2001_2010年考研数学真题及答案
2001年考研数学一试题答案与解析
2001年考研数学一试题答案与解析一、(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 div grad r=()()()x y z x r y r z r ∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ). (2)关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f +∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t 有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B 时,知A 与B 有相同的特征值,从而二次型Tx Ax 与Tx Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2x x x x e e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可. 直接将arctan x展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑ =12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑. 六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==.于是由斯托克斯公式得 222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22333Sy z z x x y dS --+----⎰⎰ =(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰⎰⎰,其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21224DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r h t θπ≤≤≤≤. ⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()0()()h t D x V t dzdxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件. (3)体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即0.9dVS dt =-将()V t 与()S t 的表达式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ① (0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时. 九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-. 下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有 112211222132110,0,0,0.s s st k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ (*) 因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A EB E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。
2001考研数一真题及答案解析
h sin h h2
0 .因而,若
f
' (0)
(C)成立.反之若(C)成立
lim
t0
f (t) t
(即
f
' (0)
).因为只要
f (t)
有界,任有(C)成立,如
f (x) | x | 满足(C),但
f
' (0) 不 .
t
因此,只能选(B).
(4)【分析】 由 | E A | 4 4 3 0 ,知矩阵 A 的特征值是 4,0,0,0.又因 A 是实对称矩阵, A
(2) lim (x) 1 .
x0
2
八、(本题满分 8 分)
设有一高度为 h(t) ( t 为时间)的雪堆在融化过程,其侧面满足方程 z h(t) 2(x 2 y 2 ) (设 h(t)
长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为 0.9),问高度为 130(厘米)的雪堆全部融化需多少小时?
(2)设 r x 2 y 2 z 2 ,则 div(gradr) (1,2,2) =_____________.
0
1 y
(3)交换二次积分的积分次序: dy f (x, y)dx =_____________.
1
2
(4)设矩阵 A 满足 A2 A 4E 0 ,其中 E 为单位矩阵,则 ( A E)1 =_____________.
f
(1 cos h) 1 cosh
1
cos h2
h
t
1
cos
h
1 lim 2 t0
f (t) t
,
由此可知
lim
h0
1 h2
考研数学一真题2001-2010
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R (C)Q<P<R (D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a(B)(C)4a (D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)2000年普通高等学校招生全国统一考试数学(理工农医类)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2001考研数学一试题及答案解析
2001考研数学一试题及答案解析2001年考研数学一试题及答案解析一、选择题1.设A是n阶实对称矩阵,B是n阶对称矩阵,则下列结论正确的是()A. AB是对称矩阵B. AB是反对称矩阵C. AB是零矩阵D. AB不一定是对称矩阵答案:D解析:对称矩阵的乘积不一定是对称矩阵,故选D。
2.设A是n阶矩阵,|A|≠0,则下列结论正确的是()A. A是可逆矩阵B. A的行列式不等于0C. A的秩等于nD. A的特征值不等于0答案:A解析:根据矩阵可逆的定义,可知选项A正确。
3.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则下列结论正确的是()A. 函数f(x)在[a,b]上一定有最大值和最小值B. 函数f(x)在(a,b)内一定有极值点C. 函数f(x)在[a,b]上一定有极值点D. 函数f(x)在(a,b)内一定有最大值和最小值答案:B解析:根据极值定理,可知选项B正确。
4.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则函数f(x)在[a,b]上()A. 一定有最大值和最小值B. 一定有极值点C. 一定有极大值和极小值D. 不一定有极值点答案:D解析:函数在区间[a,b]上连续,且在(a,b)内可导并不意味着一定有极值点,故选D。
5.若f(x)在区间[a,b]上连续,且在(a,b)内可导,且f'(x)>0,则下列结论正确的是()A. 函数f(x)在[a,b]上单调递减B. 函数f(x)在[a,b]上单调递增C. 函数f(x)在(a,b)内存在极大值D. 函数f(x)在[a,b]上存在极小值答案:B解析:根据导数的定义,可知选项B正确。
二、填空题1.设A是n阶实对称矩阵,且A的主对角线元素都为1,则A的特征值之和为____。
答案:n+1解析:根据实对称矩阵的特征值之和等于主对角线元素之和,故特征值之和为n+1。
2.设z为复数,|z|=1,则z^3的实部为____。
2010考研数一真题及解析
2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A) 1. (B) e . (C) a be -. (D) b ae-.(2) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(3) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B)仅与n 的取值有关. (C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (4) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A) 秩()r A m =,秩()r B m =. (B) 秩()r A m =,秩()r B n =. (C) 秩()r A n =,秩()r B m =. (D) 秩()r A n =,秩()r B n =. (6) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭.(C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,1(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A) 0. (B)12. (C) 112e --. (D) 11e --. (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A) 234a b +=. (B) 324a b +=. (C) 1a b +=. (D) 2a b +=.二、填空题(914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == .(10)2π=⎰ .(11) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.(12) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .(13) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = .(14) 设随机变量X 的概率分布为{}!CP X k k ==,0,1,2,k =,则()2E X=.三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)求微分方程322xy y y xe '''-+=的通解. (16)(本题满分10分)求函数()()2221x t f x xt e dt -=-⎰的单调区间与极值.(17)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n =的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n =,求极限lim n n u →∞. (18)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分2x y zI ∑-=,其中∑是椭球面S 位于曲线C 上方的部分. (20)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (21)(本题满分11 分)已知二次型123(,,)T f x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第三列为T . ( I ) 求矩阵A ;( II ) 证明A E +为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,)xxy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x .设总体X其中参数()0,1θ∈未知,以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31iii T a N ==∑为θ的无偏估计量,并求T 的方差.2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦()()2ln lim x x x a x b x e ⋅-+→∞=()()2lim ln x x x x a x b e →∞⋅-+=, 其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).(2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF z x x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅,112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成=+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnn ni j i j n nn i n jn i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j →∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e -=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1ttt dy t e dx e-+==-+-, ()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以2200t d y dx ==. (10)【答案】 4π-.x t =,2x t =,2dx tdt =,利用分部积分法,原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰. (11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰ ()()0122122xx dx x x dx -=++-⎰⎰01322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. (13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x xc y C e C e =+.设原方程的一个特解为*()xy x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--.故方程的通解为*212(2)x x xc y y y C e C e x x e =+=+-+.(16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e--''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞-,()f x 的单调递增区间为(1,0)(1,)-+∞.(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nn t t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n =.(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令 12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-, 从而有 12211()1()1S x x x '==--+ ()1,1x ∈-,故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z z y --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由 dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-.方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛⎫⎪ ⎪⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,130x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,1000Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1TQ Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭.( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx e dx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---===-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n =31a n=.所以统计量 ()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ-,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。
2001年考研数学一试题及完全解析(Word版)
yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y'=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=-+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于 12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P Xn Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。
2001年考研数学一试题答案与解析
2001年考研数学一试题答案与解析一、(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgrad r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分是二重积0211(,)ydy f x y dx --⎰⎰分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没A 有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征A 值是4,0,0,0.又因是实对称A 矩阵,A 必能相似对角化,所以与对角矩A 阵B 相似.作为实对称矩阵,当A B 时,知与有相同的A B 特征值,从而二次型与T x Ax T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确和的关XY系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数的绝XY ρ对值等于1的充要条件是随机变量与之间XY存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成arctan x 幂级数,然后约去因子x ,再乘上并化简21x +即可. 直接将展开办arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记为平面上所S2x y z ++=L为围部分.由L的定向,按右手法则取S 上侧,S 的单位法向量1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面积分化为二重积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面D S xy 上的投影区域||||1x y +≤(图).由关于轴的对D ,x y 称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义'()f x θ''(0)f .由题(1)中的式子先解出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的积分顺序求三重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件. (3)体积减少的速度是dVdt-,它与侧面积成正比(比例系数0.9),即将与的表达0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时. 九、【解】由于是线性组(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次线性方程组解的性质知均为(1,2)i i s β= 0Ax =的解.从是的基础解12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线12,,s βββ 性无关的条件.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体的一个容2(2,2)N μσ量为的简单随n 机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。
2001考研数学一试题与答案解析
yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________. (5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则 (A ) (0,0)|3z d dx dy =+.(B ) 曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分)设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立; (2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21Λ为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+L ,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21Λ也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,L ,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对. 应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B :时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==r .于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS ------⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=L 是12,,s αααL线性组合,又12,,s αααL 是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=L 均为0Ax =的解. 从12,,s αααL是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββL 线性无关的条件.设11220s s k k k βββ++=L L ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=L .由于 12,,s αααL 线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩L(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-L L L M M M M ML , 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====L .从而12,,s βββL 线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B :,那么A E B E ++:,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=L .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=L十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +L 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。
2001年考研数学一真题
f ( x, y ) 在(0,0)存在偏导数
f (0,0) f (0,0) ,不保证曲面 z f ( x, y ) 在 , x y
f (0,0) f (0,0) (0, 0, f (0, 0)) 存在切平面.若存在时,法向量 n= , , 1 {3,1,-1}与{3,1,1}不 y x
f ( x) 单调增 f ' ( x) 0 ,(A),(C)不对;
f ( x) :增——减——增 f ' ( x) :正——负——正,(B)不对,(D)对.
关于(A),涉及可微与可偏导的关系 .由 微.因此(A)不一定成立. 关于(B)只能假设
f ( x, y ) 在(0,0)存在两个偏导数 f ( x, y ) 在(0,0)处可
=(
于是
divgradr| (1, 2,2) =
2 2 |(1,2,2) . r 3
y 0时
(3)【分析】 这个二次积分不是二重积分的累次积分,因为 1
1 y 2 .由此看出二次积分 dy
1
0
2
1 y
f ( x, y)dx 是二重积分的一个累次
积分,它与原式只差一个符号.先把此累次积分表为
y'' 2 y' 2 y 0 .
(2)【分析】 先求 gradr. gradr=
r r r x y z , , , , . x y z r r r
再求
divgradr=
x y z ( ) ( ) ( ) x r y r z r 1 x2 1 y2 1 z2 3 x2 y 2 z 2 2 3 )( 3 )( 3 ) . r r r r r r r r3 r
2001考研数学一真题及答案解析(统编)
y O x 2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)设222z y x r ++=,则div (grad r ))2,2,1(-=_____________. (3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________. (5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则)(x f y '=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+.(B ) 曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在. (B ) 01lim (1)h h f e h →-存在.(C ) 201lim (sinh)h f h h →-存在. (D ) 01lim [(2)()]h f h f h h →-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似.(B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1. (B ) 0. (C ) 12. (D ) 1.三、(本题满分6分)求dx ee x x⎰2arctan .四、(本题满分6分)设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,(1,1)|2f x∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ= (,))f x x .求13)(=x x dx d ϕ.。
2010考研数一真题及答案解析
2010 年考研数学一真题及答案
1
dx
0
x 0
(1
1 x)(1
y2)
dy
(C)
1
dx
1
1
dy
0 0 (1 x)(1 y)
(D)与 m, n 取值都无关
(B)
1
dx
x
1
dy
0 0 (1 x)(1 y)
(D)
1
dx
0
1 0
(1
1 x)(1
y2
)
dy
(5)设 A 为 m n 型矩阵 ,B 为 n m 型矩阵,若 AB E, 则
y12 y22 , 且 Q 的第三列为 (
2 , 0, 2
2 )T . 2
(1)求 A.
