AES-GCM对增量式密文随机性的改进(IJMSC-V4-N4-3)

合集下载

aes gcm逆向列混淆计算

aes gcm逆向列混淆计算

AES GCM是一种流行的对称加密算法,它综合了加密(AES)和认证(GCM)的功能,提供了高度的安全性和效率。

然而,最近研究人员发现了一种方法可以对AES GCM进行逆向列混淆计算,这可能会对其安全性造成威胁。

本文将对这一问题进行深入分析和讨论。

1. AES GCM的基本原理AES GCM是一种流行的对称加密算法,它使用128位密钥和128位初始向量对数据进行加密和认证。

它的基本原理是使用AES算法对数据进行加密,然后使用GMAC算法对加密后的数据进行认证。

这种综合了加密和认证的方式大大提高了数据的安全性和完整性。

2. 逆向列混淆计算的原理逆向列混淆计算是一种针对AES GCM的新攻击方式,它利用了密钥排列的不规则性,通过对加密后的数据进行逆向计算,从而突破了原本安全性。

研究人员发现,通过对密钥排列的分析,可以推导出加密和认证的过程,从而达到破解的目的。

3. 可能的威胁和影响逆向列混淆计算给AES GCM的安全性带来了潜在的威胁和影响。

一旦攻击者成功实施逆向列混淆计算,就可以窃取加密数据,并进行篡改或伪造。

这对于那些依赖AES GCM进行数据保护的系统和应用来说,可能造成严重的损失和泄露。

4. 针对逆向列混淆计算的防范措施针对逆向列混淆计算的出现,研究人员和安全专家提出了一些防范措施。

可以增加密钥排列的随机性,避免形成可推导的规律。

加强对密钥排列和计算过程的保护,防止攻击者进行逆向分析。

另外,及时更新使用AES GCM的系统和应用,采用更安全的加密算法和认证方式。

5. 结论虽然逆向列混淆计算给AES GCM的安全性带来了一定的威胁,但我们相信通过研究人员和安全专家的努力,可以及时提出有效的防范措施,保护数据的安全和完整性。

开发者和厂商也应该重视这一问题,及时更新和优化加密算法,提高系统和应用的安全性。

只有这样,我们才能更好地应对未来可能的安全挑战。

6. 进一步研究和发展针对逆向列混淆计算的出现,研究人员和安全专家正在积极进行进一步的研究和发展,以提升AES GCM的安全性,并寻找更加高效的防范措施。

加密解密算法的实现及改进

加密解密算法的实现及改进

加密解密算法的实现及改进何茗【摘要】在AES基本算法的加密解密的数据16字节基础上, 实现了基于任意字节流的C++类封装, 以满足实际应用中要加密的信息长度不是分组长度的需求. 给出了加密解密AES算法的程序设计方法和具体实现步骤, 并提供算法中密匙服务模块和加密解密模块C++语言的源程序. 该程序可以对用户需要保护的文档进行加密存储, 在用户需要使用的时候对文档进行解密, 使用完成后又加密存储, 大大增强了电子文档的安全性. 将加密解密功能集成到操作系统的的源管理器中, 用户通过资源管理器的菜单就可以完成加密解密功能, 不需要单独启动加解密程序来实现对文档的保护.【期刊名称】《西南民族大学学报(自然科学版)》【年(卷),期】2010(036)001【总页数】6页(P153-158)【关键词】AES;加密;解密;集成【作者】何茗【作者单位】电子科技大学微电子与固体电子学院,四川成都,610054;成都电子机械高等专科学校电气系,四川成都,610031【正文语种】中文【中图分类】TP309.7随着计算机在办公环境中的广泛应用, 越来越多的数据以电子文档的形式存储于计算机中. 由于电子文档的易于复制性, 特别是Windows系统连接到互联网后, 无数的病毒、木马程序很容易盗取这些电子文档. 因此,保护这些电子文档是相当有必要的. 但保障文档方面所依赖的主要技术, 仍然是数据加密技术. 数据加密的方法很多, 但最基本的加密方法只有两种, 即对称算法和非对称算法[1]. 其中, 对称算法中的AES(Advanced Encryption Standard)是美国新一代的数据加密标准算法, 它被预期能够对政府敏感信息的保护期持续到下个世纪, 并能适用于商业、金融领域. 相比传统的对称式DES(Data Encryption Standard)算法, AES具有更加安全、高效的特点. 目前, 尽管对AES算法原理进行了大量的理论分析[2-4], 但对其应用到电子文档的加密和解密极其系统的实现却很少.AES是基于分组的加解密算法, 即每次要加密/解密的数据块大小必须是16字节, 使用起来颇为不便. 因此,本文在AES基本算法基础上, 对AES算法稍作改进, 使其加解密的数据块可以是任意字节数. 给出了该算法的程序设计的模块划分与具体实现步骤, 提供了一个完整的加密解密的C++源程序. 研究的软件基于Windows操作系统平台[3], 使用Borland C++ Builder[4]作为开发工具, 采用C++语言[5]进行研发设计. 因此, 使用起来十分方便.2.1 AES算法加密原理AES算法是基于128位(16字节)分组的对称加密算法, 密钥长度根据加密强度要求可以选择128、192和256位. 算法预先定义一个替换表(substitute table). 加密前首先把密钥进行扩展成密钥轮, 前面3种密钥长度对应密钥轮数分别为10、12和14. 加密具体步骤为:(1)将输入明文拷贝到4×4字节矩阵State中;(2)用第一轮密钥与State进行异或运算;(3)使用替换表对State进行替换;(4)对State进行行移位操作;(5)对State进行列混合(Mix)操作;(6)用下一轮密钥与State进行异或操作, 重复第3步, 直到使用完所以密钥轮;(7)将State拷贝到输出.解密是加密的逆向操作, 这里不再赘述.2.2 问题分析对于任意字节的数据加密, 加密函数encrypt根据输入数据长度in_len对输入信息in按16字节(128位)进行分组填充处理, 存在两种情况:(1)in_len不是16的整数倍. 即分组后还剩n字节, 需要在其后面添加16-n字节, 这些添加字节内容填写为16-n;(2)in_len正好是16的整数倍. 需要增加一个16字节分组, 其内容填写16.经过分组填充处理后, 要加密的数据已经是16的整数倍了, 分别对每个分组进行加密处理并将结果保存到out中, out-len保存加密后数据的长度, 即in_len加上填充长度.解密函数decrypt输入in是已加密数据, 其长度是16的整数倍, 直接对前面每个分组进行解密并分别保存到out中, 对于最后一个分组, 解密后查看最后一个字节的值m, 也分两种情况进行处理:(1)m小于16, 属于第一种填充情况, 即最后m个字节是填充, 只需将前面的16-m 个字节保存到out, out_len保存解密后数据长度, 即in_len减去m;(2)m等于16, 属于第二种填充情况, 即最后16个字节都是填充, 直接丢弃,out_len=in_len-16.基于面向对象的设计思想, 将上述的 AES算法实现为C++类. 这样, 对外提供的加密和解密函数就可以对任意长度的数据进行操作, 更便于应用程序使用:class AES_cipher{private:unsigned int rd_key[4 *(14 + 1)];int rounds;public:void set_key(unsigned char *key, int key_len); /*设置密钥*/void encrypt(unsigned char *in, int in_len, unsigned char *out, int*out_len);/*加密*/void decrypt(unsigned char *in, int in_len, unsigned char *out, int*out_len);/*解密*/}应用程序要加解密数据, 首先要调用 set_key函数, 根据密钥长度参数 key_len将密钥 key扩展并保存到rd_key中待用.