仅当t =2时,等号成立.故m ≤4,即实数m 的最大值为4.小提示:名师点评本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若k ≥f(x)在[a,b]上恒成立,则k ≥f(x)max ; ②若k ≤f(x)在[a,b]上恒成立,则k ≤f(x)min ; ③若k ≥f(x)在[a,b]上有解,则k ≥f(x)min ; ④若k ≤f(x)在[a,b]上有解,则k ≤f(x)max .。
高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.1 对数函数的概念精品练习(含解析)
4.4.1 对数函数的概念必备知识基础练知识点一 对数函数的概念1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log 12(-x )(x <0);⑥y=2log 4(x -1)(x >1).A .1个B .2个C .3个D .4个2.已知f (x )为对数函数,f ⎝ ⎛⎭⎪⎫12=-2,则f (34)=________.知识点二对数型函数的定义域3.函数f (x )=log 2(x 2+3x -4)的定义域是( ) A .[-4,1] B .(-4,1)C .(-∞,-4]∪[1,+∞)D .(-∞,-4)∪(1,+∞) 4.函数f (x )=1log 122x +1的定义域为________.知识点三对数函数模型的实际应用5.某种动物的数量y (单位:只)与时间x (单位:年)的函数关系式为y =a log 2(x +1),若这种动物第1年有100只,则第7年它们的数量为( )A .300只B .400只C .500只D .600只6.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元.关键能力综合练 一、选择题 1.给出下列函数:①y =log 23x 2;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个 B .2个 C .3个 D .4个 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.已知函数f (x )=log a (x +1),若f (1)=1,则a =( ) A .0 B .1 C .2 D .3 4.函数y =1log 2x -2的定义域为( ) A .(-∞,2) B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)5.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B.[0,+∞) C .(1,+∞) D.[1,+∞)6.(探究题)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))的值为( )A .lg 101B .1C .2D .0 二、填空题7.若f (x )=log a x +a 2-4a -5是对数函数,则a =________.8.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________.9.(易错题)函数f (x )=lg ⎝⎛⎭⎪⎫2kx 2-kx +38的定义域为R ,则实数k 的取值X 围是________.三、解答题10.求下列函数的定义域:(1)y=1log2x+1-3;(2)y=log(2x-1)(3x-2);(3)已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.学科素养升级练1.(多选题)已知函数f(x)=log a(x+1),g(x)=log a(1-x)(a>0,a≠1),则( ) A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数2.设函数f(x)=log a x(a>0且a≠1),若f(x1x2…x2 017)=8,则f(x21)+f(x22)+…+f(x22 017)=________.3.(情境命题—生活情境)国际视力表值(又叫小数视力值,用V表示,X围是[0.1,1.5])和我国现行视力表值(又叫对数视力值,由缪天容创立,用L表示,X围是[4.0,5.2])的换算关系式为L=5.0+lg V.(1)请根据此关系式将下面视力对照表补充完整;V 1.5②0.4④L ① 5.0③ 4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为 4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)4.4 对数函数4.4.1 对数函数的概念必备知识基础练1.解析:符合对数函数的定义的只有③④. 答案:B2.解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =2,∴f (x )=,∴f (34)=34=log 2(34)2=log 2243=43.答案:433.解析:一是利用函数y =x 2+3x -4的图象观察得到,要求图象正确、严谨;二是利用符号法则,即x 2+3x -4>0可因式分解为(x +4)(x -1)>0,则⎩⎪⎨⎪⎧x +4>0,x -1>0或⎩⎪⎨⎪⎧x +4<0,x -1<0,解得x >1或x <-4,所以函数f (x )的定义域为(-∞,-4)∪(1,+∞).答案:D4.解析:由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0,则f (x )的定义域为⎝ ⎛⎭⎪⎫-12,0∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)5.解析:由题意,知100=a log 2(1+1),得a =100,则当x =7时,y =100log 2(7+1)=100×3=300.答案:A6.解析:由题意得5=2log 4x -2,即7=log 2x ,得x =128. 答案:128关键能力综合练1.解析:①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.答案:A2.解析:∵M ={x |1-x >0}={x |x <1},N ={x |1+x >0}={x |x >-1},∴M ∩N ={x |-1<x <1}.答案:C3.解析:∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选C. 答案:C4.解析:要使原函数有意义,则⎩⎪⎨⎪⎧x -2>0,log 2x -2≠0,解得2<x <3或x >3,所以原函数的定义域为(2,3)∪(3,+∞),故选C.答案:C5.解析:∵3x >0,∴3x +1>1.∴log 2(3x+1)>0.∴函数f (x )的值域为(0,+∞). 答案:A6.解析:由题 f (f (10))=f (lg 10)=f (1)=12+1=2.故选C. 答案:C7.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:58.解析:设f (x )=log a x ,∵f (9)=2,∴log a 9=2,∴a =3,∴f (x )=log 3x 在[1,3]递增,∴y ∈[0,1].答案:[0,1]9.解析:依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3.综上,k 的取值X 围是[0,3). 答案:[0,3)10.解析:(1)要使函数有意义,则有⎩⎪⎨⎪⎧x +1>0,log 2x +1-3≠0,即x >-1且x ≠7,故该函数的定义域为(-1,7)∪(7,+∞). (2)要使函数有意义,则有⎩⎪⎨⎪⎧3x -2>0,2x -1>0,2x -1≠1,解得x >23且x ≠1,故该函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞). (3)∵0<x ≤99,∴1<x +1≤100. ∴0<lg(x +1)≤2, ∴0<log 2(x +2)≤2, 即1<x +2≤4,即-1<x ≤2. 故该函数的定义域为(-1,2].学科素养升级练1.解析:f (x )+g (x )=log a (x +1)+log a (1-x )所以⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1,函数f (x )+g (x )的定义域为(-1,1),故A 正确;f (-x )+g (-x )=log a (-x +1)+log a (1+x ),所以f (x )+g (x )=f (-x )+g (-x ),所以函数f (x )+g (x )是偶函数,图象关于y 轴对称,故B 正确;f (x )+g (x )=log a (x +1)+log a (1-x )=log a (x +1)(1-x )=log a (-x 2+1),令t =-x 2+1,则y =log a t ,在x ∈(-1,0)上,t =-x 2+1单调递增,在x ∈(0,1)上,t =-x 2+1单调递减,当a >1时,y =log a t 单调递增,所以在x ∈(-1,0)上,f (x )+g (x )单调递增,在x ∈(0,1)上,f (x )+g (x )单调递减,所以函数f (x )+g (x )没有最小值,当0<a <1时,y =log a t 单调递减,所以在x ∈(-1,0)上,f (x )+g (x )单调递减,在x ∈(0,1)上,f (x )+g (x )单调递增,所以函数f (x )+g (x )有最小值为f (0)+g (0)=0,故C 错;f (x )-g (x )=log a (x +1)-log a (1-x )=log ax +11-x=log a ⎝⎛⎭⎪⎫-1+21-x ,令t =-1+21-x ,y =log a t .在x ∈(-1,1)上,t =-1+21-x 单调递增,当a >1时,f (x )+g (x )在(-1,1)单调递增,当0<a <1时,f (x )+g (x )在(-1,1)单调递减,故D错.故选AB.答案:AB2.解析:∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 017) =log a x 21+log a x 22+log a x 23+…+log a x 22 017 =log a (x 1x 2x 3…x 2 017)2=2log a (x 1x 2x 3…x 2 017) =2f (x 1x 2x 3…x 2 017), ∴原式=2×8=16. 答案:163.解析:(1)因为5.0+lg 1.5=5.0+lg 1510=5.0+lg 32=5.0+lg 3-lg 2≈5.0+0.477 1-0.301 0≈5.2, 所以①应填5.2; 因为5.0=5.0+lg V , 所以V =1,②处应填1.0;因为5.0+lg 0.4=5.0+lg 410=5.0+lg 4-1=5.0+2lg 2-1≈5.0+2×0.301 0-1≈4.6, 所以③处应填4.6;因为4.0=5.0+lg V ,所以lg V =-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg 2-0.5≈5.0+0.301 0-0.5≈4.8.。
第4章 指数函数与对数函数(二)(含答案)
2020-2020学年高一数学必修一第一册提优卷第4章指数函数对数函数(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x2.下列各函数中,值域为(0,)+∞的是()A .22xy -=B.y =C .21y x x =++D .113x y +=3.已知2log 3x =,则13x -等于()A .2B .12C.D4.已知a =512,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的关系为()A .m +n<0B .m +n>0C .m>nD .m<n5.已知函数12log ,0()2,0xx x f x x >⎧⎪=⎨⎪≤⎩,若关于x 方程()f x k =有两不等实数根,则k 的取值范围()A .(0,+∞)B .(,0-∞)C .(1,+∞)D .(0,1]【6.若函数(01,1)x y a a a m =>-≠+的图像在第一、三、四象限内,则()A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<7.若1x 是方程4x xe =的解,2x 是方程ln 4x x =的解,则12x x 等于()A .4B .2C .eD .18.(2020全国III 卷).已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则()A .a b c<<B .b a c<<C .b c a<<D .c a b<<9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .109310.若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦11.【2020年高考全国Ⅱ卷理数】设函数()ln |21|ln |21|f x x x =+--,则f (x )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减12.设a 、b 、c 依次表示函数()121f x x x =-+,()12log 1g x x x =-+,()112xh x x ⎛⎫=-+ ⎪⎝⎭的零点,则a 、b 、c 的大小关系为().A .a b c<<B .c b a<<C .a c b<<D .b c a<<二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13..若lg 2m =,31log 10=n,则用m ,n 表示5log 6等于________.14.已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=-++= ⎪⎝⎭则________.15.当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:910.001952=)16.若函数()2,1,x a x af x x x a +≥⎧=⎨-<⎩只有一个零点,则实数a 的取值范围为_______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数.18.(本小题满分12分).已知函数()2x f x =,x A ∈的值域为,函数2222()(log )log g x x x =-.(1)求集合A ;(2)求函数()y g x =,x A ∈的值域.19(本小题满分12分).函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422xxf -<.20(本小题满分12分).已知函数()()lg 101xf x =-.(Ⅰ)求函数()f x 的定义域和值域;(Ⅱ)设函数()()()lg 101xg x f x =-+,若关于x 的不等式()g x t <恒成立,求实数t 的取值范围.21(本小题满分12分).某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a 亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a 亩至少需要植树造林多少年?(参考数据:lg 20.3010=,lg30.4771=)22.(本小题满分12分)已知函数xy a =(0a >且1a ≠)在区间[1,2]上的最大值与最小值之和为20,记()2xxa f x a =+.(1)求a 的值;(2)证明:()(1)1f x f x +-=;(3)求1232016()()()()2017201720172017f f f f ++++ 的值.2020-2020学年高一数学必修一第一册提优卷第4章指数函数对数函数(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x【答案】D 【解析】由函数的增长趋势可知,指数函数增长最快,所以最终最前面的具有的函数关系为()42xf x =,故选D .2.下列各函数中,值域为(0,)+∞的是()A .22x y -=B .y =C .21y x x =++D .113x y +=【答案】A 【解析】A ,y =(22)x的值域为(0,+∞).B ,因为1-2x ≥0,所以2x ≤1,x ≤0,y (-∞,0],所以0<2x ≤1,所以0≤1-2x <1,所以y [0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为11x +∈(-∞,0)∪(0,+∞),所以y =113x +的值域是(0,1)∪(1,+∞).选A .3.已知2log 3x =,则13x -等于()A .2B .12C.D【答案】B 【解析】由2log 3x =知328x ==,所以()1131331222x---===,故选B .4.已知a=12,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的关系为()A .m +n<0B .m +n>0C .m>nD .m<n【答案】D 【解析】∵0<512-<1∴f (x )=a x 在R 上单调递减,又∵f (m )>f (n ),∴m <n ,故选D .5.已知函数12log ,0()2,0xx x f x x >⎧⎪=⎨⎪≤⎩,若关于x 方程()f x k =有两不等实数根,则k 的取值范围()A .(0,+∞)B .(,0-∞)C .(1,+∞)D .(0,1]【答案】D 【解析】作出函数()y f x =和y k =的图象,如图所示由图可知当方程()f x k =有两不等实数根时,则实数k 的取值范围是(0,1]故选D6.若函数(01,1)x y a a a m =>-≠+的图像在第一、三、四象限内,则()A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【答案】B 【解析】因为函数x y a =的图像在第一、二象限内,所以欲使其图像在第三、四象限内,必须将x y a =向下移动,因为当01a <<时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限,所以只有当1a >时,图像向下移动才可能经过第一、三、四象限,故1a >,因为图像向下移动小于一个单位时,图像经过第一、二、三象限,而向下移动一个单位时,图像恰好经过原点和第一、三象限,所以欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故11m -<-,0m <,故选:B .7.若1x 是方程4x xe =的解,2x 是方程ln 4x x =的解,则12x x 等于()A .4B .2C .eD .1【答案】A 【解析】因为1x 是方程4x xe =的解,所以1x 是函数x y e =与4y x=交点P 的横坐标;又2x 是方程ln 4x x =的解,所以2x 是函数ln y x =与4y x=交点Q 的横坐标;因为函数x y e =与ln y x =互为反函数,所以函数x y e =与ln y x =图像关于直线y x =对称,又4y x=的图像关于直线y x =对称,因此,P ,Q 两点关于直线y x =对称,所以有1221x y x y =⎧⎨=⎩,因此12114==x x x y .故选:A8.(2020全国III 卷).已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A 【解析】::易知,,(0,1)a b c ∈,由2225555558log 3(log 3log 8)(log 24)2log 3log 8log 54144a b +==⋅<==<知a b <,因为8log 5b =,13log 8c =,所以85,138b c ==,即554485,138b c ==,又因为544558,138<<,所以445541385813c b b =>=>,即b c <,综上所述:a b c <<.故选:A .9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】:设36180310M x N ==,两边取对数,36136180803lg lg lg 3lg10361lg 38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D .10.若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦【答案】B 【解析】当1x <时,()1,212xf x ⎛⎫∈+∞⎛ ⎪⎝⎫= ⎪⎭⎭⎝当1≥x 时,()114,4xf x a a a ⎛⎤∈+⎛⎫=+ ⎪⎝⎭ ⎥⎝⎦ 函数()f x 的值域为(),+∞a 114212a a ⎧+≥⎪⎪∴⎨⎪≤⎪⎩,即11,42a ⎡⎤∈⎢⎥⎣⎦故选:B11.