(2)证明 A E 为正定矩阵,其中 E 为 3 阶单位矩阵.
(22)(本题满分 11 分)
设 二 维 随 机 变 量 (X Y) 的 概 率 密 度 为
f (x, y) Ae2x22xyy2 , x , y , 求 常 数 及 A 条 件 概 率 密 度
z=
.
(13)设 α1 (1, 2, 1, 0)T , α2 (1,1, 0, 2)T , α3 (2,1,1, )T , 若由 α1, α2 , α3 形成的
向量空间的维数是 2,则 =
.
(14) 设 随 机 变 量 X 概 率 分 布 为 P{X k} C (k 0,1, 2,), 则
1
(C)
1
1
0
(7)设随机变量 X 的分布函数 F(x)
1
(D)
1
1
0
0
2001考研数一真题答案及详细解析
一、填空题(1)【答案】220y y y '''-+=.【详解】因为二阶常系数线性齐次微分方程0y py qy '''++=的通解为12(sin cos )x y e c x c x αββ=+时,则特征方程20r pr q ++=对应的两个根为一对共轭复根:1,2i λαβ=±,所以根据题设12(sin cos )xy e c x c x =+(12,c c 为任意常数)为某二阶常系数线性齐次微分方程的通解,知:1,1αβ==,特征根为1,2λi αβ=±1,i =±从而对应的特征方程为:()()2(1)(1)220,i i λλλλ-+--=-+=于是所求二阶常系数线性齐次微分方程为220y y y '''-+=.(2)【答案】2.3【分析】若(),,r x y z 具有连续的一阶偏导数,梯度gr adr 在直角坐标中的计算公式为:r r r gradr i j k x y z∂∂∂=++∂∂∂设()()()(),,,,,,,,A x y z P x y z i Q x y z j R x y z k =++,其中,,P Q R 具有一阶连续偏导数,散度d ivA 在直角坐标中的计算公式为:P Q R divA x y z∂∂∂=++∂∂∂若(),,r x y z 具有二阶连续偏导数,则在直角坐标中有计算公式:222222()r r rdiv gradr x y z∂∂∂=++∂∂∂【详解】本题实际上是计算222222r r rx y z∂∂∂++∂∂∂r x ∂∂222x y z x ∂++=∂22222xx y z=++222x x y z =++xr=2001年全国硕士研究生入学统一考试数学一试题解析22r x ∂∂x x r ∂⎛⎫= ⎪∂⎝⎭2rr xx r∂-∂=2x r x r x r x r r -∂ = ∂223r x r -=类似可得r y y r ∂=∂,22r y ∂∂223r y r -=;r z z r ∂=∂,22r z ∂∂223r z r -=根据定义有()div gradr 222222r r r x y z ∂∂∂=++∂∂∂222222333r x r y r z r r r ---=++222233r x y z r ---=2233r r r-=232r r =2r =2222x y z =++于是(1,2,2)()|div gradr -()2221,2,22x y z -=++2222231(2)2==+-+(3)【答案】211(,).xdx f x y dy -⎰⎰【详解】由题设二次积分的限,画出对应的积分区域,如图阴影部分.但在10y -≤≤内,21y ≥-,题设的二次积分并不是(,)f x y 在某区域上的二重积分,因此,应先将题设给的二次积分变形为:1021211(,)(,),yydy f x y dx dy f x y dx ----=-⎰⎰⎰⎰其中{}(,)10,12,D x y y y x =-≤≤-≤≤再由图所示,又可将D 改写为{}(,)12,10,D x y x x y =≤≤-≤≤于是112(,)ydy f x y dx --⎰⎰211(,)ydy f x y dx --=-⎰⎰2011(,)xdx f x y dy-=-⎰⎰211(,).xdx f x y dy -=⎰⎰(4)【答案】1(2).2A E +【详解】要求()A E -的逆,应努力把题中所给条件化成()A EB E -=的形式.由题设240A A E +-=⇒222A A E E +-=⇒()()22A E A E E-+=Oxyx+y=1x=21即()()12,2A E A E E -⋅+=故()()1122A E A E --=+.(5)【答案】12【分析】切比雪夫不等式:{}2()()D X P X E X εε-≥≤【详解】根据切比雪夫不等式有{}22()21()2222D X P XE X -≥≤==二、选择题(1)【答案】(D)【详解】从题设图形可见,在y 轴的左侧,曲线()y f x =是严格单调增加的,因此当0x <时,一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,由此可排除(A),(C);又()y f x =的图形在y 轴右侧靠近y 轴部分是单调增,所以在这一段内一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,进一步可排除(B),故正确答案为(D).(2)【答案】(C)【详解】题目仅设函数(,)f x y 在点(0,0)附近有定义及''(0,0)3,(0,0)1,x y f f ==未设(,)f x y 在点(0,0)可微,也没设(,)z f x y =,所以谈不上dz ,因此可立即排除(A);令(,,)(,)F x y z z f x y =-,则有''''',,1x x y y z F f F f F =-=-=.因此过点(0,0,(0,0))f 的法向量为{}''',,x y z F F F ±={}'',,1x y f f ±--=±{−3,−1,1},可排除(B);曲线(,)z f x y y =⎧⎨=⎩可表示为参数形式:0,(,0)x x y z f x =⎧⎪=⎨⎪=⎩点(0,0,(0,0))f 的切向量为{}{}'1,0,(0,0)1,0,3x f ±=±.故正确选项为(C).(3)【答案】(B)【详解】方法1:因为001()()lim (1)1lim lim ln(1)ln(1)h h h x x f x f x xf e e x h x x x →→→--==⋅--0()ln(1)limx f x x x x x x → -- ⋅- ()()00()0()lim 0limx x f x f f x f x x →→-=- =0 -()0f '=可见,若()f x 在点0x =可导,则极限01lim(1)h h f e h→-一定存在;反过来也成立.方法2:排除法:举反例说明(A),(C),(D)说明不成立.比如,()f x x =,在0x =处不可导,但2220001cos 11cos lim (1cos )lim lim h h h h h f h h h h →→→---==22012sin 2lim h h h →⎛⎫ ⎪⎝⎭=2201112sin lim 22h h h h h →⎛⎫ ⎪⎝⎭ 12=,故排除(A)2200sin 1lim (sin )lim h h h h f h h h h→→--=30sin lim h h h h h →-=⋅其中,30sin limh h h h →-30sin lim h h h h →-=201cos lim 3h h h →- 洛22012sin 2lim 3h h h →⎛⎫ ⎪⎝⎭=22012lim 3h hh → 等16=根据有界量与无穷小的乘积为无穷小,所以3sinhlim0h h h h→-⋅=.故排除(C).又如1,0()0,0x f x x ≠⎧=⎨=⎩在0x =处不可导,但[]00111lim (2)()lim0h h f h f h h h →→--==存在,进一步可排除(D).(4)【答案】(A)【详解】方法1:因为A 是实对称矩阵,必相似于对角阵Λ.1111111111111111E A λλλλλ---------=--------44442,3,41111111111111λλλλλλλ----------------行分别加到行111111111(4)111141111λλλλλ--------------行提出公因子()11111000(4)000000λλλλ-行分别加到2,3,4行34λλ=-()=0得A 的特征值为:12344,0,λλλλ====故必存在正交矩阵Q ,使得14000000000000000T Q AQ Q AQ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦因此,A B 与相似.由两矩阵合同的充要条件:实对称矩阵A B 与合同的充要条件是A B 与相似.因此,A B 与也合同.即A B 与既合同且相似.应选(A).方法2:因为A 是实对称矩阵,故A 必相似于一对角阵Λ.又由相似矩阵有相同的特征值,相同的秩,知A 与Λ有相同的秩,故()()1,r r A Λ==即Λ对角线上有3个元素为零.因此,1230λλλ===是A 的特征值.求另一个特征值,由特征值的和等于矩阵主对角线元素之和,知444114.iii i i a λλ=====∑∑故,44λ=.即A 有特征值40λλ==和(三重根),和对角阵B 的特征值完全一致,故A ,B 相似.又由两矩阵合同的充要条件:实对称矩阵A B 与合同的充要条件是A B 与相似.知A ,B 合同.(5)【答案】A【详解】掷硬币结果不是正面向上就是反面向上,所以X Y n +=,从而Y n X =-,故()DY D n X DX=-=由方差的定义:22()DX EX EX =-,所以[]22()()()DY D n X E n X E n X =-=---222(2)()E n nX X n EX =-+--222222()n nEX EX n nEX EX =-+-+-22()EX EX DX =-=)由协方差的性质:c ov(,)0X c =(c 为常数);c ov(,)cov(,)aX bY ab X Y =1212cov(,)cov(,)cov(,)X X Y X Y X Y +=+)所以c ov(,)cov(,)cov(,)cov(,)0X Y X n X X n X X DX DX=-=-=-=-由相关系数的定义,得c ov(,)(,)1X Y DX X Y DX DYDX DXρ-===-三【详解】2a rctan x x e dx e⎰2a rctan x x e e dx -=⎰()21arctan 22x xe e d x -=--⎰()21arctan 2x x e d e -=-⎰()221arctan arctan 2x x x xe e e d e ----⎰分部2221arctan 2(1)x x xx x de e e e e -⎛⎫=-- ⎪+⎝⎭⎰222111arctan 21x x x x x e e de ee -⎛⎫⎛⎫=---⎪ ⎪+⎝⎭⎝⎭⎰22211arctan 21x x x x x x e e e de de e --⎛⎫=--+ ⎪+⎝⎭⎰⎰()21arctan arctan 2xx x x e e e e C --=-+++四【详解】由题设,()d x dx ϕ[](,(,))df x f x x dx=()12(,(,))(,(,))(,)f x f x x f x f x x f x x '''=+1212(,(,))(,(,))(,)(,)f x f x x f x f x x f x x f x x ⎡⎤''''=++⎣⎦这里1f f x ∂'=∂,2ff y∂'=∂,所以1()x d x dx ϕ={}12121(,(,))(,(,))(,)(,)x f x f x x f x f x x f x x f x x =⎡⎤''''=++⎣⎦1212(1,1)(1,1)(1,1)(1,1)f f f f ⎡⎤''''=++⎣⎦[]2323=+⋅+17=又(1,1)1,f =()(,(,))x f x f x x ϕ=,所以(1)(1,(1,1))f f ϕ=(1,1)1(1,1)f f = 1,=所以3211()()3()x x d d x x x dxdx ϕϕϕ==⎡⎤=⎢⎥⎣⎦21()3(1)x d x dx ϕϕ==1()(1)1,173117x d x dx ϕϕ= == ⋅⋅51=五【详解】首先将a rctan x 展开.因为()a rctan 'x =2211(1),(1,1)1n n n x x x ∞==-∈-+∑故()0arctan arctan 0arctan 'xx x dx =+⎰2000(1)xn n n x dx ∞=⎛⎫=+- ⎪⎝⎭∑⎰22100(1)(1)21n xnnn n n x dx x n ∞∞+==-=-=+∑∑⎰,()1,1x ∈-于是21()arctan x f x x x +=22101(1)21n n n x x x n ∞+=+-=+∑220(1)(1)21n n n x x n ∞=-=++∑22200(1)(1)2121n n n n n n x x n n ∞∞+==--=+++∑∑()()011210210(1)(1)(1)20121211n n n n n n x x x n n +-∞∞+==---=++⋅+++-∑∑12211(1)(1)12121n n n n n n x x n n -∞∞==--=+++-∑∑2211(1)(1)12121n n n nn n x xn n ∞∞==--=+-+-∑∑21111(1)2121nn n x n n ∞=⎛⎫=+-- ⎪+-⎝⎭∑221(1)2114n n n x n ∞=-=+-∑,()1,1,0x x ∈-≠又0lim ()x f x →2201(1)2lim 114n n x n x n ∞→=⎛⎫-=+ ⎪-⎝⎭∑1=,且(0)1f =,所以()f x 在0x =处连续,从而0x =时,()f x 221(1)2114n n n x n ∞=-=+-∑也成立.