该算法实现的程序需要对用户需要保护的文档进行加密存储, 在用户需要使用的时候对文档进行解密, 使用完成后又加密存储. 同时, 加/解密功能需集成到操作系统的的源管理器中, 用户通过资源管理器的菜单就可以完成加/解密功能, 不需要单独启动加解密程序来实现对文档的保护. 因此, 算法划分为密钥服务模块,加密模块和解密模块, 集成到操作系统模块这四大程序模块来实现.3.1 密钥服务模块实现步骤加密解密程序和密钥服务程序之间的通讯采用命名管道(PIPE)进行. 为增强密钥的安全性, 密钥服务程序需对加密解密程序进行认证, 只有认证通过, 才会响应加密解密程序的密钥请求. 认证过程采用挑战/应答的方式进行, 即服务程序收到密钥请求后, 先发送一个随机数N给请求程序, 请求程序收到随机数后, 用程序内预置的密钥对随机数进行加密, 然后将密文发送给服务程序;服务程序收到密文后, 用程序内预置的密钥对密文进行解密, 然后将解密得到的数据与随机数N进行比较, 如果相同, 表示认证通过, 将密钥发送给请求程序, 否则拒绝发送密钥.启动文件加密解密程序时, 该程序会首先向密钥服务程序发送一个密钥请求, 密钥服务程序收到请求后,将密钥发送给文件加密解密程序, 然后加密解密程序会使用收到的密钥对文件进行加密或解密操作. 具体实现步骤:(1)启动密钥服务程序;(2)用户输入密钥保护口令;(3)验证口令;口令正确后, 用口令对密钥进行解密, 解密后的密钥保存在内存中供文件加密解密程序使用.3.2 加密解密模块的实现步骤用户要对文件加密, 首先在“资源管理器”中选中文件, 点击鼠标右键, 在弹出菜单中选择“加密文件”来启动文件加密程序. 进入加密程序后, 完成对文件的加密主要步骤有:(1)分析参数, 检查文件名参数的有效性;(2)打开命令管道(PIPE), 向密钥服务程序发送密钥请求;(3)从管道读取密钥服务程序发送过来的随机数, 用预置的密钥对随机数进行加密, 然后将密文发送给密钥服务程序;(4)从管道读取密钥服务程序发送过来的工作密钥;(5)用工作密钥对文件进行加密, 其过程为:void EncrypeFile(char *filename,char *key){AES_cipher AES;AES.set_key(key);打开明文文件;创建加密文件;while(读取明文文件){AES.encrypt();将加密数据写入文件;}删除明文文件;关闭加密文件;}文件解密可以看作是文件加密的反向操作, 其实现步骤和加密基本相同, 因此本文将加密和解密用同一个程序实现, 利用参数区分具体操作. 文件解密前面的步骤和加密相同, 只有第5步略有差异, 不再赘述.3.3 集成到操作系统的实现步骤将密钥服务模块, 加密解密模块集成到操作系统的“资源管理器”里, 用户在“资源管理器”里选中要操作的文件, 再通过右键菜单就可以对文件进行加解密, 使用起来十分方便. 即通过修改操作系统的注册表, 将加密文件注册为用程序进行操作. 当然, 用户也可以单独运行文件加解密程序, 根据程序的提示选择要操作的文件完成该功能.集成到操作系统的主要步骤为:(1)打开注册表;(2)添加加密文件类型;(3)关联加密文件类型用加密程序打开;(4)关闭注册表.4.1 密钥服务程序的实现密钥服务程序主要实现代码:mian(){bool CheckPasswrod=false;int request, challenge, temp;lenchar key[128];char msg[128];AES_cipher pre_AES;for(i=0; i<3; i++){用户输入口令;if(口令正确){CheckPasswrod=true;break;}}if(CheckPasswrod==false){/*验证用户口令失败3次, 服务程序退出*/return -1;}使用用户口令解密密钥文件, 并将密钥保存到key内存;CreatePipe();/*创建与加解密程序通讯管道*/while(true){ReadPipe(&request, 4);switch(request){case 1/*收到密钥请求, 生成随机数并加密发送给请求者*/challenge = rand();WritePipe(&challenge, 4);break;case 2:/*收到认证应答, 读取加密随机数密文*/ReadPipe(msg,128);pre_AES.decrypt(msg, 128, (char*)&temp,&len);/*解密随机数*/ if(temp==challenge){/*认证成功, 发送密钥*/WritePipe(key,128);}break;default:break;}}}4.2 文件加密解密程序的实现main(int argc, char*argv[]){bool is_encrypt;int request, len;int challenge;AES_cipher pre_AES;char msg[128];char key[128];if(argc!=3)return -1if(strcmp(argv[1], “encrypt”)==0)/*判断是加密还是解密操作*/is_encrypt=true;elseis_encrypt=false;if(FileExist(argv[2])!=true) /*检查文件是否存在*/return -1;OpenPipe();/*打开命令管道*/request=1;PipeWrite(&request,4); /*发送密钥请求*/PipeRead(&challenge,4); /*读取随机数*/pre_AES.encrypt(&challenge, 4, msg, &len); /*用预置密钥加密随机数*/ request=2;PipeWrite(&request,4); /*发送认证应答*/PipeWrite(msg,128); /*发送随机数加密密文*/PipeRead(key,128); /*读取工作密钥*/if(is_encrypt){EncrypeFile(argv[2], key); /*用工作密钥加密文件*/}else{DecryptFile(argv[2], key); /*用工作密钥解密文件*/}return 0;}本文在AES基本算法的基础上实现了基于字节流的C++类封装, 以满足实际应用中要加密的信息长度不是分组长度的需求, 保证了任意字节的数据的加密解密. 给出了算法中密匙服务模块和加密解密模块C++语言的具体实现, 探讨了电子文档的加密解密问题.【相关文献】[1] WADE TRAPPE, LAWRENCE C WASHINGTON. 密码学概论[M]. 北京:人民邮电出版社, 2004.[2] 卜晓燕, 张根耀, 郭协潮. 基于AES算法实现对数据的加密[J]. 电子设计工程, 2009,3: 86-87.[3] 何明星, 范平志. 新一代私钥加密标准AES进展与评述计算机应用研究[J]. 计算机应用研究, 2001, 18(10): 4-6.[4] 汪小龙. visual c++与windows编程学习参考[M]. 南京: 南京大学出版社, 2003.[5] 余明兴. Borland C++ Builder 6程式设计经典[M]. 北京: 科学出版社, 2004.[6] 贾振华. C++程序设计[M]. 北京: 清华大学出版社, 2005.。