【2020年高考全国Ⅱ卷理数】设函数()ln |21|ln |21|f x x x =+--,则f (x )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D .12.设a 、b 、c 依次表示函数()121f x x x =-+,()12log 1g x x x =-+,()112xh x x ⎛⎫=-+ ⎪⎝⎭的零点,则a 、b 、c 的大小关系为().A .a b c <<B .c b a<<C .a c b<<D .b c a<<【答案】D 【解析】依题意可得,12121,log ,()2xy x y x y ===的图象与1y x =-的图象交点的横坐标为,,a b c ,作出图象如图:由图象可知,b c a <<,故选:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13..若lg 2m =,31log 10=n,则用m ,n 表示5log 6等于________.【答案】1+-m n m【解析】因为31log 10=n,所以11lg 3=n ,得到lg3n =.5lg 6lg 2lg 3log 6lg 5lg10lg 21++===--m nm .故答案为:1+-m n m14.已知函数())()1ln 31,.lg 2lg 2f x x f f ⎛⎫=-++= ⎪⎝⎭则________.【答案】2【解析】设lg 2a =,则1lgln 22a =-=-,()())ln 31f a f a a +-=++()22ln 31ln 1992ln122a a a ⎫++=+-+=+=⎪⎭,所以()1lg 2lg 22f f ⎛⎫+= ⎪⎝⎭,所以答案为215.当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:910.001952=)【答案】10【解析】设生物组织内原有的碳14含量为x ,需要经过n 个“半衰期”才不能测到碳14,则1121000n x x ⋅<,即10.0012n<,由参考数据可知,910.001950.0012=>,10110.001950.0009750.00122=⨯=<,所以10n =,故答案为:10.16.若函数()2,1,x a x a f x x x a +≥⎧=⎨-<⎩只有一个零点,则实数a 的取值范围为_______.【答案】(](],10,1-∞- 【解析】函数21y x =-的零点为±1.①当1a ≤-时,函数()y f x =在区间(),a -∞上无零点,则函数()y f x =在区间[),a +∞上有零点a -,可得a a -≥,解得0a ≤,此时1a ≤-;②当11a -<≤时,函数()y f x =在区间(),a -∞上有零点1-,则函数()y f x =在区间[),a +∞上无零点,则a a -<,解得0a >,此时01a <≤;③当1a >时,函数()y f x =在区间(),a -∞上的零点为±1,不合乎题意.综上所述,实数a 的取值范围是(](],10,1-∞- .故答案为:(](],10,1-∞- .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数.【解析】解法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg 3-2>0由零点存在性定理,f (x )在(0,2)上存在实根又f (x )=2x +lg(x +1)-2在(0,+∞)为增函数,故f (x )有且只有一个零点.解法二:(数形结合)在同一坐标系中作出g (x )=2-2x 和h (x )=lg(x +1)的图象(如图所示),由图象可知有且只有一个交点,即函数f (x )有且只有一个零点.18.(本小题满分12分).已知函数()2x f x =,x A ∈的值域为[2,16],函数2222()(log )log g x x x =-.(1)求集合A ;(2)求函数()y g x =,x A ∈的值域.【答案】(1)1[,4]2;(2)[1,3]-【解析】(1)因为函数()2xf x =的值域为⎤⎦216x ≤≤,所以142x ≤≤,即函数()f x 的定义域1,42A ⎡⎤=⎢⎥⎣⎦.(2)令2log t x =,因为142x ≤≤,所以21log 2x -≤≤,即12t -≤≤,所以函数()y g x =,x A ∈可以化为()22u t t t =-(12t -≤≤),所以()()min 11u t u ==-,()()max 13u t u =-=,即函数()y g x =,x A ∈值域为[]1,3-.19(本小题满分12分).函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x x f -<.【答案】(1)证明见解析;(2)证明见解析;(3){}|1x x <【解析】(1)证明:令0m n ==,则()()()()000020f f f f +=+=,∴()00=f .(2)证明:令n m =-,则()()()f m m f m f m -=+-,∴()()()00f f m f m =+-=,∴()()f m f m -=-,∴对任意的m ,都有()()f m f m -=-,即()y f x =是奇函数.在(),-∞+∞上任取1x ,2x ,且12x x <,则210x x ->,∴()()()()()2121210f x x f x f x f x f x -=+-=->,即()()12f x f x <,∴函数()y f x =在(),-∞+∞上为增函数.(3)原不等式可化为()()()()4211112x x f f f f -<+=+=,由(2)知()f x 在(),-∞+∞上为增函数,可得422x x -<,即()()12022x x +<-,∵210x +>,∴220x -<,解得1x <,故原不等式的解集为{}|1x x <.20(本小题满分12分).已知函数()()lg 101x f x =-.(Ⅰ)求函数()f x 的定义域和值域;(Ⅱ)设函数()()()lg 101x g x f x =-+,若关于x 的不等式()g x t <恒成立,求实数t 的取值范围.【答案】(Ⅰ)定义域为()0,x ∈+∞.值域为R .(Ⅱ)0t ≥【解析】(Ⅰ)∵1010x ->,∴01010x >,∴()f x 的定义域为()0,x ∈+∞.又∵1010x ->,∴()f x 的值域为R .(Ⅱ)()()()()()lg lg 1101l 0101g 1x x xg x f x =-+=--+1012lg lg 1101101x x x ⎛⎫-⎛⎫==- ⎪ ⎪++⎝⎭⎝⎭.∵100x >,∴1011x +>,∴202101x <<+,∴220101x -<-<+,∴2011101x <-<+,∴2lg 10101x ⎛⎫-< ⎪+⎝⎭,∴()g x 的值域为(),0-∞.∵关于x 的不等式()g x t <恒成立,∴0t ≥.21(本小题满分12分).某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a 亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a 亩至少需要植树造林多少年?(参考数据:lg 20.3010=,lg30.4771=)【答案】(1)11021x =-;(2)5年;(3)至少还需要26年.【解析】解:(1)设增长率为x ,依题意可得()1012a x a +=所以()1110101012x ⎡⎤+=⎣⎦即11012x +=,解得11021x =-(2)设已经植树造林n 年,则110121n a ⎛⎫+-= ⎪⎝⎭即1110222n =解得5n =,故已经植树造林5年.(3)设至少还需要m 年,则1101216m a a ⎛⎫+-≥ ⎪⎝⎭即11026m ≥即2221log 6log 2log 310m ≥=+解得lg 3101025.8lg 2m ≥+≈故至少还需要26年22.(本小题满分12分)已知函数x y a =(0a >且1a ≠)在区间[1,2]上的最大值与最小值之和为20,记()2xx a f x a =+.(1)求a 的值;(2)证明:()(1)1f x f x +-=;(3)求1232016()()()()2017201720172017f f f f ++++ 的值.【答案】(1)20;(2)见答案(3)1008【解析】(1)函数x y a =(0a >且1a ≠)在[1,2]上的最大值与最小值之和为20,∴220a a +=,得4a =或5a =-(舍去).(2)由(1)知4()42xx f x =+,∴1144444()(1)442424224x x xx x x x x f x f x --+-=+=+++++2044421422444242x x x x x x =+=+=+⋅+++.(3)由(2)知12016(()120172017f f +=,22015()(120172017f f +=, ,10081009()(120172017f f +=,∴123201612016(()(([()(201720172017201720172017f f f f f f ++++=+ 2201510081009[(()][(()]11110082017201720172017f f f f +++++=+++=。
2024年新高考版数学专题1_3.3 指数函数、对数函数(分层集训)
7.(2022福建永安三中月考,2)若a=2.1-3,b=
1
32
,c=log20.5,则
(
)
A.b>c>a B.b>a>c
C.a>c>b D.a>b>c
答案 B
8.(多选)(2022山东日照校际联考,9)若0<a<b<c,则下列结论正确的是
mn
A.2 B. 8 C.8 D. 5
3
3
答案 B
6.(2022T8联考,4)已知函数y=f(x)的图象与函数y=2x的图象关于直线y=x对 称,g(x)为奇函数,且当x>0时,g(x)=f(x)-x,则g(-8)= ( ) A.-5 B.-6 C.5 D.6 答案 C
7.(2022广东南山蛇口育才中学月考,7) 如图,直线x=m(m>1)依次与曲线y=logax、y=logbx及x轴相交于点A、点B及 点C,若B是线段AC的中点,则 ( ) A.1<b≤2a-1 B.b>2a-1 C.1<b≤2a D.b>2a 答案 B
2.(2022广东深圳六校联考二,7)已知函数f(x)=log0.5(x+ x2 1),若a=0.6-0.5,b =log0.50.6,c=log0.65,则 ( ) A. f(a)<f(b)<f(c) B. f(c)<f(b)<f(a) C. f(c)<f(a)<f(b) D. f(b)<f(a)<f(c) 答案 A
ab
A.3 B.1 C.-1 D.-3 答案 B
高一数学课时同步练习第四章第4节对数函数
精品基础教育教学资料,仅供参考,需要可下载使用!第四章 指数函数与对数函数第4节 对数函数一、基础巩固1.(2020·全国高一课时练习)函数2log (2)y x =-的定义域是( ) A .(0,)+∞ B .(1,)+∞ C .(2,)+∞D .[)4,+∞ 【答案】C【解析】由对数函数的定义域只需20x ->,解得2x >,所以函数的定义域为(2,)+∞ . 2.(2020·吉林长春�高三二模(文))下列与函数y =定义域和单调性都相同的函数是( ) A .2log 2xy =B .21log 2xy ⎛⎫= ⎪⎝⎭C .21log y x= D .14y x =【答案】C【解析】函数y =的定义域为()0,∞+,在()0,∞+上为减函数. A 选项,2log 2x y =的定义域为()0,∞+,在()0,∞+上为增函数,不符合.B 选项,21log 2xy ⎛⎫= ⎪⎝⎭的定义域为R ,不符合. C 选项,21log y x=的定义域为()0,∞+,在()0,∞+上为减函数,符合. D 选项,14y x =的定义域为[)0,+∞,不符合.3.(2019·海南龙华�海口一中高二月考)函数()()ln 31y x x =-+的定义域是( ) A .()1,3- B .[]1,3-C .()(),13,-∞-+∞ D .(][),13,-∞-+∞【答案】A【解析】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-. 4.(2020·西藏拉萨�高三二模(文))下列函数中,在区间()0,∞+上为减函数的是( )A.y =B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =【答案】C【解析】对于A选项,函数y =()0,∞+上为增函数;对于B 选项,函数21y x =-在区间()0,∞+上为增函数;对于C 选项,函数12xy ⎛⎫= ⎪⎝⎭在区间()0,∞+上为减函数; 对于D 选项,函数2log y x =在区间()0,∞+上为增函数.5.(2020·上海高一课时练习)若1log (1)1x x ++=,则x 的取值范围是( ) A .(1,)-+∞B .(1,0)(0,)-+∞C .(,1)(1,)-∞-⋃-+∞D .(,0)(0,)-∞+∞【答案】B【解析】111log (1)110110,11x x x x x x x x ++=+⎧⎪+=∴+>∴>-⎨⎪+>+≠⎩且0x ≠ 6.(2020·绥德中学高二月考(文))下列函数中,在区间()0+∞,上为增函数的是( ) A .ln(2)y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+【答案】A【解析】对A ,函数ln(2)y x =+在()2-+∞,上递增,所以在区间()0+∞,上为增函数,符合; 对B,函数y =[)1,-+∞上递减,不存在增区间,不符合;对C ,函数12xy ⎛⎫= ⎪⎝⎭在R 上递减,不存在增区间,不符合;对D ,函数1y x x=+在()0,1上递减,在()1,+∞上递增,不符合. 7.(2020·北京高一期末)函数()2log f x x =是( ) A .()0,∞+上的增函数B .()0,∞+上的减函数C .R 上的增函数D .R 上的减函数【答案】A【解析】2log y x =的定义域为(0,)+∞, 又21>,故2log y x =在(0,)+∞上为增函数, 故选:A.8.(2020·安徽宿州�高一期末)函数()()()log 201a f x x a =+<<的图象必不过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】由01a <<可判断()()log 2a f x x =+为减函数,再根据函数平移法则,()()log 2a f x x =+应由()log a f x x =向左平移两个单位,如图,故()()()log 201a f x x a =+<<的图象必不过第一象限9.(2017·内蒙古集宁一中高一期中(文))函数()log 4=f x x 与()=4xf x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】D【解析】由4log y x =得4y x =,即4x y =,∴4xy =与4log y x =互为反函数,其图象关于直线y x =对称. 故选:D.10.(2020·全国高一课时练习)函数2log ||y x =的图像大致是( )A .B .C .D .【答案】A【解析】函数2log y x =是偶函数,且在()0,∞+上为增函数,结合各选项可知A 正确. 故选A11.(2018·平遥县综合职业技术学校高一期中)图中曲线分别表示log a y x =,log b y x =,log c y x =,log d y x =的图象,则a ,b ,c ,d 的关系是( ).A .01a b d c <<<<<B .01b a c d <<<<<C .01d c a b <<<<<D .01c d a b <<<<<【答案】D【解析】如图所示,由于在第一象限中,随着底数的增大,函数的图象越向x 轴靠近, 所以01c d a b <<<<<.12.(2019·黄梅国际育才高级中学高一月考)若函数()y f x =与10x y =互为反函数,则()22y f x x =-的单调递减区间是( ) A .(2,)+∞ B .(,1)-∞ C .(1,)+∞ D .(,0)-∞【答案】D 【解析】函数()y f x =与10xy =互为反函数,∴()lg y f x x ==,则()()222lg 2y f x x x x =-=-,根据同增异减的性质,可设()lg f t t =,22t x x =-,可知外层函数为增函数,则内层函数应在定义域内取对应的减区间,即2202x x x ->⇒>或0x <,应取0x < 13.(2019·浙江高一期中)函数12()log (2)f x x =-的单调递增区间是( )A .(,2)-∞B .(,0)-∞C .(2,)+∞D .(0,)+∞【答案】A【解析】由20x ->,得到2x <,令2t x =-,则2t x =-在(,2)-∞上递减,而12log y t =在(0,)+∞上递减,由复合函数单调性同增异减法则,得到12()log (2)f x x =-在(,2)-∞上递增,14.(2020·荆州市北门中学高一期末)已知函数f (x )=ln (–x 2–2x +3),则f (x )的增区间为 A .(–∞,–1) B .(–3,–1) C .[–1,+∞) D .[–1,1)【答案】B 【解析】由,得, 当时,函数单调递增,函数单调递增;当时,函数单调递减,函数单调递减,选B.15.(2020·浙江高一课时练习)函数2()log 31()x f x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞【答案】A 【解析】30x >,311x ∴+>,()2log 310x∴+>,∴函数()f x 的值域为(0,)+∞.故选:A16.(2020·浙江高一课时练习)若[0,1]x ∈,且[]2222log log (22)2x x +++为整数,则满足条件的实数x 的个数为( ). A .12 B .13C .14D .15【答案】C【解析】令[]2222()log log (22)2x f x x +=++,[0,1]x ∈,则()f x 为增函数,且(0)4f =,(1)17f =,故()f x 的值域为[4,17]. 又[]2222log log (22)2x x +++为整数,则一共能取14个整数值,故相应的x 有14个.17.(2020·浙江高一课时练习)在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称.而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值是( )A .e -B .1e-C .eD .1e【答案】D【解析】∵函数()y g x =的图象与xy e =的图象关于直线y x =对称,∴函数()y g x =与xy e =互为反函数,则()ln g x x =,又由()y f x =的图象与()y g x =的图象关于y 轴对称,∴()()ln f x x =-,又∵()1f m =-,∴()ln 1m -=-,1m e=-,故选B. 18.(2020·全国高三其他(理))已知函数()22,0()ln 1,0x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D【解析】作出()y f x =的图象如图,由对数函数图象的变化趋势可知,要使|()|ax f x ≤,则0a ≤,且22(0)ax x x x ≤-<,即2a x ≥-对任意0x <恒成立,所以2a ≥-.综上,20a -≤≤. 故选:D.19.(2020·全国高三一模(理))已知函数()3x f x n -=+,())2log 1g x x =,若对任意[]14,25t ∈,存在[]21,1t ∈-,使得()()21f t g t ≤,则实数n 的取值范围是( )A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎡⎫-+∞⎪⎢⎣⎭C .5,3⎛⎤-∞ ⎥⎝⎦D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】解:∵对任意[]14,25t ∈,存在[]21,1t ∈-,使得()()21f t g t ≤,∴ ()()min min g x f x ≥ ∵())2log 1g x =,∴ ()()min40g x g ==,∵()3x f x n -=+,∴ ()()min 113f x f n ==+∴ 103n +≤,解得13n ≤-, 故选:A.20.(2020·江苏盐城�高一期末)设函数1,0()log (2),0a ax x f x x x --≤⎧=⎨+>⎩ 若存在12,x x R ∈且12x x ≠,使得12()()f x f x =成立,则实数a 的取值范围为( )A .1(,)[1,)2-∞⋃+∞ B .1[,1)2C .1(0,)2D .