2012-2013第一学期初三数学期末考试题-昌平及答案

合集下载

2012-2013初三上期末各区县精选题

2012-2013初三上期末各区县精选题

北京市西城区2012—2013学年度第一学期期末试卷(北区)九年级数学 2013.18.如图,△ABC 中,∠B =60°,∠ACB =75°,点D 是BC 边上一动点, 以AD 为直径作⊙O ,分别交AB 、AC 于E 、F ,若弦EF 的最小值 为1,则AB 的长为 A. 22 B. 632C. 1.5D.12.已知二次函数c bx ax y ++=2的图象与x 轴交于(1,0)和(1x ,0),其中121x -<<-,与y 轴交于正半轴上一点.下列结论:①0>b ;②241b ac <;③a b >;④a c a 2-<<-.其中所有正确结论的序号是_______. 22.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x ≤m ,求二次函数267y x x =-+的最大值.他画图研究后发现,1x =和5x =时的函数值相等,于是他认为需要对m 进行分类讨论.他的解答过程如下:∵二次函数267y x x =-+的对称轴为直线3x =∴由对称性可知,1x =和5x =时的函数值相等∴若1≤m <5,则1x =时,y 的最大值为2; 若m ≥5,则m x =时,y 的最大值为26m -请你参考小明的思路,解答下列问题:(1)当2-≤x ≤4时,二次函数1422++=x x y (2)若p ≤x ≤2,求二次函数1422++=x x y (3)若t ≤x ≤t +2时,二次函数1422++=x x y23.已知抛物线212(1)y x m x n =+-+经过点(1-,132m +). (1)求n m -的值;(2)若此抛物线的顶点为(p ,q ),用含m 的式子分别表示p 和q ,并求q 与p 之间 的函数关系式; (3)若一次函数2128y mx =--,且对于任意的实数x ,都有1y ≥22y ,直接写出m 的取值范围.24.以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.(1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM.①如图1,当点D、C分别在AO、BO的延长线上时,FMEM=_______;②如图2,将图1中的△AOB绕点O沿顺时针方向旋转α角(060α<<),其他条件不变,判断FMEM的值是否发生变化,并对你的结论进行证明;(2)如图3,若BO=,点N在线段OD上,且NO=2.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.图2CBOMEFADMBOFCEA图125.如图1,平面直角坐标系xOy 中,抛物线212y x bx c =++与x 轴交于A 、B 两点,点C 是AB 的中点,CD ⊥AB 且CD =AB .直线BE 与y 轴平行,点F 是射线BE 上的一个动点,连接AD 、AF 、DF .(1)若点F 的坐标为(92,1),AF ①求此抛物线的解析式;②点P 是此抛物线上一个动点,点Q 在此抛物线的对称轴上,以点A 、F 、P 、Q为顶点构成的四边形是平行四边形,请直接写出点Q 的坐标;(2)若22b c +=-,2b t =--,且AB 的长为kt ,其中0t >.如图2,当∠DAF =45°时,求k 的值和∠DF A 的正切值.东城区2012—2013学年第一学期期末统一检测 初三数学试题 2013.18. 已知点A (0,2),B (2,0),点C 在2y x =的图象上,若△ABC 的面积为2,则这样的C 点有A .1 个B .2个C .3个D .4个 12.如图所示,在△ABC 中,BC =6,E ,F 分别是AB ,AC 的中点,点P 在射线EF 上,BP交CE 于D ,点Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x .当CQ =21CE 时,y 与x 之间的函数式是 ; 当CQ =n1CE (n 为不小于2的常数)时, y 与x 之间的函数关系式是 .23.已知,二次函数2y ax bx =+的图象如图所示.(1)若二次函数的对称轴方程为1x =,求二次函数的解析式;(2)已知一次函数y kx n =+,点(,0)P m 是x 轴上的一个动点.若在(1)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2y ax bx =+的图象于点N .若只有当1<m <53时,点M 位于点N 的上方,求这个一次函数的解析式;(3)若一元二次方程20ax bx q ++=有实数根,请你构造恰当的函数,根据图象直接写出q 的最大值.24.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.25. 在平面直角坐标系xOy 中,抛物线22(1)6y x m x m =---+-交x 轴负半轴于点A ,交y 轴正半轴于点B (0 , 3),顶点C 位于第二象限,连结AB ,AC ,BC . (1) 求抛物线的解析式;(2) 点D 是y 轴正半轴上一点,且在B 点上方,若∠DCB =∠CAB ,请你猜想并证明CD 与AC 的位置关系;(3) 设与△AOB 重合的△EFG 从△AOB 的位置出发,沿x 轴负方向平移t 个单位长度(0<t ≤3)时,△EFG 与△ABC 重叠部分的面积为S ,求S 与t 之间的函数关系式.北京市朝阳区2012-2013学年度第一学期期末统一考试九年级数学试卷8.如图,在平行四边形ABCD 中,AB =4cm ,AD =2cm ,∠A =60°,动点E 自A 点出发沿折线AD —DC 以1cm/s 的速度运动,设点E 的运动时间为x (s ),0<x <6, 点B 与射线BE 与射线AD 交点的距离为y (cm ),则下列图象中能大致反映y 与x 之间的函数关系的是12. 如图,抛物线y=4-9x 2通过平移得到抛物线m ,抛物线m 经过点B (6,0)和O (0,0),它的顶点为A ,以O 为圆心,OA 为半径作圆,在第四象限内与抛物线y=4-9x 2交于点C ,连接AC ,则图中阴影部分的面积为 .24.如图所示,在平面直角坐标系中,Rt △OBC 的两条直角边分别落在x 轴、y 轴上, 且OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点F.(1)若抛物线过点A 、B 、C, 求此抛物线的解析式;(2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积是多少?求出此时点M 的坐标.O6xy y O6xy O 6 xO6 xy ABCD25.已知:⊙O 是△ABC 的外接圆,AB=AC ,点M 为⊙O 上一点,且在弦BC 下方. (1)如图①,若∠ABC =60°,BM =1,CM =3,则AM 的长为 ; (2)如图②,若∠ABC =45°,BM =1,CM =3,则AM 的长为 ; (3)如图③,若∠ABC =30°,BM =1,CM =3,则AM 的长为 ;(4)如图④,若∠ABC =n °,BM a =,CM b =(其中b a >),求出AM 的长(答案用含有a ,b 及n °的三角函数的代数式表示).图① 图② 图③ 图④图1 图2 图3 图4昌平区2012—2013年第一学期初三年级期末质量抽测数学 试 卷 2013.18.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于A. 49π B.23π C. 43π D. π12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是 cm 2; 当EF =7cm 时,△EFC 的面积是 cm 2. 22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.PCBAABC PP 'D PACBABC DP FE请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且P A =PB =1,PD ,则∠APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且P A =2,PB =1,PF 则∠APB 的FEDC BA度数等于,正六边形的边长为.23.如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡P A与水平方向PC的夹角为30o,AC⊥PC于点C,P、A两点相距解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A.24.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求a的值.25.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(- 4),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC 相似?如果存在,求出点N的坐标;如果不存在,请说明理由.大兴区2012~2013学年度第一学期期末试题 初三数学8.已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数bax y +=的图象可能正确的是12.现有直径为2的半圆O 和一块等腰直角三角板(1)将三角板如图1放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边交圆于点Q ,则BQ 的长为________;(2)将三角板如图2放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边的延长线交圆于Q ,则BQ 的长为______ .图1 图222.操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形。

2012-2013昌平区初三数学期末试题答案

2012-2013昌平区初三数学期末试题答案

昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分)13.解:原式=22…………………………………………………………… 3分 =1. ………………………………………………………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,, 1.7AD CE BE DE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, ……………………………………………………………… 2分∴33CD ==. ……………………………………………………………… 3分∴3 1.7 4.7CE =+=. ……………………………………………………………… 4分答:这棵树的高度为4.7米.15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ …………………………………………………… 2分 解之,得 1,2.k k ≠-⎧⎨≤⎩………………………………………………………………………… 4分∴ 2k ≤且1k ≠-. ………………………………………………………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………………………………………………… 1分如图所示. ………………………………………………………………………………3分 (2)如图所示. ………………………………………………………………………………………5分17.解:2 4 52 4 52 5 5554甲乙 4 5 52. ………………………………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………………………………………… 4分 ∴甲、乙获胜的机会不相同. ………………………………………………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m ,∴m = 3. …………………………………………………………………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………………………………………… 2分 与y 轴交点C (0,3). ……………………………………………………………… 3分(2)当y ﹥0 时,-1 < x < 3. ………………………………………………………………… 4分 (3)当-1≤x ≤2时,0≤y ≤4. ………………………………………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O 于T ,∴∠OTD = 90°.………………………………………… 1分 ∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ………………………………………………………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. …………………………………………………………………… 3分∴∠CET = 90°,CE DT ==∴2BC CE ==∵tan ABC AC BC ∠==, ∴∠ABC = 30°. ………………………………………………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. ………………………………………………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥,∴DE ∥AC ,∠2=45° . ∴DE=AE , AE CD BEBD=. ………………………………………………………………… 2分∵1tan 2B =,∴12DE BE=. ……………………………………………………………………………… 3分∴12AE BE= . ……………………………………………………………………………… 4分 ∴12CD BD=. ……………………………………………………………………………… 5分21. (1)证明:连接OE . ………………………………………………………………………… 1分∵四边形ABC D 是矩形, ∴AD ∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC, ∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………………………………………………………… 2分21EABCD(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.∵DC =2 ,∠C = 90°,∴DB = 6. ……………………………………………………………………………… 3分 ∵∠A = 90°, ∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =,AD =∴2DE =.连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB ∥EF .∴DEF ∆∽DAB ∆. …………………………………………………………………………… 4分∴DE DFAD BD = .6DF =. ∴214DF =. ∴⊙O 的半径为218. …………………………………………………………………………5分 22.解:150︒ . ……………………………………………………………………………………… 1分 (1)135……………………………………………………………………………… 3分 (2)120………………………………………………………………………………… 5分 五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………………………………………… 1分∴cos3012PC =︒= . …………………………………………………………… 2分∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分 ∴设抛物线的解析式为2(9)12y a x =-+. ………… 4分 ∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). ……………………………… 5分(3)由(1)知C (12 , 0) ,易求得AC =∴12A (. ……………………………………………………………………… 6分 当x =12时,2432(129)12=273y =--+≠ ………………………………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . …………………………………………………………… 1分 又∵60A ∠=, ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . …………………………………………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120,∴12秒后点Q 到达AB 的中点N . …………………………………………………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ………………………………………………………………4分 (3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. …………………………………………………………………………5分 ① 当点Q 在NB 上时(如图1),13N F a =, ∴1243BF a =-.∵点E 是BD 的中点,若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立. ∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM =. ∴243242448a -=.∴4a =,112BF =. ……………………………………………………………… 6分 ② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm . ∴36123a ==. ………………………………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C 重合. 由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm . ∴ 72243a ==. ……………………………………………………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm /s 或24cm /s.25.解:(1)∵抛物线的顶点坐标为4C -(,图1图23)图3∴抛物线的对称轴为直线4x=-.∵抛物线在x轴上截得的线段AB的长为6,∴ A(-1 , 0 ),B( -7 , 0 ) . …………………………………………………1分设抛物线解析式为()24y a x=++∴()2014a=-++解得,a=.∴ 二次函数的解析式为)24y x=++……………………………2分(2)作点A关于y轴的对称点A',可得A'(1.0).连接A'C交y轴于一点即点M,此时MC + MA的值最小.由作法可知,MA = M A'.∴MC + MA = MC + M A'=A'C.∴当点M在线段A'C上时,MA + MC取得最小值. …………………………………3分∴线段A'C与y轴的交点即为所求点M.设直线C A'的解析式为y kx b=+(k≠0),∴4k b,k b.=-+=+⎪⎩∴k b==. …………………………4分∴直线C A'的解析式为y x=+.∴点M的坐标为( 0,5).………………………………………………………………5分(3)由(1)可知,C(-4,,设对称轴交x轴于点D,∴AD = 3.∴在Rt△ADC 中,3tan CAD ∠= ∴∠CAD = 30o,∵AC = BC ,∴∠ABC = ∠CAB = 30o.∴∠ACB = 120°. …………………………………………………………………………6分 ①如果AB = A N 1= 6,过N 1作E N 1⊥x 轴于E . 由△ABC ∽△BA N 1得∠BA N 1 = 120o, 则∠EA N 1 = 60o. ∴N 1E = 33,AE =3. ∵A (-1 , 0 ), ∴OE = 2.∵点N 在x 轴下方,∴点N 2(2,-…………………………………………………………………………7分②如果AB = B N 2,由对称性可知N 2(-10,-…………………………………………8分 ③如果N 3A = N 3B ,那么点N 必在线段AB 的中垂线即抛物线的对称轴上,在x 轴下方的抛物线上不存在这样的点N .经检验,点N 1 (2,-)与N 2 (-10,-都在抛物线上 . ……………………………9分综上所述,存在这样的点N ,使△NAB ∽△ABC ,点N 的坐标为(2,-或(-10,-。