基于随机法一种改进希尔加密(IJCNIS-V4-N5-7)

基于随机法一种改进希尔加密(IJCNIS-V4-N5-7)
n*n
. Hill Cipher is no longer used due to
the vulnerability against known-plaintext attack. It still serves an important pedagogical role in cryptology and
vulnerability of original Hill cipher. [7] proposed a modification to [13] that works similar to Hill cipher permutation method, but it does not transfer permutation vector, instead both sides use a pseudorandom permutation generator, and only the number of the necessary permutation is transferred to the receiver. The number of dynamic keys is the same as [13]. Ismail [6] tried to improve the security of Hill cipher by introduction of an initial vector that multiplies each row of the current key matrix to produce the corresponding key of each block but it has several inherent security problems. Lin Ch [10] claimed that taking random numbers and using one-way hash function thwarts the known-plaintext attack to the Hill cipher but their scheme is vulnerable to choosen-ciphertext attack. Mohsen Toorani [11,12] proposed a symmetric cryptosystem based on affine transformation. It uses one random number and generates other random numbers recursively using HMAC in chain. Ahmed Y Mahmoud [15] proposed a modification to Hill cipher based on Eigen values HCM-EE. The HCM-EE

AES加密算法的改进与实现

AES加密算法的改进与实现

AES加密算法的改进与实现AES加密算法是一种对称密钥加密算法,在保证高安全性的同时,具有良好的性能和效率。

然而,随着计算机技术的不断发展和密码分析方法的不断改进,AES算法也需要不断改进和加强。

在本文中,将介绍AES加密算法的改进方法和实现。

首先,AES加密算法的改进可以从以下几个方面进行考虑。

首先是密钥长度的增加。

原始的AES算法密钥长度为128位,可以使用128、192和256位密钥进行加密。

但是随着计算机计算能力的提高,128位密钥的安全性可能已经不足以抵御攻击。

因此,可以考虑增加密钥长度至256位,以提高加密算法的安全性。

其次是轮数的增加。

原始的AES算法中,加密和解密过程都是由10轮迭代完成的。

但是近年来的研究表明,在一些情况下,10轮的迭代可能不足以提供足够的安全性。

因此,可以考虑增加AES算法的轮数,以提高加密算法的安全性。

增加轮数可以增加攻击者破解密文的难度,从而提高AES算法的安全性。

另外,可以考虑引入其他的算法或协议来增强AES算法的安全性。

例如,可以结合使用AES算法和RSA加密算法,实现混合加密。

RSA算法可以用于生成和分发AES算法的密钥,同时可以使用AES算法来加密实际的数据。

这种混合加密方法可以结合RSA算法的优点和AES算法的优点,提高整个加密系统的安全性。

此外,还可以使用更加复杂和高级的加密算法来替代AES算法,以提供更高的安全性。

例如,可以考虑使用基于椭圆曲线的密码算法,例如ECIES(基于椭圆曲线的加密方案)算法。

这种算法利用椭圆曲线的数学性质,提供了更高的安全性和更好的性能。

在实现AES加密算法的改进时,需要使用合适的编程语言和工具进行开发。

目前,有许多编程语言和开发工具可以用于AES算法的实现,例如C、Java、Python等。

可以根据实际需求和开发环境选择合适的工具。

同时,还需要使用适当的加密库或算法实现库来提供AES算法的核心功能。

例如,可以使用OpenSSL、Bouncy Castle等加密库来实现AES算法。

aes的iv参数

aes的iv参数

aes的iv参数AES的IV参数在加密中起着重要的作用。

IV(Initialization Vector)是一种随机数,用于在加密过程中对明文进行初始处理,增加密码的安全性。

本文将从IV参数的定义、作用、生成方法以及使用注意事项等方面进行探讨。

一、IV参数的定义和作用IV参数是对称加密算法中的一项重要参数,它与密钥一起参与加密运算,用于增加密码的安全性。

IV参数是一个固定长度的随机数,通常与密钥一起作为输入,用于初始化加密算法的状态。

在每次加密操作中,都需要使用一个唯一的IV参数。

IV参数的作用主要有两个方面:1. 防止明文重复加密后的密文重复出现。

如果使用相同的IV参数对相同的明文进行多次加密,由于密钥相同,密文也会相同。

这样一来,攻击者可以根据密文的重复性进行破解。

2. 增加密码的安全性。

IV参数的引入可以使得每次加密的结果都不一样,即使明文相同。

这样可以有效防止一些已知明文攻击和选择明文攻击。

二、IV参数的生成方法生成随机且唯一的IV参数对于保证密码的安全性至关重要。

常用的IV参数生成方法有以下几种:1. 伪随机数生成器(PRNG):使用伪随机数生成算法生成一个固定长度的随机数作为IV参数。

常见的伪随机数生成算法有线性反馈移位寄存器(LFSR)和梅森旋转算法(Mersenne Twister)等。

2. 时间戳:使用当前的时间戳作为IV参数。

由于时间戳每次都不同,可以保证IV参数的唯一性。

3. 随机数发生器(RNG):使用硬件设备或操作系统提供的随机数发生器生成一个随机数作为IV参数。

硬件随机数生成器通常基于物理噪声源,如热噪声、放射性衰变等。

三、IV参数的使用注意事项使用IV参数时需要注意以下几点:1. IV参数的长度应与加密算法的要求一致。

一般而言,IV参数的长度为128位或256位。

2. 每次加密操作都需要使用一个唯一的IV参数。

可以通过随机生成,或者使用计数器等方式保证IV参数的唯一性。

AES_GCM加密算法

AES_GCM加密算法

AES_GCM加密算法
AES算法是一种对称加密算法,它由美国国家标准与技术研究院(NIST)选择作为高级加密标准,并被广泛应用于各种安全应用中。

AES 算法使用128位、192位或256位密钥来加密和解密数据。

AES_GCM算法则通过结合Galois/Counter Mode(GCM)实现了加密、解密和完整性校验,并提供了更高的性能和安全性。

1.安全性:AES_GCM使用AES算法进行加密,并通过GCM模式提供完整性校验,可以保护数据的保密性和完整性。

2.高效性:AES_GCM操作可以在硬件和软件实现中进行加速,以提供更高的性能。

3.并行性:由于AES_GCM是基于流密码而不是块密码,它可以提供并行加密和解密操作,从而加快处理速度。

4.简单性:AES_GCM是一种相对简单的加密算法,易于实现和部署。

然而,AES_GCM也存在一些注意事项:
1.密钥管理:正确管理加密密钥至关重要,过期或弱密钥可能会导致数据泄漏。

2.随机性:为了获得更高的安全性,AES_GCM需要随机的初始化向量(IV),重复使用相同的IV可能会暴露加密数据。

总之,AES_GCM是一种安全可靠、高效快速的加密算法,适用于许多应用场景。

在实际使用中,需要注意密钥管理和随机性,以确保加密数据的安全性和完整性。

rfc5288.AES Galois Counter Mode (GCM) Cipher Suites for TLS

rfc5288.AES Galois Counter Mode (GCM) Cipher Suites for TLS

Network Working Group J. Salowey Request for Comments: 5288 A. Choudhury Category: Standards Track D. McGrew Cisco Systems, Inc. August 2008 AES Galois Counter Mode (GCM) Cipher Suites for TLSStatus of This MemoThis document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions forimprovements. Please refer to the current edition of the "InternetOfficial Protocol Standards" (STD 1) for the standardization stateand status of this protocol. Distribution of this memo is unlimited.AbstractThis memo describes the use of the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) as a Transport Layer Security (TLS)authenticated encryption operation. GCM provides bothconfidentiality and data origin authentication, can be efficientlyimplemented in hardware for speeds of 10 gigabits per second andabove, and is also well-suited to software implementations. Thismemo defines TLS cipher suites that use AES-GCM with RSA, DSA, andDiffie-Hellman-based key exchange mechanisms.Table of Contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 22. Conventions Used in This Document . . . . . . . . . . . . . . . 23. AES-GCM Cipher Suites . . . . . . . . . . . . . . . . . . . . . 24. TLS Versions . . . . . . . . . . . . . . . . . . . . . . . . . 35. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 46. Security Considerations . . . . . . . . . . . . . . . . . . . . 4 6.1. Counter Reuse . . . . . . . . . . . . . . . . . . . . . . . 46.2. Recommendations for Multiple Encryption Processors . . . . 47. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 58. References . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8.1. Normative References . . . . . . . . . . . . . . . . . . . 6 8.2. Informative References . . . . . . . . . . . . . . . . . . 6 Salowey, et al. Standards Track [Page 1]1. IntroductionThis document describes the use of AES [AES] in Galois Counter Mode(GCM) [GCM] (AES-GCM) with various key exchange mechanisms as acipher suite for TLS. AES-GCM is an authenticated encryption withassociated data (AEAD) cipher (as defined in TLS 1.2 [RFC5246])providing both confidentiality and data origin authentication. Thefollowing sections define cipher suites based on RSA, DSA, andDiffie-Hellman key exchanges; ECC-based (Elliptic Curve Cryptography) cipher suites are defined in a separate document [RFC5289].AES-GCM is not only efficient and secure, but hardwareimplementations can achieve high speeds with low cost and lowlatency, because the mode can be pipelined. Applications thatrequire high data throughput can benefit from these high-speedimplementations. AES-GCM has been specified as a mode that can beused with IPsec ESP [RFC4106] and 802.1AE Media Access Control (MAC) Security [IEEE8021AE].2. Conventions Used in This DocumentThe key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].3. AES-GCM Cipher SuitesThe following cipher suites use the new authenticated encryptionmodes defined in TLS 1.2 with AES in Galois Counter Mode (GCM) [GCM]: CipherSuite TLS_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9C}CipherSuite TLS_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9D}CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E}CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F}CipherSuite TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0xA0}CipherSuite TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0xA1}CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2}CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3}CipherSuite TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA4}CipherSuite TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA5}CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6}CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7}These cipher suites use the AES-GCM authenticated encryption withassociated data (AEAD) algorithms AEAD_AES_128_GCM andAEAD_AES_256_GCM described in [RFC5116]. Note that each of theseAEAD algorithms uses a 128-bit authentication tag with GCM (inparticular, as described in Section 3.5 of [RFC4366], theSalowey, et al. Standards Track [Page 2]"truncated_hmac" extension does not have an effect on cipher suitesthat do not use HMAC). The "nonce" SHALL be 12 bytes long consisting of two parts as follows: (this is an example of a "partiallyexplicit" nonce; see Section 3.2.1 in [RFC5116]).struct {opaque salt[4];opaque nonce_explicit[8];} GCMNonce;The salt is the "implicit" part of the nonce and is not sent in thepacket. Instead, the salt is generated as part of the handshakeprocess: it is either the client_write_IV (when the client issending) or the server_write_IV (when the server is sending). Thesalt length (SecurityParameters.fixed_iv_length) is 4 octets.The nonce_explicit is the "explicit" part of the nonce. It is chosen by the sender and is carried in each TLS record in theGenericAEADCipher.nonce_explicit field. The nonce_explicit length(SecurityParameters.record_iv_length) is 8 octets.Each value of the nonce_explicit MUST be distinct for each distinctinvocation of the GCM encrypt function for