()10,1,2⎛⎫⋃+∞ ⎪⎝⎭【答案】D【解析】由题知:0a >,设()1=--h x ax ,此时()h x 为减函数. 当01a <<时,设()()log 2a g x x =+,此时()g x 为减函数, 若存在12,x x R ∈且12x x ≠,使得12()()f x f x =成立, 只需满足()()00g h >,即log 21>-a ,解得102a <<. 当1a >时,此时恒有12,x x R ∈且12x x ≠,使得12()()f x f x =成立. 综上:102a <<或1a >. 21.(2019·河北路南�唐山一中高三期中(文))函数()()13,2log 1,2x e x f x x x -⎧<⎪=⎨--≥⎪⎩,则不等式()1f x >的解集为( ) A .()1,2 B .4(,)3-∞C .4(1,)3D .[)2,+∞ 【答案】A【解析】因为()1f x >,所以121x x e -<⎧⎨>⎩或()32log 11x x ≥⎧⎨-->⎩因此210x x <⎧⎨->⎩或21013x x ≥⎧⎪⎨<-<⎪⎩,12x <<或x ∈∅,即12x <<故选:A22.(2020·辽宁高三三模(文))设()f x 为定义在R 上的奇函数,当0x ≥时,23()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以(0)0f =,解得1a =,所以,当0x ≥时,32()log (1)f x x x =++.当[0,)x ∈+∞时,函数3log (1)y x =+和2yx 在[0,)x ∈+∞上都是增函数,所以()f x 在[0,)x ∈+∞上单调递增,由奇函数的性质可知,()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故()(34)5(34)2f x f x f +>-⇔+>-,即有342x +>-,解得2x >-.故选:D .23.(多选题)(2019·全国高一课时练习)(多选)下面对函数12()log f x x =与1()2xg x ⎛⎫= ⎪⎝⎭在区间(0,)+∞上的衰减情况的说法中错误的有( )A .()f x 的衰减速度越来越慢, ()g x 的衰减速度越来越快B .()f x 的衰减速度越来越快,()g x 的衰减速度越来越慢C .()f x 的衰减速度越来越慢,()g x 的衰减速度越来越慢D .()f x 的衰减速度越来越快,()g x 的衰减速度越来越快 【答案】ABD【解析】在平面直角坐标系中画出()f x 与()g x 图象如下图所示:由图象可判断出衰减情况为:()f x 衰减速度越来越慢;()g x 衰减速度越来越慢 故选:ABD24.(多选题)(2020·全国高一课时练习)已知函数2222()(log )log 3f x x x =--,则下列说法正确的是( ) A .(4)3f =-B .函数()y f x =的图象与x 轴有两个交点C .函数()y f x =的最小值为4-D .函数()y f x =的最大值为4E.函数()y f x =的图象关于直线2x =对称 【答案】ABC【解析】A 正确,2222(4)(log 4)log 433f =--=-;B 正确,令()0f x =,得22(log 1)(log 3)0x x +-=, 解得12x =或8x =,即()f x 的图象与x 有两个交点; C 正确,因为22()(log 1)4(0)f x x x =-->,所以当2log 1x =,即2x =时,()f x 取最小值4-; D 错误,()f x 没有最大值;E 错误,取1x =,则(1)3(3)f f =-≠.25.(多选题)(2020·全国高一开学考试)已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥- 【答案】AC【解析】对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确 对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确.对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤. 解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC二、拓展提升1.(2020·上海高一课时练习)求下列各式中x 的取值范围: (1)21log 1ax -; (2)2log (3)x x +-; (3)()2xx +.【解析】(1)21log 1ax -, 210x ∴->,解得:1x >或1x <,x 的取值范围是(,1)(1,)-∞-+∞.(2)2log (3)x x +-302021x x x ->⎧⎪∴+>⎨⎪+≠⎩,解得:321x x x <⎧⎪>-⎨⎪≠-⎩, x 的取值范围是(2,1)(1,3)--⋃-.(3))2x x +20301x x x ⎧+>⎪∴+>⎨≠,解得:0132x x x x ><-⎧⎪>-⎨⎪≠-⎩或, x 的取值范围是(3,2)(2,1)(0,)--⋃--⋃+∞.2.(2020·陕西咸阳�高一期末)已知函数()()log 0,1a f x x a a =>≠的图象过点1,24⎛⎫⎪⎝⎭. (1)求a 的值;(2)计算12lg lg 5a a --+的值.【解析】(1)()()log 0,1a f x x a a =>≠的图像过点1,24⎛⎫ ⎪⎝⎭, 1log 24a ∴=,214a ∴=,得12a =. (2)由(1)知,12a =,112211lg lg5lg lg5lg 2lg5122a a --⎛⎫∴-+=-+=+= ⎪⎝⎭. 3.(2019·安徽庐阳�合肥一中高一期中)己知函数()()log 01a f x x a a =>≠,. (1)若()()23f a f a +=,求实数a 的值(2)若()()232f f >+,求实数a 的取值范围.【解析】解:(1)由()()23f a f a +=得()1log 23a a +=,即()log 22a a =, 故log 21a =,所以2a =;(2)由()()232f f >+得log 2log 32a a >+,即22log 2log 3a a a >=,当1a >时,223a <,无解; 当01a <<时,223a >,得13a <<; 综上,实数a的取值范围为⎫⎪⎪⎝⎭. 4.(2020·山西应县一中高二期中(文))设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f .(1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值. 【解析】解:(1)∵(1)=2f ,∴(1)log 2log 2log 42a a a f =+==,∴2a =;(2)由1030x x +>⎧⎨->⎩得(1,3)x ∈-, ∴函数()f x 的定义域为(1,3)-,22222()log (1)log (3)log (1)(3)]log [[(1)4]f x x x x x x =++-=+---+=, ∴当(0,1)x ∈时,()f x 是增函数;当3(1,)2x ∈时,()f x 是减函数, ∴函数()f x 在30,2⎡⎤⎢⎥⎣⎦上的最大值是2(1)log 42f ==. 5.(2020·开鲁县第一中学高二期末(文))设f (x )=log a (1+x )+log a (3﹣x )(a >0,a ≠1)且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值和最小值. 【解析】(1)由题意知,1030x x +⎧⎨-⎩>>, 解得﹣1<x <3;故f (x )的定义域为(﹣1,3);再由f (1)=2得,log a (1+1)+log a (3﹣1)=2; 故a =2.综上所述:函数定义域为()1,3-,2a =. (2)f (x )=log 2(1+x )(3﹣x ), ∵x ∈[0,32],∴(1+x )(3﹣x )∈[3,4],故f (x )在区间[0,32]上的最大值为f (1)=2;f (x )在区间[0,32]上的最小值为f (0)=log 23.。
高中数学第四章指数函数与对数函数典型例题(带答案)
高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
(带答案)高中数学第四章指数函数与对数函数基础知识点归纳总结
(每日一练)高中数学第四章指数函数与对数函数基础知识点归纳总结高中数学第四章指数函数与对数函数基础知识点归纳总结单选题1、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( ) A .−12B .−13C .−16D .56 答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90<a <100B .90<a <110C .100<a <110D .80<a <100答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、设m,n都是正整数,且n>1,若a>0,则不正确的是()A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.4、已知函数f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有两个零点,则实数m不可能...是()A.−1B.0C.1D.2答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m的零点,转化为函数y=f(x)与函数y=m的交点,数形结合即可求出参数m的取值范围;解:因为f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),画出函数图象如下所示,函数g(x)=f(x)−m的有两个零点,即方程g(x)=f(x)−m=0有两个实数根,即f(x)=m,即函数y=f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5、化简√−a 3·√a 6的结果为( )A .−√aB .−√−aC .√−aD .√a答案:A分析:结合指数幂的运算性质,可求出答案.由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a. 故选:A.6、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B7、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a=log436,b=log336,再利用换底公式和对数的运算法则计算求解. 因为4a=3b=36,所以a=log436,b=log336,则1a =log364,2b=log369,所以则1a +2b=log364+log369=log3636=1.故选:B.8、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.9、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D10、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型c(t)=c0e−kt描述,假定某药物的消除速率常数k=0.1(单位:h−1),刚注射这种新药后的初始血药含量c0=2000mg/L,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln2≈0.693,ln3≈1.099)A.5.32hB.6.23hC.6.93hD.7.52h答案:C分析:利用已知条件c(t)=c0e−kt=2000e−0.1t,该药在机体内的血药浓度变为1000mg/L时需要的时间为t1,转化求解即可.解:由题意得:c (t )=c 0e −kt =2000e −0.1t设该要在机体内的血药浓度变为1000mg/L 需要的时间为t 1c (t 1)=2000e −0.1t 1≥1000e −0.1t 1≥12故−0.1t ≥−ln2,t ≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ故选:C多选题11、下列各选项中,值为1的是( )A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项.对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意.对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D选项不符合题意.故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.12、已知函数f (x )=lnx +ln (2−x ),则( )A .f (x )在(0,2)单调递增B .f (x )在(0,1)单调递增,在(1,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称答案:BC分析:由题可得函数的定义域,化简函数f (x )=lnx (2−x )=ln (−x 2+2x ),分析函数的单调性和对称性,从而判断选项.函数的定义域满足{x >02−x >0,即0<x <2, 即函数的定义域是{x |0<x <2 },∵f (x )=lnx (2−x )=ln (−x 2+2x ),设t =−x 2+2x =−(x −1)2+1,则函数在(0,1)单调递增,在(1,2)单调递减,又函数y =lnt 单调递增,由复合函数单调性可知函数f (x )在(0,1)单调递增,在(1,2)单调递减,故A 错误,B 正确;因为f (1+x )=ln (1+x )+ln (1−x ),f (1−x )=ln (1−x )+ln (1+x ),所以f (1−x )=f (1+x ),即函数y =f (x )图象关于直线x =1对称,故C 正确;又f (12)=ln 12+ln (2−12)=ln 34,f (32)=ln 32+ln (2−32)=ln 34,所以f (12)=f (32)=ln 34,所以D 错误.故选:BC .13、已知函数f(x)=|lgx |,则( )A .f(x)是偶函数B .f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.14、已知函数f(x)=2x−1,下面说法正确的有()2x+1A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的值域为(−1,1)<0恒成立D.∀x1,x2∈R,且x1≠x2,f(x1)−f(x2)x1−x2答案:BC解析:判断f(x)的奇偶性即可判断选项AB,求f(x)的值域可判断C,证明f(x)的单调性可判断选项D,即可得正确选项.f(x)=2x−12x+1的定义域为R关于原点对称,f(−x)=2−x−12−x+1=(2−x−1)2x(2−x+1)2x=1−2x1+2x=−f(x),所以f(x)是奇函数,图象关于原点对称,故选项A不正确,选项B正确;f(x)=2x−12x+1=2x+1−22x+1=1−22x+1,因为2x>0,所以2x+1>1,所以0<12x+1<1,−2<−22x+1<0,所以−1<1−22x+1<1,可得f(x)的值域为(−1,1),故选项C正确;设任意的x1<x2,则f(x1)−f(x2)=1−22x1+1−(1−22x2+1)=22x2+1−22x1+1=2(2x1−2x2)(2x1+1)(2x2+1),因为2x1+1>0,2x2+1>0,2x1−2x2<0,所以2(2x1−2x2)(2x1+1)(2x2+1)<0,即f(x1)−f(x2)<0,所以f(x1)−f(x2)x1−x2>0,故选项D不正确;故选:BC小提示:方法点睛:利用定义证明函数单调性的方法(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2;(2)作差变形:即作差,即作差f(x1)−f(x2),并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差f(x1)−f(x2)的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.15、(多选)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x2B.y=|x−1| C.y=|x|−1 D.y=2x答案:AC分析:由偶函数的定义及单调性依次判断选项即可.易得四个函数定义域均为R,对于A,令f(x)=x2,则f(−x)=(−x)2=x2=f(x),且在(0,+∞)上单调递增,A正确;对于B,令g(x)=|x−1|,g(−x)=|−x−1|=|x+1|≠g(x),B错误;对于C,令ℎ(x)=|x|−1,ℎ(−x)=|−x|−1=|x|−1=ℎ(x),且在(0,+∞)上单调递增,C正确;对于D,令m(x)=2x,m(−x)=2−x≠m(x), D错误.故选:AC.填空题16、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______.答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.17、牛奶中细菌的标准新国标将最低门槛(允许的最大值)调整为200万个/毫升,牛奶中的细菌常温状态下大约20分钟就会繁殖一代,现将一袋细菌含量为3000个/毫升的牛奶常温放置于空气中,经过________分钟就不宜再饮用.(参考数据:lg2≈0.301,lg3≈0.477)答案:188分析:根据题意列出不等式计算即可.设经过x个周期后细菌含量超标,即3000×2x>2000000,即2x>20003,所以x>log220003=lg2000−lg3lg2=lg2+3−lg3lg2≈9.4,而20×9.4=188,因此经过188分钟就不宜再饮用.所以答案是:188.18、函数f(x)=a x−1+2(a>0,a≠1)的图象恒过定点_____________. 答案:(1,3)分析:根据指数函数的性质,即可得答案.令x−1=0,可得x=1,所以f(1)=a0+2=3,即f(x)图象恒过定点(1,3).所以答案是:(1,3)解答题19、已知a>0,且a≠1,m>n>0,比较A=a m+1a m 和B=a n+1a n的大小.答案:只要a>0且a≠1,都有A>B.分析:利用作差法结合指数函数的性质比较大小即可A−B=(a m+1a m)−(a n+1a n)=(a m−a n)+(1a m−1a n)=(a m−a n)+a n−a ma m a n =(a m−a n)(a m+n−1)a m+n.∵a>0,∴a m+n>0.①当a>1时,∵m>n>0,∴a m>a n,a m+n>a0=1. ∴A−B>0,即A>B.②当0<a<1时,∵a m<a n,a m+n<a0=1,∴仍有A−B>0,即有A>B.综上所述,只要a>0且a≠1,都有A>B.20、计算:(1)lg14−2lg73+lg7−lg18;(2)log535+2log5√2−log515−log514;(3)12lg3249−43lg√8+lg√245.答案:(1)0(2)2(3)12分析:直接利用对数的运算性质进行运算即可.(1)原式=lg(2×7)−2(lg7−lg3)+lg7−lg(32×2) =lg2+lg7−2lg7+2lg3+lg7−2lg3−lg2=0.(2)原式=log535+log52−log515−log514=log535×215×14=log535014=log525=2.(3)原式=12(5lg2−2lg7)−43×32lg2+12(2lg7+lg5)=52lg2−lg7−2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12.。
高考数学总复习重点知识专题讲解与训练4---指数函数及对数函数(解析版)
§xx§]
5.若
a
=
log 1
π
1 3
,
π
b = e3 ,
c
=
log3cos
1 5
π
,则(
)
A. b > c > a
B. b > a > c
C. a > b > c
D. c > a > b
【答案】B
【 解析】
a
=
log 1
π
1 3
=
logπ 3∈(0,1) ,
π
b = e3 >1,
c
=
log3cos
A. f
(log3
1 4
)>
f
(
−3
22
)>
f
(
−2
23
)
B. f
(log3
1 4
)>
f
(
−2
23
)>
f
(
−3
22
)
C.
f
−3
(2 2
)>
f
−2
(2 3
)>
f
1 (log3 4
)
D.
f
(
−2
23
)>
f
−3
(2 2
)>
f
(log3
1
) 4
【答案】C
【解析】
f
( x) 是定义域为 R 的偶函数,所以
f
(log3
211 28 +1
>
7
,因此排除
A,D.故选
B.