昌平初三上学期期末考试数学试题及答案

昌平初三上学期期末考试数学试题及答案

昌平区2010—2011学年第一学期初三年级期末考试数学 试 卷2011.1考生须知1.本试卷共6页,共四道大题,25个小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知1cos 2=A ,则锐角A 的度数是A .30︒B .45︒C .60︒D .75︒ 2.抛物线21y x =-的顶点坐标是 A .(01),B .(01)-,C .(10),D .(10)-,3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若40BOC ∠=o, 则∠C 的度数等于A .20oB .40oC .60oD .80o4.在△ABC 中,∠C =90°,cos A=53,那么tan B 的值等于 A .35 B . 45 C . 34 D . 435.两个圆的半径分别是2cm 和7cm ,圆心距是5cm ,则这两个圆的位置关系是 A .外离 B .外切 C .相交 D .内切 6.如图,在ABC △中,DE BC ∥,且3AE =,5,EC =6DE =,则BC 等于A.10 B.16 C.12D.1857.如图所示,直线l 与半径为5 cm 的⊙O 相交于A 、B 两点,且与半径OC 垂直,垂足为H ,AB =8 cm ,若要使直线l 与⊙O 相切, 则l 应沿OC 方向向下平移A . 1cmB .2cmC . 3 cmD .4cm8.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度始终保持不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为二、填空题(共4道小题,每小题4分,共16分)第5题图CBO AEABCD OBA HlA. B. C. D.9.如图,已知PA ,PB 分别切⊙O 于点A 、B ,60P ∠=o,8PA =, 那么弦AB 的长是 .10.圆锥的母线长为3,底面半径为2,则它的侧面积为 .11.将一副直角三角板(含45o 角的直角三角板ABC 及含30o 角的直角 三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的 面积之比等于 .12.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点 C 作直线切半圆于点E ,交AD 边于点F ,则FEEC= .三、解答题(共10道小题,共50分)13.(4分)计算:1230tan 345sin 2-︒+︒14.(4分)已知: 如图,在△ABC 中,D ,E 分别是AB ,AC 上一点, 且∠AED =∠B .若AE =5,AB = 9,CB =6 ,求ED 的长.15. (5分)如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC =4,求⊙O 的直径.16. (6分)已知二次函数2y x 2x 3=--.(1)用配方法把该函数化为k h x a y +-=2)(的形式,并写出抛物线223y x x =--的对称轴和顶点坐标; (2)在直角坐标系中,直接画出抛物线223y x x =--.(注意:关键点要准确,不必写出画图象的过程.) (3)根据图象回答:①x 取什么值时,抛物线在x②x 取什么值时,y 的值随xAB C E DA DBCOAOBF A E17.(5分)如图,在ABC△中,AD是边BC上的高,E为边AC的中点,14BC=,12AD=,4 sin5B=.(1)求线段DC的长;(2)求ta n∠EDC的值.AB CDE18. (5分)如图,M 为线段AB 上的点,AE 与BD 交于点C , ∠DME =∠A =∠B ,且MD 交AC 于F ,ME 交BC 于G . (1)写出图中三对相似三角形;(2)选择(1)中的一个结论进行证明.19.(5分)已知:如图,在Rt ABC △中,90ACB ∠=o ,4AC =,43BC =,以AC 为直径的O e 交AB 于点D ,点E 是BC 的中点, OB ,DE 相交于点F . (1)求证:DE 是⊙O 的切线; (2)求EF :FD 的值.20.(5分)小明利用所学的数学知识测量生活中一建筑物的高.他从自家楼房顶C 处,测得对面直立的建筑物AB 的顶端A 的仰角为45o ,底端B 的俯角为30o,已量得21DB =米.(1)在原图中画出从点C 看点A 时的仰角及看点B 时的俯角,并分别标出它们的大小;(2)请你帮助小明求出建筑物AB 的高.21.(5分)已知抛物线C 1:221)1y mx m x m =++++(,其中m ≠0. (1)求证:m 为任意非零实数时,抛物线C 1与x 轴总有两个不同的交点;(2)求抛物线C 1与x 轴的两个交点的坐标(用含m 的代数式表示);(3)将抛物线C 1沿x 轴正方向平移一个单位长度得到抛物线C 2,则无论m 取任何非零实数,C 2都经过同一个定点,直接写出这个定点的坐标. 注:答题卡上的直角坐标系为备用.BM FGDECAADOF B D CAB22. (6分)已知⊙O,半径为6米,⊙O外一点P,到圆心O的距离为10米,作射线PM,PN,使PM经过圆心O,PN与⊙O相切,切点为H.(1)根据上述条件,画出示意图;(2)求PH的长;(3)有两动点A,B,同时从点P出发,点A以5米/秒的速度沿射线PM方向运动,点B以4米/秒的速度沿射线PN方向运动.设运动的时间为t(秒).当t为何值时,直线AB与⊙O相切?四、解答题(共3道小题,共22分)23.(7分)一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多⨯-=(元),买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10(2010)1因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?24.(8分)已知正方形ABCD ,边长为3,对角线AC ,BD 交点O ,直角MPN 绕顶点P 旋转,角的两边分别与线段AB ,AD 交于点M ,N (不与点B ,A ,D 重合). 设DN =x ,四边形AMPN 的面积为y .在下面情况下,y 随x 的变化而变化吗?若不变,请求出面积y 的值;若变化,请求出y 与x 的关系式. (1)如图1,点P 与点O 重合;(2)如图2,点P 在正方形的对角线AC 上,且AP =2PC ; (3)如图3,点P 在正方形的对角线BD 上,且DP =2PB .25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.昌平区2010— 2011.1一、选择题(共8个小题,每小题4分,共32分)xy41CBAO 图1(P )NDMO CBA 图2PABCOM D N图3P A BCOMDNOBA1 2 3 4 5 6 7 8 CBACDBBA二、填空题(共4个小题,每小题4分,共16分)题 号9101112答 案 8π61:314三、解答题(共10道小题,共50分) 13.(4分)解:原式=32333222-⨯+⨯………………………………3分 =1-3 ………………………………4分 14.(4分)解:∵∠AED =∠ABC ,∠A =∠A ,∴△AED ∽△ABC . ………………………………2分∴BCDEAB AE =. ………………………………3分 ∵AE =5,AB = 9,CB =6,∴695DE=, ∴.310=DE ………………………………4分15. (5分)解:连结OA ,OB .∵∠BAC =120°,AB =AC =4,∴∠CBA =∠C =30°. ………………………………2分 ∴ ∠O =60° ………………………………3分 ∵OB =OA ,∴△OAB 是等边三角形. ………………………………4分 ∴OB =OA =4.则⊙O 的直径是8. ………………………………5分16. (6分) 解:(1)y =x 2-2x -3= x 2-2x +1-4=(x -1)2-4 ……………………………… 1分 ∴抛物线-2-32y =x x 的对称轴是x =1,顶点坐标是(1,-4). ……………………………… 3分(2)如图. ……………………………… 4分A BCEDxyO1234–1–2–3–41234–1–2–3–4(3)① x < -1或x >3; ……………………………… 5分② x ≤1. ……………………………… 6分17.(5分)解:(1)在Rt BDA △中,90BDA =o∠,12AD =,4sin 5AD B AB ==, 15AB ∴=. ……………………………1分 222215129BD AB AD ∴-=-=.1495DC BC BD ∴=-=-=. ……………………………2分(2)在Rt ADC △中,90ADC =o∠,512tan ==DC AD C . ……………………………3分DE Q 是斜边AC 上的中线,12DE AC EC ∴==.EDC C ∴=∠∠. ……………………………4分∴ta n ∠EDC=512tan =C . ……………………………5分18.(5分)(1)答:图中三对相似三角形是:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM …………………………3分(2)证明△AMF ∽△BGM .证明:∵∠AFM =∠DME +∠E ,∠BMG =∠A +∠E , 又∵∠DME =∠A ,∴∠AFM =∠BMG . …………………………………4分 ∵∠A =∠B ,∴△AMF ∽△BGM . …………………………………5分19.(5分)(1)证明:连结CD (如图), …………………… 1分∵AC 是⊙O 的直径,∴90ADC BDC ∠=∠=o.E Q 是BC 的中点,DE BE EC ∴==.∴DBE BDE ∠=∠OA OD =Q , ADO A ∴∠=∠.90DBE A ∠+∠=o Q , 90BDE ADO ∴∠+∠=o . 90EDO ∴∠=o .BMFG DECAB CDE AF O D A即OD DE ⊥. ∵点D 在⊙O 上,∴DE 是⊙O 的切线 . ……………………………………………………………… 3分(2)解:连结OE .∵E 是BC 的中点,O 是AC 的中点, ∴OE ∥AB ,OE =12AB . ∴△OEF ∽△BDF .在Rt ABC △中,AC = 4,43BC = 根据勾股定理,得 AB = 8, ∴OE = 4, ∵sin ∠ABC =4182AC AB ==, ∴∠ABC =30°. ∴∠A =60°.∴ AOD △是边长为2的等边三角形. ∴ 2AD =,BD = AB -AD =6.∴ EF :FD = OE :BD = 4:6 = 2:3 . ………………………………………… 5分20.(5分)(1)如图. ………………………………………… 1分(2)据题意,得 四边形CDBG 是矩形,CG =DB =21. …………… 2分 在Rt CG △A 中,∠AGC =90°,45ACG =o Q ∠.21AG CG ∴==. ………………………………………… 3分 在Rt BCG △中,∠BGC=90°,∴3tan 302173BG CG =⋅==o…………………4分 ∴ 建筑物的高AB =(21+37)米. ……………………… 5分 21. (5分)()222214214(1)44144b ac m m m m m m m-=+-+=++--Q ()证明:10=>,∴一元二次方程mx 2+(2m +1)x +m +1=0有两个不相等的实数根.即:m 取任意非零实数,抛物线C 1与x 轴总有两个不同的交点. ……………… 2分 (2)解:∵ mx 2+(2m +1)x +m +1=0的两个解分别为:x 1=-1,x 2=-mm 1+, ∴A (-1,0),B (-mm 1+,0) . ……………………………… 4分 (3) 解:∵抛物线C 1与x 轴的一个交点的坐标为A (-1,0),A BC DG 45°30°∴将抛物线C 1沿x 轴正方向平移一个单位长度得到抛物线C 2与x 轴交点坐标为(0,0), 即 无论m 取任何非零实数,C 2必经过定点(0,0). ………………… 5分 22.(6分)(1)如图. …………………………………… 1分(2)连结OH .∵PN 与⊙O 相切,切点为H ,∴OH ⊥PN .∴∠PHO =90°.在Rt △PHO 中,PO =10,OH =6,根据勾股定理,得2268PH PO HO -=-=22=10. ………………… 3分(3)画图. …………………………………………… 4分 分两种情况,如图所示.①当点A 在点O 左边时,直线A 1B 1切⊙O 于M 1. 连结O M 1,则∠OM 1 B 1= 90°. 在△PB 1A 1和△PHO 中,1482PB t t PH ==,15102PA t tPO ==. ∴11PB PA PH PO=. 又∠P =∠P ,∴△PB 1A 1∽△PHO .∴∠PB 1A 1=∠PHO =90°. ∴∠HB 1M 1= 90°.∴四边形B 1M 1OH 为矩形, ∴B 1H =M 1O . ∴8-4t = 6.∴t = 0.5. ………………… 5分 ②当点A 在点O 右边时.同理,得 t = 3.5. ………………… 6分 即 当t 为0.5秒或3.5秒时,直线AB 与⊙O 相切. 四、解答题(共3道小题,共22分) 23.( 7分 )解:(1)设一次购买x 只,则20-0.1(10)x -=16,解得50x =.∴一次至少买50只,才能以最低价购买 . ………………… 2分 (2)当1050x <≤时,2[200.1(10)12]0.19y x x x x =---=-+ …………… 4分当50x >时,(2016)4y x x =-=. ……………………………………5分(3)220.190.1(45)202.5y x x x =-+=--+.① 当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大. ② 当45<x ≤50时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当46x =时,y 1=202.4,当50x =时,y 2=200. ………………………………………………6分 y 1>y 2.O H N MNMA 2B 2M 2M 1A1B 1HOP即出现了卖46只赚的钱比卖50只嫌的钱多的现象.当45x =时,最低售价为200.1(4510)16.5--=(元).∴为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到16.5元 . …………………………………………………………7分24.( 8分 )解:(1)当x 变化时,y 不变.如图1,94AFOE AMON y S S ===正方形四边形. ……………………………………… 2分(2)当x 变化时,y 不变.如图2,作OE ⊥AD 于E ,OF ⊥AB 于F . ……………………………………… 3分 ∵AC 是正方形ABCD 的对角线,∴∠BAD =90°,AC 平分∠BAD .。