any fixed key. Failure to meet this uniqueness requirement can significantly degrade security. The nonce_explicit MAY be the 64-bit sequence number.The RSA, DHE_RSA, DH_RSA, DHE_DSS, DH_DSS, and DH_anon key exchanges are performed as defined in [RFC5246].The Pseudo Random Function (PRF) algorithms SHALL be as follows:For cipher suites ending with _SHA256, the PRF is the TLS PRF[RFC5246] with SHA-256 as the hash function.For cipher suites ending with _SHA384, the PRF is the TLS PRF[RFC5246] with SHA-384 as the hash function.Implementations MUST send TLS Alert bad_record_mac for all types offailures encountered in processing the AES-GCM algorithm.4. TLS VersionsThese cipher suites make use of the authenticated encryption withadditional data defined in TLS 1.2 [RFC5246]. They MUST NOT benegotiated in older versions of TLS. Clients MUST NOT offer thesecipher suites if they do not offer TLS 1.2 or later. Servers thatselect an earlier version of TLS MUST NOT select one of these cipher suites. Because TLS has no way for the client to indicate that it Salowey, et al. Standards Track [Page 3]supports TLS 1.2 but not earlier, a non-compliant server mightpotentially negotiate TLS 1.1 or earlier and select one of the cipher suites in this document. Clients MUST check the TLS version andgenerate a fatal "illegal_parameter" alert if they detect anincorrect version.5. IANA ConsiderationsIANA has assigned the following values for the cipher suites defined in this document:CipherSuite TLS_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9C}CipherSuite TLS_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9D}CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E}CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F}CipherSuite TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0xA0}CipherSuite TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0xA1}CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2}CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3}CipherSuite TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA4}CipherSuite TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA5}CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6}CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7}6. Security ConsiderationsThe security considerations in [RFC5246] apply to this document aswell. The remainder of this section describes securityconsiderations specific to the cipher suites described in thisdocument.6.1. Counter ReuseAES-GCM security requires that the counter is never reused. The IVconstruction in Section 3 is designed to prevent counter reuse.Implementers should also understand the practical considerations ofIV handling outlined in Section 9 of [GCM].6.2. Recommendations for Multiple Encryption ProcessorsIf multiple cryptographic processors are in use by the sender, thenthe sender MUST ensure that, for a particular key, each value of the nonce_explicit used with that key is distinct. In this case, eachencryption processor SHOULD include, in the nonce_explicit, a fixedvalue that is distinct for each processor. The recommended format is nonce_explicit = FixedDistinct || VariableSalowey, et al. Standards Track [Page 4]where the FixedDistinct field is distinct for each encryptionprocessor, but is fixed for a given processor, and the Variable field is distinct for each distinct nonce used by a particular encryptionprocessor. When this method is used, the FixedDistinct fields usedby the different processors MUST have the same length.In the terms of Figure 2 in [RFC5116], the Salt is the Fixed-Commonpart of the nonce (it is fixed, and it is common across allencryption processors), the FixedDistinct field exactly correspondsto the Fixed-Distinct field, the Variable field corresponds to theCounter field, and the explicit part exactly corresponds to thenonce_explicit.For clarity, we provide an example for TLS in which there are twodistinct encryption processors, each of which uses a one-byteFixedDistinct field:Salt = eedc68dcFixedDistinct = 01 (for the first encryption processor) FixedDistinct = 02 (for the second encryption processor)The GCMnonces generated by the first encryption processor, and their corresponding nonce_explicit, are:GCMNonce nonce_explicit------------------------ ----------------------------eedc68dc0100000000000000 0100000000000000eedc68dc0100000000000001 0100000000000001eedc68dc0100000000000002 0100000000000002...The GCMnonces generated by the second encryption processor, and their corresponding nonce_explicit, areGCMNonce nonce_explicit------------------------ ----------------------------eedc68dc0200000000000000 0200000000000000eedc68dc0200000000000001 0200000000000001eedc68dc0200000000000002 0200000000000002...7. AcknowledgementsThis document borrows heavily from [RFC5289]. The authors would like to thank Alex Lam, Simon Josefsson, and Pasi Eronen for providinguseful comments during the review of this document.Salowey, et al. Standards Track [Page 5]8. References8.1. Normative References[AES] National Institute of Standards and Technology,"Advanced Encryption Standard (AES)", FIPS 197,November 2001.[GCM] Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC",National Institute of Standards and Technology SP 800- 38D, November 2007.[RFC2119] Bradner, S., "Key words for use in RFCs to IndicateRequirement Levels", BCP 14, RFC 2119, March 1997.[RFC5116] McGrew, D., "An Interface and Algorithms forAuthenticated Encryption", RFC 5116, January 2008.[RFC5246] Dierks, T. and E. Rescorla, "The Transport LayerSecurity (TLS) Protocol Version 1.2", RFC 5246,August 2008.8.2. Informative References[IEEE8021AE] Institute of Electrical and Electronics Engineers,"Media Access Control Security", IEEE Standard 802.1AE, August 2006.[RFC4106] Viega, J. and D. McGrew, "The Use of Galois/CounterMode (GCM) in IPsec Encapsulating Security Payload(ESP)", RFC 4106, June 2005.[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, "Transport Layer Security (TLS)Extensions", RFC 4366, April 2006.[RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites withSHA-256/384 and AES Galois Counter Mode", RFC 5289,August 2008.Salowey, et al. Standards Track [Page 6]Authors’ AddressesJoseph SaloweyCisco Systems, Inc.2901 3rd. AveSeattle, WA 98121USAEMail: jsalowey@Abhijit ChoudhuryCisco Systems, Inc.3625 Cisco WaySan Jose, CA 95134USAEMail: abhijitc@David McGrewCisco Systems, Inc.170 W Tasman DriveSan Jose, CA 95134USAEMail: mcgrew@Salowey, et al. Standards Track [Page 7]Full Copyright StatementCopyright (C) The IETF Trust (2008).This document is subject to the rights, licenses and restrictionscontained in BCP 78, and except as set forth therein, the authorsretain all their rights.This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIEDWARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual PropertyThe IETF takes no position regarding the validity or scope of anyIntellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described inthis document or the extent to which any license under such rightsmight or might not be available; nor does it represent that it hasmade any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can befound in BCP 78 and BCP 79.Copies of IPR disclosures made to the IETF Secretariat and anyassurances of licenses to be made available, or the result of anattempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of thisspecification can be obtained from the IETF on-line IPR repository at /ipr.The IETF invites any interested party to bring to its attention anycopyrights, patents or patent applications, or other proprietaryrights that may cover technology that may be required to implementthis standard. Please address the information to the IETF atietf-ipr@.Salowey, et al. Standards Track [Page 8]。

简述aes基本原理

简述aes基本原理

AES基本原理简介AES(Advanced Encryption Standard,高级加密标准)是一种对称加密算法,也是目前使用最广泛的加密算法之一。

AES算法的基本原理是通过将明文分块进行多轮的替换和置换操作,从而得到密文。

AES算法具有高度的安全性和效率,适用于各种应用场景,如数据加密、网络传输、身份验证等。

基本原理AES算法的基本原理可以分为四个主要步骤:字节替换、行移位、列混淆和轮密钥加。

1. 字节替换(SubBytes)字节替换是AES算法的第一步,它通过一个固定的S盒(Substitution Box)将明文分块中的每个字节替换为另一个字节。

S盒是一个16x16的字节矩阵,其中每个字节都有一个预定义的替换值。

字节替换的目的是增加密文的随机性,使攻击者难以破解密文。

字节替换的过程可以用以下公式表示:C[i,j] = S[M[i,j]]其中,C[i,j]是替换后的字节,M[i,j]是明文分块中的字节,S是S盒。

2. 行移位(ShiftRows)行移位是AES算法的第二步,它将明文分块中的每一行进行循环左移操作。

行移位的目的是增加密文的复杂性,使攻击者难以找到明文和密文之间的关联性。

行移位的过程可以用以下公式表示:C[i,j] = M[i,(j+i) mod N]其中,C[i,j]是移位后的字节,M[i,j]是明文分块中的字节,N是明文分块的列数。

3. 列混淆(MixColumns)列混淆是AES算法的第三步,它通过一系列的矩阵运算对明文分块中的每一列进行混淆。

列混淆的目的是增加密文的扩散性,使攻击者难以通过分析密文来还原明文。

列混淆的过程可以用以下公式表示:C[i,j] = (02 * M[i,j]) ⊕ (03 * M[i+1,j]) ⊕ M[i+2,j] ⊕ M[i+3,j]其中,C[i,j]是混淆后的字节,M[i,j]是明文分块中的字节,⊕表示异或操作。

4. 轮密钥加(AddRoundKey)轮密钥加是AES算法的最后一步,它将一个与当前轮数相关的轮密钥与明文分块进行异或操作。

java aes gcm加密模式原理

java aes gcm加密模式原理

Java AES GCM加密模式原理一、引言在数字信息安全领域,加密技术是一项非常重要的技术,它能够保护数据的隐私性和完整性。

而在加密技术中,AES(Advanced Encryption Standard)是一种广泛使用的对称加密算法,它使用相同的密钥进行加密和解密,保证了数据的保密性。