4.(2018 年全国Ⅲ卷理 12)设 a = log0.2 0.3 , b = log2 0.3 则(
指数函数和对数函数练习题
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数函数和对数函数练习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章指数函数和对数函数§1正整数指数函数§2指数扩充及其运算性质1.正整数指数函数函数y=ax(a>0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数.2.分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的 eq \f(m,n) 次幂,记作b=;(2)正分数指数幂写成根式形式:= eq \r(n,am) (a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________.3.有理数指数幂的运算性质(1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0).一、选择题1.下列说法中:①16的4次方根是2;② eq \r(4,16) 的运算结果是±2;③当n为大于1的奇数时, eq \r(n,a) 对任意a∈R都有意义;④当n 为大于1的偶数时, eq \r(n,a) 只有当a≥0时才有意义.其中正确的是( )A.①③④ B.②③④ C.②③ D.③④2.若2<a<3,化简 eq \r(2-a2) + eq \r(4,3-a4) 的结果是( )A.5-2a B.2a-5 C.1 D.-13.在(- eq \f(1,2) )-1、、、2-1中,最大的是( )A.(- eq \f(1,2) )-1 B. C. D.2-14.化简 eq \r(3,a\r(a)) 的结果是( )A.a B. C.a2 D.5.下列各式成立的是( )A. eq \r(3,m2+n2) = B.( eq \f(b,a) )2=C. eq \r(6,-32) =D. eq \r(\r(3,4)) =6.下列结论中,正确的个数是( )①当a<0时,=a3;② eq \r(n,an) =|a|(n>0);③函数y=-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1C.2 D.3二、填空题7. eq \r(6\f(1,4)) - eq \r(3,3\f(3,8)) + eq \r(3,0.125) 的值为________.8.若a>0,且ax=3,ay=5,则=________.9.若x>0,则(2+)(2-)-4·(x-)=________.三、解答题10.(1)化简: eq \r(3,xy2·\r(xy-1)) · eq \r(xy) ·(xy)-1(xy≠0);(2)计算:+ eq \f(-40,\r(2)) + eq \f(1,\r(2)-1) - eq \r(1-\r(5)0) ·.11.设-3<x<3,求 eq \r(x2-2x+1) - eq \r(x2+6x+9) 的值.12.化简:÷(1-2 eq \r(3,\f(b,a)) )× eq \r(3,a) .13.若x>0,y>0,且x- eq \r(xy) -2y=0,求 eq \f(2x-\r(xy),y +2\r(xy)) 的值.§3指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=ax(a>0,且a≠1)的图像和性质一、选择题1.下列以x为自变量的函数中,是指数函数的是( )A.y=(-4)x B.y=πxC.y=-4x D.y=ax+2(a>0且a≠1) 2.函数f(x)=(a2-3a+3)ax是指数函数,则有( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.函数y=a|x|(a>1)的图像是( )4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为( )A.-9 B. eq \f(1,9)C.- eq \f(1,9) D.95.如图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图像,则a、b、c、d与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=( eq \f(1,2) )x-2的图像必过( )A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题7.函数f(x)=ax的图像经过点(2,4),则f(-3)的值为________.8.若函数y=ax-(b-1)(a>0,a≠1)的图像不经过第二象限,则a,b必满足条件________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)和;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n=-2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴).(5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a⊕b= eq \b\lc\{\rc\(\a\vs4\al\co1(a a≤b,b a>b)) ,则函数f(x)=1⊕2x的图像是( )13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).(1)求f(1)的值;(2)若f( eq \f(1,2) )>0,解不等式f(ax)>0.(其中字母a为常数).§3指数函数(二)1.下列一定是指数函数的是( )A.y=-3x B.y=xx(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1- eq \r(2) )x 2.指数函数y=ax与y=bx的图像如图,则( )A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若( eq \f(1,2) )2a+1<( eq \f(1,2) )3-2a,则实数a的取值范围是( )A.(1,+∞) B.( eq \f(1,2) ,+∞) C.(-∞,1) D.(-∞, eq \f(1,2) ) 5.设 eq \f(1,3) <( eq \f(1,3) )b<( eq \f(1,3) )a<1,则( ) A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( )A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.QP B.QPC.P∩Q={2,4} D.P∩Q={(2,4)}2.函数y= eq \r(16-4x) 的值域是( )A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6 B.1 C.3 D. eq\f(3,2)4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数 D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图像与函数g(x)=ex+2的图像关于原点对称,则f(x)的表达式为( )A.f(x)=-ex-2 B.f(x)=-e-x+2C.f(x)=-e-x-2 D.f(x)=e-x+26.已知a=,b=,c=,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<aC.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<- eq \f(1,2) 的解集是________________.9.函数y=的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[- eq \f(1,2) , eq\f(1,2) ].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图像大致是( )13.已知函数f(x)= eq \f(2x-1,2x+1) .(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)< eq \f(15,17) .习题课1.下列函数中,指数函数的个数是( )①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0 B.1 C.2 D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( )A.-3 B.-1 C.1 D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是( )A.1 B.0C.-1 D.无最大值4.将 eq \r(2\r(2)) 化成指数式为________.5.已知a=40.2,b=80.1,c=( eq \f(1,2) )-0.5,则a,b,c的大小顺序为________.6.已知+=3,求x+ eq \f(1,x) 的值.一、选择题1.的值为( )A. eq \r(2) B.- eq \r(2) C. eq\f(\r(2),2) D.- eq \f(\r(2),2)2.化简 eq \r(3,a-b3) + eq \r(a-2b2) 的结果是( ) A.3b-2a B.2a-3bC.b或2a-3b D.b3.若0<x<1,则2x,( eq \f(1,2) )x,(0.2)x之间的大小关系是( ) A.2x<(0.2)x<( eq \f(1,2) )x B.2x<( eq\f(1,2) )x<(0.2)xC.( eq \f(1,2) )x<(0.2)x<2xD.(0.2)x<( eq \f(1,2) )x<2x4.若函数则f(-3)的值为( )A. eq \f(1,8)B. eq\f(1,2)C.2 D.85.函数f(x)=ax-b的图像如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)= eq \f(4x+1,2x) 的图像( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:-(- eq \f(1,4) )0+160.75+=________________.8.已知10m=4,10n=9,则=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)( eq \r(2) )-1.2和( eq \r(2) )-1.4;(3)和;(4)π-2和( eq \f(1,3) )-1.311.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大 eq \f(a,2) ,求a的值.能力提升12.已知f(x)= eq \f(a,a2-1) (ax-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图像,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§4对数(一)1.对数的概念如果ab=N(a>0,且a≠1),那么数b叫做______________,记作__________,其中a叫做__________,N叫做________.2.常用对数与自然对数通常将以10为底的对数叫做__________,以e为底的对数叫做__________,log10N可简记为________,logeN简记为________.3.对数与指数的关系若a>0,且a≠1,则ax=N⇔logaN=____.对数恒等式:=____;logaax=____(a>0,且a≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确命题的个数为( )A.1 B.2C.3 D.42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( )A.①③ B.②④C.①② D.③④3.在b=log(a-2)(5-a)中,实数a的取值范围是( )A.a>5或a<2 B.2<a<5 C.2<a<3或3<a<5 D.3<a<44.方程= eq \f(1,4) 的解是( )A.x= eq \f(1,9) B.x= eq\f(\r(3),3)C.x= eq \r(3) D.x=95.若loga eq \r(5,b) =c,则下列关系式中正确的是( )A.b=a5c B.b5=acC.b=5ac D.b=c5a6.的值为( )A.6 B. eq \f(7,2)C.8 D. eq \f(3,7)二、填空题7.已知log7[log3(log2x)]=0,那么=________.8.若log2(logx9)=1,则x=________.9.已知lg a=2.431 0,lg b=1.431 0,则 eq \f(b,a) =________.三、解答题10.(1)将下列指数式写成对数式:①10-3= eq \f(1,1 000) ;②0.53=0.125;③( eq \r(2) -1)-1= eq \r(2) +1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知logax=4,logay=5,求A=的值.能力提升12.若loga3=m,loga5=n,则a2m+n的值是( )A.15 B.75C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=- eq \f(2,5) ;②logx3=- eq \f(1,3) .(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.§4对数(二)1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga eq \f(M,N) =________;(3)logaMn=__________(n∈R).2.对数换底公式logbN= eq \f(logaN,logab) (a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( )A.logax·logay=loga(x+y) B.(logax)n=nlogaxC. eq \f(logax,n) =loga eq \r(n,x)D. eq \f(logax,logay) =logax-logay2.计算:log916·log881的值为( )A.18 B. eq \f(1,18) C. eq \f(8,3) D. eq \f(3,8)3.若log5 eq \f(1,3) ·log36·log6x=2,则x等于( )A.9 B. eq \f(1,9) C.25D. eq \f(1,25)4.已知3a=5b=A,若 eq \f(1,a) + eq \f(1,b) =2,则A等于( )A.15 B. eq \r(15) C.± eq \r(15)D.2255.已知log89=a,log25=b,则lg 3等于( )A. eq \f(a,b-1)B. eq \f(3,2b-1)C. eq\f(3a,2b+1) D. eq \f(3a-1,2b)6.若lg a,lg b是方程2x2-4x+1=0的两个根,则(lg eq\f(a,b) )2的值等于( )A.2 B. eq \f(1,2) C.4 D. eq\f(1,4)二、填空题7.2log510+log50.25+( eq \r(3,25) - eq \r(125) )÷ eq\r(4,25) =______________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M= eq \f(2,3) lg E-3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.三、解答题10.(1)计算:lg eq \f(1,2) -lg eq \f(5,8) +lg 12.5-log89·log34;(2)已知3a=4b=36,求 eq \f(2,a) + eq \f(1,b) 的值.11.若a、b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.能力提升12.下列给出了x与10x的七组近似对应值:假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( )A.二 B.四C.五 D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的 eq \f(1,3) ?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)§5对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数.2.对数函数的图像与性质3.反函数对数函数y=logax(a>0且a≠1)和指数函数____________________互为反函数.一、选择题1.函数y= eq \r(log2x-2) 的定义域是( )A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)2.设集合M={y|y=( eq \f(1,2) )x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N是( )A.(-∞,0)∪[1,+∞) B.[0,+∞)C.(-∞,1] D.(-∞,0)∪(0,1)3.已知函数f(x)=log2(x+1),若f(α)=1,则α等于( )A.0 B.1 C.2 D.3 4.函数f(x)=|log3x|的图像是( )5.已知对数函数f(x)=logax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )A.g(x)=4x B.g(x)=2x C.g(x)=9x D.g(x)=3x6.若loga eq \f(2,3) <1,则a的取值范围是( )A.(0, eq \f(2,3) ) B.( eq \f(2,3) ,+∞) C.( eq \f(2,3) ,1) D.(0, eq \f(2,3) )∪(1,+∞)二、填空题7.如果函数f(x)=(3-a)x,g(x)=logax的增减性相同,则a的取值范围是________.8.已知函数y=loga(x-3)-1的图像恒过定点P,则点P的坐标是________.9.给出函数,则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=x,y=x,y=x,y=x 的图像,则a1,a2,a3,a4的大小关系是( )A.a4<a3<a2<a1 B.a3<a4<a1<a2 C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-logmx<0在(0, eq \f(1,2) )内恒成立,求实数m的取值范围.§5对数函数(二)1.函数y=logax的图像如图所示,则实数a的可能取值是( )A.5 B. eq \f(1,5)C. eq \f(1,e)D. eq \f(1,2)2.下列各组函数中,表示同一函数的是( )A.y= eq \r(x2) 和y=( eq \r(x) )2B.|y|=|x|和y3=x3C.y=logax2和y=2logaxD.y=x和y=logaax3.若函数y=f(x)的定义域是[2,4],则y=f(x)的定义域是( )A.[ eq \f(1,2) ,1] B.[4,16]C.[ eq \f(1,16) , eq \f(1,4) ] D.[2,4]4.