进而()f x 221(1)2114n nn x n∞=-=+-∑,(1,1)x ∈-,又在1x =±处级数22211(1)2(1)21414n n n n n x n n ∞∞==--=--∑∑收敛,2111lim ()lim arctan x x x f x x x --→→+=2111lim lim arctanx x xx x --→→+=⋅242ππ=⋅=()1f =,2111lim ()lim arctan x x x f x x x ++→-→-+=2111lim lim arctan x x xx x ++→-→-+=⋅()2142f ππ⎛⎫=-⋅-==- ⎪⎝⎭,所以()f x 在1x =处左连续,在1x =-处右连续,所以等式可扩大到1x =±,从而221(1)2()114n n n f x x n ∞=-=+-∑,[]1,1x ∈-,变形得221(1)()1142n n n f x x n∞=--=-∑因此21(1)14n n n ∞=--∑221(1)114n n n n ∞=-=⋅-∑[]1(1)12f =-1122π⎡⎤=⋅-⎢⎥⎣⎦1.42π=-六【详解】方法1:用斯托克斯公式之后化成第一型曲面积分计算.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧,(曲线的正向与曲面的侧的方向符合右手法则)D 为S 在x oy 坐标面上的投影,{(,)| 1 }D x y x y =+={}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++在2x y z ++=中,左右两边关于x 求偏导,得10x z '+=,得1x z '=-.在2x y z ++=中,左右两边关于y 求偏导,得10y z '+=,得1y z '=-.代入上式得{}111cos ,cos ,cos ,,333αβγ⎧⎫=⎨⎬⎩⎭为S 指定侧方向的单位法向量,由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰Sdy dz dzdx dxdy x y z P Q R∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdx dxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰将题中的空间曲线积分化为第二类曲面积分,而对于第二类曲面积分,一般的解答方法是将它先化为第一类曲面积分,进而化为二重积分进行计算.把111,,cos cos cos dS dydz dS dzdx dS dxdy αβλ===代入上式,I [](24)cos (26)cos (22)cos Sy z z x x y dSαβγ=--+--+--⎰⎰[]1(24)(26)(22)3Sy z z x x y dS =--+--+--⎰⎰[]18463S x y z dS =---⎰⎰2(423)3Sx y z dS =-++⎰⎰按第一型曲面积分的算法,将S 投影到x oy ,记为σ.d S 与它在x oy 平面上的投影d σ的关系是2211cos x y dS d z z d σσγ''==++故3dS d σ=,将2x y z ++=代入2(423)3S I x y z dS =-++⎰⎰2[423(2)](3)3Sx y x y d σ=-++--⎰⎰2(6)Dx y d σ=--+⎰⎰由于D 关于y 轴对称,利用区域的对称性,因为区域关于y 轴对称,被积函数是关于x 的奇函数,所以0Dxd σ=⎰⎰.D 关于x 轴对称,利用区域的对称性,因为区域关于x 轴对称,被积函数是关于y 的奇函数,故0Dyd σ=⎰⎰,所以2(6)DI x y d σ=--+⎰⎰2212DDDxd yd d σσσ=-+-⎰⎰⎰⎰⎰⎰12Ddxdy=-⎰⎰12D =-⋅的面积(由二重积分的几何意义知,Ddxdy ⎰⎰即D 的面积)其中,D 为1x y +≤,D 的面积141122=⋅⋅⋅=,所以12224.I =-⋅=-方法2:转换投影法.用斯托克斯公式,取平面2x y z ++=被L 所围成的部分为S ,按斯托克斯公式的规定,它的方向向上(曲线的正向与曲面的侧的方向符合右手法则),S 在x oy 平面上的投影域记为{(,)| 1 }D x y x y =+=.由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰ Sdy dz dzdx dxdy x y z P Q R ∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdxdxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰由111,,cos cos cos dS dydz dS dzdx dS dxdy αβλ===,及{}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++知11cos cos dS dydz dxdy αλ==,11cos cos dS dzdx dxdy βλ==,故22221cos 1cos 1xx yx x yz z z dydz dxdy dxdy z dxdy z z αλ'-''++'===-''++22221cos 1cos 1yx yy x yz z z dzdx dxdy dxdy z dxdy z z βλ'-''++'===-''++因为S 为2z x y =--,式子左右两端分别关于,x y 求偏导,1,1,z zx y∂∂=-=-∂∂于是(24)(26)(26)SI y z dydz z x dzdx x y dxdy=--+--+--⎰⎰{}24,26,26,,1S z z y z z x x y dxdyx y ⎧⎫∂∂=------⋅--⎨⎬∂∂⎩⎭⎰⎰2(423)2(6)SDx y z dxdy x y dxdy=-++=--+⎰⎰⎰⎰因为区域D 关于y 轴对称,被积函数是关于x 的奇函数,所以0Dxd σ=⎰⎰.类似的,因为区域D 关于x 轴对称,被积函数是关于y 的奇函数,故0Dyd σ=⎰⎰,所以2(6)DI x y d σ=--+⎰⎰2212DDDxd yd d σσσ=-+-⎰⎰⎰⎰⎰⎰12Ddxdy=-⎰⎰12D =-⋅的面积(由二重积分的几何意义知,Ddxdy ⎰⎰即D 的面积)D 为1x y +≤,D 的面积141122=⋅⋅⋅=,所以12224.I =-⋅=-方法3:降维法.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧(曲线的正向与曲面的侧的方向符合右手法则),D 为S 在x oy 坐标面上的投影,{(,)| 1 }D x y x y =+=把2x y z ++=代入I 中,1L 为L 在x oy 平面上投影,逆时针.1222222((2))(2(2))(3)()L I y x y dx x y x dy x y dx dy =---+---+---⎰ 12222(42444)(324888)L y x xy x y dx y x xy x y dy =--++-+-+--+⎰ 12222(324888)(42444)[]L y x xy x y y x xy x y dxdy x y ∂-+--+∂--++--∂∂⎰ 格林公式2(6)24Dx y dxdy =--+=-⎰⎰方法4:用斯托克斯公式后用第二型曲面积分逐个投影法.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧,(曲线的正向与曲面的侧的方向符合右手法则){}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++在2x y z ++=中,左右两边关于x 求偏导,得10x z '+=,得1x z '=-.在2x y z ++=中,左右两边关于y 求偏导,得10y z '+=,得1y z '=-.代入上式得{}111cos ,cos ,cos ,,333αβγ⎧⎫=⎨⎬⎩⎭为S 指定侧方向的单位法向量,由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰ Sdy dz dzdx dxdy x y z P Q R∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdx dxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰用逐个投影法,先计算1(24),SI y z dydz =--⎰⎰其中{}(,)|21yz D y z y z y =--+≤为S 在y oz 平面上的投影,分别令0,0,20,20y y y z y z ≥≤--≥--≤,可得到y z D 的4条边界线的方程:右:23y z +=;上:3z =;左:21y z +=;下:1z =.于是13(3)2111(1)22(2)16z z I dz y z dy --=-+=-⎰⎰再计算2(26)SI z x dzdx =--⎰⎰,其中{}(,)|21xzD x z x x z =+--≤为S 在xoz 平面上的投影,分别令0,0,20,20x x x z x z ≥≤--≥--≤,可得到x z D 的4条边界线的方程:右:23y z +=;上:3z =;左:21y z +=;下:1z =.于是13(3)321211(1)22(3)(6)8z z I dz z x dx z dz --=-+=-=-⎰⎰⎰再计算3(22)D I x y dxdy =--⎰⎰,其中{}(,)|1xyDx y x y =+≤为S 在xoy 平面上的投影,因为区域关于y 轴和x 轴均对称,被积函数是关于x 和y 都是奇函数,于是32()0SI x y dxdy =-+=⎰⎰故12324.I I I I =++=-方法5:参数式法.L 是平面2x y z ++=与柱面1x y +=的交线,是由4条直线段构成的封闭折线,将题中要求的空间曲线积分分成四部分来求.当0,0x y ≥≥时,1:1,2L y x z x y =-=--,则,dy dx dz dx =-=-,x 从1到0.以x 为参数,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(2)][2(2)]()[3(1)]()x x y dx x y x dx x x dx =----+----+---22[(1)1(2)(1)]x x dx=--+--则1222222()(2)(3)L y z dx z x dy x y dz-+-+-⎰221(1)1(2)(1)x x dx ⎡⎤=--+--⎣⎦⎰7.3=当0,0x y ≤≥,2:1,12L y x z x =+=-,则,2dy dx dz dx ==-,x 从0到1-于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(12)][2(12)][3(1)](2)x x dx x x dx x x dx =+--+--+-+-(24)x dx=+所以212222220()(2)(3)(24)3L y z dx z x dy x y dz x dx --+-+-=+=-⎰⎰ 当0,0x y ≤≤,3:1,3L y x z =-=,则,0dy dx dz =-=,x 从1-到0,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)3][23]()[3(1)]0x dx x dx x x =--+⋅--+--⋅2(2226)x x dx=+-所以32222222179()(2)(3)(2226)3L y z dx z x dy x y dz x x dx --+-+-=+-=-⎰⎰ 当0,0x y ≥≤,4:1,32L y x z x =-=-,则,2dy dx dz dx ==-,x 从0到1,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(32)][2(32)][3(1)](2)x x dx x x dx x x dx =---+--+---(1812)x dx=-+所以412222220()(2)(3)(1812) 3.L y z dx z x dy x y dz x dx -+-+-=-+=⎰⎰ 所以123424.LL L L L I ==+++=-⎰⎰⎰⎰⎰ 七【分析】拉格朗日中值定理:如果()f x 满足在闭区间[],a b 上连续,在开区间(),a b 内可导,则至少存在一点(),a b ξ∈,使等式()()()()f b f a f b a ξ'-=-成立【详解】(1)因为()y f x =在(1,1)-内具有二阶连续导数,所以一阶导数存在,由拉格朗日中值定理得,任给非零(1,1)x ∈-,存在()x θ∈(0,1),()(1,1)x x θ⋅∈-,使[]()(0)'()f x f xf x x θ=+⋅,(0()1)x θ<<成立.因为()f x ''在(1,1)-内连续且"()0,f x ≠所以()f x ''在(1,1)-内不变号,不妨设"()0,f x >则()f x '在(1,1)-内严格单调且增加,故()x θ唯一.