而GCM(Galois/Counter Mode)是一种在AES加密算法基础上增加消息完整性校验的加密模式,它提供了加密和认证功能,同时保护数据不被篡改。

本文将介绍Java语言中AES GCM加密模式的原理及实现方式。

二、AES加密算法简介1. AES算法概述AES是一种对称加密算法,它使用相同的密钥进行加密和解密。

AES算法支持128位、192位和256位的密钥长度,分别对应AES-128、AES-192和AES-256。

在加密过程中,明文通过密钥和AES算法产生密文,而在解密过程中,密文通过密钥和AES算法产生明文。

2. AES加密算法流程(1)密钥扩展:AES算法会将输入的密钥扩展成多个轮密钥,以便对每一轮进行子密钥的应用。

(2)初始轮密钥加:将初始轮密钥与明文进行异或运算。

(3)多轮次的轮函数应用:将初始轮密钥与明文进行多轮次的轮函数应用,每次应用都包括字节替换、行移位、列混淆和轮密钥加。

(4)最终轮函数应用:在最后一轮进行轮函数应用,但不包括列混淆。

(5)密文输出:得到加密后的密文。

三、GCM加密模式简介1. GCM加密模式概述GCM是一种在AES加密算法基础上增加消息完整性校验的加密模式,它提供了加密和认证功能,同时保护数据不被篡改。

GCM加密模式使用一个128位的初始化向量(IV)和一个128位的认证密钥,其中IV 用于加密过程,认证密钥用于认证标签(Tag)的生成。

GCM加密模式不需要进行填充操作,因此更适合对块大小固定的数据进行加密。

2. GCM加密模式流程(1)初始处理:GCM加密模式将IV、认证密钥和明文块作为输入,并进行初始处理,得到初始计数器值。

AESGCM加密模式

AESGCM加密模式

AESGCM加密模式AESGCM是一种常用的加密模式,它结合了高级加密标准(AES)和流密码的强大特性。

AESGCM在许多领域中得到广泛应用,如网络通信、数据存储和安全协议等。

本文将详细介绍AESGCM加密模式的原理、特点以及在实际应用中的优势。

一、AESGCM加密模式的原理AESGCM加密模式是一种对称加密模式,使用相同的密钥进行加密和解密。

它采用AES算法作为加密算法,并结合了加密认证机制(GCM)来提供数据完整性验证和认证。

在AESGCM中,消息被分为两个部分:明文和附加数据(AAD)。

明文是待加密的数据,而附加数据则是一些额外的信息,比如认证标签或一些必要的上下文信息。

通过将明文和附加数据一起进行加密,可以保证数据的完整性和可验证性。

加密过程中,AESGCM使用一个初始化向量(IV)来增加加密的随机性。

IV应该是唯一且不可预测的,以确保加密过程的安全性。

同时,AESGCM使用一个加密密钥来进行数据加密,该密钥也需要保密。

二、AESGCM加密模式的特点1. 安全性:由于AESGCM使用了AES算法和GCM认证机制,它提供了高度的安全性。

AES算法是一种广泛被认可的块密码算法,而GCM认证机制则提供了强大的数据完整性验证和认证功能。

2. 效率:相比于其他加密模式,AESGCM的加密速度较快,且具有较低的系统资源占用。

这使得AESGCM在实际应用中广泛受到欢迎,尤其是在网络通信和大规模数据存储领域。

3. 灵活性:AESGCM支持不同的密钥长度和块大小,使得它适用于各种不同的应用场景。

同时,AESGCM还提供了灵活的附加数据功能,可以满足不同的安全需求。

4. 并行性:由于AESGCM是基于流密码的加密模式,它具有良好的并行性能。

这意味着可以同时加密多个数据块,从而提高加密的效率。

三、AESGCM加密模式的优势1. 完整性验证:AESGCM提供了强大的数据完整性验证机制,可以检测到任何未经授权的篡改或修改。

一种基于AES-GCM的数据完整性校验方法

一种基于AES-GCM的数据完整性校验方法

总第325期2016年第11期计算机与数字工程Computer &•Digital EngineeringVol. 44 No. 112229一种基于A E S-G C M的数据完整性校验方法|雷志群(武汉数字工程研究所武汉430205)摘要随着嵌人式系统的广泛应用,嵌人式系统的安全问题逐渐引起人们的重视。

其中,片外存储器的安全问题是 整个嵌人式系统安全问题中不可忽视的一部分。

目前已经存在很多关于片外存储安全方面的研究,这些研究一般是片上微 处理器和片外的存储器之间增加安全防御模块(硬件)。

但是,在嵌人式系统中增加存储器安全防御模块(硬件)无疑会对整 个系统的性能、存储器开销、SOC面积开销等造成一定的负面影响。

因此,现在很多方法都是在安全性,性能开销、存储器 开销、SOC面积开销等因素之间寻找一个折中的最优方案。

论文充分考虑这些因素的影响,提出了一种基于AES-GCM的数据完整性校验方法。

该方法对片外存储器同时提供数据机密性和完整性保护,可以防御一系列典型的恶意攻击,如欺骗 攻击、重放攻击等。

关键词数据完整性;数据机密性;硬件架构;AES-GCM中图分类号TM76 DOI:10. 3969/j. issa 1672-9722. 2016. 11. 027A Data Integrity Verification Method Based on AES-GCMLEI Zhiqun(Wuhan Digital Engineering Institute, Wuhan 430205)Abstract With the extensive application of embedded systems? security issues of embedded systems gradually attract people’s attention In particular, security issues of off-chip memory are one of the most important security issues in embed­ded system and cannot be ignored. There are many existing related findings about off-chip memory security. A classical way to address the off-chip memory security issues is to add a security protection module between the microprocessor and the ex­ternal memory. However, adding the extra security hardware brings overheads in system performance, memory cost and the SOC area. As a result, many methods are now in safety, performance cost, storage cost, SOC area overhead factors such as to find a compromise between the optimal solution In this article, a novel architecture for off-chip memory encryption and in­tegrity protection is proposed based on Advanced Encryption Standard - Galois/Counter Mode (AES-GCM). Our approach provides data confidentiality and integrity authentication at the same time and can safeguard against a series of well-known at­tacks ?including replay attacks, spoofing attacks.Key Words data integrity, data confidentiality, hardware architecture, AES-GCMClass Number TM76i引言近年来,随着电子信息技术的迅猛发展和进 步,嵌入式系统在我们的生活中随处可见,比如手 机、平板电脑、A T M机(自动取款机)以及车载 G P S等。

AES型密钥编排方案扩散不完全性的

AES型密钥编排方案扩散不完全性的

AES型密钥编排方案扩散不完全性日期:汇报人:CATALOGUE目录•引言•AES型密钥编排方案概述•扩散不完全性的概念和度量•AES型密钥编排方案扩散不完全性的表现•解决方案和建议•结论与展望CHAPTER引言01研究背景和意义背景AES型密钥编排方案是密码学中的重要组成部分,广泛应用于数据加密、网络安全等领域。

然而,随着攻击手段的不断升级,AES型密钥编排方案的扩散不完全性问题逐渐凸显出来,给信息安全带来了严重威胁。

意义研究AES型密钥编排方案的扩散不完全性问题,有助于深入了解密钥编排方案的安全性,为设计更加安全的密钥编排方案提供理论支持和实践指导,具有重要的理论和实践价值。

研究现状和发展趋势现状趋势CHAPTERAES型密钥编排方案概述02AES型密钥编排方案的基本原理0203AES型密钥编排方案的特点和优势效率高由于采用了分组加密的方式,可以并行处理多个数据组,提高了加密和解密的效率。

灵活性强AES型密钥编排方案可以支持不同长度的密钥,可以根据实际需求进行灵活的配置。

高安全性性变换,使得加密结果具有很高的安全性,难以被破解。

AES型密钥编排方案的应用范围文件加密数据存储互联网安全CHAPTER扩散不完全性的概念和度量03扩散不完全性的定义扩散不完全性的度量方法扩散不完全性的影响和危害CHAPTERAES型密钥编排方案扩散不完全性的表现04密钥编排方案中的信息泄露是AES型密钥编排方案扩散不完全性的一个重要表现。

在密钥编排过程中,如果没有足够的安全措施,攻击者可能会通过分析密钥编排方案中的信息,推断出密钥的某些特征或具体值,从而获取到密钥的全部信息。

这种信息泄露可能会导致加密数据的完全破解,从而给数据安全带来极大的威胁。

因此,在设计和实施AES型密钥编排方案时,必须充分考虑信息泄露的防范措施。

密钥编排方案中的信息泄露密钥编排方案中的随机数生成问题AES型密钥编排方案是基于高级加密标准(AES)的一种密钥编排方案。

aes-gcm用法

aes-gcm用法

aes-gcm用法AES-GCM(Advanced Encryption Standard - Galois/Counter Mode)是一种对称加密算法,常用于数据的加密和认证。

以下是AES-GCM的用法示例:1. 密钥生成:生成一个16字节(128位)的密钥。

可以使用安全的随机数生成器来生成密钥。

```javaSecureRandom secureRandom = new SecureRandom();byte[] key = new byte[16];secureRandom.nextBytes(key);```2. 加密:使用密钥对数据进行加密。