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=loga(x+b)(a>0且a≠1)的图像经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点________________________________________________________________________.一、选择题1.设a=log54,b=(log53)2,c=log45,则( )A.a<c<b B.b<c<aC.a<b<c D.b<a<c2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为( )A.[-1,1] B.[ eq \f(1,2) ,2]C.[1,2] D.[ eq \r(2) ,4]3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有( )A.f(2)>f(-2) B.f(1)>f(2)C.f(-3)>f(-2) D.f(-3)>f(-4)4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. eq \f(1,4)B. eq \f(1,2) C.2 D.45.已知函数f(x)=lg eq \f(1-x,1+x) ,若f(a)=b,则f(-a)等于( )A.b B.-bC. eq \f(1,b) D.- eq \f(1,b)6.函数y=3x(-1≤x<0)的反函数是( )A.y=x(x>0) B.y=log3x(x>0)C.y=log3x( eq \f(1,3) ≤x<1) D.y=x( eq\f(1,3) ≤x<1)二、填空题7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是________.9.若loga2<2,则实数a的取值范围是______________.三、解答题10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.11.已知函数f(x)= eq \f(1-ax,x-1) 的图像关于原点对称,其中a 为常数.(1)求a的值;(2)若当x∈(1,+∞)时,f(x)+(x-1)<m恒成立.求实数m的取值范围.能力提升12.若函数f(x)=loga(x2-ax+ eq \f(1,2) )有最小值,则实数a的取值范围是( )A.(0,1) B.(0,1)∪(1, eq \r(2) ) C.(1, eq \r(2) ) D.[ eq \r(2) ,+∞)13.已知logm4<logn4,比较m与n的大小.习题课1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是( )A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,logam<logan<0,则( )A.1<n<m B.1<m<n C.m<n<1 D.n<m<13.函数y= eq \r(x-1) + eq \f(1,lg2-x) 的定义域是( ) A.(1,2) B.[1,4]C.[1,2) D.(1,2]4.给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①② B.②③ C.③④ D.①④5.设函数f(x)=loga|x|,则f(a+1)与f(2)的大小关系是________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是( )A.log0.52.7>log0.52.8 B.log34>log65 C.log34>log56 D.logπe>logeπ2.若log37·log29·log49m=log4 eq \f(1,2) ,则m等于( )A. eq \f(1,4)B. eq \f(\r(2),2)C. eq \r(2) D.43.设函数若f(3)=2,f(-2)=0,则b等于( )A.0 B.-1 C.1 D.24.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, eq \f(1,2) )内恒有f(x)>0,则f(x)的单调递增区间为( )A.(-∞,- eq \f(1,4) ) B.(- eq \f(1,4) ,+∞) C.(0,+∞) D.(-∞,- eq \f(1,2) )5.若函数若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.已知f(x)是定义在R上的奇函数,f(x)在(0,+∞)上是增函数,且f( eq \f(1,3) )=0,则不等式f(x)<0的解集为( )A.(0, eq \f(1,2) ) B.( eq\f(1,2) ,+∞)C.( eq \f(1,2) ,1)∪(2,+∞) D.(0, eq\f(1,2) )∪(2,+∞)二、填空题7.已知loga(ab)= eq \f(1,p) ,则logab eq \f(a,b) =________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)= eq \f(1,8) ,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,求不等式loga(x-1)>0的解集.13.已知函数f(x)=loga(1+x),其中a>1.(1)比较 eq \f(1,2) [f(0)+f(1)]与f( eq \f(1,2) )的大小;(2)探索 eq \f(1,2) [f(x1-1)+f(x2-1)]≤f( eq \f(x1+x2,2) -1)对任意x1>0,x2>0恒成立.§6指数函数、幂函数、对数函数增长的比较1.当a>1时,指数函数y=ax是________,并且当a越大时,其函数值增长越____.2.当a>1时,对数函数y=logax(x>0)是________,并且当a越小时,其函数值________.3.当x>0,n>1时,幂函数y=xn是________,并且当x>1时,n越大,其函数值__________.一、选择题1.今有一组数据如下:现准备了如下四个答案,哪个函数最接近这组数据( )A.v=log2t B.v=t C.v= eq \f(t2-1,2) D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数 C.指数型函数 D.对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(bx)≥f(cx) B.f(bx)≤f(cx) C.f(bx)<f(cx)D.f(bx),f(cx)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是( )A.45.606 B.45.6 C.45.56 D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b= eq \f(2,3) ,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=,销售量g(t)与时间t满足关系g(t)=- eq \f(1,3) t+ eq\f(43,3) (0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=该商品的日销售量Q(件)与时间t(天)的函数关系式为Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N+)时的销售量增加10%.(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 eq \f(a,4) L?第三章章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f(x)=lg(4-x)的定义域为M,函数g(x)= eq \r(0.5x-4) 的值域为N,则M∩N等于( )A.M B.NC.[0,4) D.[0,+∞)2.函数y=3|x|-1的定义域为[-1,2],则函数的值域为( )A.[2,8] B.[0,8]C.[1,8] D.[-1,8]3.已知f(3x)=log2 eq \r(\f(9x+1,2)) ,则f(1)的值为( )A.1 B.2 C.-1 D. eq\f(1,2)4.等于( )A.7 B.10 C.6 D. eq\f(9,2)5.若100a=5,10b=2,则2a+b等于( )A.0 B.1C.2 D.36.比较、23.1、的大小关系是( )A.23.1<< B.<23.1<C.<<23.1 D.<<23.17.式子 eq \f(log89,log23) 的值为( )A. eq \f(2,3)B. eq \f(3,2)C.2 D.38.已知ab>0,下面四个等式中:①lg(ab)=lg a+lg b;②lg eq \f(a,b) =lg a-lg b;③ eq \f(1,2) lg( eq \f(a,b) )2=lg eq \f(a,b) ;④lg(ab)= eq \f(1,logab10) .其中正确的个数为( )A.0 B.1 C.2 D.39.为了得到函数y=lg eq \f(x+3,10) 的图像,只需把函数y=lg x 的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度10.函数y=2x与y=x2的图像的交点个数是( )A.0 B.1C.2 D.311.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1) B.f(-4)=f(1)C.f(-4)<f(1) D.不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)= eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,2)x,x≥4f x+1, x<4)) ,则f(2+log23)的值为______.14.函数f(x)=loga eq \f(3-x,3+x) (a>0且a≠1),f(2)=3,则f(-2)的值为________.15.函数y=(x2-3x+2)的单调递增区间为______________.16.设0≤x≤2,则函数y=-3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f(x)=ax(a>0且a≠1).(1)求f(x)的反函数g(x)的解析式;(2)解不等式:g(x)≤loga(2-3x).18.(12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.19.(12分)已知x>1且x≠ eq \f(4,3) ,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x), eq \f(1,4) ≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=loga eq \f(1+x,1-x) (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)= eq \f(-2x+b,2x+1+2) 是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.。
第04讲 指数与指数函数(四大题型)2024高考数学一轮复习+PPT(新教材)
a>1
0<a<1
图象
定义域
R
值域
(0,+∞)
__________
(0,1)
过定点_____,即x=0时,y=1
性质
y>1
0<y<1
当x>0时,_____;当x<0时,______
增函数
在(-∞,+∞)上是_______
0<y<1
y>1
当x<0时,_____;当x>0时,_______
即所求实数m的取值范围为(−∞, 0].
故答案为:(−∞, 0].
题型三:指数函数中的恒成立问题
【对点训练5】(2023·全国·高三专题练习)设 =
2 −2−
,当
2
∈ R时, 2 + + 1 > 0恒成立,则实数m的
取值范围是____________.
则满足2 − 4 < 0,即2 < 4,解得−2 < < 2,
且 → +∞, → −, () → 2 ,与图象相符,所以 < 0 ,
当() = 0时,e = ,
故选:C.
题型二:指数函数的图像及性质
【对点训练4】(2023·全国·高三专题练习)已知函数 = −4 + 1( > 0且 ≠ 1)的图象恒过定点A,若点A的坐
掌握指数幂的运算性质.
一个基本点, 常与二次函数、 幂函数、
(2)通过实例,了解指数函
2022年甲卷第12题,5分
2020年新高考II卷第11题,5分
大小的 比较和函数方程问题.
数的实际意义,会画指数函
专题04 指数函数与对数函数互为反函数(解析版)
专题04指数函数与对数函数互为反函数一、结论若函数()y f x =是定义在非空数集D 上的单调函数,则存在反函数1()y fx -=.特别地,x y a =与log a y x =(0a >且1a ≠)互为反函数.在同一直角坐标系内,两函数互为反函数图象关于y x =对称,即00(,())x f x 与00((),)f x x 分别在函数()y f x =与反函数1()y fx -=的图象上.若方程()x f x k +=的根为1x ,方程1()x f x k -+=的根为2x ,那么12x x k +=.二、典型例题例题1.(2022·高三课时练习)若关于x 的方程5log 4x x +=与54x x +=的根分别为m 、n ,则m n +的值为()A.3B.4C.5D.6【答案】B【详解】解:由题意,可知5log 4x x =-+,54x x =-+,作出函数5log y x =,5x y =,4y x =-+的图像(如图),A 、B 两点的横坐标分别为m 、n ,且A 、B 关于直线y x =对称,AB 的中点为C ,联立,4,y x y x =⎧⎨=-+⎩可得点C 的横坐标为2,因此4m n +=.故选:C.【反思】本题也可直接利用结论解题:若方程()x f x k +=的根为1x ,方程1()x fx k -+=的根为2x ,那么12x x k +=.在本例中,记5()log xf x =,则1()5x fx -=,这样利用结论,可快速得到:4m n +=。
例题2.(2022春·河南新乡·高二封丘一中校考期末)已知1x 是方程34x x ⋅=的根,2x 是方程3log 4x x ⋅=的根,则12x x =()A.16B.8C.6D.4【答案】D,因为3x y =与3log y x =互为反函数,这两个函数的图象关于直线在函数4y x=图象上任取一点(),a b ,该点关于直线由4=b a 可得4a b =,则点(),b a 也在函数故函数4y x=的图象关于直线y x =对称,所以,点114,x x ⎛⎫⎪⎝⎭与点224,x x ⎫⎛⎪ ⎝⎭关于直线故选:D.函数2log y x =与2x y =的图象关于直线所以,直线y x =与直线2y =由图象可知,点A 、B 关于点故选:D.3.(2020秋·湖南常德·高二临澧县第一中学校考阶段练习)若满足故选:D8.(2022秋·黑龙江牡丹江·高一牡丹江市第三高级中学校考期末)已知三个函数()38=+g x x=-,()2logh x x xA.6B.5【答案】C的横坐标,联立2y x y x=⎧⎨=-⎩,解得1x y ==,则直线y x =与直线2y x =-交于点()1,1M ,易知直线y x =与直线2y x =-垂直,因为函数2log y x =与函数2x y =的图象关于直线y x =对称,则A 、B 两点关于直线y x =对称,线段AB 的中点为M ,所以,12a b +-=,解得3a b +=.故答案为:3.13.(2022·上海·高一专题练习)设方程2log 2x x +=的解为1x ,22x x +=的解为2x ,则12x x +=_____________.【答案】2.【详解】由2log 2x x +=的解为1x ,得211log 2x x =-+,同理22x x +=的解为2x ,得2222xx =-+,又函数2log y x =与函数2x y =互为反函数,图象关于直线y x =对称,且2y x =-+与y x =互相垂直,且交点为(1,1),则函数2log y x =与函数2y x =-+的交点11(,)A x y ,函数2x y =与函数2y x =-+的交点22(,)B x y ,关于直线y x =对称,即11(,)A x y 与22(,)B x y 关于点(1,1)对称,即122x x +=,故答案为:2.14.(2019·浙江宁波·高一校联考期中)若1x 是方程1240x x -+-=的根,2x 是方程2log 3x x +=的根,则12x x +=__________.【答案】4【详解】解:1x 是方程1240x x -+-=的根,2x 是方程2log 3x x +=的根,把方程分别变形为()1231x x -=--,2log 3x x =-,由于2x y =与2log y x =互为反函数,则12(1)3x x -+=,124x x ∴+=.故答案为4.。
2020版理科数学一轮复习高考帮试题:第2章第4讲 指数与指数函数(习思用.数学理) Word版含解析.docx
第四讲指数与指数函数考点1指数与指数运算1.(a>0)的值是()A.1B.aC.D.2.计算:-÷(1-2)×.考点2指数函数的图象与性质3.若函数f(x)=2x+b-1(b∈R)的图象不经过第二象限,则()A.b≥1B.b≤1C.b≥0D.b≤04.函数f(x)=2|x-1|的图象是()A B C D5.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数f(x)=(--的单调递增区间为()A.(-∞,-]B.(-∞,)C.[,+∞D.(,+∞7.[2018邢台市模拟]如图,过原点O的直线与函数y=2x的图象交于A,B 两点,过点B作y轴的垂线交函数y=4x的图象于点C,若AC平行于y 轴,则点A的坐标是答案1.D==--=.故选D.2.令=m,=n,则原式=-÷(1-)×m=-·-=--=m3=a.3.D因为y=2x,当x<0时,y∈(0,1),且函数f(x)=2x+b-1(b∈R)的图象不经过第二象限,所以b-1≤-1,解得b≤0.故选D.4.B f(x)=-,,-,,故选B.5.B由图象可知③④的底数必大于1,①②的底数必小于1.过点(1,0)作直线x=1(图略),在第一象限内分别与各曲线相交,由图象可知1<d<c,b<a<1,从而可得a,b,c,d与1的大小关系为b<a<1<d<c.故选B.6.A由x2-x-1≥0,可得函数f(x)的定义域为{x|x≤-或x≥}.令t=--,则y=()t,该指数函数在定义域内为减函数.根据复合函数的单调性,要求函数f(x)=(--的单调递增区间,即求函数t=--的单调递减区间,易知函数t=--的单调递减区间为(-∞,-].所以函数f(x)=(--的单调递增区间为(-∞,-],故选A.7.(1,2)设C(a,4a),则A(a,2a),B(2a,4a).因为O,A,B三点共线,所以=,故4a=2·2a,所以2a=0(舍去)或2a=2,即a=1,所以点A的坐标是(1,2).。
(带答案)高中数学第四章指数函数与对数函数知识集锦