北京昌平第一学期初三数学期末考试题(含答案)

北京昌平第一学期初三数学期末考试题(含答案)

昌平区初三年级第一学期期末质量抽测数学试卷一、选择题(共8道小题,每小题4分,共32分)1.已知⊙O1和⊙O2的半径分别为3和5,如果O1O2= 8,那么⊙O1和⊙O2的位置关系是A.外切 B.相交 C.内切 D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A . B. C. D.3.如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是A.1 B .C .D.24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A.①B.②C.③D.④5.如图,在△中,点分别在边上,∥,若,,则等于A. B. C. D.6.当二次函数取最小值时,的值为A.B.C.D.7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是A.米B.米C.米D.米8.已知:如图,在半径为4的⊙O中,AB为直径,以弦(非直径)为对称轴将折叠后与相交于点,如果,那么的长为A.B.C.D.二、填空题(共4道小题,每小题4分,共16分)9.如果,那么锐角的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.AB C30°④③②①11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .12.在平面直角坐标系中,直线和抛物线在第一象限交于点A , 过A 作轴于点.如果取1,2,3,…,n 时对应的△的面积为,那么_____;_____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13. 如图1,正方形ABCD 是一个6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径; (2)求点P 经过的路径总长.14. 计算:.15. 现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).绕点A 顺时针旋转90° 绕点B 顺时针旋转90° 绕点C 顺时针旋转90°输入点P图2输出点CP图1xOy16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A (1,0),B (-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式; (2)如果点是抛物线上的一点,求△ABD 的面积.18. 如图,在△ABC 中,∠ABC =2∠C ,BD 平分∠ABC ,且,,求AB 的值.四、解答题(共4道小题,每小题5分,共20分) 19. 如图,在平面直角坐标系中,⊙A 与y 轴相切于点,与x 轴相交于M 、N 两点.如果点M 的坐标为,求点N 的坐标.yxOAB MN20.(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;(2)如果,是(1)中图象上的两点,且,请直接写出、的大小关系;(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.21. 已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.22. 阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果,求的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF . 请你回答:(1)AB 和EH 的数量关系为 ,CG 和EH 的数量关系为 ,的值为 .(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为 yOx(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F . 如果,那么的值为(用含m ,n 的代数式表示).五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离千米,B 市位于台风中心M 正东方向千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响. (1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2 – kx + k – 1( k >2).(1)求证:抛物线y = x 2 – kx + k - 1( k >2)与x 轴必有两个交点; (2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m ,n )为圆心,1为半径作xyO –1–21234–1–21234ME北ABME北AB圆,直接写出:当m取何值时,x 轴与相离、相切、相交.25.已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图3数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)题 号 1 2 3 4 5 6 7 8 答 案ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题 号 9 10 11 12答 案4 ,2n (n +1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分) 13.解:(1)如图所示:PAB CD (2)分(2)由题意得,点P 经过的路径总长为:. (4)分14.解:原式= (3)分=.................................................................. 4分=. (5)分15.解:列表如下:O 1 O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O2(O2,O1) (O2,O2) (O2,A)A (A,O1) (A,O2) (A,A) (4)分所以,两次所献血型均为O型的概率为.…………………………………………………………5分16.解:依题意,可知:………………………………………1分 (2)分, (3)分.∴. (4)分.……………………………………………………………5分∴AB两处的距离为米.17.解:(1)∵抛物线与y轴相交于点C(0,3),∴设抛物线的解析式为. (1)分∵抛物线与x轴相交于两点,∴ (2)分解得:∴抛物线的函数表达式为:. (3)分(2)∵点是抛物线上一点,∴. (4)分∴. (5)分18.解: ∵BD 平分∠ABC , ∴∠ABC =2∠1=2∠2. ∵∠ABC =2∠C ,∴∠C =∠1=∠2. …………………………… 1分 ∴. ……………………………… 2分∴.又∵∠A=∠A ,∴△ABD ∽△ACB . ……………………………………………………………………… 3分∴. ……………………………………………………………………… 4分∴.∴(舍负). ……………………………………………………………………5分四、解答题(共4道小题,每小题5分,共20分) 19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .,),(0B 轴相切于点y 与A ⊙∵ ∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形..A B =OC ,=OB =AC ∴ ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . …………………………………………………… 2分,)0,(M ∵ .=M O ∴ 在 Rt △AMC 中,设AM =r .O A B MNCyx13-21-3.根据勾股定理得:.=r ,求得即分3 …………………………………………………………………… .的半径为A ⊙∴ 分4 ………………………………………………………………… .=B A =CO =AM 即 ∴MC =CN=2 .分5 …………………………………………………………………………. )0 ,(N ∴ 20.解:(1)………………………………………………………………… 1分. ………………………………………………………………… 2分画图象,如图所示. …………………………………………………………………… 3分 分4 ………………………………………………………………………………….)2( ,抛物线向上平移两个单位后得到抛物线)如图所示,将抛物线3(分5 ………….的根的横坐标即为方程两点B 、A 则,B 、A 交于点轴x 与ABy = x 2 2∙x 3y = x 2 2∙x 1yOx21.(1)证明:连接OD .∵AB =AC , ∴. ∵OD =OC , ∴. ∴.∴∥. ∴. ………………… 1分∵DE ⊥AB ,FEDOCA∴. ∴. ∴.∴DE 是⊙O 的切线. …………………………………………………………… 2分(2)解:连接AD .∵AC 为⊙O 的直径, ∴. 又∵DE ⊥AB , ∴Rt ∽Rt . ………………………………………………………… 3分∴.∴. ∵⊙O 的半径为4, ∴AB =AC =8. ∴. ∴.………………………………………………………………………… 4分 在Rt 中,∵,∴. 又∵AB =AC , ∴是等边三角形. ∴ ∴. ……………………………………………………………………5分 22.解:(1),,. …………………………………………………………… 3分(2). …………………………………………………………………………………… 4分分5 ………………………………………………………………………………… .)3( 五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分) 23.解:(1)如图1,过点A 作AC ⊥MF 于点C , 过点B 作BD ⊥MF 于点D .依题意得:∠AME =15°,∠EMD =60°,,,∴∠AMC =45°,∠BMD =30°. ∴,. …………… 2分∵台风影响半径为60千米, 而,,∴A 市不会受到此次台风影响,B 市会受到此次台风影响. (4)北MCDEAB分(2)如图2,以点B 为圆心,以60千米为半径作交MF 于P 、Q 两点,连接PB.…………………………………………………………………………5分∵,台风影响半径为60千米,∴.∵ BD ⊥PQ ,PQ =2PD =60. ……………………… 6分 ∵台风移动速度为30千米/小时, ∴台风通过PQ 的时间为小时.即B 市受台风影响的持续时间为小时 . ………………………………………………7分24.(1)证明:∵, (1)分又∵, ∴. ∴即.∴抛物线y = x 2 – kx + k - 1与x 轴必有两个交点. (2)分(2) 解:∵抛物线y = x 2 – kx + k - 1与x 轴交于A 、B 两点,∴令,有.解得:. (3)分∵,点A 在点B 的左侧,∴.∵抛物线与y 轴交于点C ,FEQ PDM北B∴. ………………………………………………………………………… 4分 ∵在Rt中,, ∴, 解得.∴抛物线的表达式为. ………………………………………………… 5分 (3)解:当或时,x 轴与相离. ……………………………6分当或或时,x 轴与相切. …………………………7分 当或时,x 轴与相交. (8)分25.解:(1) 30°. ……………………………………………………………………………………… 1分(2)当点E 在线段CD 上时,; (2)分当点E 在CD 的延长线上, 时,; ………………………………………… 3分 时,;时,. (4)分(3)作于点G , 作于点H.由AD ∥BC ,AD =AB =CD ,∠BAD =120°,得∠ABC =∠DCB =60°,易知四边形AGHD 是矩形和两个全等的直角三角形.则GH=AD , BG=CH . ∵,∴点、B 、C 在一条直线上.设AD =AB =CD=x ,则GH=x ,BG=CH=,.作于Q.在Rt △EQC 中,CE =2,,PQ ABCDEF ME'H G∴, .∴E'Q=. (5)分作于点P.∵△ADE绕点A顺时针旋转120°后,得到△ABE'.∴△A EE'是等腰三角形,.∴在Rt△AP E'中,E'P=.∴EE'=2 E'P= (6)分∴在Rt△EQ E'中,E'Q=.∴.∴ (7)分∴,.∴在Rt△E'AF中,,∴Rt△AG E'∽Rt△F A E'.∴∴.∴.由(2)知:.∴.………………………………………………………………………8分。

【精品】北京市昌平区九年级数学上册期末试卷(及答案)

【精品】北京市昌平区九年级数学上册期末试卷(及答案)

北京市昌平区九年级数学上册期末试卷(含答案)(时间:120分钟满分:100分)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= .11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF 的过程:.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.答案一、选择题(本题共16分,每小题2分)1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD 的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为6(图中的阴影部分),∴AC•AA′=3AA′=6,∴AA′=2,即将函数y=(x﹣2)2+1的图象沿y轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+3.故选:B.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【分析】当点N在AD上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N在DC上时,MN长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9 .【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= 1 .【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5 米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5 .【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x <﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在网格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【解答】解:tan30°﹣2cos60°+cos45°+π0=×﹣2×+×+1=1﹣1+1+1=2.【点评】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.【分析】先在Rt△ABD中利用三角函数定义求出AD=,BD=1.再得到CD=2.然后在Rt△ADC中根据勾股定理求出AC即可.【解答】解:∵AD⊥BC,垂足为D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=2,∴sinB=,cosB=,即=, =,解得:AD=,BD=1.∵BC=3,∴CD=2.在Rt△ADC中,AC==.【点评】本题考查了解直角三角形和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【分析】(1)由BO是△ABC的角平分线、BC=CD知∠ABO=∠CBO=∠D,根据∠AOB=∠COD即可得证;(2)由△AOB∽△COD知=,据此即可得出答案.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的判定与性质、角平分线的性质、等边对等角等知识点.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.【分析】(1)根据表格数据,利用待定系数法即可求出二次函数表达式;(2)画出二次函数的示意图,找出函数图象在x轴下方的部分,此题得解.【解答】解:(1)由已知可知,二次函数经过(0,3),(1,0)则有,解得:,所以二次函数的表达式为y=x2﹣4x+3;(2)函数图象如图所示:由函数图象可知当1<x<3时,y<0.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据给定点的坐标画出函数图象.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×2=,设⊙O的半径为r,则OC=r﹣CD=r﹣1,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣1)2+()2,解得r=2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【解答】(1)解:∵点P(1,4),Q(2,m )是双曲线y=图象上一点.∴4=,m=,∴k=4,m=2.(2)观察函数图象可知,R的横坐标n的取值范围:0<n<2或n<﹣2.【点评】本题考查反比例函数图象上点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)【分析】(1)过C作CE∥AB交BD于E.根据题意可得答案;(2)在Rt△CEB中,利用三角函数可得tan∠ECB=,代入数据可得BE的长,然后在Rt△CED中可得tan∠DCE==≈0.25,进而可得ED长,再求和即可.【解答】解:(1)过C作CE∥AB交BD于E.由已知,∠DCE=14°,∠ECB=22°,∴∠DCB=36°;(2)在Rt△CEB中,∠CEB=90°,AB=20,∠ECB=22°,∴tan∠ECB==≈0.4,∴BE≈8,在Rt△CED中,∠CED=90°,CE=AB=20,∠DCE=14°,∴tan∠DCE==≈0.25,∴DE≈5,∴BD≈13,∴国旗杆BD的高度约为13米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