(2)方法1:由(1)知[]()(0)'()f x f xf x x θ=+⋅,(0()1)x θ<<于是有[]'()()(0)xf x x f x f θ=-,即[]()(0)'()f x f f x x xθ-=所以[]2'()'(0)()(0)'(0)f x x f f x f f xxx θ---=上式两边取极限,再根据导数定义,得左端=[]0'()'(0)limx f x x f x θ→-[]0'()'(0)lim ()()x f x x f x x x θθθ→-=[]0'()'(0)limlim ()()x x f x x f x x xθθθ→→-=0"(0)lim ()x f x θ→=右端=20()(0)'(0)limx f x f f x x →--0'()'(0)lim2x f x f x →- 洛01'()'(0)lim 20x f x f x →-=-1"(0)2f 导数定义左边=右边,即01"(0)lim ()"(0)2x f x f θ→=,故01lim ().2x x θ→=方法2:由泰勒公式得()21()(0)'(0)"(),02f x f f x f x x ξξ=++ ∈,再与(1)中的[]()(0)'()(0()1)f x f xf x x x θθ=+<<比较,所以[]21'()()(0)'(0)"(),2xf x x f x f f x f x θξ=-=+约去x ,有[]1'()'(0)"(),2f x x f f x θξ=+凑成[]'()'(0)1()"(),()2f x x f x f x xθθξθ-=由于[]0'()'(0)lim "(0)()x f x x f f x xθθ→-=,00lim "()lim "()"(0)x f x f f ξξ→→==所以01"(0)lim ()"(0)2x f x f θ→=故01lim ().2x x θ→=八【详解】222222()1()0()()2x y z h t x y h t h t +=-≥⇒+≤,所以侧面在x oy 面上的投影为:()2221,:()2D x y x y h t ⎧⎫=+≤⎨⎬⎩⎭记V 为雪堆体积,S 为雪堆的侧面积,则由体积公式V (),Df x y dxdy =⎰⎰Dzdxdy =⎰⎰222()()()D x y h t dxdy h t ⎡⎤+=-⎢⎥⎣⎦⎰⎰化为极坐标,令c os ,sin x r y r θθ= =,()0,022h t r πθ≤≤≤≤V ()22202()()h t r d h t rdr h t πθ⎛⎫=- ⎪⎝⎭⎰⎰()22022()()h tr h t rdr h t π⎛⎫=- ⎪⎝⎭⎰()()22222()()h t h t r h t rdr rdr h t π⎛⎫=--⎪ ⎪⎝⎭⎰⎰()()24222()22()h t h t r r h t h t π⎛⎫ ⎪=-⎪⎪⎝⎭33()()248h t h t π⎛⎫=- ⎪⎝⎭3()4h t π=再由侧面积公式:()()22''1x y DS f f dxdy =++⎰⎰()()221xy Dz z dxdy''=++⎰⎰22441()()Dx y dxdy h t h t ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎰⎰22216()1()D x y dxdy h t +=+⎰⎰化为极坐标,令c os ,sin x r y r θθ= =,()0,022h t r πθ≤≤≤≤S =()()22220161h t r d rdr h t πθ+⎰⎰()()22201621h t r rdr h t π=+⎰()()22220161h t r dr h t π=+⎰()()()()22222201616116h t h t r r d h t h t π=+⎰()()()32222202161163h t h t r h t π⎛⎫=⋅⋅+ ⎪ ⎪⎝⎭()()()32232228211163h t h t h t π⎡⎤⎛⎫⎢⎥=⋅⋅+- ⎪ ⎪⎢⎥⎝⎭⎢⎥⎣⎦()()22271163h t π=⋅⋅-213()12h t π=由题意知0.9(),dVS t dt =-将上述()V t 和()S t 代入,得32()13()40.912dh t h t dt ππ=-⋅223()13()()0.9412dh t h t h t dt ππ⇒=-⋅() 1.3dh t dt ⇒=-积分解得13()10h t t C =-+由()0130h =,得130C =.所以13()130.10h t t =-+令()0h t →,即13130010t -+→100t ⇒→因此高度为130厘米的雪堆全部融化所需要时间为100小时.九【详解】由题设知,12,,,s βββ 均为12,,,s ααα 的线性组合,齐次方程组当有非零解时,解向量的任意组合仍是该齐次方程组的解向量,所以12,,,s βββ 均为0Ax =的解.下面证明12,,,s βββ 线性无关.设11220s s k k k βββ+++= ()*把11122,t t βαα=+21223,t t βαα=+121,,s s t t βαα=+ 代入整理得,()()()1121211222110s s s s t k t k t k t k t k t k ααα-++++++= 由12,,,s ααα 为线性方程组0Ax =的一个基础解系,知12,,,s ααα 线性无关,由线性无关的定义,知()*中其系数全为零,即112211221100 0s s s t k t k t k t k t k t k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ 其系数行列式122121210000000000t t t t t t t t122211321211211100000000000(1)ss s t t t t t t t t t t t +--*+-()1121111(1)ss s s t tt t -+-⎛⎫=+- ⎪⎝⎭112(1)s s s t t +=+-(*()变换:把原行列式第i 行乘以21t t -加到第1i +行,其中1,, 1.i s =- )由齐次线性方程组只有零解得充要条件,可见,当12(1)0,sst t +-≠,即12(),sst t ≠-即当s 为偶数,12;t t ≠±当s 为奇数,12t t ≠时,上述方程组只有零解120,s k k k ==== 因此向量组12,,,s βββ 线性无关,故当12122,21,s n t t s n t t =≠±⎧⎨=+≠⎩时,12,,,s βββ 也是方程组0A x =的基础解系.十【详解】(1)方法1:求B ,使1A PBP -=成立,等式两边右乘P ,即AP PB =成立.由题设知,AP ()2,,A x Ax A x =()23,,Ax A x A x =,又3232A x Ax A x =-,故有AP ()22,,32Ax A x Ax A x =-()2000,,103012x Ax A x ⎛⎫⎪= ⎪ ⎪-⎝⎭000103012P ⎛⎫⎪= ⎪⎪-⎝⎭即如果取000103012B ⎛⎫⎪= ⎪ ⎪-⎝⎭,此时的B 满足1A PBP -=,即为所求.方法2:由题设条件()2,,P x Ax A x =是可逆矩阵,由可逆的定义,知有1P -使11PP P P --=()()121112,,,,P x Ax A x P x P Ax P A x ----==E =100010001⎛⎫ ⎪= ⎪⎪⎝⎭即有11121000,1,0001P x P Ax P A x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题设条件,3232A x Ax A x =-,有()131232P A x P Ax A x --=-11232P Ax P A x --=-00312001⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭032⎛⎫⎪= ⎪ ⎪-⎝⎭由1A PBP -=,得1B P AP -=()12,,P A x Ax A x -=()123,,P Ax A x A x -=()11213,,P Ax P A x P A x ---=000103012⎛⎫⎪= ⎪⎪-⎝⎭(2)由(1)及矩阵相似的定义知,A 与B 相似.由矩阵相似的性质:若A B ,则()()f A f B ,则A E +与A E -也相似.又由相似矩阵的行列式相等,得100113011A E B E ⎡⎤⎢⎥+=+=⎢⎥⎢⎥-⎣⎦1001(1)0132011⎡⎤⨯-⎢⎥⎢⎥⎢⎥-⎣⎦行加到行1113(1)11+=--4=-十一【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .在此题中,每位乘客在中途下车看成是一次实验,每个人下车是独立的,有n 个人相当于做了n 次独立重复实验,把乘客下车看成实验成功,不下车看成实验失败,而且每次实验成功的概率都为p ,则问题(1)成为n 重伯努利实验中有m 次成功.【详解】(1)求在发车时有n 个乘客的条件下,中途有m 人下车的概率,相当于求条件概率{}|P Y m X n ==,由题设知,此条件概率服从二项分布,因此根据二项分布的分布律有:{}|(1),0,0,1,2m mn m n P Y m X n C P P m n n -===-≤≤=(2)求二维随机变量(,)X Y 的概率分布,其实就是求{},P X n Y m ==,利用乘法公式,有{}{}{},|P X n Y m P Y m X n P X n ======又X 服从参数(0)λλ>的泊松分布,由泊松分布的分布律有{}!nP X n en λλ-==故{}{}{},|(1)!m mn mn neP X n Y m P Y m X n P X n C P P n λλ--=======-⋅,其中0,0,1,2m n n ≤≤=十二【详解】记121111,n n i n i i i X X X X n n +====∑∑,则()1212X X X =+,即122X X X =+且1111nin i i i E Xnu E X E X u n nn ==⎛⎫==== ⎪⎝⎭∑∑,211n n i i E X E X u n +=⎛⎫== ⎪⎝⎭∑因此()()()221211()2nn i n i i n i i i E Y E X X XE X X X X ++==⎡⎤⎧⎫⎡⎤=+-=-+-⎨⎬⎢⎥⎣⎦⎣⎦⎩⎭∑∑()()()()22112212n i i n i n i i E X X X X XX X X ++=⎧⎫⎡⎤=-+--+-⎨⎬⎢⎥⎣⎦⎩⎭∑()()()()2211221112n n ni i n i n i i i i E X X E X X X X E X X ++===⎡⎤⎧⎫⎡⎤⎡⎤=-+--+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎣⎦∑∑∑因为样本方差()221111n i i S X X n =⎡⎤=-⎢⎥-⎣⎦∑是总体方差的无偏估计,则22ES σ=,即()2221111ni i ES E X X n σ=⎡⎤=-=⎢⎥-⎣⎦∑所以()2211(1)ni i E X X n σ=⎡⎤-=-⎢⎥⎣⎦∑,同理()2221(1)nn i i E X X n σ+=⎡⎤-=-⎢⎥⎣⎦∑而()()()()12121122n n i n i i n ii i E X X X X E X X XX ++==⎧⎫⎧⎫⎡⎤⎡⎤--=--⎨⎬⎨⎬⎣⎦⎣⎦⎩⎭⎩⎭∑∑()()1212ni n ii E X X XX +=⎡⎤=--⎣⎦∑()21121ni n i i n i i E X X X X X X X X ++==--+∑()21121ni n i i n i i EX X EX X E X X E X X ++==--+∑由于122,,,(2)n X X X n ≥ 相互独立同分布,则2i X X 与,1n i X X +与,12X X 与也独立(1,2i n = ).而由独立随机变量期望的性质(若随机变量,X Y 独立,且,E X EY 都存在,则E XY EXEY =),所以2i n i i n i EX X EX EX u ++==,222i i EX X EX E X u ==211n i n i E X X E X EX u ++==,21212E X X E X E X u ==故有()()121n i n i i E X X XX +=⎧⎫⎡⎤--⎨⎬⎣⎦⎩⎭∑()21121ni n i i n i i EX X EX X E X X E X X ++==--+∑()22221ni u u u u ==--+=∑即()()()()221122111()2n n n i i n i n i i i i E Y E X X E X X X X E X X ++===⎡⎤⎧⎫⎡⎤⎡⎤=-+--+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎣⎦∑∑∑()()()2221121n n n σσσ=-+-=-。
2001年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准
2001 年 • 第 3 页
不妨设 f (x) 0 ,则 f (x) 在 (1,1) 内严格单调递增,故 (x) 唯一.