(每日一练)高中数学第四章指数函数与对数函数知识集锦高中数学第四章指数函数与对数函数知识集锦单选题1、已知y 1=(13)x ,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x 与y 3=10−x =(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A2、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12 答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.3、下列函数中是偶函数且在区间(0,+∞)单调递减的函数是( )A .f(x)=1|x |B .f(x)=(13)xC .f(x)=lg |x |D .f(x)=x −13答案:A分析:利用幂指对函数的性质逐一分析给定四个函数的单调性和奇偶性,可得结论.解:f(x)=1|x |是偶函数且在区间(0,+∞)上单调递减,满足条件;f(x)=(13)x 是非奇非 偶函数,不满足条件; f(x)=lg |x |是偶函数,但在区间(0,+∞)上单调递增,不满足条件;f(x)=x −13是奇函数不是偶函数,不合题意.故选:A .4、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A .0.9B .0.7C .0.5D .0.4答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1,所以所求的符合条件的近似值为0.7.故选:B5、下列计算中结果正确的是( )A .log 102+log 105=1B .log 46log 43=log 42=12 C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确;对于B :log 46log 43=log 36,故B 错误; 对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误;对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( )A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43,所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.7、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R上是减函数,∴{0<a<1 a−2<0(a−2)×0+3a≤a0,解得0<a≤13,∴a的取值范围是(0,13].故选:C.8、已知函数f(x)=4+a x+1的图象经过定点P,则点P的坐标是()A.(-1,5)B.(-1,4)C.(0,4)D.(4,0)答案:A分析:令x+1=0,即可求出定点坐标;当x+1=0,即x=−1时,a x+1=a0=1,为常数,此时f(x)=4+1=5,即点P的坐标为(-1,5).故选:A.小提示:本题考查指数型函数过定点,考查运算求解能力,属于基础题.9、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B10、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.多选题11、已知x1+log3x1=0,x2+log2x2=0,则()A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.12、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确.根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等,则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD ,则△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确;由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确.故选:ACD13、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( ) A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点,则−m ∈(0,94),∴m ∈(−94,0),故选:CD .14、已知实数x,y,z 满足2a =log 2b =1c ,则下列关系式中可能成立的是( ) A .b =c >a B .c =a >b C .b >c >a D .c >b >a答案:ACD分析:根据2a =log 2b =1c ,令y 1=2x ,y 2=log 2x ,y 3=1x ,在同一坐标系作出函数图象求解.因为2a =log 2b =1c , 令y 1=2x ,y 2=log 2x ,y 3=1x ,记y 1=2x 与y 3=1x 交点纵坐标为m ,y 2=log 2x 与y 3=1x 交点纵坐标为t ,当y=t时,A正确;当y=m时,B错误;当t<y<m时,C正确当y<t时,D正确故选:ACD15、已知函数f(x)={e x−1,x≥m−(x+2)2,x<m(m∈R),则()A.对任意的m∈R,函数f(x)都有零点.B.当m≤−3时,对∀x1≠x2,都有(x1−x2)(f(x1)−f(x2))<0成立.C.当m=0时,方程f[f(x)]=0有4个不同的实数根.D.当m=0时,方程f(x)+f(−x)=0有2个不同的实数根.答案:AC分析:讨论m的取值范围即可判断函数零点个数,可判断A;当m≤−3时,由指数函数与二次函数的单调性可判断B;当m=0时,令t=f(x),由f(t)=0得t=0或t=−2,结合图象可判断C;当m=0时,方程f(x)+ f(−x)=0,则f(x)=−f(−x),结合图象可判断D.当e x−1=0时,x=0;当−(x+2)2=0时,x=−2;所以当m>0时,函数f(x)只有1个零点,当−2<m≤0时,函数f(x)只有2个零点,m≤−2时,函数f(x)只有1个零点,故A正确;当m≤−3时,由指数函数与二次函数的单调性知,函数f(x)为单调递增函数,故B错;当m=0时,令t=f(x),由f(t)=0得t=0或t=−2,作出函数f(x)的图象如图所示,当t=f(x)=−2时,方程f[f(x)]=0有两个解;t=f(x)=0方程f[f(x)]=0有两个解;所以方程f[f(x)]=0有4个不同的实数根,故C正确;当m=0时,方程f(x)+f(−x)=0,则f(x)=−f(−x),如图所示,有1个不同的交点,则故D错误.故选:AC填空题16、函数y=a x+1(a>0,a≠1)恒过定点___________.答案:(−1,1)分析:利用指数型函数的特征,求解函数恒过的定点坐标.当x+1=0,即x=−1时,y=a0=1,所以y=a x+1(a>0,a≠1)恒过定点(−1,1).所以答案是:(−1,1)17、解指数方程2x+3=3x2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可.由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32.所以答案是:x =−3或x =3+log 32.18、函数y =log 0.4(−x 2+3x +4)的值域是________.答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4),则−x 2+3x +4>0,解得:−1<x <4,所以函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4), 则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254, 而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数,由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y≥log0.4254=−2,∴函数y=log0.4(−x2+3x+4)的值域为[−2,+∞).所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.解答题19、已知f(x)是对数函数,并且它的图像过点(2√2,32),g(x)=[f(x)]2−2b⋅f(x)+3,其中b∈R.(1)当b=2时,求y=g(x)在[√2,16]上的最大值与最小值;(2)求y=g(x)在[√2,16]上的最小值.答案:(1)最大值为3,最小值为−1.(2)y min={134−b,b≤123−b2,12<b<419−8b,b≥4分析:(1)由题知f(x)=log2x,进而令t=f(x),再根据换元法求解即可;(2)设t=f(x),由(1)知t∈[12,4],进而结合二次函数“轴动区间定”,根据对称轴相对于给定区间的位置进行分类讨论求解即可.(1)解:设f(x)=log a x(a>0,且a≠1),∵f(x)的图像过点(2√2,32),∴f(2√2)=32,即log a2√2=32,∴a32=2√2=232,即a=2,∴f(x)=log2x.∵√2≤x≤16,∴log2√2≤log2x≤log216,即12≤f(x)≤4.设t =f (x ),则y =ℎ(t )=t 2−4t +3=(t −2)2−1,t ∈[12,4],∴y min =ℎ(2)=−1,又ℎ(12)=(12−2)2−1=54,ℎ(4)=(4−2)2−1=3,∴y max =ℎ(4)=3.∴当b =2时,y =g (x )在[√2,16]上的最大值为3,最小值为−1.(2)解:设t =f (x ),则y =m (t )=t 2−2bt +3=(t −b )2+3−b 2,由(1)知t ∈[12,4],对称轴为直线t =b .①当b ≤12时,m (t )在[12,4]上是增函数. y min =m (12)=134−b ; ②当12<b <4时,m (t )在[12,b]上单调递减,在[b,4]上单调递减,y min =m (b )=3−b 2; ③当b ≥4时,m (t )在[12,4]上单调递减,y min =m (4)=19−8b .综上所述,y min ={134−b,b ≤123−b 2,12<b <419−8b,b ≥4.20、已知函数f (x )=log a x+1x−1(a >0且a ≠1).(1)判断并证明函数f (x )的奇偶性;(2)若a =2,求函数y =f (2x )的值域.答案:(1)奇函数,证明见解析;(2)(0,+∞).分析:(1)根据给定条件,利用奇函数定义判断并证明作答.(2)利用指数函数的值域,对数函数定义及性质求解作答.(1)函数f (x )是奇函数,依题意,x+1x−1>0,解得x <−1或x >1,即f (x )的定义域为(−∞,−1)∪(1,+∞),又f (−x )=log a −x+1−x−1=log a x−1x+1=log a (x+1x−1)−1=−log a x+1x−1=−f (x ), 所以函数f (x )是奇函数.(2) 当a =2时,f (x )=log 2x+1x−1,y =f (2x )=log 22x +12x −1=log 2(1+22x −1),显然2x >1, 则有22x −1∈(0,+∞),即1+22x −1∈(1,+∞),而y =log 2x 在(0,+∞)上递增,因此log 2(1+22x −1)∈(0,+∞),所以y =f (2x )的值域是(0,+∞).。
2020高考数学(理数)题海集训04 指数函数(30题含答案)
一、选择题 1.下列命题中正确的个数为(
①-3 是 81 的四次方根;
) ②正数的 n 次方根有两个;
③a 的 n 次方根就是 n a ; ④ n a n =a(a≥0)
A.1 个
B.2 个
C.3 个
D.4 个
2.下列结论中正确的个数是( )
3
①当 a<0 时, (a 2 ) 2 =a3;
D.{x | 2 x 5或x 5}
6.若指数函数 y a x 在[-1,1]上的最大值与最小值的差是 1,则底数 a 等于( )
1 5 1 5 1 5
A.
B.
C.
D.
2
2
2
7.函数 y=5-|x|的图象是( )
5 1 2
8.函数 y=a|x|(a>1)的图象是( )
9.若 m<0,n>0,则 m n 等于( )
17.函数 y=ax+b(a>0 且 a≠1)与 y=ax+b 的图象有可能是( ) .
18.函数 f(x)=a|x+1|(a>0,且 a≠1)的值域为[1,+∞),则 f(-4)与 f(1)的大小关系是( )
A.f(-4)>f(1)
B.f(-4)=f(1)
C.f(-4)<f(1)
D.不能确定
是
27.函数 y=( 1 ) 2x2 8x1 (-3 x 1 )的值域是 3
28.若指数函数 y=ax 在[-1,1]上的最大值与最小值的差是 1,则底数 a= .
29.函数 f(x)= f (x) (1) x2 2x 的单调增区间为
,值域为
.
3
2020年高考理科数学分类练习 专题二 函数概念与基本初等函数 第四讲指数函数对数函数幂函数答案
38. 【解析】由题意 , ,上面两式相加,
得 ,所以 ,所以 ,
因为 ,所以 .
39. 【解析】设 ,则 ,因为 ,
因此
40. 【解析】由题意得: ,解集为 .
41. 【解析】∵ ,∴ ,∴ .
42. 【解析】当 时,由 得 ,∴ ;当 时,
21.D【解析】取特殊值即可,如取
.
22.C【解析】因为函数 是定义在R上的偶函数,且 ,
所以 ,
即 ,因为函数在区间 单调递增,所以 ,
即 ,所以 ,解得 ,即a的取值范围是 ,选C.
23.D【解析】 .
24.B【解析】由指数函数与对数函数的图像知 ,解得 ,故选B.
25.A【解析】因为 ,所以 ,
18.D【解析】 ,解得 或 .由复合函数的单调性知 的单调递增区间为 .
19.D【解析】 ,
由下图可知D正确.
解法二 , ,
,由 ,可得答案D正确.
20.B【解析】 , , ≠1.考察对数2个公式:
对选项A: ,显然与第二个公式不符,所以为假.对选项B: ,显然与第二个公式一致,所以为真.对选项C: ,显然与第一个公式不符,所以为假.对选项D: ,同样与第一个公式不符,所以为假.所以选B.
31.B【解析】 +1=2,故 =1,选B.
32.A【解析】 又
33.C【解析】 .
34.C【解析】画出函数的图象,
如图所示,不妨设 ,因为 ,所以 , 的取值范围是 ,所以 的取值范围是 .
35.C【解析】由分段函数的表达式知,需要对 的正负进行分类讨论。
.
36. 【解析】要使函数 有意义,则 ,即 ,则函数 的定义域是 .
2020年高考数学一轮复习讲练测浙江版专题2.4指数与指数函数(讲)含解析
2020年高考数学一轮复习讲练测(浙江版)第二章 函 数第04讲 指数与指数函数 ---讲1.了解指数幂的含义,掌握有理指数幂的运算。
2.理解指数函数的概念,掌握指数函数的图象、性质及应用. 3.了解指数函数的变化特征. 4. 高考预测: (1)指数幂的运算;(2)指数函数的图象和性质的应用;(3)与指数函数相关,考查视图用图能力、数形结合思想的应用、函数单调性的应用、运算能力等 5.备考重点:(1)有理指数幂的运算;(2)指数函数单调性的应用,如比较函数值的大小; (3)图象过定点; (4)底数分类讨论问题.知识点1.根式和分数指数幂1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,n a n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s=a r +s;(a r )s =a rs ;(ab )r =a r b r,其中a >0,b >0,r ,s ∈Q .【典例1】计算:.【答案】12. 【解析】分析:直接利用指数幂的运算法则求解即可,求解过程注意避免计算错误.详解:. 【规律方法】化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.【变式1】计算:1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+1483⎝⎭________.【答案】2【解析】原式=1323⎛⎫⎪⎝⎭×1+342×142-13223⎛⎫= ⎪⎝⎭. 知识点2.指数函数的图象和性质(1)概念:函数y =a x(a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质【典例2】(2019·华东师大二附中前滩学校高三月考)函数的图象可能是( ).A .B .C .D .【答案】D 【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A ,当1a >时,∴101a <<,所以排除B ,当01a <<时,∴11a>,所以排除C ,故选D.【重点总结】1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 【变式2】(2019·安徽高三高考模拟(文))函数的图象是( )A.B.C.D.【答案】A【解析】,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B,故选:A【典例3】(2019·天津河西区一模)已知f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),则必有( ) A.a<0,b<0,c<0 B.a<0,b>0,c>0C.2-a<2c D.1<2a+2c<2【答案】D【解析】作出函数f(x)=|2x-1|的图象,如图所示,因为a<b<c,且有f(a)>f(c)>f(b),所以必有a<0,0<c<1,且|2a-1|>|2c-1|,所以1-2a>2c-1,则2a+2c<2,且2a+2c>1,故选D.【变式3】(改编自2019·天津河西区一模)直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是什么?【答案】1 (0,)2【解析】y=|a x-1|的图象是由y=a x先向下平移1个单位,再将x轴下方的图象沿x轴翻折过来得到的.当a>1时,两图象只有一个交点,不合题意,如图(1);当0<a<1时,要使两个图象有两个交点,则0<2a<1,得到0<a<12,如图(2).综上,a 的取值范围是1(0,)2.考点1 根式、指数幂的化简与求值【典例4】化简34]的结果为( )A .5B .C .﹣D .﹣5【答案】B【解析】==,故选B【易错提醒】1.有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.2.结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.【变式4】计算:1.5-13×76⎛⎫- ⎪⎝⎭0+80.25+6【答案】110【解析】原式=.考点2 根式、指数幂的条件求值【典例5】已知则的值为__________.【答案】【解析】 题意,∴,∴,故答案为.【总结提升】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是: (1)审题:从整体上把握已知条件和所求代数式的形式和特点; (2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如,,,解题时要善于应用公式变形.【变式5】已知,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++ 【答案】【解析】(1)将两边平方得,所以117a a -+=.(2)将117a a-+=两边平方得,所以.(3)由(1)(2)可得考点3 指数函数的图象及其应用【典例6】(2019·安徽马鞍山二中高三月考(文))若函数(0a >且1a ≠)的图象恒过定点(3,2),则m n +=______.【答案】7 【解析】 ∵函数(0a >且1a ≠)的图象恒过定点,令0x m -=,可得x m =,2y n =-,可得函数的图象经过定点(),2m n -.再根据函数的图象经过定点()3,2, ∴3m =,22n -=,解得3m =,4n =,则7m n +=, 故答案为:7. 【总结提升】(1)画指数函数y=a x(a>0,a≠1)的图象,应抓住三个关键点(0,1),(1,a),1(1,)a-.特别注意,指数函数的图象过定点(0,1);(2)y=a x与1y()xa=的图象关于y轴对称;(3)当a>1时,指数函数的图象呈上升趋势,当0<a<1时,指数函数的图象呈下降趋势;简记:撇增捺减.【变式6】(2019·河北省衡水模拟)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是.【答案】[-1,1]【解析】曲线|y|=2x+1与直线y=b的图象如图所示,由图可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].考点4 指数函数的性质及其应用【典例7】【2016新课标全国III】已知,,,则A. B.C. D.【答案】A【解析】因为,,所以,故选A.【技巧点拨】1.比较幂值大小时,要注意区分底数相同还是指数相同.是用指数函数的单调性,还是用幂函数的单调性或指数函数的图象解决.要注意图象的应用,还应注意中间量0、1等的运用.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b.规律:在y轴右(左)侧图象越高(低),其底数越大.【变式7】(2019·安徽高三开学(文))若为自然对数底数,则有()A.B.C.D.【答案】D【解析】令,则在R上单调递增,又,所以,解,所以,即.故选D【典例8】(2019·天津高三高考模拟)若,则函数的值域是A. B. C. D.【答案】B【解析】将化为,即,解得,所以,所以函数的值域是.故选C.【总结提升】1.简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.2.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断.3.有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象和性质,数形结合求解.【变式8】(2019·辽宁抚顺模拟)已知函数f(x),若在其定义域内存在实数x满足f(-x)=-f(x),则称函数f(x)为“局部奇函数”.若函数f(x)=4x-m·2x-3是定义在R上的“局部奇函数”,则实数m的取值范围是( )A.[-3,3) B.[-2,+∞)C.(-∞,22] D.[-22,3]【答案】B【解析】根据“局部奇函数”的定义可知,方程f(-x)=-f(x)有解即可,即4-x-m·2-x-3=-(4x-m·2x-3)有解.∴4-x+4x-m(2-x+2x)-6=0有解,即(2-x+2x)2-m(2-x+2x)-8=0有解即可.设t=2-x+2x,则t=2-x+2x≥2.∴方程等价为t2-mt-8=0在t≥2时有解.设g(t)=t2-mt-8,∵函数g(t)的图象恒过定点(0,-8),∴要使函数g(t)在[2,+∞)上有解,只需g(2)≤0,即m≥-2.故选B.。