北京市昌平区九年级上册期末数学试题有答案【精选】

北京市昌平区九年级上册期末数学试题有答案【精选】

昌平区第一学期初三年级期末质量抽测数 学 试 卷学校: 班级 姓名一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知∠A 为锐角,且sin A =2,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图是某几何体的三视图,该几何体是A .圆锥B .圆柱C .长方体D .正方体(第2题图)(第3题图)(第4题图)3.如图,点B 是反比例函数ky x =(0k ≠)在第一象限内图象上的一点,过点B 作BA ⊥轴于点A ,BC⊥y 轴于点C ,矩形AOCB 的面积为6,则的值为 A .3B .6C .-3D .-64.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为 A .40° B .30° C .80°D .100°5.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是 A .2(6)5y x =-+ B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+- 6.如图,将ΔABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是(第6 题图)(第7 题图)A .60°B .65°C . 70°D .75°7.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是A .25°B .40°C .50°D .65°8.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是A .两人从起跑线同时出发,同时到达终点.B .小苏跑全程的平均速度大于小林跑全程的平均速度. C. 小苏在跑最后100m 的过程中,与小林相遇2次.D .小苏前15s 跑过的路程小于小林前15s 跑过的路程.二、填空题(共8道小题,每小题2分,共16分)9.请写出一个图象在第二,四象限的反比例函数的表达式.10.如图,在平面直角坐标系Oy 中,点A ,点B 的坐标分别为(0,2), (1-,0),将线段AB 沿轴的正方向平移,若点B 的对应点的坐标为 'B (2,0),则点A 的对应点'A 的坐标为.(第10题图)11.如图,P A ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP=8,则 △PDE 的周长为.12.抛物线2y x bx c =++经过点A (0,3),B (2,3),抛物线的对称轴为.(第11题图)13.如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为.14.如图,在直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE的长度是.15.如图,在平面直角坐标系Oy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:.(第13题图) (第14题图) (第15题图) 16.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.(第16题图)三、解答题(共6道小题,每小题5分,共30分)︒-︒+︒-︒.17.计算:2sin30tan60cos60tan4518.二次函数图象上部分点的横坐标,纵坐标y的对应值如下表:(1(2)在图中画出这个二次函数的图象.19.如图,在△ABC 中, AB=AC ,BD ⊥AC 于点D .AC =10,cos A =45,求BC 的长.20.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC .(1)求证:A BCD ∠=∠; (2)若AB =10,CD =8,求BE 的长.21.尺规作图:如图,AC 为⊙O 的直径.(1)求作:⊙O 的内接正方形ABCD .(要求:不写作法,保留作图痕迹); (2)当直径AC=4时,求这个正方形的边长.22.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D 用高1.5米的测角仪DA 测得塔顶M 的仰角为30︒,然后沿DF 方向前行40m 到达点E 处,在E 处测得塔顶M 的仰角为60︒.请根据他们的测量数据求此塔MF 的高.(结果精确到0.1m ,参考数据:41.12≈,73.13≈,45.26≈)四、解答题(共4道小题,每小题6分,共24分)23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图), 你选择的方案是_____(填方案一,方案二,或方案三),则B 点坐标是______, 求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度.24.如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)如果半径的长为3,tan D=34,求AE 的长.25.小明根据学习函数的经验,对函数4254y x x =-+ 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量的取值范围是全体实数,与y 的几组对应数值如下表:(2)如图,在平面直角坐标系Oy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质; (4)进一步探究函数图象发现:①方程42540x x -+=有个互不相等的实数根;②有两个点(1,y 1)和(2,y 2)在此函数图象上,当2>1>2时,比较y 1和y 2的大小关系为: y 1y 2 (填“>”、“<”或“=”);③若关于的方程4254x x a -+=有4个互不相等的实数根,则a 的取值范围是.26.在平面直角坐标系Oy 中,抛物线y=m 2-2m -3 (m ≠0)与y 轴交于点A ,其对称轴与轴交于点B 顶点为C 点.(1)求点A 和点B 的坐标;(2)若∠ACB =45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点P (1,y 1)和Q (2,y 2),与直线AB 交于点N (3,y 3),若3<1<2,结合函数的图象,直接写出1+2+3的取值范围为.五、解答题(共2道小题,每小题7分,共14分)27.已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点.(1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形;yl(2)延长AD 交BE 于点F ,求证:AF ⊥BE ; (3)若AC,BF =1,连接CF ,则CF 的长度为.28.对于平面直角坐标系Oy 中的点P ,给出如下定义:记点P 到轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4. (1)①点A (2,5-)的最大距离为;②若点B (a ,2)的最大距离为5,则a 的值为;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.昌平区第一学期初三年级期末质量抽测数学参考答案及评分标准一、选择题(共8道小题,每小题2分,共16分)三、解答题(共6道小题,每小题5分,共30分)17.解:2sin30tan60cos60tan45︒-︒+︒-︒122112=⨯-…………………………………………………………4分12=.…………………………………………………………………5分18.解:(1)由题意可得二次函数的顶点坐标为(1-,4-).………………………………… 1分设二次函数的解析式为:2(1)4y a x=+-………………2分把点(0,3)代入2(1)4y a x=+-得1a=∴2(1)4y x=+-…………………………………3分(2)如图所示……………………………………………………… 5分19.解:∵AC=AB,AB=10,∴AC=10.……………………………………………1分在Rt△ABD中∵cos A=ADAB=45,∴AD=8,……………………………………………………………………2分∴DC=2.……………………………………………………………………………3分∴6BD==.…………………………………………………………4分∴BC==……………………………………………………5分20.(1)证明:∵ 直径AB ⊥弦CD ,∴弧BC =弧BD . …………………… 1分∴A BCD ∠=∠.…………………… 2分(2)解:连接OC∵ 直径AB ⊥弦CD ,CD =8, ∴CE =ED =4. …………………… 3分∵ 直径AB =10,∴CO =OB =5.在Rt △COE 中3OE =…………………… 4分∴2BE =.…………………… 5分21.(1)如图所示…………………… 2分(2)解:∵ 直径AC =4,∴OA =OB =2. ……………………… 3分∵正方形ABCD 为⊙O 的内接正方形, ∴∠AOB=90°,……………………… 4分∴AB == 5分.22.解:由题意AB =40,CF =1.5,∠MAC=30°,∠MBC =60°, ∵ ∠MAC=30°,∠MBC =60°, ∴∠AMB=30°∴∠AMB =∠MAB∴ AB =MB =40.………………………… 1分 在Rt △ACD 中, ∵ ∠MCB=90°,∠MBC =60°, ∴ ∠BMC =30°.∴ BC =12BM =20.………………………… 2分∴MC ==………………………………… 3分., ∴ MC 34.6. ……………………………………………… 4分∴ MF = MC+CF =36.1.………………………………………………………… 5分 ∴ 塔MF 的高约为36.1米. …………………………………… 5分23.解:方案1:(1)点B 的坐标为(5,0)…………… 1分 设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(5)(5)5y x x =-+-…………… 3分 (2)由题意:把3x =代入1(5)(5)5y x x =-+-解得:165y ==3.2…………… 5分 ∴水面上涨的高度为3.2m …………… 6分方案2:(1)点B 的坐标为(10,0)…………… 1分 设抛物线的解析式为:(10)y ax x =-…………… 2分由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(10)5y x x =--…………… 3分 (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2…………… 5分 ∴水面上涨的高度为3.2m …………… 6分方案3:(1)点B 的坐标为(5, 5-)…………… 1分 由题意可以得到抛物线的顶点为(0,0) 设抛物线的解析式为:2y ax =…………… 2分 把点B 的坐标(5, 5-),代入解析式可得:15a =-∴抛物线的解析式为:215y x =-…………… 3分(2)由题意:把3x =代入215y x =-解得:95y =-= 1.8-…………… 5分 ∴水面上涨的高度为5 1.8-=3.2m …………… 6分24.(1)证明:连接OC ,∵点C 为弧BF 的中点,∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =,∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=.∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分(2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分∴OD =5.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35,∴AE=245.……………………………6分 25. (1)m =0,…………… 1分(2)作图,……………2分(3)图像关于y 轴对称, (答案不唯一) ……………3分(4)(5)944a -<< 26.解:(1)∵抛物线y=m 2-2m -3 (m ≠0)与y 轴交于点A , ∴点A 的坐标为,3-(0);…………………… 1分 ∵抛物线y=m 2-2m -3 (m ≠0)的对称轴为直线1x =,∴点B 的坐标为,0(1).…………………… 2分 (2)∵∠ACB =45°,∴点C 的坐标为,4-(1),…………………… 3分把点C 代入抛物线y=m 2-2m -3得出1m =,∴抛物线的解析式为y=2-2-3. …………………… 4分(3)123523x x x <++< ……………………6分 27.(1)补全图形…………………… 2分(2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分 ∴∠CBE +∠E =∠CAD +∠E ,∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(3………………………………………………7分28.解:(1)①5……………………… 1分②5±……………………… 3分(2)∵点C 的最大距离为5, ∴当5x <时,5y =±,或者当5y <时,5x =±. ………………4分 分别把5x =±,5y =±代入得:当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).……………………… 5分(3)5r ≤≤…………………………………7分。

2013年北京市昌平区初三中考一模数学试题及答案

2013年北京市昌平区初三中考一模数学试题及答案

昌平区2013年初三年级第一次统一练习数学 试 卷 2013.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟。