……3 分
(2) 由泰勒公式得 f (x) f (0) f (0)x 1 f ( )x2, 2
(5) 设随机变量 X 的方差为 2,则根据切比雪夫不等式有估计 P{ X E(X ) 2} 1 . 2
二、选择题:(本题共 5 小题,每小题 3 分,满分 15 分)
(1) 设函数 f (x) 在定义域内可导, y f (x) 的图形如右图所示,
则导函数 y f (x) 的图形为
(D)
(2)
设函数
f
(x, y) 在点 (0, 0) 附近有定义,且
f
x
(0,
0)
3,
f y(0,0) 1,则
(C)
(A) dz |(0,0) 3dx dy
(B) 曲面 z f (x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(C)
曲线
z y
f 0
x,
y 在点(0,0,
(2) lim (x) 1 .
x0
2
证法一:(1) 任给非零 x (1,1) ,由拉格朗日中值定理得
f (x) f (0) xf ( (x)x) (0 (x) 1) .
……1 分
因为 f (x) 在 (1,1) 内连续且 f (x) 0 ,所以 f (x) 在 (1,1) 内不变号.
n1 2n 1
n0 2n 1
n1 2n 1
n1 2n 1
1
n1
(1)n 2 1 4n2
x2n ,
x [1,1] ,
……6 分
2001考研数学一真题及答案
2001考研数学一真题及答案2001考研数学一真题及答案2001年的考研数学一真题是考生们备考的重点之一。
本文将为大家详细解析该年的数学一真题,并提供相应的答案。
希望通过这篇文章的阅读,考生们能够更好地理解和掌握数学一的考试内容。
第一部分:选择题选择题是考研数学一中的常见题型,也是考生们需要熟练掌握的部分。
以下是2001年数学一的选择题部分。
1. 设函数 f(x) = x^3 - 3x + 2,下列结论中正确的是:A. f(x) 在 (-∞, +∞) 上恒大于 0B. f(x) 在 (-∞, +∞) 上恒小于 0C. f(x) 在 (-∞, +∞) 上有且仅有一个零点D. f(x) 在 (-∞, +∞) 上有两个零点答案:C解析:我们可以通过求导数来判断函数的单调性和极值点。
对 f(x) 求导,得到f'(x) = 3x^2 - 3。
令 f'(x) = 0,解得x = ±1。
将 x = -1 和 x = 1 代入 f(x) 的表达式,可以发现 f(x) 在 x = -1 和 x = 1 处取零值。
由于 f(x) 是一个三次函数,所以在整个实数范围内,f(x) 有且仅有一个零点。
2. 设 A 是一个 n 阶方阵,且满足 A^3 = A,则 A 的特征值可能是:A. 0B. 1C. -1D. 以上都有可能答案:D解析:根据矩阵的特征值定义,特征值满足 |A - λI| = 0,其中λ 是特征值,I 是单位矩阵。
由于 A^3 = A,我们可以得到 A^3 - A = 0,即 A(A^2 - I) = 0。
所以 A 的特征值可能是方程 A^2 - I = 0 的根,即 1 和 -1。
同时,由于 A 是一个n 阶方阵,所以 A 的特征值可能还包括 0。
第二部分:填空题填空题是考研数学一中的另一种常见题型,考生们需要根据给定的条件填写相应的数值。
以下是2001年数学一的填空题部分。
1. 设函数 f(x) = ax^2 + bx + c,其中a ≠ 0,若对任意的 x,都有f(x) ≥ 0,则实数 a, b, c 满足的条件是 ______。
2001-2010考研数一参考答案
2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=. 于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故 ()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立. 关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim 1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--,由此可知201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃. 因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B 时,知A 与B 有相同的特征值,从而二次型Tx Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx x de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x ∂==∂,'2(1,1)(1,1)3f f y∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ②因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )n αβγ== .于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)S Sx y z dS x y z x y dS ++++=+-利用. 于是==.按第一类曲面积分化为二重积分得(62(6)D DI x y x y dxdy =+-=-+-⎰⎰,其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21224DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤. ⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dz dxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dVdt-,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β= 是12,,s ααα 线性组合,又12,,s ααα 是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β= 均为0Ax =的解. 从12,,s ααα 是0Ax =的基础解系,知()s n r A =-. 下面来分析12,,s βββ 线性无关的条件.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于 12,,s ααα 线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s s t t t t t t t t t t +=+-,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而12,,s βββ 线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Ym X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n i i X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.2002年考研数学一试题答案与解析一、填空题 (1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dPy P dy +=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+=积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',y P y ===得11.C =于是又由01x y==得21,C =所求特解为y =(4)【分析】 因为二次型Tx Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=> 4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n→+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,nn u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n n n u u ∞=++∑.注意111112,1nn n n u u n n n u u n n++++=+⋅→+ 11n n ∞=∑发散⇒1111()n nn u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M-≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)XX X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=及(0)0f '≠,则有20a b +=. 综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y =+⎰. ⇒积分I在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==-七、【证明】 与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''x y y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,212λ=-±.因此齐次微分方程的通解为212()x Y eC x C -=+.设非齐次微分方程的特解为x y Ae *=,将y *代入方程'''x y y y e ++=可得13A =,即有13x y e *=. 于是,方程通解为2121()3xx y Y y eC x C e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.23y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()33x x y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750xy xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点.这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ---- 现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)gx y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T-再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】 (1)若,A B 相似,那么存在可逆矩阵P ,使1,PAP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解】22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=-θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得θ=(1,2θ=>不合题意).于是θ的最大似然估计值为ˆθ=2003年硕士研究生入学考试(数学一)试题答案一、1、e12、542=-+z y x3、14、⎪⎪⎭⎫ ⎝⎛--21325、41 6、)49.40,51.39( 二、CDADBC 三、【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey = 平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y 212)(⎰-=π,因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四、【详解】 因为).21,21(,4)1(2412)(202-∈--=+-='∑∞=x x x x f nn n n 又f(0)=4π, 所以 dt t dt t f f x f n n xxn n ]4)1([24)()0()(20⎰⎰∑∞=--='+=π=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π因为级数∑∞=+-012)1(n n n 收敛,函数f(x)在21=x 处连续,所以].21,21(,124)1(24)(120-∈+--=+∞=∑x x n x f n n n n π令21=x ,得 ∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ, 再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n 五、【详解】 方法一:(1) 左边=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππsin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx e dy ex y=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x x e e ,故由(1)得.2)(20s i n s i n s i n s i n πππ≥+=-⎰⎰--dx e e dx yedy xexx xLy方法二:(1) 根据格林公式,得⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin , ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin . 因为D 具有轮换对称性,所以 ⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin , 故dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--. (2) 由(1)知⎰⎰⎰--+=-Dx y x Lydxdy e e dx ye dy xe)(sin sin sin sin=dxdy e dxdy e DDxy ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin (利用轮换对称性) =.22)(2sin sin π=≥+⎰⎰⎰⎰-dxdy dxdy e e DDx x 六、【详解】 (1) 设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以22101221a k x k k x d x W x ===⎰, ).(2)(22222122221a x k x x k kxdx W x x -=-==⎰由12rW W =可得 2222ra a x =-即 .)1(222a r x +=].)1([2)(22232223332a r x k x x k kxdx W x x +-=-==⎰ 由1223W r rW W ==可得22223)1(a r a r x =+-, 从而 a r r x 231++=,即汽锤击打3次后,可将桩打进地下am r r 21++.(2) 由归纳法,设a r r r x n n 121-++++= ,则)(222111n n x x n x x k kxdx W n n-==++⎰+=].)1([22121a r r x k n n -++++- 由于1121W r W r rW W n n n n ====-+ ,故得22121)1(a r a rr x n n n =+++--+ , 从而 .11111a rr a r r x n nn --=+++=++于是 a rx n n -=+∞→11lim 1, 即若击打次数不限,汽锤至多能将桩打进地下a r-11m. 七、【详解】 (1) 由反函数的求导公式知y dy dx '=1,于是有 )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21xxe C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.s i n 21x e e y xx --=- 八、【详解】 (1) 因为 ⎰⎰⎰⎰⎰⎰⎰==ttttr d rr f drr r f rdrr f d drr r f d d t F 020222002200022)()(2)(sin )()(πππθϕϕθ,202022])([)()()(2)(r d rr f drr t r r f t tf t F tt⎰⎰-=',所以在),0(+∞上0)(>'t F ,故F(t) 在),0(+∞内单调增加. (2) 因 ⎰⎰=ttdrr f rdrr f t G 0202)()()(π,要证明t>0时)(2)(t G t F π>,只需证明t>0时,0)(2)(>-t G t F π,即.0])([)()(0202222>-⎰⎰⎰tttrdr r f dr r f dr r r f令 ⎰⎰⎰-=tt tr d r r f dr r f dr r r f t g 0202222])([)()()(,则 0)()()()(2022>-='⎰dr r t r f t f t g t,故g(t)在),0(+∞内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).