2020年高考数学备考艺体生百日突围系列专题04指数函数与对数函数(基础篇)解析版版含解析
<2021艺体生文化课 -百日突围系列>专题四 指数函数与对数函数幂的运算、对数运算【背一背根底知识】1.根式:一般地 ,如果nx a = ,那么x 就叫做a 的n 次方根 ,其中1n > ,且n N *∈.叫做根式 ,其中n 叫做根指数 ,a 叫做被开方数.,,a n a n ⎧=⎨⎩为正奇数为正偶数;2.分数指数幂:我们规定正数的正分数指数幂的意义是:)0,,,1m na a m n N n *=>∈>且;我们规定正数的负分数指数幂的意义是:()10,,,1m nm naa m n N n a-*==>∈>且;其中0的正分数指数幂为0 ,0的负分数指数幂没有意义;3.正数的有理数幂的运算法那么如下: (1 )()0,,r sr sa a a a r s Q +=>∈;(2 )()()0,,sr rs aa a r s Q =>∈;(3 )()()0,0,rr rab a b a b r Q =>>∈;4.对数:一般地 ,如果()01xa N a a =>≠且 ,那么数x 叫做以a 为底N 的对数 ,记作log a x N = ,其中a 叫做对数的底数 ,N 叫做真数;其中把以10为底的对数叫做常用对数 ,并把10log N 记作lg N ,把以e (无理数 2.71828e =为底的底数叫做自然对数 ,并把log e N 记作ln N ;其中指数与对数的互化为:x a N =()log 01a x N a a ⇔=>≠且.5.对数恒等式: (1 )()log 1001a a a =>≠且; (2 )()log 101a a a a =>≠且; (3 )()log 01a NaN a a =>≠且.5.对数的运算性质:如果0a >且1a ≠ ,0M > ,0N > ,那么: (1 )()log log log a a a M N M N ⋅=+; (2 )log log log a a a MM N N=-; (3 )()log log n a a M n M n R =∈. 6.对数的换底公式:()log log 01;01;0log c a c bb a ac c b a=>≠>≠>且且. 推论: (1 )log log 1a b b a ⋅=; (2 )log log n ma a mb b n=. 【讲一讲根本技能】必备技能:1.指数幂的化简与求值(1)化简原那么:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.提醒:有理数指数幂的运算性质中 ,其底数都大于零 ,否那么不能用性质来运算. (2)结果要求:①假设题目以根式形式给出 ,那么结果用根式表示;②假设题目以分数指数幂的形式给出 ,那么结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂 ,也不能既有分母又有负分数指数幂. 2.对数的化简与求值(1)对数运算法那么是在化为同底的情况下进行的 ,因此 ,经常会用到换底公式及其推论;在对含有字母的对数式化简时 ,必须保证恒等变形.(2)ba N ⇔= ab log N = (a>0且a≠1)是解决有关指数、对数问题的有效方法 ,在运算中要注意灵活运用.(3)利用对数运算法那么 ,在真数的积、商、幂与对数的和、差、倍之间进行转化. (4)有限制条件的对数化简、求值问题 ,往往要化简和所求 ,利用 "代入法〞. 3.形如2x x a p b p c ⋅+⋅+型的方程、不等式或函数问题 ,利用换元法x t p = ,将其转化为2a t b t c ⋅+⋅+型的一元二次方程、不等式或二次函数问题 ,利用相关知识或方法求解;求解对数方程时 ,直接利用对数式与指数式的互化 ,利用指数相关知识求解;对于同底数的对数的运算时 ,一般利用底数的运算性质即可;对于不同底数的运算时 ,一般利用换底公式及其推论来解决. 1. 典型例题例1 132103410.027() 2.563(21)7-----+-+-= .分析:此题考查指数数的运算性质 ,在处理指数的加减法运算时 ,首||先利用指数的相关性质将各指数的系数化为一致的 ,然后根据指数的运算性质进行求解. 【答案】19例2.计算:327log 2lg 225lg 432ln +++e= . 分析:此题考查对数数的运算性质 ,在处理同底数对数的加减法运算时 ,首||先利用对数的相关性质将各对数的系数化为一致的 ,然后根据对数的运算性质进行求解. 【答案】415 【解析】因为4ln 2327115lg 252lg 2elog 2lg52lg 22344+++=++-=. 例3计算:22log 2= ,24log 3log 32+= . 【答案】1,332-【解析】122221log log 222-==-;2424log 3log 3log 3log 32223333+=⨯==【考点定位】对数运算【名师点睛】此题主要考查对数的运算.主要考查学生利用对数的根本运算法那么 ,正确计算的对数值.此题属于容易题 ,重点考查学生正确运算的能力. 例4设25abm == ,且112a b+= ,那么m = ( ) 10 B.10 C.20 D.100分析:此题是考查对数换底公式推论的应用 ,对于此种问题的考查 ,首||先应该从指数式25a b m ==中求出a 和b 的表达式 ,借助换底公式的推论 ,将代数式11a b+化为同底数的对数式的加减运算 ,最||后利用对数式与指数式的互化求出相应参数的值. 【答案】A 【解析】25a b m == ,2log a m ∴= ,5log b m = ,因此1log 2m a = ,1log 5m b = ,11log 2log 5m m a b+=+ ()log 25log 102m m =⨯== ,所以有210m = ,由于0m >且1m ≠ ,10m ∴= ,应选A.【练一练趁热打铁】1. 23log 9log 4⨯= ( ) A.14 B.12C.2D.4 【答案】D2.2111332651•••2•a b a b a b=--()- . 【答案】1a【解析】原式=113212156611•••11115132•32636•a b a b a b aa b --=---+-=. 3. lg 0.01+log 216=_____________. 【答案】2【解析】lg 0.01+log 216=-2+4=2【考点定位】此题考查对数的概念、对数运算的根底知识 ,考查根本运算能力.【名师点睛】对数的运算通常与指数运算相对应 ,即 "假设a b =N ,那么log a N =b 〞 ,因此 ,要求log a N 的值 ,只需看a 的多少次方等于N 即可 ,由此可得结论.当然此题中还要注意的是:两个对数的底数是不相同的 ,对数符号的写法也有差异 ,要细心观察 ,防止过失性失误.属于简单题.4.41332233814a a bb a⎛÷=⎝--+.【答案】a【解析】原式=11111133333311111122333333888222a ab a a a ba a a aa bb b a a a b⨯⨯⨯⨯(-)(-)==-()++()-.指数函数与对数函数【背一背根底知识】1.指数函数:函数xy a=(0a>且1a≠)称为指数函数,其中底数是不等于1的常数,指数为自变量;2.指数函数的根本性质:3.对数函数:一般地 ,我们把函数log a y x = (0a >且1a ≠ )称为对数函数 ,其中x 为自变量 ,函数的定义域为()0,+∞ ,a 叫做对数函数的底数;特别地 ,我们称以10为底数的对数函数lg y x =为常用对数函数;称以无理数()2.71828e e =为底数的对数函数叫做自然对数函数.4.对数函数的根本性质:5.反函数:我们将函数xy a = (0a >且1a ≠ )与函数log a y x = (0a >且1a ≠ )称为互为反函数 ,它们的图象关于直线y x =对称.【讲一讲根本技能】必备技能:对于指数函数与对数函数根本性质的考查 ,一般利用定义法中的相关步骤验证即可;对于指数函数与对数函数单调性的考查 ,一般要根据底数的取值范围才能确定其单调性 ,所以有些时候要对底数的取值范围进行分类讨论 ,进而确定相应函数的单调性;在比较大小时 ,假设能化成底数相同的指数式或对数式 ,只需利用相应的指数函数或对数函数的单调性即可进行比较 ,假设指数式与对数式同时存在时 ,一般通过利用中间值0与1结合不等式的传递性得出所考察的数的大小关系;在解有关的指数或对数不等式时 ,一般将不等式两边化成同底数的指数式或对数式 ,利用相应函数的单调性得出相应的不等式 ,并注意相应结构本身的限制条件. 2.典型例题例1假设函数21()2x x f x a+=-是奇函数 ,那么使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1() (D )1,+∞()【答案】C【考点定位】1.函数的奇偶性;2.指数运算.【名师点睛】此题考查函数的奇偶性及指数函数的性质 ,解答此题的关键 ,是利用函数的奇偶性 ,确定得到a 的取值 ,并进一步利用指数函数的单调性 ,求得x 的取值范围. 此题属于小综合题 ,在考查函数的奇偶性、指数函数的性质等根底知识的同时 ,较好地考查了考生的运算能力. 例2定义在R上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b(log 5),c(2)f f m ,那么,,a b c ,的大小关系为 ( )(A) b c a(B) b c a (C) b a c (D) b c a【答案】B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-= ,所以b c a ,应选B.【考点定位】此题主要考查函数奇偶性及对数运算.【名师点睛】函数是高|考中的重点与热点,客观题中也会出现较难的题,解决此类问题要充分利用相关结论.函数()0,1x my ab a a -=+>≠的图像关于直线x m = 对称,此题中求m 的值,用到了这一结论,此题中用到的另一个结论是对数恒等式:()log 0,1,0a NaN a a N =>≠>.例3不等式()lg 10x +≤的解集是__________.分析:此题是考查对数不等式的解法 ,对于此类问题的求解 ,只需将不等式的两边化成同底数的对数式 ,利用相应的对数函数的单调性得出两个真数的大小 ,同时还需注意对真数的限制条件 ,进而求解相应的不等式. 【答案】{}10x x -<≤【解析】不等式()lg 10x +≤即()lg 1lg1x +≤ ,由于对数函数lg y x =在()0,+∞上是增函数 ,故有11x +≤ ,由于对数函数的真数为正数 ,那么有10x +> ,即011x <+≤ ,解此不等式得10x -<≤ ,故不等式()lg 10x +≤的解集为{}10x x -<≤. 例4设函数()ln(1)ln(1)f x x x =+-- ,那么()f x 是 ( ) A.奇函数 ,且在(0,1)上是增函数 B. 奇函数 ,且在(0,1)上是减函数 C. 偶函数 ,且在(0,1)上是增函数 D. 偶函数 ,且在(0,1)上是减函数 【答案】A.【考点定位】函数的性质.【名师点睛】此题主要考查了以对数函数为背景的单调性与奇偶性 ,属于中档题 ,首||先根据函数奇偶性的判定可知其为奇函数 ,判定时需首||先考虑定义域关于原点对称是函数为奇函数的必要条件 ,再结合复合函 数单调性的判断 ,即可求解.【练一练趁热打铁】1. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数 ,,k b 为常数).假设该食品在0℃的保鲜时间是192小时 ,在22℃的保鲜时间是48小时 ,那么该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时 【答案】C【解析】由题意 ,2219248bk bee+⎧=⎪⎨=⎪⎩得1119212bke e ⎧=⎪⎨=⎪⎩ ,于是当x =33时 ,y =e 33k +b =(e 11k )3·e b =31()2×192=24(小时) 【考点定位】此题考查指数函数的概念及其性质 ,考查函数模型在现实生活中的应用 ,考查整体思想 ,考查学生应用函数思想解决实际问题的能力.【名师点睛】指数函数是现实生活中最||常容易遇到的一种函数模型 ,如人口增长率、银行储蓄等等 ,与人们生活密切相关.此题已经建立好了函数模型 ,只需要考生将的两组数据代入 ,即可求出其中的待定常数.但此题需要注意的是:并不需要得到k 和b 的准确值 ,而只需求出e b 和e 11k ,然后整体代入后面的算式 ,即可得到结论 ,否那么将增加运算量.属于中档题. 2. 假设0.63a = ,0.3log 6b = ,30.6c = ,那么 ( )A.a c b >>B.a b c >>C.c b a >>D.b c a >> 【答案】A3. 设a ,b 都是不等于1的正数 ,那么 "333a b >>〞是 "log 3log 3a b <〞的 ( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B 【解析】假设333a b >> ,那么1a b >> ,从而有log 3log 3a b < ,故为充分条件. 假设log 3log 3a b <不一定有1a b >> ,比方.1,33a b == ,从而333a b >>不成立.应选B.【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题 ,首||先是分清条件和结论 ,然后考察条件推结论 ,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.幂函数【背一背根底知识】1.幂函数:把形如a y x =的函数叫做幂函数 ,其中x 是自变量 ,a 是常数.2.幂函数在第|一象限内的图象与根本性质:【讲一讲根本技能】1.必备技能:幂函数()y x R αα∈= ,其中α为常数 ,其本质特征是以幂的底x 为自变量 ,指数α为常数 ,这是判断一个函数是否是幂函数的重要依据和唯一标准.在()0,1上 ,幂函数中指数越大 ,函数图象越靠近x 轴(简记为 "指大图低〞) ,在(1 ,+∞)上 ,幂函数中指数越大 ,函数图象越远离x 轴.幂函数的图象一定会出现在第|一象限内 ,一定不会出现在第四象限内 ,至||于是否出现在第二、三象限内 ,要看函数的奇偶性;幂函数的图象最||多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交 ,那么交点一定是原点. 2.典型例题例1幂函数()y f x =的图象过点12,22⎛⎫⎪ ⎪⎝⎭,那么()4f 的值为 .分析:此题是考查幂函数的解析式的相关知识 ,在处理此类问题时 ,可将幂函数的解析式设为a y x = ,通过题中条件的转化 ,借助指数运算求出a 的值 ,最||后利用幂函数的解析式求解出相应的问题. 【答案】12例2幂函数()f x x α=的图像过点(4,2) ,假设()3f m = ,那么实数m 的值为 ( )A 3B .3±C .9±D .9分析:此题首||先利用点(4,2)求得函数的解析式 ,3m = ,可求得m 的值.【答案】D【解析】由函数()f x x α=过点(4,2)可得2422αα== ,所以12α= ,所以12()f x x x ==,故()39f m m m ==⇒= ,选答案D.【练一练趁热打铁】1.【假设(2m +1)21>(m 2+m -1) 21 ,那么实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎥⎤-∞ -5-12 B.⎣⎢⎢⎡⎭⎪⎪⎫5-12 +∞ C .(-1,2) D.⎣⎢⎢⎡⎭⎪⎪⎫5-12 2 【答案】D2. 当(0,)x ∈+∞时 ,幂函数21(1)m y m m x --=--为减函数 ,那么实数m = ( )A .2m =B .1m =-C .2m =或1m =D .152m +≠【答案】A【解析】幂函数y x α= ,当(0,)x ∈+∞时 ,假设0α> ,为增函数;当0α<时 ,为减函数.由题知211m m --=且10m --< ,解得2m =.函数的零点【背一背根底知识】1.方程的根与函数的零点(1 )函数零点概念:对于函数))((D x x f y ∈= ,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.(2 )函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根 ,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.(3 )函数的零点与方程根的关系函数()()()F x f x g x =-的零点就是方程()()f x g x =的根 ,即函数()y f x =的图象与函数()y g x =的图象交点的横坐标.(4 )三个等价关系(三者相互转化)提醒:函数的零点不是点 ,是方程0)(=x f 的根 ,即当函数的自变量取这个实数时 ,其函数值等于零.函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标.2.