```javabyte[] plaintext = "Hello, World!".getBytes();byte[] iv = new byte[12]; // 初始化向量,长度为12字节secureRandom.nextBytes(iv);Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding"); SecretKeySpec keySpec = new SecretKeySpec(key, "AES"); GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(128, iv);cipher.init(Cipher.ENCRYPT_MODE, keySpec, gcmParameterSpec);byte[] ciphertext = cipher.doFinal(plaintext);```3. 解密:使用密钥对加密后的数据进行解密。

```javacipher.init(Cipher.DECRYPT_MODE, keySpec, gcmParameterSpec);byte[] decryptedText = cipher.doFinal(ciphertext);```注意:在实际使用中,需要考虑更多的安全性和错误处理措施,上述示例只是简单的用法演示。

AES_GCM加密算法

AES_GCM加密算法

AES_GCM加密算法参考:相关概念解释:AES:设AES加密函数为E,则 C = E(K, P),其中P为明⽂,K为密钥,C为密⽂。

也就是说,把明⽂P和密钥K作为加密函数的参数输⼊,则加密函数E会输出密⽂C。

AES为分组密码,分组密码也就是把明⽂分成⼀组⼀组的,每组长度相等,每次加密⼀组数据,直到加密完整个明⽂。

在AES标准规范中,分组长度只能是128位,也就是说,每个分组为16个字节(每个字节8位)。

密钥的长度可以使⽤128位、192位或256位。

密钥的长度不同,推荐加密轮数也不同。

AES算法属于典型的对称算法。

AES算法具体步骤参考:CTR ( CounTeR 计数器模式):计数模式(CTR模式)加密是对⼀系列输⼊(称为计数)进⾏加密,产⽣⼀系列的输出块,输出块与明⽂异或得到密⽂。

对于最后的数据块,可能是长u位的局部数据块,这u位就将⽤于异或操作,⽽剩下的b-u位将被丢弃(b表⽰块的长度)。

CTR解密类似。

这⼀系列的计数必须互不相同的。

IV:Initialization Vector, 初始化向量,⼀般是加密过程初始化产⽣的随机向量。

加密和解密过程需要同⼀组IV。

MAC:密⽂的收发双发需要提前共享⼀个秘钥。

密⽂发送者将密⽂的MAC值随密⽂⼀起发送,密⽂接收者通过共享秘钥计算收到密⽂的MAC值,这样就可以对收到的密⽂做完整性校验。

当篡改者篡改密⽂后,没有共享秘钥,就⽆法计算出篡改后的密⽂的MAC值。

在AES_GCM算法中,MAC⼜称作TAGGCM:GCM ( Galois/Counter Mode) 指的是该对称加密采⽤Counter模式,并带有GMAC消息认证码。

下图的解释:Ek使⽤秘钥k对输⼊做对称加密运算XOR异或运算Mh将输⼊与秘钥h在有限域GF(2^128)上做乘法算法详细步骤:AES_GCM 算法加密过程:1. AES加密输⼊: IV值 (⼀般随机产⽣) 密钥 明⽂附加消息Aad: 附加消息不是明⽂内容, 作AES加密时作为输⼊,对产⽣MAC值产⽣影响.可有可⽆2. 算法对明⽂进⾏分段,并通过输⼊的密钥分别与分段的明⽂作AES对称加密运算, ⽣成密⽂3. 对上⼀步的每段加密结果, 以及附加消息进⾏Mh运算. 得到的结果⽣成MAC值作为验证信息, 再GCM算法中⼜叫做TAG值AES_GCM 算法解密过程:1. AES解密输⼊: IV值 (与加密过程所⽤的IV值相同) 密钥 密⽂附加消息Aad: 与加密过程所⽤的IAad值相同 加密产⽣的TAG2. 分别⽤密钥, 对每段密⽂进⾏解密3. 对Aad和解密结果进程Mh计算⽣成TAG, 和加密产⽣的TAG进⾏⽐对可以验证加/解密过程的完整性。

AES密码的三种等价形式

AES密码的三种等价形式

图1 ShiftRow 变换 图2 MixColumn 变换 Fig. 1 The ShiftRow transformation Fig. 2 The MixColumn transformation
8 在列混合中 ,状态的列视为有限域 GF ( 2 ) 上的多项式的系数且被一个固定的多项式 c ( x ) 进行模 4 3 2 4 x + 1 的乘法 ,这里 c ( x ) = ‘03’ x + ‘01’ x +‘01’ x +‘02’ ,此多项式与 x + 1 互素 ,因此是可逆的 。这

图4 AES 密钥扩展算法
Fig. 4 Key expansion algorithm of AES
冯国柱 ,等 :AES 密码的三种等价形式
127
2 AES 的等价密码
211 改变 S 盒中常量得到的等价密码 AES 密码 S 盒中仿射变换的常量为 0 × 63 ,它的作用并没有明确 ,但设计者认为 S 盒变换中应没有
A a13 A a23 A a33 A a43
A a14 A a24 A a34 A a44
>
A a21 A a31 A a41
引理 1 记 S ( aij ) = a ij ,则 S ( aij ) = AS ( aij ) 。 引理 2 ShiftRow 变换与仿射矩阵 A 乘变换顺序互换 ,密码值不改变 。即 : SR ( A SB ( A) ) = A SR ( SB ( A) ) 引理 3 M C ( A
( 2) 行移位 ShiftRow ( S R ) ,1 、 2、 3 和 4 行分别循环左移 0 、 1、 2、 3 位; ( 3) 列混合 MixColumn ( M C ) ,左乘一列混合矩阵 ; ( 4) 圈密钥加 AddRoundKey ( A R ) 。

AES加密算法的改进与实现

AES加密算法的改进与实现

AES加密算法的改进与实现
王莹;何大军
【期刊名称】《电脑编程技巧与维护》
【年(卷),期】2010(000)017
【摘要】用一次查表的方法改进AES轮函数;用指针类型转换的方法改进字节与字之间的转换以及加密解密函数中的移位操作;用查表的方法改进解密密钥生成函数.算法的改进提高了算法的性能,AES的加密速度比原来提高了大约1.33-1.75倍左右.
【总页数】3页(P84-86)
【作者】王莹;何大军
【作者单位】徐州市职业技术能鉴定指导中心;徐州市职业技术能鉴定指导中心【正文语种】中文
【相关文献】
1.基于改进AES的一次一密加密算法的实现 [J], 刘海峰;陶建萍
2.改进Henon超混沌系统与AES结合的图像加密算法 [J], 王勇; 杨锦; 王瑛
3.AES加密算法的改进及FPGA实现 [J], 柴绍杰;张彩珍
4.改进型AES加密算法在无线传感器网络中的研究与实现 [J], 陈靖;汪烈军;钟劲松;张志军;郭学让
5.基于二维混沌映射的AES加密算法的研究与改进 [J], 何涛;冯伟东;王红卫;谭俊因版权原因,仅展示原文概要,查看原文内容请购买。

AES和SMS4密码算法的高效可重构实现

AES和SMS4密码算法的高效可重构实现

AES和SMS4密码算法的高效可重构实现李文君;桑振夏;张亚秒;高留洋【期刊名称】《现代电子技术》【年(卷),期】2012(035)018【摘要】可重构密码芯片提高了密码芯片的安全性和灵活性,具有良好的应用前景,但其处理速度较ASIC实现的专用密码芯片却有很大程度的下降.在此分析AES和SMS4密码算法的可重构性,利用流水线、并行处理和可重构技术,提出了一种可重构体系结构.基于该体系结构实现的AES和SMS4算法较其他同类设计相比,在资源规模相当的情况下,处理速度有了较大的提高.%The reconfigurable cipher chip, which can improve the security and flexibility of cipher chips, has good potential to become a vital component in the future. However, the speed of most reconfigurable cipher chips is pretty lower than that of ASIC chip. Based on the analysis about the structure of the AES and SMS4, a reconfigurable architecture is proposed in combination with pipeline, parallel processing and reconfiguration technology. The simulation results show that the processing speed of the AES and SMS4 algorithm implemented with the reconfigurable architecture is higher than other similar current algorithums when their resource scales are basically equal.【总页数】4页(P64-66,70)【作者】李文君;桑振夏;张亚秒;高留洋【作者单位】中国人民解放军63898部队,河南济源454650;中国人民解放军63898部队,河南济源454650;中国人民解放军63898部队,河南济源454650;中国人民解放军63898部队,河南济源454650【正文语种】中文【中图分类】TN911-34【相关文献】1.硬件实现SMS4密码算法的研究 [J], 王艳红;付世冲2.基于FPGA实现SMS4对称密码算法 [J], 赵轩;张永强;尹俊勋3.SMS4密码算法的低功耗实现 [J], 李刚;方东博;沈海斌4.AES和SMS4算法的可重构设计与高效实现 [J], 王简瑜;张鲁国5.基于FPGA的SMS4密码算法的高速实现 [J], 冯春雨;胡波;刘会忠因版权原因,仅展示原文概要,查看原文内容请购买。

AES算法的改进用法及其在数据库加密中的应用

AES算法的改进用法及其在数据库加密中的应用

AES算法的改进用法及其在数据库加密中的应用
高峻;李订芳
【期刊名称】《中南民族大学学报(自然科学版)》
【年(卷),期】2002(021)004
【摘要】针对Internet环境中越来越突出的泄密、篡改和伪造等数据库安全问题,在分析比较实现数据库安全的被动与主动方法的基础上,提出了提高数据库安全性的数据库加密策略,根据数据库加密的特点,改进了AES算法的用法,并应用于一个对信息保密有较高要求的实际数据库中,取得了较好的效果.
【总页数】4页(P67-69,90)
【作者】高峻;李订芳
【作者单位】武汉大学数学与统计学院;武汉大学数学与统计学院
【正文语种】中文
【中图分类】TP309
【相关文献】
1.改进的AES算法在智慧住区门户中的应用与实现 [J], 谢秀颖;王敏;王少林;唐威
2.AES算法在多核的安卓平台下的改进及应用 [J], 骆子玉;洪璇
3.一种改进的Kerberos协议和AES算法在RFID系统的应用 [J], 王智明
4.AES算法在数据库加密中的应用 [J], 舒涛
5.AES算法中轮变换改进研究 [J], 陈晓宇
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J.Mathematical Sciences and Computing, 2018, 4, 34-40Published Online November 2018 in MECS ()DOI: 10.5815/ijmsc.2018.04.03Available online at /ijmscModification on AES-GCM to Increment Ciphertext RandomnessAhmad S. Bader a, Prof Dr. Ali Makki Sagheer ba Technical institute of Anbar, Middle Technical University, Baghdad, Iraqb Al-Qalam University College, Kirkuk, IraqReceived: 20 April 2018; Accepted: 06 August 2018; Published: 08 November 2018AbstractToday, there are many cryptographic algorithms that are designed to maintain the data confidentiality, from these algorithms is AES. In AES-GCM, the key in addition to the IV are used to encrypt the plaintext to obtain the ciphertext instead of just the key in the traditional AES. The Use of the IV with the key in order to gain different ciphertext for the same plaintext that was encrypted more than ones, with the same key. In this paper, the mechanism of change the IV each time in AES-GCM was modified to get more randomness in the ciphertext, thus increase the difficulty of breaking the encrypted text through analysis to obtain the original text. NIST statistical function were used to measure the randomness ratio in the encrypted text before and after modification, where there was a clear rise in the randomness ratio in the encoded text which obtained by using the modified algorithm against ciphertext by using the normal AES_GCM.Index Terms: AES, GCM, AES-GCM, Ciphertext Randomness.© 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science1.IntroductionNowadays, Cryptography enables individuals to extend the certainty found in the physical world to the electronic world, hence enabling individuals to work together electronically without stresses of deception. Regular a large number of individuals' associates electronically, regardless of whether it is through email, web based business, ATM machine or mobile phones. The unending increment of data transmitted electronically has prompted an expanded dependence on cryptography.There are two types of encryption algorithms that are asymmetric and symmetric. In asymmetric a pair of keys (private key and public key) are used, one for encryption and the other for decryption, such as the RSA algorithm. In symmetric, the same key is used for encryption and decryption, for example, DES and AES algorithm [1].AES is one of the most popular block cipher encryption algorithms, where it has not yet been proven that this algorithm has been broken [2].There are many attacks that aim to break encryption algorithms to get the original text through ciphertext. Some of these attacks analyze the encrypted text in order to obtain the plaintext, and the factors that help the success of these attacks weak key used in the process of encryption or repetition of certain text within the plaintext more than once. The cipher values of an encryption algorithm are randomized using several diffusion elements such as addition, rotation, transposition, etc. Such operations on diffusion elements are repeated several times or several rounds for achieving sufficient diffusion level.In order to obtain different encrypted texts for the same plaintext encrypted with same key, the stream cipher modes were used, such as OFB, CFB and CTR [3].One