又g(0)=0, 故当t>0时,g(t)>0, 因此,当t>0时,).(2)(t G t F π>九、【详解】 方法一: 经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007.从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B ,)3()9(522472009)2(2--=---=+-λλλλλλE B E ,故B+2E 的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数.方法二:设A 的特征值为λ,对应特征向量为η,即 ληη=A . 由于07≠=A ,所以.0≠λ又因 E A A A =*,故有 .*ηληAA =于是有 )()(*)(1111ηληη----==P AP P A P P B ,.)2()2(11ηλη--+=+P AP E B因此,2+λA为B+2E 的特征值,对应的特征向量为.1η-P由于 )7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为.7,1321===λλλ当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP . 因此,B+2E 的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十、【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a ba c a cbcba A ---++++=---==])()())[((3222a c c b b a c b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中.323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba ca c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 ⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点. 十一、【详解】 (1) X 的可能取值为0,1,2,3,X 的概率分布为36333}{C C C k X P kk -==, k=0,1,2,3. 即 X 0 1 2 3 P 201 209 209 201 因此.232013209220912010=⨯+⨯+⨯+⨯=EX (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====3}{}{)(k k X A P k X P A P=∑∑====⋅=303}{616}{k k k X kP k k X P=.41236161=⋅=EX 【评注】本题对数学期望的计算也可用分解法:设,,,1,0件产品是次品从甲箱中取出的第件产品是合格品从甲箱中取出的第i i X i ⎩⎨⎧=则i X 的概率分布为i X 0 1P21 21.3,2,1=i 因为321X X X X ++=,所以 .23321=++=EX EX EX EX 十二、【详解】 (1).,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ =}),,,{min(121x X X X P n >- =},,,{121x X x X x X P n >>>- =nx F )](1[1--=.,,0,1)(2θθθ≤>⎩⎨⎧---x x e x n(3) θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 ⎰⎰+∞--+∞∞-==θθθθdx nxedx x xf E x n )(2ˆ2)(ˆ=θθ≠+n21, 所以θˆ作为θ的估计量不具有无偏性.2004年数学一试题答案一、 1.y=x-1 2.2)(ln 21x 3.π23 4.221x c x c y += 5.91 6.e1二、7.B 8.C 9.B 10.B 11.D 12.A 13.C 14.A 三、15.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得.),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(t tt -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ,故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则 24ln 2)(e x x x -='ϕ,2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.16.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t). 根据牛顿第二定律,得kv dt dvm -=. 又dxdv v dt dx dx dv dt dv =⋅=, 由以上两式得dv k mdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而)).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCev -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dt dx-=0,知)1()(000--==--⎰t m kt t m ke mkv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为 02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dtdxv x t t m kt t t =-====-===,得 ,021k m v C C =-= 于是 ).1()(0t m ke kmv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.17.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx ydydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d z z y x d x d y z d z d x y d y d z x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I18.【证】 记 1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n 存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.19.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xzz x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x .令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.类似地,由61)3,3,9(22-=∂∂=---x z A ,21)3,3,9(2=∂∂∂=---y x z B ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.20.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an n n n a a A .当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为。
2001考研数二真题及解析
2001 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 1x →= (2) 设函数()y f x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(0,1)处的法线方程为 . (3)()32222sin cos xx xdx ππ-+=⎰(4) 过点1,02⎛⎫⎪⎝⎭且满足关系式'arcsin 1y x =的曲线方程为 . (5) 设方程123111111112a x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦有无穷多个解,则a = . 二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]{}()f f f x 等于 ( )(A)0 (B)1 (C)1,1,0,1,x x ⎧≤⎪⎨>⎪⎩ (D)0,1,()1,1,x f x x ⎧≤⎪=⎨>⎪⎩(2) 设当0x →时,2(1cos )ln(1)x x -+是比sin nx x 高阶的无穷小,sin nx x 是比()21x e -高阶的无穷小,则正整数n 等于 ( )(A)1 (B)2 (C)3 (D)4 (3) 曲线22(1)(3)y x x =--的拐点个数为 ( )(A)0. (B)1. (C)2. (D)3(4)已知函数()f x 在区间(1,1)δδ-+内具有二阶导数,'()f x 严格单调减少,且(1)'(1)1,f f ==则 ( )(A)在(1,1)δ-和(1,1)δ+内均有()f x x <. (B)在(1,1)δ-和(1,1)δ+内均有()f x x >.(C)在(1,1)δ-内,()f x x <.在(1,1)δ+内,()f x x >. (D)在(1,1)δ-内,()f x x >.在(1,1)δ+内,()f x x <. (5)设函数()f x 在定义域内可导,()y f x =的图形如右图所示,则导函数()y f x '= 的图形为 ( )三、(本题满分6分)求22.(21)1dxxx ++⎰四、(本题满分7分)求极限sin sin sin lim sin x t xt x t x -→⎛⎫⎪⎝⎭,记此极限为()f x ,求函数()f x 的间断点并指出其类型.五、(本题满分7分)设()x ρρ=是抛物线y x =上任一点(,)(1)M x y x ≥处的曲率半径,()s s x =是该抛物线上介于点(1,1)A 与M 之间的弧长,计算2223d d ds ds ρρρ⎛⎫- ⎪⎝⎭的值.(在直角坐标系下曲率公式为322"(1')y K y =+)六、(本题满分7分)设函数()f x 在[0,)+∞上可导,(0)0f =,且其反函数为()g x .若()20()f x x g t dt x e =⎰,求()f x . 七、(本题满分7分)设函数(),()f x g x 满足()(),()2()xf xg x g x e f x ''==-,且(0)0,(0)2f g ==,求20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰八、(本题满分9分)设L 是一条平面曲线,其上任意一点(,)P x y (0)x >到坐标原点的距离,恒等于该点处的切线在y 轴上的的截距,且L 经过点1,0.2⎛⎫ ⎪⎝⎭(1) 试求曲线L 的方程(2) 求L 位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围图形面积最小.九、(本题满分7分)一个半球体状的雪堆,其体积融化的速率与半球面面积S 成正比,比例常数0K >.假设在融化过程中雪堆始终保持半球体状,已知半径为0r 的雪堆在开始融化的3小时内,融化了其体积的78,问雪堆全部融化需要多少小时?十、(本题满分8分)设()f x 在区间[,](0)a a a ->上具有二阶连续导数,00f =(), (1) 写出()f x 的带拉格朗日余项的一阶麦克劳林公式; (2) 证明在[,]a a -上至少存在一点η,使3()3().aaa f f x dx η-''=⎰十一、(本题满分6分)已知矩阵100011110,101.111110A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且矩阵X 满足,AXA BXB AXB BXA E +=++其中E 是3阶单位阵,求X .十二、(本题满分6分)设124,,,ααα为线性方程组0AX =的一个基础解系,112223,,t t βααβαα=+=+334441,,t t βααβαα=+=+试问实数t 满足什么关系时,1234,,,ββββ也为0AX =的一个基础解系.2001 年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】6-【详解】21lim2x x x →+-1x →=1x →=131x x x→--+=121x x →-=1x →=-lim 2===6=-(2)【答案】 x −2y +2=0.【详解】在等式2cos()1x y e xy e +-=-两边对x 求导, 其中y 视为x 的函数,得()()22sin()0x y e x y xy xy +''++=,即2(2')sin()(')0x y e y xy y xy +⋅++⋅+=将x =0, y =1代入上式, 得(2')0e y ⋅+=,即'(0) 2.y =- 故所求法线方程斜率12k -=-12=,根据点斜式法线方程为:11,2y x -= 即 x −2y +2=0.(3)【答案】8π 【分析】根据区域对称性与被积函数的奇偶性:设()f x 在有界闭区域[],a a -上连续,则有()()()()()02,0a a aaaf x dx f x dx f x f x dx f x --⎧= ⎪⎨⎪= ⎩⎰⎰⎰为偶函数,为奇函数, 【详解】由题设知()32222sin cos xx xdx ππ-+⎰32222222cos sin cos x xdx x xdx ππππ--=+⎰⎰在区间[,]22ππ-上,32cos x x 是奇函数,22sin cos x x 是偶函数,故3222cos 0x xdx ππ-=⎰,22222202sin cos 2sin cos x xdx x xdx πππ-=⎰⎰,所以,原式32222222cos sin cos x xdx x xdx ππππ--=+⎰⎰22202sin cos x xdx π=⎰2201sin 22xdx π=⎰201(1cos 4)4x dx π=-⎰ 220011cos 44416x xd x ππ=-⎰2011sin 44216x ππ=⋅-08π=-.8π=(4)【答案】1arcsin .2y x x =- 【详解】方法1:因为()arcsin 'arcsin y x y x '=+,所以原方程'arcsin 1y x +=可改写为 ()arcsin 1,y x '=两边直接积分,得 arcsin .y x x c =+ 又由1()02y =代入上式,有 10arcsin 2x c ⋅=+,解得1.2c =- 故所求曲线方程为 1arcsin .2y x x =-方法2:将原方程写成一阶线性方程的标准形式1'.arcsin y y x+=由一阶线性微分方程()()dyP x y Q x dx+=通解公式: ()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()1arcsin P x Q x x==,代入上式得:1arcsin y eC e dx x -⎡⎤=+⎢⎥⎢⎥⎣⎦⎰ 11arcsin arcsin arcsin arcsin 1arcsin d x d x x x e C e dx x -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰lnarcsin lnarcsin 1arcsin x x e C e dx x -⎡⎤=+⎢⎥⎣⎦⎰1arcsin arcsin arcsin x C dx x x ⎡⎤=+⎢⎥⎣⎦⎰arcsin arcsin C x x x =+ 又由1()0,2y =解得1.2C =- 故曲线方程为:1arcsin .2y x x =-(5)【答案】 -2【详解】方法1:利用初等行变换化增广矩阵为阶梯形,有111111112a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦1121,3111111aa a -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行互换 21121(-1),(-)01132301112a a a a a aa -⎡⎤⎢⎥--⎢⎥⎢⎥--+⎣⎦行的倍分别加到,行 11223011300(1)(2)2(2)a a a a a a -⎡⎤⎢⎥--⎢⎥⎢⎥-++⎣⎦行加到行 由非齐次线性方程组有无穷多解的充要条件:设A 是m n ⨯矩阵,方程组Ax b =有无穷多解()()r A r A n ⇔==<. 