2.在答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将答题卡交回。

一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2-的倒数是A .12-B .12C .2-D .22.气象学上将目标物的水平能见度小于10 000米时的非水成物组成的气溶胶系统造成的视程障碍称为霾或灰霾,水平能见度在1 000-10 000米的这种现象称为轻雾或霭. 测得北京市某天的能见度是9 820米,那么数据9 820用科学记数法可表示为A .98210⨯B .298.210⨯C .39.8210⨯D .40.98210⨯ 3. 如图,若AB ∥CD ,∠A =70°,则∠1的度数是A .20°B .30°C .70°D .110°4.现将背面相同的4张扑克牌背面朝上,洗匀后,从中任意翻开一张是数字5的概率为A .14B .13 C .25 D .125.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 的长不可能...是 A. 2.5 B.3 C.4 D.56.九(1)班体育委员记录了本班第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7B.7,5 C. 5,7D. 3,7D BAC1ABC P7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是俯视图左视图主视图ac bA .12ab πB .12ac π C .ab π D .ac π8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为 A. 2 B. 2 C. 22 D. 3二、填空题(共4道小题,每小题4分,共16分) 9.在函数2y x =-中,自变量x 的取值范围是 .10.把多项式322x x x -+分解因式,结果为 .11.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若 cos ∠CAM =45,则tan ∠B 的值为 .12.如图,在△ABC 中,AB =AC =2,点P 在BC 上.若点P 为BC 的中点,则2m AP BP PC =+⋅的值为 ;若BC 边上有100个不同的点P 1,P 2,…,P 100,且m i =AP i 2+BP i ⋅P i C (i =1,2,…,100),则m =m 1+m 2+…+m 100 的值为 .三、解答题(共6道小题,每小题5分,共30分)13.计算: ()101124sin 6013π-⎛⎫-︒-+- ⎪⎝⎭.PCB AACMBAB PCP /Q14. 解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.3210-1-2-315. 已知222a a -=,求2223()42a a a a -+-+ 的值.16. 如图,在△ABC 中,AD ⊥AB ,AD =AB ,AE ⊥AC ,AE = AC . 求证:BE =CD .17. 将直线y x =沿y 轴向下平移后,得到的直线与x 轴交于点A (30,),与双曲线my x=(0x >)交于点B . (1)求直线AB 的解析式;(2)设点B 的纵坐标为a ,求m 的值(用含a 的代数式表示).18. 某学校组织九年级(1)班和(2)班的学生到离校5千米的“农业嘉年华”参观,(1)班学生的行进速度是(2)班学生速度的1.25倍,结果(1)班学生比(2)班学生早到15分钟,求(2)班学生的速度.四、解答题(共4道小题,19—21小题各5分,22题4分,共19分)19. 如图,四边形ABCD 是⊙O 的内接正方形,延长AB 到E ,使BE =AB ,连接CE . (1)求证:直线CE 是⊙O 的切线;(2)连接OE 交BC 于点F ,若OF =2 , 求EF 的长.EDC BAO FDBCEAO yx A20. 某学校一直坚持开展用眼健康方面的教育,并进行跟踪治疗. 为了调查全校学生的视力变化情况,从中抽取部分学生近几年视力检查的结果做了统计(如图1),并统计了2012年这部分学生的视力分布情况(如表1和图2).图2视力5.2及以上 y %视力5.1 20%视力4.9及以下 x %视力5.0 40%2012年部分学生视力分布统计图表12012 年部分学生视力分布统计表5.2及以上5.15.04.9及以下20ba60人数视力2009—2012 年部分学生视力为5.0的人数统计图人数图1年份2012201120102009806040200(1)根据以上图表中提供的信息写出:a = ,b = , x + y = ; (2)由统计图中的信息可知,近几年学生视力为5.0的学生人数每年与上一年相比,增加最多的 是 年;(3)若全校有1000名学生,请你估计2012年全校学生中视力达到5.0及以上的约有 人.21. 已知:如图,在□ABCD 中,∠BAD ,∠ADC 的平分线AE ,DF 分别与线段BC 相交于点E ,F ,AE 与DF 相交于点G .(1)求证:AE ⊥DF ;(2)若AD =10,AB =6,AE =4,求DF 的长.GA EBCDF22. (1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么? 根据习题背景,写出面积相等的一对平行四边形的名称为 和 ;(2)如图2,点P 为□ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交□ABCD 的四边于点E 、F 、G 、H . 已知S □BHPE = 3,S □PFDG = 5,则PAC S ∆= ;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 .图2图3图1⑤④③②①H PA BGEH DF C ABGEP DF C HGFE DCBA五、解答题(共3道小题,第23题7分,第24题7分,第25题9分,共23分) 23. 已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.-1-111xOy24.在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.C 1C BA 1A图2A 1C 1ABC图1图3PP 1E A 1A C 1CB25. 如图,在平面直角坐标系xOy 中,点B ,C 在x 轴上,点A ,E 在y 轴上,OB ︰OC =1︰3,AE =7,且tan ∠OCE =3,tan ∠ABO =2.(1)求经过A ,B ,C 三点的抛物线的解析式;(2)点D 在(1)中的抛物线上,四边形ABCD 是以BC 为一底边的梯形,求经过B 、D 两点的一次函数解析式;(3)在(2)的条件下,过点D 作直线DQ ∥y 轴交线段CE 于点Q ,在抛物线上是否存在点P ,使直线PQ 与坐标轴相交所成的锐角等于梯形ABCD 的底角,若存在,求出点P 的坐标;若不存在,请说明理由.OCEA Bxy昌平区2013年初三年级第一次统一练习数学试卷参考答案及评分标准 2013.5一、选择题(共8道小题,每小题4分,共32分)12345678ACDDACBB二、填空题(共4道小题,每小题4分,共16分)题 号 9 10 11 12答 案x ≤2x (x -1)24 , 400(各2分)三、解答题(共6道小题,每小题5分,共30分)13.解:原式= ……………………………………………………………4分= -2. ……………………………………………………………………… 5分 14.解:5x -12≤8x -6 …………………………………………………………………………… 1分5x -8x ≤12-6 …………………………………………………………………………… 2分 -3x ≤6 …………………………………………………………………………… 3分 x ≥-2. …………………………………………………………………………… 4分所以,原不等式的解集在数轴上表示为3210-1-2-3……………… 5分15.解:原式= …………………………………………………………… 1分 = …………………………………………………………………2分= …………………………………………………………………… 3分 = . …………………………………………………………………… 4分 当2a 2–a =2时,2a 2=a +2.∴原式= . ………………………………………………………………… 5分16.证明:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB=∠EAC =90°.∴∠DAB+∠1=∠EAC+∠1.即∠DAC=∠EAB . ……………………… 1分 又∵AD=AB ,AE=AC , …………………………………… 3分 ∴△DAC ≌△EAB (SAS). ………………………… 4分1DBCEA∴CD = BE . ……………………………… 5分17.解:(1)依题意,设直线AB 的解析式为y = x + b .…………………………………………… 1分 ∵直线AB 与x 轴交于点A (3,0), ∴0 = 3 + b .∴b = -3. ……………………………………………………………………………… 2分 ∴直线AB 的解析式为y = x - 3. ………………………………………………………… 3分(2)∵直线AB 与双曲线(x >0)交于点B ,且点B 的纵坐标为a , ∴a = x -3.∴x = a + 3. …………………………………………………………………………………… 4分∴.∴m = a (a + 3). …………………………………………………………………………… 5分18.解:设(2)班学生的速度为x 千米/小时. ………………………………………… 1分依题意,得 . ………………………………………………………… 2分解之,得 x = 4 . ………………………………………………… 3分 经检验:x = 4是原方程的解,且符合实际意义. …………………………………… 4分答:(2)班学生的速度为4千米/小时. ………………………………………………… 5分四、解答题(共4道小题,19—21小题各5分,22题4分,共19分) 19.(1)证明:连接OC∵四边形ABCD 是的内接正方形,∴AB=BC ,CO 平分∠DCB ,∠DCB =∠ABC =90°. ∴∠1=45°,∠EBC =90°. ∵AB=BE , ∴BC=BE . ∴∠2=45°.∴∠OCE =∠1+∠2 = 90°. ∵点C 在上,∴直线CE 是的切线. …………………………………… 2分(2)解:过点O 作OM ⊥AB 于M , ∴.∴. ………………………………………………………3分 ∵FB ⊥AE , ∴FB ∥OM .∴△EFB ∽△EOM . …………………………………………………………4分 ∴. ∴.∴EF = 4. …………………………………………………………5分 20.解:(1) 80,40,40. ……………………………………………………………… 3分(2) 2012. ………………………………………………………4分MF O ABCDE12(3)700. ……………………………………………………………………………5分21.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC .∴∠BAD +∠ADC=180°. ………………………………………1分 ∵AE 、DF 分别平分∠BAD 、∠ADC ,∴ .∴ .∴∠AGD=90°. ∴AE ⊥DF . ………………………………………………………2分(2)由(1)知:AD ∥BC ,且BC= AD = 10,DC =AB =6,∠1=∠3,∠2=∠4 . ∴∠1=∠AEB ,∠2=∠DFC . ∴∠3=∠AEB ,∠4=∠DFC . ∴BE=AB =6,CF=DC =6. ∴BF =4.∴EF =2. …………………………………………………3分 ∵AD ∥BC ,∴△EFG ∽△ADG . ∴. ∴.∴EG=.∴AG=. ……………………………………………………4分 由(1)知∠FGE=∠AGD=90°, 由勾股定理,得DG = ,FG= .∴DF= . …………………………………………………5分22.解:(1)□AEPH 和□PGCF 或□ABGH 和□EBCF 或□AEFD 和□HGCD . …………… 1分 (2)1. ……………………………………………………………………………………… 2分(3)24. ……………………………………………………………………………………… 4分五、解答题(共3道小题,第23题7分,第24题7分,第25题9分,共23分) 23.(1)证明:当y =0时,得. ∵. ∵, ∴.∴无论k 为任何实数,该抛物线与x 轴都有两个交点. …………………… 3分(2)解:如图,过点P 作P A ⊥x 轴于A ,则∠OAP =90°,依题意得:.4321GA EB CDF C BA yOx11-1-1∴.∵n<0,∴.∵P在抛物线上,∴.∴.∴抛物线解析式为.………………………………………5分(3)当y=0时,.∴,∴抛物线与x轴相交于点当直线y = - x + b经过点C(-2,0)时,b = -2.………………………………………6分当直线y = - x + b与抛物线相切时,,∴△ = .∴b = . ……………………………………………………………………7分∴当<b<-2时,直线与图形M有四个交点.………………………………………8分24.解:(1)如图1,依题意得:△A1C1B≌△ACB.………1分∴BC1=BC,∠A1C1B=∠C=30°.∴∠BC1C = ∠C=30°.∴∠CC1A1= 60°.……………………………2分(2)如图2,由(1)知:△A1C1B≌△ACB.∴A1B = AB,BC1 = BC,∠A1BC1 =∠ABC.∴∠1 = ∠2,∴△A1BA∽△C1BC…………………3分∴. ……………………4分∵,A1C1ABC图1C1A1A数学试卷第11页(共6页)∴. ……………………………5分(3)线段EP 1长度的最大值为8,EP 1长度的最小值1. ………… 7分 25.解:(1)依题意得:∠AOB =∠COE =90°,∴=tan ∠ABO =2, tan ∠OCE =3. …………………………………………1分∴OA =2OB ,OE =3OC . ∵OB =OC =1︰3, ∴OC =3OB . ∴OE =9OB . ∵ AE =7, ∴9OB -2OB =7.∴OB =1,OC =3,OA =2,OE =9.∴A (0,2),B (-1,0),C (3,0),E (0,9).……………………………………………………2分设抛物线的解析式为:y =a (x +1)(x -3), ∴ 2=-3a ,即a =-.∴抛物线解析式为:.…………………………………3分(2)过点A 作AD ∥x 轴交抛物线于点D .∴ .∴D (2,2). …………………………………………4分 设直线BD 的解析式为y =kx +b , ∴ ∴k=, b =.∴直线BD的解析式为.…………………………………………5分(3)易知直线CE 的解析式为y = -3x + 9, Q (2,3). 设与y 轴交于点F ,过点Q 作QM ⊥y 轴于点M . 则∠QMF =∠AOB = 90°. ∵∠QFM =∠ABO , ∴tan ∠QFM = tan ∠ABO =2 . ∴. ∵Q (2,3),P 4P 3P 2M DQ(P 1)-111xO yEA BC∴.∴F(0,2)即P(0,2).经验证,P(0,2)在抛物线上.易求得,此时直线PQ的解析式为,直线PQ与抛物线的另一个交点的坐标为. ……………………………………………7分同理可求得满足条件的另两个点P的坐标为和. ……………………………………9分综上所述,满足条件的点P的坐标为P1(0,2), P2,P3, P4.数学试卷第12页(共6页)。

北京市昌平区届九年级上期末数学试卷(有答案)

北京市昌平区届九年级上期末数学试卷(有答案)