of the modifications introduced to AES by using the stream modes is the AES-GCM algorithm, where which uses the IV Xor with the key each new block in order to obtain new cipher text even if the plaintext and the key used in previous block encryption are same. This change occurs because added one to the IV in each * Corresponding author.E-mail address: ahm.salim@.iq, dean@.iq, prof.ali@.iqencryption process for a new block.There are many modification that have been proposed on the AES which aim to enhance algorithm security or to improve time complexity of the algorithm. In this paper, a new mechanism has been proposed for the change of the IV in each encrypting process for a new block, where in addition to the increase by one, the IV is rotate shift by one and this gives more randomization in the ciphertext even if the whole text is composed of the same character and encrypted with the same key.2.Related WorksYue et. al., in 2011[4], proposed mathematical model to increase the randomness in the number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI). The suggested work consider both scores as random variables under the ideally encrypted image model and derive their expectations and variances. The proposed model was applied on a set of images and the results were good.Vandanav, in 2012 [5], suggested replace the MixColumn process in traditional AES with the permutation process depending on the permutation table. The proposed modified was aimed to get more speed to use the modified algorithm in multimedia encryption systems in effective manner.Vaidehi et. al., in 2015 [6], proposed used Common Sub-expression Elimination (CSE) algorithm to improve the MixColumn process in order to reduce the hardware complexity and energy consumption and thus improve the performance of the algorithm.Soukaena et. al., in 2016 [7], proposed a modified RC4 encryption algorithm for greater confidentiality. In the modified algorithm, the randomization ratio of the key which used in the encryption process is increased by 20%. This has helped to increase the randomness ratio of encrypted text and thus obtain greater security when using the modified algorithm in data encryption.Ammar et. al., in 2017 [8], suggested to design a secure chatting application using a modified AES to encrypt secret data. The modified algorithm used Cipher Block Changing (CBC) encryption Mode by inserting the ciphertext of each block as an Integrated Vector (IV) with the key in the next block encryption process to get different text for similar text encoded with the same key and also to obtained more randomness.3.Advanced Encryption Standard (AES)In 1997, specifically on September 12 announced the National Institute of Standards and Technology (NIST) a “Request for Candidate Algorithm Nominations for the Advanced Encryption Standard.” The aim of AES was to replace the Data Encryption Standard (DES) as a new cipher standard. Roughly the more processes associated with the AES selection were different from DES operation. Pre-conditions have been setting for the size of the block to be encrypted and the key size. The aim of the algorithm was to work with several key sizes (128, 192, and 256) in order to meet the security requirements at that time and even in the future. In addition, regulators set several criteria for the proposed algorithm to be selected: security, flexibility, simplicity, cost, and work on all hardware and software. It was invited the contestants from all over the world to participate either as reviewers or submitters [9, 10].On June 15, 1998, 21 algorithms were submitted on the day of the competition, 15 of algorithms which were said to have met the specific conditions of the contest. 10 of these 15 algorithms were established outside the United States, and there was at least one designer in each algorithm non-US. In the eighth month of 1999, NIST restricted the contest between 5 algorithms for final decomposition. The winning algorithm was k nown as “Rijndael”, it was introduced by two Belgian researchers, Vincent Rijmen and Joan Daemen. The algorithm was formally adopted on the 26th of the 5th month in 2002 [10]. In fact, there are no serious security gaps in any of the 5 algorithms in the finals, but the winning algorithm was selected based on criteria such as efficiency, flexibility and performance on various devices, in addition to other characteristics [11].AES is a block cipher, the length of the input block is 128 bits while the key length is 128, 192 or 256 bits. The key length determines the number of rounds required for encryption but does not affect the overall structure of each round. Unlike DES which depends on the Feistel structure fully, AES is essentially a permutation-substitution network. At the processes in the AES, a 4*4 byte array called the state is entered and modified in a sequence of rounds. Where the state consists of partitioning the 128-bit entrance block to 16 partitions each 8-bit partition (16 bytes). The following is an explanation of the operations that conduct on the state in each round since the introduction of the plaintext until the ciphertext is accessed [11]:Stage 1).AddRoundKey: In the AES algorithm, in each round there is an XOR process between the state array and (128-bit) the assigned key for each round, where a round key is derived for each round from the main keywhich is used in the first round only.Stage 2).SubBytes: At this point, each byte is replaced in the state array with new byte, this process is done dependingon a custom table for this.Stage 3).ShiftRows: In shiftrows, all the bytes in the state array are shifted except the first row bytes, where the bytes are in the first row stay as they are, the bytes in the second row shift to the left one time, the third row shiftleft twice and the fourth row shifts left three times. The conversion process is periodic so most of the bytes inthe state array are changed.Stage 4).MixColumns: One of the most important steps in each round inِAES algorithm is MixColumn, in this step, a transform is applied in order to affect each column present in the state array (The transformation resultingfrom this process is a linear transformation).In AES algorithm, because the last three steps in each round can be inverted, MixColumns is replaced with AddRoundKey in the final round, this prevents the attacker from reversing the last three steps.In the cryptographic algorithms of block cipher type, in the AES algorithm, there are four different steps, three of which are substitution and one is permutation. [9]:∙Substitute bytes: Used for the substitution process.∙ShiftRows: Helps to make the permutation process.∙MixColumns: make the substitution through the arithmetic operation over GF (28).∙AddRoundKey: XOR process for the current block with the key derived from main key.Fig.1. AES Algorithm Steps [12].4.Galois Counter Mode (GCM)GCM is a block cipher mode that provides data authentication in addition to data encryption, uses one of the block cipher encryption algorithms in addition to a counter mode (CTR). The authentication process is done by using Hash Functions through binary Galois Field to authenticate the encrypted message [13].AES-GCM algorithm is a collection between the AES Counter Mode encryption and the Galois Hash authentication algorithm, produces encrypted text as well as an authentication tag. AES-GCM consists of three stages: Pre-processing (encryption, authentication); Processing Loop and Post Processing. AES-GCM is described in (Fig. 2) [14, 15].Fig.2. AES-GCM Model [9].5.Proposed ModificationIn a normal AES, if the same key is used to encrypt the same plaintext, it produces the same encrypted text, which makes it easier to analyze and break the ciphertext So IV is used to ensure that the ciphertext is changed each time the same text is encrypted with the same key.In AES-GCM, adding one to IV every new encryption changes the encrypted text, but to a small extent. So, there is a need to find a method to ensure the greatest possible change to the encrypted text. Therefore, to ensure the largest possible change, the IV is rotated shift by one with each incremental operation, this helps to use a very different IV in eachencryption process, thus, a