可见,只有当a =−2 时才有秩()()23r A r A ==<,对应方程组有无穷多个解.方法2: 设A 是m n ⨯矩阵,方程组Ax b =有无穷多解()()r A r A n ⇔=<,则方程组123111111112a x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦有无穷多解()()3r A r A ⇔=<. 从而有0A =,即111111a A a a=2222,311111a a a a a+++行分别加到行1111211211a a a a ++行提出()()1111(1)201023001a a a ⨯-+--行分别()加到,行10201a a a -+-1+1=(-1)()2(2)(1)0,a a =+-=则,12a a ==-或.当1a =时,1111111111111(1)23000011120003A ⎡⎤⎡⎤⎢⎥⎢⎥=⨯-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦行分别加到,行 可见()1()2,r A r A =≠=原方程组无解.当2a =-时,有211112111122A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦11221312112111--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,行互换 11222103332111--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦行行1122103330333--⎡⎤⎢⎥⨯-⎢⎥⎢⎥--⎣⎦行2加到3行 112203330000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦3行+2行11222(3)01110000--⎡⎤⎢⎥÷---⎢⎥⎢⎥⎣⎦行 可知,()()23,r A r A ==<故当2a =-时,原方程组有无穷多解.二、选择题 (1)【答案】(B)【详解】因为1,1()0,1x f x x ⎧≤⎪=⎨>⎪⎩,所以在整个定义域内()0()1f x f x ==或,所以()1f x ≤,于是[]()1f f x =,从而[]{}()()11f f f x f ==(2)【答案】(B)【详解】根据高阶无穷小的定义:如果lim0βα=,就说β是比α高阶的无穷小,由题设当0x →时,2(1cos )ln(1)x x -+是比sin n x x 高阶的无穷小,所以20(1cos )ln(1)0lim sin n x x x x x →-+=22012lim nx x x x x →⋅ ⋅等价3012limn x x x → 等价301lim 2n x x -→= 从而n 应满足2n ≤;又由sin nx x 是比2(1)x e -高阶的无穷小,所以根据高阶无穷小的定义有:2sin 0lim 1nx x x x e →=-20lim nx x x x →⋅ 等价10lim n x x -→=,从而n 应满足2n ≥ 综上,故正整数2n =,故选(B)(3)【答案】(C)【详解】22(1)(3)y x x =--,所以 y '222(1)(3)2(1)(3)x x x x =--+--4(1)(2)(3)x x x =---y ''[]4(2)(3)(1)(3)(1)(2)x x x x x x =--+--+--2224564332x x x x x x ⎡⎤=-++-++-+⎣⎦2431211x x ⎡⎤=-+⎣⎦y '''[]4612x =-()242x =-令0y ''=,即2312110x x -+=,因为判别式:∆224124311b ac =-=-⋅⋅120=>,所以0y ''=有两个不相等的实根,且()2y ''23212211=⋅-⋅+10=-≠,所以两个实根不为2,因此在使0y ''=这两点处,三阶导数0y '''≠,(一般地,若()00f x ''=,且()00f x '''≠,则点()()0,x f x 一定是曲线()y f x =的拐点),因此曲线有两个拐点,故选(C)或根据y ''2431211x x ⎡⎤=-+⎣⎦是一条抛物线,且与x 轴有两个不相同的交点,所以在两个交点的左右y ''符号不相同,满足拐点的定义,因此选(C)(4)【答案】(A)【详解】方法1:令()()F x f x x =-,则()()1F x f x ''=-()()1f x f ''=-由于'()f x 严格单调减少,因此当(1,1)x δ∈-时,()()1f x f ''>,则()F x '()()1f x f ''=-0>;当(1,1)x δ∈+时,()()1f x f ''<,则()F x '()()1f x f ''=-0<,且在1x =处()()1(1)10F f f '''=-=,根据判定极值的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知()F x 在1x =处取极大值,即在在(1,1)δ-和(1,1)δ+内均有()()10F x F <=,也即()f x x <. 故选(A)方法2:排除法,取()21()2x f x x -=-+,则()()21123f x x x '=--+=-+,()20f x ''=-<,所以满足题设在区间(1,1)δδ-+内具有二阶导数,'()f x 严格单调减少,且(1)'(1)1,f f ==当1x <时或1x >时,均有()f x ()212x x -=-+x <,因此可以排除(B)、(C)、(D),选(A)(5) 【答案】(D)【详解】从题设图形可见,在y 轴的左侧,曲线()y f x =是 严格单调增加的,因此当0x <时,一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,由此可排除(A),(C);又()y f x =的图形在y 轴右侧靠近y 轴部分是单调增,所以在这一段内一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,进一步可排除(B),故正确答案为(D).三【详解】作积分变量变换,令tan ,x u =则2sec ,dx udu =原式222sec (2tan 1)tan 1uduu u =++⎰ 22sec (2tan 1)sec uduu u =+⎰ 2(2tan 1)cos duu u =+⎰222sin (1)cos cos du u u u =+⎰()222cos 2sin cos cos udu u u u =+⎰ 22cos 2sin cos udu u u =+⎰2cos sin 1udu u =+⎰2sin sin 1d uu =+⎰arctan(sin )u C=+C +四【分析】应先求出()f x 的表达式,再讨论它的间断点,首先明确间断点的类型分为两大类:第一类间断点和第二类间断点,第一类间断点又可分为:可去间断点(左右极限存在且相等的间断点)和跳跃间断点(左右极限存在但不相等的间断点);第二类间断点又可分为:无穷间断点(有一个极限为无穷的间断点)和振荡间断点(极限值在某个区间变动无限多次).【详解】由 ()f x =sin sin sin lim sin xt xt x t x -→⎛⎫⎪⎝⎭sin sin sin ln sin lim xt x t x t xe-⎛⎫ ⎪⎝⎭→=sin ln sin sin sin lim x t t x x t xe⎛⎫⎪-⎝⎭→=又 sin limln sin sin sin t xx t t x x →⎛⎫= ⎪-⎝⎭sin lim ln 11sin sin sin t x x t t x x →⎛⎫+- ⎪-⎝⎭sin sin limln 1sin sin sin t xx t x t x x →-⎛⎫=+ ⎪-⎝⎭sin sin lim sin sin sin t x x t x t x x →-⎛⎫= ⎪-⎝⎭limsin t xx x →=sin xx= 所以 ()f x sin ln sin sin sin lim x t t x x t x e⎛⎫⎪-⎝⎭→=sin limln sin sin sin t x x t t x x e→⎛⎫⎪-⎝⎭=sin xxe=由()f x sin x xe =的表达式,可以看出自变量x 应满足sin 0x ≠,从而,0,1,2,x k k π≠ =±±当0x →时,sin 0lim ()lim x xx x f x e→→=0lim1sin x xxee →==e =,所以0x =为()f x 的第一类间断点(左右极限相等,又进一步可知是可去间断点);对于非零整数k ,sin lim ()lim x xx k x k f x eππ--→→=limsin x k xxeπ-→=sin 0x → ∞,故,1,2,x k k π= =±±为()f x 的第二类间断点(无穷间断点)五【解答】由y ,有'y y ''== 抛物线在点(,)M x y 处的曲率半径3221(1')()"y x K y ρρ+===3221⎡⎤+⎢⎥=3211⎡⎤+⎢⎥=321(41).2x =+ 若已知平面曲线AM 的显式表示为()y f x =()a xb ≤≤,则弧长为as =⎰,其中()f x 在[],a b 有连续的导数.根据上述结论,所以抛物线上AM 的弧长()s sx =1=⎰1=⎰1=⎰ 故 d d dxds dsdxρρ=3211(41)2x '⎡⎤+⎢⎥⎣⎦='⎛⎫ ⎪⎝⎭⎰1213(41)4x ⋅+⋅=2(41)x=+=221()d d d ds ds dx ds dx ρρ=⋅11d dx =⋅'⎛⎫⎪⎝⎭⎰===因此 2223()d d ds ds ρρρ-()(32213142x =⋅+()91436x x =+-9=六【详解】()f x 的反函数是()g x ,根据反函数的性质有(())g f x x =,()20()f x x g t dt x e =⎰两边对x 求导,有()()()20()f x x g t dt x e ''=⎰()2()2x x g f x f x x e xe '⇒=+⎡⎤⎣⎦又(())g f x x =,所以2()2x x xf x x e xe '=+()2x x f x xe e '⇒=+, (0,)x ∈+∞两边积分()()2x x f x dx xe e dx '=+⎰⎰()2x x f x xe dx e dx ⇒=+⎰⎰()2x x f x xde e ⇒=+⎰()2x x x f x xe e dx e ⇒ -+⎰分部()2x x x f x xe e e C ⇒=-++()x x f x xe e C ⇒=++.由于题设()f x 在[0,)+∞上可导,所以在0x =处连续,故()()00lim ()lim 10x xx x f f x xe e C C ++→→==++=+=, 所以1C =-,于是()1x x f x xe e =+-, [0,)x ∈+∞七【详解】由()(),()2()x f x g x g x e f x ''==-,得()()2()x f x g x e f x '''==-,即()()2x f x f x e ''+=此为二阶常系数线性非齐次方程,且右端呈()xm P x e λ型(其中()2,1m P x λ= =),对应的齐次方程为()()0f x f x ''+=,特征方程为210r +=,对应的特征值为r i =±,于是齐次方程的通解为:12cos sin y C x C x =+, 因为1λ=r ≠,所以设特解为*x y ae =(a 为实数),()*xy ae''=,代入()()2x f x f x e ''+=,2x x x ae ae e +=,所以2a a +=,即1a =,从而特解*xy e =,非齐次方程的通解为()12cos sin xf x C x C x e =++,又(0)0f =,所以,()0120cos0sin00f C C e =++=110C ⇒+=11C ⇒=-又,()12sin cos xf x C x C x e '=-++(),0(0)2fg '==,所以,()0120sin0cos0f C C e '=-++21C =+2=21C ⇒=,所以原方程的解为:()sin cos xf x x x e =-+以下计算积分,有两个方法: 方法1:20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰()20()1()(1)g x x f x dx x π+-=+⎰ ()20()1()()()(1)f x x f x f x g x dx x π'+-' = +⎰0()1f x dx x π'⎡⎤=⎢⎥+⎣⎦⎰0()1f x d x π=+⎰0()1f x x π=+()(0)110f f ππ=-++sin cos (0)1e f ππππ-+=-+11e ππ+=+ 方法2:20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰200()()1(1)g x f x dx dx x x ππ=-++⎰⎰ 00()1()11g x dx f x dx x x ππ'⎛⎫=+ ⎪++⎝⎭⎰⎰00()1()11g x dx f x d x x ππ=+++⎰⎰ 000()()()111g x f x f x dx dx x x xπππ' +-+++⎰⎰分部()000()()()()111g x f x g x g x f x dx dx x x xπππ' = +-+++⎰⎰ 0()1f x x π=+()(0)110f f ππ=-++sin cos (0)1e f ππππ-+=-+11e ππ+=+八【详解】(1)设曲线L 过点(,)P x y 的切线方程为()Y y y X x '-=-,令0X =,则Y xy y '=-+,即它在y 轴上的截距为xy y '-+,根据两点()()00,,,x y x y 距离公式d =,所以原点到点(,)P x y ,由题设(,)P x y (0)x >到坐标原点的距离恒等于该点处的切线在y 轴上的截距,所以:xy y '-+= (0)x >,即yy x '=, (0)x >此为一阶齐次方程,按规范方法解之,命y ux =,则dyu xdu dx=+,代入,方程变为: du u x u dx +=⇒du x dx=dx x =-积分得dxx=-⎰(ln ln u cx⇒=-C u x ⇒+把yu x=代入上式,得y C x x +=y C ⇒+=. 由题设曲线经过点1,02⎛⎫⎪⎝⎭,代入得0C +=,则12C =,故所求方程为:12y +=,即21.4y x =- (2) 由(1)知214y x =-,则2y x '=-,点21(,),4P x y P x x ⎛⎫=- ⎪⎝⎭,所以在点P 处的切线方程为:()2124Y x x X x ⎛⎫--=--⎪⎝⎭,分别令0X =,0Y =,解得在y 轴,x 轴上的截距分别为214x +和128x x+. 此切线与两坐标轴围成的三角形面积为:()A x 21112284x x x ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭()22141,064x x x=+ > 由于该曲线在第一象限中与两坐标轴所围成的面积为定值,记0S ,于是题中所要求的面积为:()()0S x A x S =-()220141,64x S x=+- 求最值点时与0S 无关,以下按微分学的办法求最值点.()S x '()22014164x S x '⎛⎫=+- ⎪⎝⎭()()222228414164x x x x ⋅+-+= ()()222228414164x x x x x ⋅+-+=()()2224112164x x x +-=令()0S x '=得x ==当0x <<时,()0S x '<;当x >时,()0S x '>, 根据极值存在的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知:x =是()S x 在0x >处的唯一极小值点,即最小值点, 于是所求切线方程为:214Y X ⎛⎫ ⎪--= ⎪⎝⎭⎝⎭⎝⎭,即133Y X =-+九【详解】方法1:半球形雪堆在时刻t 时设其半径为r ,则半球体积323V r π=,侧面积22S r π=. 由题设体积融化的速率与半球面面积S 成正比,知:dVkS dt=-, 由于r 是t 的函数,323dV d r dt dt π⎛⎫= ⎪⎝⎭22dr r dt π=,代入上式,得:22dr r kS dt π=-,即2222drr k r dtππ=-⋅,从而dr kdt =-,00t r r ==. 积分得r kt c =-+,把00t r r ==代入,得0c r =,所以0r kt r =-+.又半径为0r 的雪堆在开始融化的3小时内,融化了其体积的78,即00037188t VV V V ==-=,其中0V 表示0t =时的V . 