二次函数)0(2≠++=a c bx ax y 的零点:1 )△>0 ,方程02=++c bx ax 有两不等实根 ,二次函数的图象与x 轴有两个交点 ,二次函数有两个零点;2 )△=0 ,方程02=++c bx ax 有两相等实根 (二重根 ) ,二次函数的图象与x 轴有一个交点 ,二次函数有一个二重零点或二阶零点;3 )△<0 ,方程02=++c bx ax 无实根 ,二次函数的图象与x 轴无交点 ,二次函数无零点.3.零点存在性定理如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线 ,且有)(a f ·)(b f 0< ,那么 ,函数)(x f y =在区间),(b a 内有零点 ,即存在(,)c a b ∈使得0)(=c f ,这个c 也就是方程0)(=x f 的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时 ,也可能有零点.③由函数)(x f y =在闭区间[],a b 上有零点不一定能推出)(a f ·)(b f 0< ,如下列图.所以)(a f ·)(b f 0<是)(x f y =在闭区间[],a b 上有零点的充分不必要条件.注意:①如果函数()f x 在区间[],a b 上的图象是连续不断的曲线 ,并且函数()f x 在区间[],a b 上是一个单调函数 ,那么当)(a f ·)(b f 0<时 ,函数()f x 在区间),(b a 内有唯一的零点 ,即存在唯一的(,)c a b ∈ ,使0)(=c f .②如果函数()f x 在区间[],a b 上的图象是连续不断的曲线 ,并且有)(a f ·)(b f 0> ,那么 ,函数()f x 在区间),(b a 内不一定没有零点.③如果函数()f x 在区间[],a b 上的图象是连续不断的曲线 ,那么当函数()f x 在区间),(b a 内有零点时不一定有)(a f ·)(b f 0< ,也可能有)(a f ·)(b f 0>.4.二分法二分法及步骤:对于在区间a [ ,]b 上连续不断 ,且满足)(a f ·)(b f 0<的函数)(x f y = ,通过不断地把函数)(x f 的零点所在的区间一分为二 ,使区间的两个端点逐步逼近零点 ,进而得到零点近似值的方法叫做二分法.给定精度ε ,用二分法求函数)(x f 的零点近似值的步骤如下:(1 )确定区间[],a b ,验证)(a f ·)(b f 0< ,给定精度ε;(2 )求区间a ( ,)b 的中点1x ;(3 )计算)(1x f :①假设)(1x f =0 ,那么1x 就是函数的零点;②假设)(a f ·)(1x f <0 ,那么令b =1x (此时零点),(10x a x ∈ );③假设)(1x f ·)(b f <0 ,那么令a =1x (此时零点),(10b x x ∈ );(4 )判断是否到达精度ε;即假设ε<-||b a ,那么得到零点零点值a (或b );否那么重复步骤24.注:函数零点的性质:从 "数〞的角度看:即是使0)(=x f 的实数;从 "形〞的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;假设函数)(x f 的图象在0x x =处与x 轴相切 ,那么零点0x 通常称为不变号零点;假设函数)(x f 的图象在0x x =处与x 轴相交 ,那么零点0x 通常称为变号零点.注:用二分法求函数的变号零点:二分法的条件)(a f ·)(b f 0<说明用二分法求函数的近似零点都是指变号零点.(5 )用二分法求函数零点近似值的步骤须注意的问题:①第|一步中要使:(1)区间长度尽量小;(2) )(a f ,)(b f 的值比较容易计算且)(a f ·)(b f 0<.②根据函数的零点与相应方程根的关系 ,求函数的零点与求相应方程的根是等价的.对于求方程()()f x g x =的根 ,可以构造函数()()()F x f x g x =- ,函数()F x 的零点即为方程 ()()f x g x =的根.③求函数零点近似值的关键是判断区间长度是否小于精确度ε ,当区间长度小于精确度ε时 ,运算即告结束 ,此时区间内的任何一个值均符合要求 ,而我们通常取区间的一个端点值作为近似解.5.二次方程2()0f x ax bx c =++=的实根分布及条件.①方程()0f x =的两根中一根比r 大 ,另一根比r 小⇔()0af r <;②二次方程()0f x =的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a b ac b ③二次方程()0f x =在区间(),p q 内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q a b p ac b ④二次方程()0f x =在区间(),p q 内只有一根⇔()()0f p f q < ,或()0f p = (检验)或()0f q = (检验)检验另一根假设在(),p q 内成立.注意:二次函数零点分布问题 ,即一元二次方程根的分布问题 ,解题的关键是结合图象把根的分布情况转化为不等式组或方程.二次方程根的分布问题 ,通常转化为相应二次函数与x 轴交点的个数问题 ,结合二次函数的图象通过对称轴 ,判别式Δ ,相应区间端点函数值来考虑.6.有关函数零点的重要结论(1)假设连续不断的函数)(x f 是定义域上的单调函数 ,那么)(x f 至||多有一个零点.(2)连续不断的函数相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时 ,函数值符号可能不变.(4)函数11110()n n n n f x a x a x a x a --=++++至||多有n 个零点【讲一讲根本技能】必备技能:1.函数零点的求法:① (代数法 )求方程0)(=x f 的实数根;② (几何法 )对于不能用求根公式的方程 ,可以将它与函数)(x f y =的图象联系起来 ,并利用函数的性质找出零点.2.确定函数)(x f 的零点所在区间的常用方法(1)利用函数零点的存在性定理:首||先看函数)(x f y =在区间[],a b 上的图象是否连续,再看是否有)(a f ·)(b f 0<.假设有,那么函数)(x f y =在区间),(b a 内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.3.确定方程()()f x g x =在区间[],a b 上根的个数的方法(1)解方程法:当对应方程()()f x g x =易解时,可先解方程,看求得的根是否落在区间[],a b 上再判断.(2)数形结合法:通过画函数)(x f y =与()y g x =的图象,观察其在区间[],a b 上交点个数来判断.4.函数零点个数的判断方法(1)直接求零点:令0)(=x f ,如果能求出解 ,那么有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线 ,且)(a f ·)(b f 0< ,还必须结合函数的图像与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图像交点的个数:画出两个函数的图像 ,看其交点的个数 ,其中交点的横坐标有几个不同的值 ,就有几个不同的零点.函数零点个数的判断通常转化为两函数图像交点的个数 ,其步骤是:(1)令0)(=x f ;(2)构造()11y f x = ,()22y f x =;(3)作出12,y y 图像;(4)由图像交点个数得出结论.5.应用函数零点的存在情况求参数的值或取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式 ,再通过解不等式确定参数范围.(2)别离参数法:先将参数别离 ,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形 ,在同一平面直角坐标系中 ,画出函数的图像 ,然后数形结合求解.6.与方程根有关的计算和大小比较问题的解法数形结合法:根据两函数图象的交点的对称性等进行计算与比较大小.7.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时 ,数形结合是根本的解题方法 ,即把方程分拆为一个等式 ,使两端都转化为我们所熟悉的函数的解析式 ,然后构造两个函数()y f x = ,()y g x = ,即把方程写成()()f x g x =的形式 ,这时方程根的个数就是两个函数图象交点的个数 ,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系.典型例题例1以下函数中 ,既是偶函数又存在零点的是 ( )(A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx【答案】D【考点定位】此题主要考查函数的奇偶性和零点的概念.【名师点睛】在判断函数的奇偶性时 ,首||先要判断函数的定义域是否关于原点对称 ,然后再判断)(x f 与)(x f -的关系;在判断函数零点时 ,可分两种情况:①函数图象与x 轴是否有交点;②令0)(=x f 是否有解;此题考查考生的综合分析能力.例2假设函数()|22|x f x b =--有两个零点 ,那么实数b 的取值范围是_____.【答案】02b <<【解析】由函数()|22|x f x b =--有两个零点 ,可得|22|x b -=有两个不等的根 ,从而可得函数|22|x y =-函数y b =的图象有两个交点 ,结合函数的图象可得 ,02b << ,故答案为:02b <<.【考点定位】函数零点【名师点睛】函数有零点(方程有根)求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式 ,再通过解不等式确定参数范围.(2)别离参数法:先将参数别离 ,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形 ,在同一平面直角坐标系中 ,画出函数的图像 ,然后数形结合求解.【练一练趁热打铁】1. 函数()2x f x e x =+- (e 为自然对数的底数 )的零点个数是 ( )A.0B.1C.2D.3【答案】 B 221O x yy=2-x y=e x2. 函数22||,2()(2),2x x f x x x -≤⎧=⎨->⎩,函数()3(2)g x f x ,那么函数y ()()f x g x 的零点的个数为 ( )(A) 2 (B) 3 (C)4 (D)5【答案】A【考点定位】此题主要考查分段函数、函数零点及学生分析问题解决问题的能力.【名师点睛】此题解法采用了直接解方程求零点的方法,这种方法对运算能力要求较高.含有绝||对值的分段函数问题,一直是天津高|考数学试卷中的热点,这类问题大多要用到数形结合思想与分类讨论思想,注意在分类时要做到:互斥、无漏、最||简.(一) 选择题 (12*5 =60分 )1.假设函数()y f x =是函数x y a = (0a >且1a ≠ )的反函数 ,且()21f = ,那么 ()f x = ( )A.2log xB.12xC.12log xD.22x -【答案】A2.函数()()1lg 11f x x x=++-的定义域是 ( ) A.(),1-∞- B.()1,+∞ C.()()1,11,-+∞ D.(),-∞+∞【答案】C【解析】自变量x 满足1010x x -≠⎧⎨+>⎩ ,解得1x >-且1x ≠- ,故函数()()1lg 11f x x x =++-的定义域是 ()()1,11,-+∞ ,应选C.3. 函数f(x) =2x -2,那么函数y =|f(x)|的图象可能是( )【答案】B【解析】|f(x)| =|2x -2| =易知函数y =|f(x)|的图象的分段点是x =1,且过点(1,0),(0,1),又|f(x)|≥0,应选B.4. 设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩ ,假设5(())46f f = ,那么b = ( ) (A )1 (B )78 (C )34 (D)12【答案】D 【解析】由题意 ,555()3,662f b b =⨯-=-由5(())46f f =得 ,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩ ,解得12b = ,应选D . 【考点定位】1.分段函数;2.函数与方程.【名师点睛】此题考查了分段函数及函数方程思想 ,解答此题的关键 ,是理解分段函数的概念 ,明确函数值计算层次 ,准确地加以计算.此题属于小综合题 ,在考查分段函数及函数方程思想的同时 ,较好地考查了考生的运算能力及分类讨论思想.5. 函数()()()4040x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,,,那么函数()f x 的零点个数为 ( ) A.1 B.2 C.3D.4【答案】C6. 函数log ()(,a y x c a c =+为常数 ,其中0,1)a a >≠的图象如右图 ,那么以下结论成立的是 ( )A.1,1a c >>B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<【答案】D【解析】由图可知 , log ()a y x c =+的图象是由log a y x =的图象向左平移c 个单位而得到的 ,其中01c << ,再根据单调性易知01a << ,应选D .7.假设{}210A x x =-< ,{}lg 1B x x =< ,那么A B = ( )A.{}110x x -<<B.{}010x x <<C.{}01x x <<D.{}11x x -<<【答案】C 8.函数()3log ,02,0x x x f x x >⎧=⎨≤⎩ ,那么19f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A.4B.14 C.4- D.14- 【答案】B【解析】()3log ,02,0x x x f x x >⎧=⎨≤⎩ ,23311log log 3299f -⎛⎫∴===- ⎪⎝⎭,因此()2112294f f f -⎡⎤⎛⎫=-== ⎪⎢⎥⎝⎭⎣⎦,应选B. 9. 将函数2()log (2)f x x =的图象向左平移1个单位长度 ,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =-(C )2log (1)1y x =++ (D )2log (1)1y x =-+【答案】C【解析】因为2222()log (2)log 2log 1log f x x x x ==+=+ ,所以将其图象向左平移1个单位长度所得函数解析式为()21log 1y x =++.故C 正确.10. 以下函数为奇函数的是( )A.y =B .x y e =C .cos y x =D .x x y e e -=- 【答案】D【解析】函数y =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数 ,应选D .【考点定位】函数的奇偶性.【名师点睛】此题考查函数的奇偶性 ,除了要掌握奇偶性定义外 ,还要深刻理解其定义域特征即定义域关于原点对称 ,否那么即使满足定义 ,但是不具有奇偶性 ,属于根底题. 11. 函数12log ,0,()2,0,x x x f x x >⎧⎪=⎨⎪≤⎩假设关于x 的方程()f x k =有两个不等的实根 ,那么实数k 的取值范围是 ( )A .(0,)+∞B .(,1)-∞C .(1,)+∞D .(0,1]【解析】在(,0]x ∈-∞时 ,()f x 是增函数 ,值域为(0,1] ,在(0,)x ∈+∞时 ,()f x 是减函数 ,值域是(,)-∞+∞ ,因此方程()f x k =有两个不等实根 ,那么有(0,1]k ∈.12. 如图 ,函数()f x 的图象为折线ACB ,那么不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【考点定位】此题考查作根本函数图象和函数图象变换及利用函数图象解不等式等有关知识 ,表达了数形结合思想.【名师点睛】此题考查作根本函数图象和函数图象变换及利用函数图象解不等式等有关知识 ,此题属于根底题 ,首||先是函数图象平移变换 ,把2log y x =沿x 轴向左平移2个单位 ,得到2log (y x =+2)的图象 ,要求正确画出画出图象 ,利用数形结合写出不等式(二) 填空题 (4*5 =20分 ) 13. =-+-1)21(2lg 225lg . 【答案】 -1【解析】原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+-【考点定位】此题主要考查对数运算公式和指数幂运算公式.【名师点睛】此题主要考查考生的根本运算能力 ,熟练掌握对数运算公式和指数幂运算公式是解决此题的关键.14. 假设4log 3a = ,那么22a a -+= .【答案】334. 【解析】∵3log 4=a ,∴3234=⇒=a a ,∴33431322=+=+-a a . 【考点定位】对数的计算 【名师点睛】此题主要考查对数的计算 ,属于容易题 ,根据条件中的对数式将其等价转化为指数式 ,变形即可求解 ,对数是一个相对抽象的概念 ,在解题时可以转化为相对具体的指数式 ,利用指数的运算性质求解.15. 计算:()()23231log 9log 4125-⎛⎫+⋅= ⎪⎝⎭ .【答案】29.16. 假设函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩ (0a > 且1a ≠ )的值域是[)4,+∞ ,那么实数a 的取值范围是 .【答案】(1,2]【考点定位】分段函数求值域.【名师点睛】此题考查分段函数的值域问题,分段函数是一个函数,其值域是各段函数值取值范围的并集,将分段函数的值域问题转化为集合之间的包含关系,是此题的一个亮点,要注意分类讨论思想的运用,属于中档题.。
高三数学一轮总复习 专题四 指数函数、对数函数、幂函数含解析 试题
专题四、指数函数、对数函数、幂函数抓住4个高考重点重点 1 指数与对数的运算〔1,(0)||,(0)a na aa na a⎧⎪=≥⎧⎨=⎨⎪-<⎩⎩为奇数为偶数〔2〕n a=〔注意a必须使mna=*0,,,1)mna a m n N n-=>∈>3.〔1〕对数的性质:log a Na N=,log Naa N=,logloglogbabNNa=,1loglogabba=,log logmnaanb bm=〔2〕对数的运算法那么:log log loga a aMN M N=+,log log loga a aMM NN=-,log logna aM n M=[高考常考角度]角度1计算121(lg lg25)1004--÷20- .解析:12111(lg lg25)100lg20410010--÷=÷=-角度 2 〔2021〕02xπ<<,化简:)2sin1lg()]4cos(2lg[)2sin21tanlg(cos2xxxxx+--+-+⋅π.解析:原式lg(sin cos )lg(sin cos )lg(1sin 2)x x x x x =+++-+2(sin cos )1sin 22lg(sin cos )lg(1sin 2)lg lg lg101sin 21sin 2x x xx x x x x++=+-+====++重点 2 指数函数的图象与性质 1.指数函数及其性质[高考常考角度]角度1假设点(,9)a 在函数3xy =的图象上,那么tan6a π的值是〔 D 〕 A.0 B.33C. 13解析:2393a==,2a =,tantan 363a ππ== D. 角度2设232555322555a b c ===(),(),(),那么,,a b c 的大小关系是 〔 A 〕A. a c b >>B. a b c >>C. c a b >>D. b c a >>解析:25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。