北京市昌平区九年级(上)期末数学试卷一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,在⊙O中,∠BOC=80°,则∠A等于()A.50°B.20°C.30°D.40°3.将二次函数表达式y=x2﹣2x+3用配方法配成顶点式正确的是()A.y=(x﹣1)2+2 B.y=(x+1)2+4 C.y=(x﹣1)2﹣2 D.y=(x+2)2﹣24.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B. C. D.5.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan ∠CAB的值为()A.1 B.C.D.6.如图,反比例函数y=在第二象限的图象上有一点A,过点A作AB⊥x轴于B,且S△AOB=2,则k的值为()A.﹣4 B.2 C.﹣2 D.47.已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是()A. B.πC.D.2π8.在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切B.与x轴、y轴都相离C.与x轴相切、与y轴相离D.与x轴、y轴都相切9.已知点A(2,y1)、B(m,y2)是反比例函数y=(k>0)的图象上的两点,且y1<y2.满足条件的m值可以是()A.﹣6 B.﹣1 C.1 D.310.如图,点A,B,C,D,E为⊙O的五等分点,动点M从圆心O出发,沿线段OA→劣弧AC→线段CO的路线做匀速运动,设运动的时间为t,∠DME的度数为y,则下列图象中表示y 与t之间函数关系最恰当的是()A.B.C.D.二、填空题(共6道小题,每小题3分,共18分)11.已知sinA=,则锐角A的度数是.12.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=70°,则∠BCE的度数为.13.将抛物线y=2x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为.14.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.15.《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章.在第九章“勾股”中记载了这样一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”这个问题可以描述为:如图所示,在Rt△ABC中,∠C=90°,勾为AC长8步,股为BC长15步,问△ABC的内切圆⊙O直径是多少步?”根据题意可得⊙O的直径为步.16.如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α=.三、解答题(共6道小题,每小题5分,共30分)17.计算:2sin30°﹣4sin45°•cos45°+tan260°.18.一个不透明的口袋里装有分别标有汉字“书”、“香”、“昌”、“平”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“昌平”的概率.19.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,如果AC=2,且tan∠ACD=2.求AB 的长.20.一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如表:﹣(2)求m的值.21.如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.22.一个圆形零件的部分碎片如图所示.请你利用尺规作图找到圆心O.(要求:不写作法,保留作图痕迹)四、解答题(共4道小题,每小题5分,共20分)23.昌平区南环路大桥位于南环路东段,该桥设计新颖独特,悬索和全钢结构桥体轻盈、通透,恰好与东沙河湿地生态恢复工程及龙山、蟒山等人文、自然景观相呼应;首创的两主塔间和无上横梁的设计,使大桥整体有一种开放、升腾的气势,预示昌平区社会经济的蓬勃发展,绚丽的夜景照明设计更是光耀水天,使得南环路大桥不仅是昌平新城的交通枢纽,更是一座名副其实的景观大桥,今后也将成为北京的一个新的旅游景点,成为昌平地区标志性建筑.某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在B点测得顶端D 的仰角∠DBA=30°,向前走了50米到达C点后,在C点测得顶端D的仰角∠DCA=45°,点A、C 、B在同一直线上.求南环大桥的高度AD.(结果保留整数,参考数据:≈1.41,≈1.73,≈2.45)24.在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).(1)求反比例函数的表达式;(2)过点A的直线与反比例函数y=图象的另一个交点为B,与y轴交于点P,若AP=3PB,求点B的坐标.25.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.26.有这样一个问题:探究函数y=的图象与性质.小文根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)表是y与x的几组对应值.﹣﹣﹣﹣﹣的值为;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(一条即可):.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)在图1中画出△ABC关于x轴对称的△A1B1C1;(2)在图1中画出将△ABC绕原点O按逆时针方向旋转90°所得的△A2B2C2;(3)在图2中,以点O为位似中心,将△ABC放大,使放大后的△A3B3C3与△ABC的对应边的比为2:1(画出一种即可).直接写出点A的对应点A3的坐标.28.在平面直角坐标系xOy中,抛物线y=﹣2x2+bx+c经过点A(0,2),B(3,﹣4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.29.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC 的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项正确;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:B.2.如图,在⊙O中,∠BOC=80°,则∠A等于()A.50°B.20°C.30°D.40°【考点】圆周角定理.【分析】因为⊙O是△ABC外接圆,AB是直径,∠ACB=90°,∠A+∠B=90°,又因为∠BOC=80°,OB=OC,所以∠B=∠BCO=50°,所以∠A=40°.【解答】解:∵⊙O是△ABC外接圆,AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OB=OC,∴∠B=∠BCO,∵∠BOC=80°,∴∠B=∠BCO=50°∴∠A=40°.故选D.3.将二次函数表达式y=x2﹣2x+3用配方法配成顶点式正确的是()A.y=(x﹣1)2+2 B.y=(x+1)2+4 C.y=(x﹣1)2﹣2 D.y=(x+2)2﹣2【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣2x+3=(x﹣1)2+2.故选A.4.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.5.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan ∠CAB的值为()A.1 B.C.D.【考点】锐角三角函数的定义.【分析】根据正切是对边比邻边,可得答案.【解答】解:如图,tan∠CAB==,故选:C.6.如图,反比例函数y=在第二象限的图象上有一点A,过点A作AB⊥x轴于B,且S△AOB=2,则k的值为()A.﹣4 B.2 C.﹣2 D.4【考点】反比例函数系数k的几何意义.=2求出k的值即可.【分析】先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOB【解答】解:∵反比例函数的图象在二、四象限,∴k<0,=2,∵S△AOB∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,故选A.7.已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是()A. B.πC.D.2π【考点】扇形面积的计算.【分析】把已知数据代入扇形的面积公式S=,计算即可.【解答】解:扇形的面积==,故选:A.8.在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切B.与x轴、y轴都相离C.与x轴相切、与y轴相离D.与x轴、y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选C.9.已知点A(2,y1)、B(m,y2)是反比例函数y=(k>0)的图象上的两点,且y1<y2.满足条件的m值可以是()A.﹣6 B.﹣1 C.1 D.3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质解答即可.【解答】解:∵k>0,∴在每个象限内,y随x的增大而减小,由题意得,0<m<2,故选:C.10.如图,点A,B,C,D,E为⊙O的五等分点,动点M从圆心O出发,沿线段OA→劣弧AC→线段CO的路线做匀速运动,设运动的时间为t,∠DME的度数为y,则下列图象中表示y 与t之间函数关系最恰当的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分M在OA、、CO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.【解答】解:根据题意,分3个阶段;①P在OA之间,∠DME逐渐减小,到A点时,为36°,②P在之间,∠DME保持36°,大小不变,③P在CO之间,∠DME逐渐增大,到O点时,为72°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选B.二、填空题(共6道小题,每小题3分,共18分)11.已知sinA=,则锐角A的度数是60°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由sinA=,得∠A=60°,故答案为:60°.12.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=70°,则∠BCE的度数为70°.【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,∠A=70°,∵∠BCE+∠BCD=180°,∴∠BCE=○A=70°.故答案为:70°.13.将抛物线y=2x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为y=2(x﹣3)2+2.【考点】二次函数图象与几何变换.【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【解答】解:将抛物线y=2x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的表达式为y=2(x﹣3)2+2,故答案为:y=2(x﹣3)2+2.14.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.15.《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章.在第九章“勾股”中记载了这样一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”这个问题可以描述为:如图所示,在Rt△ABC中,∠C=90°,勾为AC长8步,股为BC长15步,问△ABC的内切圆⊙O直径是多少步?”根据题意可得⊙O的直径为6步.【考点】三角形的内切圆与内心.【分析】根据勾股定理求出斜边AB,根据直角三角形的内接圆的半径等于两直角边的和与斜边的差的一半计算即可.【解答】解:∵∠C=90°,AC=8步,BC=15步,∴AB==17步,∴△ABC的内切圆⊙O直径=8+15﹣17=6步,故答案为:6.16.如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α=70°或120°.【考点】旋转的性质.【分析】设旋转后点B的对应点为B′,当B′在线段AB上时,连接B′D,由旋转的性质可得BD=B′D,利用等腰三角形的性质结合三角形内角和定理可求得∠BDB′;当点B′在线段AC上时,连接B′D,在Rt△B′CD中可求得∠CDB′,则可求得旋转角,可求得答案.【解答】解:设旋转后点B的对应点为B′,①当B′在线段AB上时,连接B′D,如图1,由旋转性质可得BD=B′D,∴∠DB′B=∠B=55°,∴α=∠BDB′=180°﹣55°﹣55°=70°;②当点B′在线段AC上时,连接B′D,如图2,由旋转性质可得BD=B′D,∵BD=2CD,∴B′D=2CD,∴sin∠CB′D==,∴∠CB′D=30°,∴∠BDB′=90°+30°=120°;综上可知旋转角α为70°或120°,故答案为:70°或120°.三、解答题(共6道小题,每小题5分,共30分)17.计算:2sin30°﹣4sin45°•cos45°+tan260°.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:2sin30°﹣4sin45°•cos45°+tan260°=2×﹣4××+()2=1﹣2+3=2.18.一个不透明的口袋里装有分别标有汉字“书”、“香”、“昌”、“平”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“昌平”的概率.【考点】列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出取出的两个球上的汉字能组成“昌平”的结果数,然后根据概率公式求解.【解答】解:(1)从中任取一个球,球上的汉字刚好是“书”的概率=;(2)画树状图为:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“昌平”的结果数为2,所以取出的两个球上的汉字能组成“昌平”的概率═=.19.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,如果AC=2,且tan∠ACD=2.求AB 的长.【考点】解直角三角形.【分析】首先根据AC=2,tan∠ACD=2求得BC的长,然后利用勾股定理求得AB的长即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,CD⊥AB,∴∠B=∠ACD,∵tan∠ACD=2,∴tan∠B=,∴,由勾股定理得AB=5.20.一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如表:﹣(2)求m的值.【考点】待定系数法求二次函数解析式.【分析】(1)待定系数法求解可得;(2)将x=1代入解析式求得y的值,即可得答案.【解答】解:(1)设这个二次函数的表达式为y=a(x﹣h)2+k.依题意可知,顶点(﹣1,),∴.∵(0,4),∴.∴.∴这个二次函数的表达式为.(2)当x=1时,y=﹣×4+=,即.21.如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.【考点】圆周角定理.【分析】如图,作直径AD,连接CD.利用圆周角定理得到△ACD是含30度角的直角三角形,由该三角形的性质和勾股定理求得AC的长度即可.【解答】解:如图,作直径AD,连接CD.∴∠ACD=90°.∵∠B=60°,∴∠D=∠B=60°.∵⊙O的半径为6,∴AD=12.在Rt△ACD中,∠CAD=30°,∴CD=6.∴AC=.22.一个圆形零件的部分碎片如图所示.请你利用尺规作图找到圆心O.(要求:不写作法,保留作图痕迹)【考点】作图—应用与设计作图;垂径定理的应用.【分析】作弦AB,AC,再作出线段AB,AC的垂直平分线相交于点O,则O点即为所求.【解答】解:如图,点O即为所求.四、解答题(共4道小题,每小题5分,共20分)23.昌平区南环路大桥位于南环路东段,该桥设计新颖独特,悬索和全钢结构桥体轻盈、通透,恰好与东沙河湿地生态恢复工程及龙山、蟒山等人文、自然景观相呼应;首创的两主塔间和无上横梁的设计,使大桥整体有一种开放、升腾的气势,预示昌平区社会经济的蓬勃发展,绚丽的夜景照明设计更是光耀水天,使得南环路大桥不仅是昌平新城的交通枢纽,更是一座名副其实的景观大桥,今后也将成为北京的一个新的旅游景点,成为昌平地区标志性建筑.某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在B点测得顶端D 的仰角∠DBA=30°,向前走了50米到达C点后,在C点测得顶端D的仰角∠DCA=45°,点A、C、B在同一直线上.求南环大桥的高度AD.(结果保留整数,参考数据:≈1.41,≈1.73,≈2.45)【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意推知△ACD是等腰直角三角形,故设AC=AD=x,在Rt△ABD中,利用含30度角的直角三角形的性质(或者解该直角三角形)得到关于x的方程,通过解方程求得x的值即可.【解答】解:由题意知,在Rt△ACD中,∠CAD=90°,∠DCA=45°,∴AC=AD.设AC=AD=x,在Rt△ABD中,∵∠BAD=90°,∠DBA=30°,∴BD=2AD=2x,∴AB=.∴BC=.∵BC=50,∴.∴x≈68.3.∴x=68.∴南环大桥的高度AD约为68米.24.在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).(1)求反比例函数的表达式;(2)过点A的直线与反比例函数y=图象的另一个交点为B,与y轴交于点P,若AP=3PB,求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出m值,从而得出反比例函数表达式;(2)过A点作AM⊥y轴于点M,AM=6,作BN⊥y轴于点N,则AM∥BN,由平行线的性质结合AP=3PB即可求出BN的长度,从而得出点B的横坐标,再利用反比例函数图象上点的坐标特征即可求出点B的坐标.【解答】解:(1)反比例函数的图象过点A(6,1),∴m=6×1=6,∴反比例函数的表达式为.(2)过A点作AM⊥y轴于点M,AM=6,作BN⊥y轴于点N,则AM∥BN,如图所示.∵AM∥BN,AP=3PB,∴,∵AM=6,∴BN=2,∴B点横坐标为2或﹣2,∴B点坐标为(2,3)或(﹣2,﹣3).25.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.【考点】切线的判定.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°.∵点F为BC的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°.∴∠COD=∠AOE=60°.∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°.∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.26.有这样一个问题:探究函数y=的图象与性质.小文根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠1;(2)表是y与x的几组对应值.﹣﹣﹣﹣﹣则m的值为;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(一条即可):图象有两个分支,关于点(1,1)中心对称.【考点】二次函数的性质;二次函数的图象.【分析】(1)由分式有意义的条件可求得答案;(2)把x=3代入函数解析式可求得答案;(3)利用描点法可画出函数图象;(4)结合函数图象可得出答案.【解答】解:(1)由题意可知2x﹣2≠0,解得x≠1,故答案为:x≠1;(2)当x=3时,m==,故答案为:;(3)利用描点法可画出函数图象,如图:(4)由函数图象可知:图象有两个分支,关于点(1,1)中心对称,故答案为:图象有两个分支,关于点(1,1)中心对称.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)在图1中画出△ABC关于x轴对称的△A1B1C1;(2)在图1中画出将△ABC绕原点O按逆时针方向旋转90°所得的△A2B2C2;(3)在图2中,以点O为位似中心,将△ABC放大,使放大后的△A3B3C3与△ABC的对应边的比为2:1(画出一种即可).直接写出点A的对应点A3的坐标.【考点】作图-位似变换;作图-轴对称变换;作图-旋转变换.【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)把点A、B、C的横纵坐标都乘以﹣2得到A3、B3、C3的坐标,然后描点即可.【解答】解:(1)如图1,△A1B1C1为所作;(2)如图1,△A2B2C2为所作;(3)如图2,△A3B3C3△ABC为所作,此时点A的对应点A3的坐标是(﹣4,﹣4).28.在平面直角坐标系xOy中,抛物线y=﹣2x2+bx+c经过点A(0,2),B(3,﹣4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)利用待定系数法即可求得二次函数的解析式,进而利用公式求得对称轴解析式;(2)求得C的坐标以及二次函数的最大值,求得CB与对称轴的交点即可确定t的范围.【解答】解:(1)抛物线y=﹣2x2+bx+c经过点A(0,2),B(3,﹣4),代入得解得:,∴抛物线的表达式为y=﹣2x2+4x+2,对称轴为直线x=1;(2)由题意得C(﹣3,4),二次函数y=﹣2x2+4x+2的最大值为4.由函数图象得出D纵坐标最大值为4.因为点B与点C关于原点对称,所以设直线BC的表达式为y=kx,将点B或点C 与的坐标代入得,.∴直线BC的表达式为.当x=1时,.∴t的范围为.29.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC 的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.【考点】几何变换综合题;线段的性质:两点之间线段最短;全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形;矩形的判定与性质.【分析】(1)①连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.根据△PAM、△ABN 都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,进而求得PA+PB+PC的最小值.【解答】解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE====;(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,AB=4,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴AQ=AB=2=CQ,NQ=AQ=2,∴此时CN=CP+PM+MN=PA+PB+PC=.2017年2月10日。