以V 的公式代入上式,为33330212383t t t V r r ππ=====⋅将0r kt r =-+代入上式,两边约去23π,得:()330018kt r r -+=,即0012kt r r -+= 从而求得:016k r =,于是0r kt r =-+0001166t r t r r ⎛⎫=-+=- ⎪⎝⎭,当6t =时0r =,雪融化完.方法2:半球形雪堆在时刻t 时设其半径为r ,则半球体积323V r π=,侧面积22S r π=,联立323V r π=,22S r π=消去r ,得:S =由题设体积融化的速率与半球面面积S 成正比,知:dVkS dt=-,从而推知00t dVV V dt==- =分离变量23dV V=-,积分:133V c =-+,把00t V V ==代入,1303c V =,所以,1133033V V =-.又由00037188t VV V V ==-=,代入上式1133003332V V =-得k =故 133V 1303V =-1303V =113300132V V t =-.命0V =,解得:6t =,即雪堆全部融化需6小时.十【应用定理】闭区间上连续函数的介值定理:设()f x 在[],a b 上连续,()()f a f b ≠,则对()()f a f b 与之间的任何数η,必存在c (a c b <<),使得()f c η=.【详解】(1)麦克劳林公式其实就是泰勒公式中,把函数在零点展开.()f x 的拉格朗日余项一阶麦克劳林公式为:221()()(0)(0)()(0)22f f x f f x f x f x x ξξ''''''=++=+, 其中ξ位于0和x 为端点的开区间内,[],x a a ∈-.(2)方法1:将()f x 从a -到a 积分21()(0)().2aaaaaaf x dx f xdx f x dx ξ---'''=+⎰⎰⎰ 而2(0)(0)(0)02aaa a ax f xdx f xdx f a--'''==⨯=-⎰⎰从而有21()().2aa aaf x dx f x dx ξ--''=⎰⎰ 因()f x ''在[],a a -上连续,故有()f x ''在[],a a -上存在最大值M ,最小值m (由闭区间上的连续函数必有最大值和最小值),即[,][,]min (),max (),a a a a m f x M f x --''''==易得 (),[,].m f x M x a a ''≤≤∈-因此3322111()(),22233aa a a a a a x Ma f x dx f x dx M x dx M a ξ---''=≤==-⎰⎰⎰同理223111()().223aa a aa a f x dx f x dx m x dx ma ξ---''=≥=⎰⎰⎰ 因此 33()aam f x dx M a -≤≤⎰.由连续函数介值定理知,存在[],a a η∈-,使33()()aaf f x dx a η-''=⎰,即3()3()aaa f f x dx η-''=⎰.方法2 :观察要证的式子,做变限函数:()()xxF x f t dt -=⎰,易得(0)0F =,()()()F x f x f x '=+-(变限积分求导)()()()()()()F x f x f x f x f x '''''=+-=-- ()()()()()()F x f x f x f x f x ''''''''''=--=+-则有 (0)(0)(0)000F f f '=+-=+=(0)(0)(0)(0)(0)0F f f f f ''''''=--=-=将它展开成2阶带拉格朗日余项麦克劳林公式:2311()(0)(0)(0)()23!F x F F x F x F x ξ''''''=+++ 331100()(()())66F x f f x ξξξ'''''''=++=+-其中(0,)x ξ∈,[],x a a ∈-由于()f x ''在[],a a -上连续,则由连续函数介值定理,存在[],ηξξ∈-,使1()(()())2f f f ηξξ''''''=+- (因为[]1(()())(),,2f f f x x a a ξξ''''''+-∈∈-) 于是有,存在(),a a η∈-,使3331111()00()(()())()6323F x F x f f x f x ξξξη'''''''''=++=⨯+-=把x a =代入()F x 有:31()()3F a f a η''=,即3()()3a a a f x dx f η-''=⎰ (),a a η∈-即 3()3()aaa f f x dx η-''=⎰(),a a η∈-十一【详解】题设的关系式AXA BXB AXB BXA E +=++⇒AXA BXB AXB BXA E +--=⇒()()AXA AXB BXB BXA E -+-=⇒()()AX A B BX B A E -+-= ⇒()()AX A B BX A B E ---=⇒()()AX BX A B E --=即 ()().A B X A B E --=其中, A B -100011110101111110⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭111011001--⎛⎫ ⎪=- ⎪ ⎪⎝⎭因为 1111101A B ---=-1111(1)1+-=-10=≠,故由n 阶矩阵A 可逆的充要条件0A ≠,知矩阵A B -可逆,用初等行变换求()1A B --:111100(,)011010001001A E E --⎛⎫ ⎪-=- ⎪ ⎪⎝⎭1101013010011001001-⎛⎫⎪⎪ ⎪⎝⎭行分别加到1,2行 100112010011001001⎛⎫ ⎪⎪ ⎪⎝⎭2行加到1行故而 ()1112011,001A B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭于是,等式()()A B X A B E --=两边左、右乘 ()1A B -- 可得()21X A B -⎡⎤=-⎣⎦112112011011001001⎛⎫⎛⎫ ⎪⎪=⎪⎪ ⎪⎪⎝⎭⎝⎭125012.001⎛⎫ ⎪= ⎪ ⎪⎝⎭十二【详解】由题设知,12,,,s βββ均为12,,,s ααα的线性组合,齐次方程组当有非零解时,解向量的任意组合仍是该齐次方程组的解向量,所以12,,,s βββ均为0Ax =的解. 下面证明12,,,s βββ线性无关. 设 11220s s k k k βββ+++= ()*把11122,t t βαα=+21223,t t βαα=+121,,s s t t βαα=+代入整理得,()()()1121211222110s s s s t k t k t k t k t k t k ααα-++++++=由12,,,s ααα为线性方程组0Ax =的一个基础解系,知12,,,s ααα线性无关,由线性无关的定义,知()*中其系数全为零,即112211221100 0s s s t k t k t k t k t k t k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ 其系数行列式122121210000000000t t t t t t t t 122211321211211100000000000(1)ss s t t t t t t t t t t t +--*+-()1121111(1)ss s s t tt t -+-⎛⎫=+- ⎪⎝⎭112(1)s s st t +=+- (*()变换:把原行列式第i 行乘以21t t -加到第1i +行,其中1,, 1.i s =-)由齐次线性方程组只有零解得充要条件,可见,当12(1)0,s st t +-≠,即12(),s s t t ≠-即当s为偶数,12;t t ≠±当s 为奇数,12t t ≠时,上述方程组只有零解120,s k k k ====因此向量组12,,,s βββ线性无关,故当12122,21,s n t t s n t t =≠±⎧⎨=+≠⎩时,12,,,s βββ也是方程组0Ax =的基础解系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ). 2、曲线1)cos(2-=-+e xy e yx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ). 4、微分方程11arcsin 2=-+'x y x y 满足)(1y =0的特解为:( ). 5、方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x . 2、0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而n x x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且 )1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <.5、(同数学一的二1)三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+''). 六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2x e -)(x f 且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比 比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆 在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间? 十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系, 144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxey -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ).3.02='+''y y y 满足初始条件1)0(,1)0(='=y y 的特解是( ). 4.1lim n n→∞=( ). 5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1; (C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B) ⎰xdt t f 02)(;(C)⎰--x dt t f t f t 0)]()([; (D) ⎰-+xdt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xeqy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3.4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有(A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关; (C)21321,,,ββαααk +线性无关; (D) 21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x xe xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小.七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限. 九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+.十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A , 4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2003年考研数学(二)真题评注 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若 时, 与 是等价无穷小,则a= -4 .【分析】 根据等价无穷小量的定义,相当于已知 ,反过来求 a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简. 【详解】 当 时, , . 于是,根据题设有 ,故a=-4.【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.(2) 设函数y=f(x)由方程 所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 . 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式 两边直接对x 求导,得 ,将x=1,y=1代入上式,有 故过点(1,1)处的切线方程为 ,即【评注】本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.(3)的麦克劳林公式中项的系数是 .【分析】本题相当于先求y=f(x)在点x=0处的n阶导数值,则麦克劳林公式中项的系数是【详解】因为,,,于是有,故麦克劳林公式中项的系数是【评注】本题属常规题型,在一般教材中都可找到答案.(4)设曲线的极坐标方程为,则该曲线上相应于从0变到的一段弧与极轴所围成的图形的面积为 .【分析】利用极坐标下的面积计算公式即可.【详解】所求面积为= .【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.(5)设为3维列向量,是的转置. 若,则= 3 .【分析】本题的关键是矩阵的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由 = ,知,于是【评注】一般地,若n阶矩阵A的秩为1,则必有完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】. (6)设三阶方阵A,B满足,其中E为三阶单位矩阵,若,则 .【分析】先化简分解出矩阵B,再取行列式即可.【详解】由知,,即,易知矩阵A+E可逆,于是有再两边取行列式,得,因为 , 所以 .【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设均为非负数列,且 , , ,则必有(A) 对任意n成立. (B) 对任意n成立.(C) 极限不存在. (D) 极限不存在. [ D ]【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B);而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】用举反例法,取,,,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.(2)设 , 则极限等于(A) . (B) .(C) . (D) . [ B ]【分析】先用换元法计算积分,再求极限.【详解】因为== ,可见 =【评注】本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知是微分方程的解,则的表达式为(A) (B)(C) (D) [ A ]【分析】将代入微分方程,再令的中间变量为u,求出的表达式,进而可计算出 .【详解】将代入微分方程,得,即 .令 lnx=u,有,故 = 应选(A).【评注】本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点.(C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]yO x【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过. (5)设 , , 则(A) (B)(C) (D) [ B ]【分析】直接计算是困难的,可应用不等式tanx>x, x>0.【详解】因为当 x>0 时,有tanx>x,于是,,从而有,,可见有且,可排除(A),(C),(D),故应选(B).【评注】本题没有必要去证明,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I:可由向量组II:线性表示,则(A) 当时,向量组II必线性相关. (B) 当时,向量组II必线性相关.(C) 当时,向量组I必线性相关. (D) 当时,向量组I必线性相关.[ D ]【分析】本题为一般教材上均有的比较两组向量个数的定理:若向量组I:可由向量组II:线性表示,则当时,向量组I必线性相关. 或其逆否命题:若向量组I:可由向量组II:线性表示,且向量组I线性无关,则必有 . 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】用排除法:如,则,但线性无关,排除(A);,则可由线性表示,但线性无关,排除(B);,可由线性表示,但线性无关,排除(C). 故正确选项为(D).【评注】本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。