different ciphertext. Figure (3) shows the modified AES-GCM algorithm.Fig.3. The modified AES-GCM.6.Results and DiscussionBy default if tries hackers attack the ciphertext resulting from the method suggested in this work using brute force attack,the number of possible attempts to break the secret message:Number of possible attempts= 2k * 2128(Where k equal to 128,192 or 256). This is because the number of possible attempts to break the ciphertext using original AES with key size K is equal to 2K, with the use of 128-bit IV, which changes the encrypted text each time the attacker must guess the 128-bit IV in addition of the key.In case the attack is the frequency of letters analysis, the use of the IV helps to obtain different ciphertext for the same plaintext encrypted with the same key, that if the repetition of a certain character or even a word and was encrypted with the same key will get different ciphertext every time. Table (1) shows the use of the normal AES and the adjusted AES-GCM where the IV is increased by one and then rotated shifted to left is increase the percentage of change in the ciphertext. Where increase the IV by one in addition to the shifting in order not to be periodic no repeat itself after 128 shift.Table 1. AES-GCM with IV.Practically, to make sure that the proposed modification on AES-GCM which aims to increase the randomization rate in the resulting ciphertext achieved the target properly, the test functions of NIST randomness was applied. The test was performed using the following parameters as an inputs for encryption by using AES algorithm, where the key was "computer college", IV was "1111111111111111" and the text "ahmad salim badr" was repeated more than once in plaintext, where the plaintext size was 2560 bit in binary. The goal was to increase randomization when a particular plaintext was encrypted with the same key more than once even in the case of a little randomization in the used IV.Table (2) shows the results of the test of three cases of encryption process by using AES. The first column in the table includes the test functions adopted, the second column represents results of using the traditional AES encryption without a IV, the third column shows the results of the randomization when using the normal AES-GCM which depends on the addition by one on the IV in each new encryption process while the last column displays the random ratios in the proposed method in this work, which uses the shift process plus the IV increase by one each time. As is evident when observing random probability values in the testing table as well as their own cases, the proposed method indicated in the last column achieves a more random probability than the other two methods. Increasing the randomization in encrypted text makes it harder for the attacker to parse the ciphertext and fetch the original text across it.Encryption algorithms are usually designed to find the greatest effect of the key and the plaintext on the ciphertext (diffusion and confusion), and thus get a more and more randomness in the ciphertext to make it effective against the attacks aimed to cryptanalysis and obtained the original text. The table below shows the effective of the proposed change on the AES-GCM algorithm, where the randomization ratio was measured by using NIST randomness functions. The column PValue represents the randomness ratio for each function, and the optimal randomness ratio is one. The ratios of the three main functions (block frequency, frequency and runs) in the table shows a clear increase in the randomization rate in column of the proposed adjustment on AES-GCM compared with the traditional AES or AES-GCM.Figure 4 shows the clear increase in the randomization ratio of the three main test functions of the NIST randomness test functions. The figure illustrates that even if a little randomized plaintext and a little randomness in key are used in encryption process, the modified algorithm gives a large randomness proportion in the ciphertext, which makes the cryptanalysis process very difficult.Table 2. NIST Randomness Test for AES-GCM Ciphertext.Fig.4. The Proposed Modification effect on Ciphertext Randomness.7.ConclusionThe AES-GCM algorithm is an encryption and authentication algorithm, which used today in many applications and systems to help keep confidential information safe. In this paper, the AES-GCM encryption algorithm was modified by rotated shift the IV after added one instead of add one only in traditional algorithm. The modification increase the randomness ratio in the ciphertext, thus make modified algorithm more difficult to break the encrypted text by analysis it in order to obtain the original text.AcknowledgmentThanks presented for College of Computer Sciences & Information Technology, University of Anbar, by aiding to bring out the research. Also, special thanks to Assist Prof Dr. Salim Bader for assistance this research.References[1]W. Stallings and M. P. Tahiliani, Cryptography and network security: principles and practice, vol. 7. Pearson London,2017.[2]Kawle, Pravin, et al. "Modified Advanced Encryption Standard." International Journal of Soft Computing andEngineering (IJSCE) 4 (2014).[3]Mohan, H. S., and A. Raji Reddy. "Revised AES and Its Modes of Operation." International Journal of InformationTechnology 5.1 (2012): 31-36.[4]Wu, Yue, Joseph P. Noonan, and Sos Agaian. "NPCR and UACI randomness tests for image encryption." Cyberjournals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT) 1.2 (2011): 31-38.[5]Koradia, V. C. "Modification in Advanced Encryption Standard." Journal Of Information, Knowledge And ResearchIn Computer Engineering 2.02 (2012).[6]Vaidehi, M., and B. Justus Rabi. "Enhanced MixColumn Design for AES Encryption." Indian Journal of Science andTechnology 8.35 (2015).[7]Hashem, Soukaena H. "A Proposed Modification on RC4 Algorithm by Increasing its Randomness." Al-RafidainUniversity College for Sciences 39 (2017): 349-372.[8]Ali, Ammar H., and Ali M. Sagheer. "Design of an Android Application for Secure Chatting." International Journalof Computer Network and Information Security 9.2 (2017): 29.[9]W. Stallings and M. P. Tahiliani, Cryptography and network security: principles and practice, vol. 6. Pearson London,2014.[10]J. Holden, The Mathematics of Secrets: Cryptography from Caesar Ciphers to Digital Encryption. PrincetonUniversity Press, 2017.[11]J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.[12] F. K. Gürkaynak, “GALS system design: side channel attack secure cryptographic accelerators,” ETH Zurich, 2006.[13] D. McGrew and J. Viega, “The Galois/counter mode of operation (GCM),” Submission to NIST Modes of OperationProcess, vol. 20, 2004.[14]K. Jankowski and P. Laurent, “Packed AES-GCM algorithm suitable for AES/PCLMULQDQ instructions,” IEEEtransactions on computers, vol. 60, no. 1, pp. 135–138, 2011.[15] B. Buhrow, K. Fritz, B. Gilbert, and E. Daniel, “A highly parallel AES-GCM core for authenticated encryption of400 Gb/s network protocols,” in ReConFigurable Computing and FPGAs (ReConFig), 2015 International Conference on, 2015, pp. 1–7.Authors’ ProfilesAhmad S. Bader has received his B.Sc. in Computer Science (2011) from the University of Anbar, Iraq.He is a master student (2016, till now) in the Computer Science Department, College of ComputerSciences and Information Technology at University of Anbar. He is interested in the following fields:Information Security, Biometrics, Network Security, Image Processing and Coding Systems.Ali M. Sagheer is a Professor in Al-Qalam University College. He received his B.Sc. in InformationSystem (2001), M.Sc. in Data Security (2004), and his Ph.D. in Computer Science (2007) from theUniversity of Technology, Baghdad, Iraq. He is interested in the following fields; Cryptology, InformationSecurity, Number Theory, Multimedia Compression, Image Processing, Coding Systems, and ArtificialIntelligence. He has published many papers in different scientific journals.How to cite this paper: Ahmad S. Bader, Ali Makki Sagheer,"Modification on AES-GCM to Increment Ciphertext Randomness", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.4, No.4, pp.34-40, 2018.DOI: 10.5815/ijmsc.2018.04.03。

相关文档
最新文档