昌平初三期末数学试卷答案

昌平初三期末数学试卷答案

一、选择题(每题5分,共50分)1. 已知a、b是方程x²-5x+6=0的两根,则a+b的值为()A. 1B. 2C. 3D. 4答案:B解析:根据韦达定理,方程x²-5x+6=0的两根之和为-(-5)/1=5,故选B。

2. 若等差数列{an}的前n项和为Sn,且a1=3,S5=45,则该数列的公差d为()A. 2B. 3C. 4D. 5答案:A解析:由等差数列的前n项和公式S_n = n/2 (a1 + an),得S5 = 5/2 (3 + a5) = 45,解得a5 = 30。

又因为a5 = a1 + 4d,代入a1=3,得d=6/4=1.5,但选项中没有1.5,故选A。

3. 在平面直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标为()A.(1,2)B.(1,1)C.(-1,1)D.(-1,2)答案:A解析:线段AB的中点坐标为两个端点坐标的平均值,即((-2+4)/2,(3-1)/2)=(1,1),故选A。

4. 若函数f(x) = 2x - 3在x=2时的切线斜率为k,则k的值为()A. 1B. 2C. 3D. 4答案:C解析:函数f(x) = 2x - 3的导数为f'(x) = 2,所以在x=2时的切线斜率k=f'(2)=2,故选C。

5. 在△ABC中,∠A=60°,∠B=45°,则sinC的值为()A. √3/2B. √6/4C. √2/2D. √3/4答案:D解析:由三角形内角和定理,∠C=180°-∠A-∠B=180°-60°-45°=75°。

在直角三角形中,sinC=sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=√2/2√3/2+√2 /21/2=√6/4+√2/4=√3/4,故选D。

昌平区度第一学期初三期末数学试题.doc

昌平区度第一学期初三期末数学试题.doc

昌平区2010—2011学年第一学期初三年级期末考试数学 试卷 2011.1考生须知1.本试卷共6页,共四道大题,25个小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知1cos 2=A ,则锐角A 的度数是A .30︒B .45︒C .60︒D .75︒ 2.抛物线21y x =-的顶点坐标是 A .(01),B .(01)-,C .(10),D .(10)-,3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若40BOC ∠=o, 则∠C 的度数等于A .20oB .40oC .60oD .80o4.在△ABC 中,∠C =90°,cos A=53,那么tan B 的值等于A .35B . 45C . 34D . 435.两个圆的半径分别是2cm 和7cm ,圆心距是5cm ,则这两个圆的位置关系是 A .外离 B .外切 C .相交 D .内切 6.如图,在ABC △中,DE BC ∥,且3AE =,5,EC =6DE =,则BC 等于A.10 B.16 C.12D.1857.如图所示,直线l 与半径为5 cm 的⊙O 相交于A 、B 两点,且与半径OC 垂直,垂足为H ,AB =8 cm ,若要使直线l 与⊙O 相切, 则l 应沿OC 方向向下平移A . 1cmB .2cmC . 3 cmD .4cm8.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度始终保持不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为第5题图CBO AEABCD OBA Hl二、填空题(共4道小题,每小题4分,共16分)9.如图,已知P A ,PB 分别切⊙O 于点A 、B ,60P ∠=o,8PA =那么弦AB 的长是.10.圆锥的母线长为3,底面半径为2,则它的侧面积为.11.将一副直角三角板(含45o 角的直角三角板ABC 及含30o 角的直角 三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的 面积之比等于 .12.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则FEEC= .三、解答题(共10道小题,共50分)13.(4分)计算:1230tan 345sin 2-︒+︒14.(4分)已知: 如图,在△ABC 中,D ,E 分别是AB ,AC 上一点,且∠AED =∠B .若AE =5,AB = 9,CB =6 ,求ED 的长.15. (5分)如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC =4,求⊙O 的直径.AB C E DA DBCO16. (6分)已知二次函数2y x 2x 3=--.(1)用配方法把该函数化为k h x a y +-=2)(的形式,并写出抛物线223y x x =--的对称轴和顶点坐标;(2)在直角坐标系中,直接画出抛物线223y x x =--.(注意:关键点要准确,不必写出画图象的过程.)(3)根据图象回答:①x 取什么值时,抛物线在x②x 取什么值时,y 的值随x17.(5分)如图,在ABC △中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.(1)求线段DC 的长; (2)求ta n ∠EDC 的值.ABCE18. (5分)如图,M 为线段AB 上的点,AE 与BD 交于点C , ∠DME =∠A =∠B ,且MD 交AC 于F ,ME 交BC 于G . (1)写出图中三对相似三角形;(2)选择(1)中的一个结论进行证明.19.(5分)已知:如图,在Rt ABC △中,90ACB ∠=o ,4AC =,BC =,以AC 为直径的O e 交AB 于点D ,点E 是BC 的中点, OB ,DE 相交于点F . (1)求证:DE 是⊙O 的切线;(2)求EF :FD 的值.20.(5分)小明利用所学的数学知识测量生活中一建筑物的高.他从自家楼房顶C 处,测得对面直立的建筑物AB 的顶端A 的仰角为45o,底端B 的俯角为30o,已量得21DB =米.(1)在原图中画出从点C 看点A 时的仰角及看点B 时的俯角,并分别标出它们的大小;(2)请你帮助小明求出建筑物AB 的高.21.(5分)已知抛物线C 1:221)1y mx m x m =++++(,其中m ≠0. M FG DECAB DB(1)求证:m为任意非零实数时,抛物线C1与x轴总有两个不同的交点;(2)求抛物线C1与x轴的两个交点的坐标(用含m的代数式表示);(3)将抛物线C1沿x轴正方向平移一个单位长度得到抛物线C2,则无论m取任何非零实数,C2都经过同一个定点,直接写出这个定点的坐标.注:答题卡上的直角坐标系为备用.22. (6分)已知⊙O,半径为6米,⊙O外一点P,到圆心O的距离为10米,作射线PM,PN,使PM经过圆心O,PN与⊙O相切,切点为H.(1)根据上述条件,画出示意图;(2)求PH的长;(3)有两动点A,B,同时从点P出发,点A以5米/秒的速度沿射线PM方向运动,点B以4米/秒的速度沿射线PN方向运动.设运动的时间为t(秒).当t为何值时,直线AB与⊙O相切?四、解答题(共3道小题,共22分)23.(7分)一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买⨯-=(元),因此,所买的全部20只计算器20只计算器,于是每只降价0.10(2010)1都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?24.(8分)已知正方形ABCD ,边长为3,对角线AC ,BD 交点O ,直角MPN 绕顶点P 旋转,角的两边分别与线段AB ,AD 交于点M ,N (不与点B ,A ,D 重合). 设DN =x ,四边形AMPN 的面积为y .在下面情况下,y 随x 的变化而变化吗?若不变,请求出面积y 的值;若变化,请求出y 与x 的关系式. (1)如图1,点P 与点O 重合;(2)如图2,点P 在正方形的对角线AC 上,且AP =2PC ; (3)如图3,点P 在正方形的对角线BD 上,且DP =2PB .25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C .(1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.图1(P )N DM OC B A 图2PA B C O MD N 图3P A B C OM D N。

北京市昌平区九年级上册数学期末试题(有答案)【精选】.docx

北京市昌平区九年级上册数学期末试题(有答案)【精选】.docx

北京市昌平区九年级上学期期末考试试题一、选择题(共 8 道小题,每小题 2 分,共 16 分)1.已知∠A为锐角,且sinA=,那么∠A 等于()A.15°B.30°C.45°D.60°【分析】根据特殊角三角函数值,可得答案.【解答】解:由∠A为锐角,且sinA=,得∠A=45°,故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.球体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.如图,点 B是反比例函数y=(≠0)在第一象限内图象上的一点,过点B 作BA⊥轴于点A,BC⊥y 轴于点C,矩形AOCB的面积为6,则的值为()A.3 B.6 C.﹣3 D.﹣6【分析】可根据反比例函数的比例系数的几何意义得到的值.【解答】解:因为矩形 AOCB 的面积为 6,所以的值为 6,故选:B.【点评】本题考查了反比例函数的比例系数的几何意义:在反比例函数 y=图象中任取一点,过这一个点向轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值||.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°【分析】由⊙O是△ABC 的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O 是△ABC 的外接圆,∠A=50°,2∴∠BOC=2∠A=100°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.将二次函数 y=2﹣6+5用配方法化成y=(﹣h)2+的形式,下列结果中正确的是()A.y=(﹣6)2+5B.y=(﹣3)2+5 C.y=(﹣3)2﹣4 D.y=(+3)2﹣9【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=2﹣6+5=2﹣6+9﹣4=(﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.6.如图,将△ABC 绕点 C顺时针旋转,点B的对应点为点E,点A 的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC 的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC∽△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.3【解答】解:由题意知△ABC∽△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③ 旋转前、后的图形全等.7.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点 D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°【分析】连接 OC.由等腰三角形的性质和三角形的外角的性质可求得∠DOC=50°,接下,由切线的性质可证明∠OCD=90°,最后在△OCD 中依据三角形内角和定理可求得∠D 的度数.【解答】解:连接 OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.4∵CD 是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:B.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOC和∠OCD的度数是解题的关键.8.小苏和小林在如图所示的跑道上进行4×50 米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏在跑最后 100m的过程中,与小林相遇2 次D.小苏前 15s跑过的路程小于小林前15s跑过的路程【分析】通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.5【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故 A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故 B错误;小林在跑最后 100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知 1 次,故 C错误;根据图象小苏前 15s 跑过的路程小于小林前 15s 跑过的路程,故 D 正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(共 8 道小题,每小题 2 分,共 16 分)9.请写一个图象在第二、四象限的反比例函数解析式:y=﹣.【分析】根据反比例函数的性质可得<0,写一个<0 的反比例函数即可.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.【点评】此题主要考查了反比例函数(≠0),(1)>0,反比例函数图象在一、三象限;(2)<0,反比例函数图象在第二、四象限内.10.如图,在平面直角坐标系Oy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段 AB沿轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【分析】根据平移的性质即可得到结论.【解答】解:∵将线段 AB 沿轴的正方向平移,若点 B 的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.11.如图,PA,PB分别与⊙O相切于 A、B两点,点 C为劣弧 AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为16 .【分析】直接运用切线长定理即可解决问题;【解答】解:∵DA、DC、EB、EC 分别是⊙O 的切线,∴DA=DC,EB=EC;∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=PA+PB,∵PA、PB 分别是⊙O 的切线,∴PA=PB=8,∴△PDE 的周长=16.故答案为:16【点评】该命题以圆为载体,以考查切线的性质、切线长定理及其应用为核心构造而成;解题的关键是灵活运用有关定理分析、判断、推理或解答.12.抛物线 y=2+b+c经过点A(0,3),B(2,3),抛物线的对称轴为直线=1 .【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标即可.【解答】解:∵抛物线 y=2+b+c 经过点 A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴==1.故答案为:直线 =1.【点评】本题考查的是二次函数的性质,根据题意判断出抛物线上两点坐标的关系是解答此题的关键.13.如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为π.【分析】求出圆心角∠AOB 的度数,再利用弧长公式解答即可.【解答】解:如图,连接 OA、OB,∵ABCDEF 为正六边形,∴∠AOB=360°×=60°,的长为=π.故答案为:π【点评】本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.14.如图,在直角三角形 ABC 中,∠C=90°,BC=6,AC=8,点D是AC 边上一点,将△BCD沿BD 折叠,使点 C落在AB边的E 点,那么 AE 的长度是4.【分析】由勾股定理可知AB=10,由折叠的性质得 BE=BC=6,再由线段的和差关系即可求解.【解答】解:在Rt△ACB中,由勾股定理可知AB==10.由折叠的性质得:BE=BC=6,则AE=AB﹣BE=4.故答案为:4.【点评】本题考查了翻折变换的性质,勾股定理,主要利用了翻折前后的两个图形对应边相等.15.如图,在平面直角坐标系Oy中,△CDE可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB 得到△CDE的过程:将△AOB绕点O顺时针旋转90°,再沿轴向右平移一个单位.【分析】根据旋转的性质,平移的性质即可得到由△OCD 得到△AOB 的过程.【解答】解:将△AOB 绕点 O 顺时针旋转90°,再沿轴向右平移一个单位得到△CDE,故答案为:将△AOB 绕点 O 顺时针旋转90°,再沿轴向右平移一个单位【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.阅读以下作图过程:第一步:在数轴上,点 O 表示数 0,点 A 表示数 1,点B 表示数 5,以 AB为直径作半圆(如图);第二步:以 B点为圆心,1 为半径作弧交半圆于点C(如图);第三步:以 A 点为圆心,AC 为半径作弧交数轴的正半轴于点 M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为+1 .【分析】按照要求作图即可得点 M,连接 AC、BC,由题意知 AB=4、BC=1、∠ACB=90°,从而可得AM=AC==,继而可得答案.【解答】解:如图,点 M 即为所求,连接 AC、BC,由题意知,AB=4、BC=1,∵AB 为圆的直径,∴∠ACB=90°,则AM=AC===,∴点 M表示的数为+1,故答案为:+1.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.三、解答题(共 6 道小题,每小题 5 分,共 30 分)17.(5分)计算:2s in30°﹣tan60°+co s60°﹣tan45°.【分析】根据解特殊角的三角函数值解答.【解答】解:2sin30°﹣tan60°+cos60°﹣tan45°==.【点评】考查了特殊角的三角函数值.熟记特殊角的三角函数值是解题的关键.18.(5分)二次函数图象上部分点的横坐标,纵坐标 y 的对应值如下表:(2)在图中画出这个二次函数的图象.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(﹣1,﹣4),则可设顶点式y=a(+1)2﹣4,然后把点(0,3)代入求出 a 即可;(2)利用描点法画二次函数图象.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(+1)2﹣4,把点(0,3)代入 y=a(+1)2﹣4 得 a=1∴抛物线解析式为 y=(+1)2﹣4;(2)如图所示:【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.19.(5 分)如图,在△A BC中,AB=AC,BD⊥AC于点D.AC=10,cosA=,求 BC 的长.【分析】先在Rt△ABD 中利用 cosA 的定义可计算出 AD 的长,再利用勾股定理解答即可.【解答】解:∵AC=AB,AB=10,∴AC=10.在Rt△ABD 中∵cosA==,∴AD=8,∴DC=2.∴.∴.【点评】本题考查了勾股定理、等腰三角形的性质.勾股定理应用的前提条件是在直角三角形中.20.(5分)如图,AB 是⊙O的直径,弦CD⊥AB于点E,连接 AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求 BE的长.【分析】(1)根据等弧对等角证明即可;(2)连接OC,根据垂径定理得到CE=DE=CD=4,再利用勾股定理计算出OE,然后计算 OB﹣OE 即可.【解答】(1)证明:∵直径AB⊥弦 CD,∴弧 BC=弧 BD.∴∠A=∠BCD;(2)连接 OC∵直径AB⊥弦 CD,CD=8,∴CE=ED=4.∵直径 AB=10,∴CO=OB=5.在Rt△COE 中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.21.(5分)尺规作图:如图,AC 为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4 时,求这个正方形的边长.【分析】(1)过点 O 作出直径 AC 的垂线,进而得出答案;(2)利用正方形的性质结合勾股定理得出正方形 ABCD 的边长.【解答】解:(1)如图所示:(2)∵直径AC=4,∴OA=OB=2.∵正方形 ABCD 为⊙O 的内接正方形,∴∠AOB=90°,∴.【点评】此题主要考查了复杂作图以及正多边形和圆,正确掌握正方形的性质是解题关键.22.(5分)某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点 D用高1.5 米的测角仪DA测得塔顶M的仰角为30°,然后沿 DF方向前行40m到达点E处,在E 处测得塔顶M的仰角为60°.请根据他们的测量数据求此塔MF的高.(结果精确到0.1m,参考数据:≈1.41,≈1.73,≈2.45)【分析】首先证明 AB=BM=40,在Rt△BCM 中,利用勾股定理求出 CM 即可解决问题;【解答】解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC=60°,∵∠MAC=30°,∠MBC=60°,∴∠AMB=30°∴∠AMB=∠MAB∴AB=MB=40,在Rt△BCM 中,∵∠MCB=90°,∠MBC=60°,∴∠BMC=30°.∴BC==20,∴,∴MC≈34.64,∴MF=CF+CM=36.14≈36.1.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,本题的突破点是证明AB=BM=40,属于中考常考题型.四、解答题(共 4 道小题,每小题 6 分,共 24 分)23.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为 10m 时,桥洞与水面的最大距离是 5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是方案二(填方案一,方案二,或方案三),则 B点坐标是(10,0),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【分析】(1)根据题意选择合适坐标系即可,结合已知条件得出点B 的坐标即可;(2)根据抛物线在坐标系的位置,可知抛物线的顶点坐标为(5,5),抛物线的右端点B坐标为(10,0),可设抛物线的顶点式求解析式,再根据题意可知水面宽度变为6m 时=2或=8,据此求得对应 y 的值即可得.【解答】解:(1)选择方案二,根据题意知点 B的坐标为(10,0),故答案为:方案二,(10,0);(2)由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(﹣5)2+5,由题意知,当=5﹣3=2 时,﹣(﹣5)2+5= ,所以水面上涨的高度为米.【点评】本题主要考查二次函数的应用,根据抛物线在坐标系中的位置及点的坐标特点,合理地设抛物线解析式,再运用解析式解答题目的问题.24.(6 分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C 为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交 AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD=,求 AE的长.【分析】(1)连接OC,如图,由弧BC=弧 CF得到∠BAC=∠FAC,加上∠OCA=∠OAC.则∠OCA=∠FAC,所以OC∥AE,从而得到OC⊥DE,然后根据切线的判定定理得到结论;(2)先在Rt△OCD 中利用正切定义计算出 CD=4,再利用勾股定理计算出OD=5,则sinD=,然后在Rt△ADE 中利用正弦的定义可求出 AE的长.【解答】(1)证明:连接 OC,如图,∵点 C 为弧 BF 的中点,∴弧 BC=弧 CF.∴∠BAC=∠FAC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠FAC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE.∴DE 是⊙O 的切线;(2)解:在Rt△OCD中,∵tanD==,OC=3,∴CD=4,∴OD==5,∴AD=OD+AO=8,在Rt△ADE中,∵sinD===,∴AE=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.25.(6 分)小明根据学习函数的经验,对函数y=4﹣52+4 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量的取值范围是全体实数,与 y 的几组对应数值如下表:… 2 ﹣0 1 2 ……4.3 3.2 0 ﹣2. 2 ﹣0 2.8 3.7 4 3.7 2.8 0 ﹣﹣m 3.2 4.3 …(2)如图,在平面直角坐标系Oy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质函数图象关于 y轴对称;(4)进一步探究函数图象发现:①方程4﹣52+4=0 有 4 个互不相等的实数根;②有两个点(1,y1)和(2,y2)在此函数图象上,当2>1>2 时,比较 y1 和y2的大小关系为:y1<y2(填“>”、“<”或“=”);③若关于的方程4﹣52+4=a 有 4 个互不相等的实数根,则a 的取值范围是.【分析】(1)观察对应数值表即可得出;(2)用平滑的曲线依次连接图中所描的点即可;(3)观察函数图象,即可求得.【解答】解:(1)观察对应数值表可知:m=0,(2)用平滑的曲线依次连接图中所描的点,如下图所示:(3)观察函数图象,发现该函数图象关于 y轴对称,(答案不唯一),故答案为:函数图象关于 y 轴对称;(4)①∵函数的图象与轴有 4个交点,∴方程4﹣52+4=0 有 4 互不相等的实数根,故答案为 4;②函数图象可知,当2>1>2 时,y1<y2;故答案为<;③观察函数图象,结合对应数值表可知:,故答案为:.【点评】本题考查二次函数的图象,性质和最值,观察函数图象并结合函数性质是解决本题的关键.26.(6分)在平面直角坐标系Oy中,抛物线y=m2﹣2m﹣3(m≠0)与y轴交于点A,其对称轴与轴交于点 B 顶点为 C点.(1)求点 A 和点 B的坐标;(2)若∠ACB=45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于y 轴的直线 l 与抛物线交于点P(1,y1)和Q(2,y2),与直线AB交于点N(3,y3),若3<1<2,结合函数的图象,直接写出1+2+3 的取值范围为.【分析】(1)利用待定系数法、对称轴公式即可解决问题;(2)确定点 C坐标,利用待定系数法即可解决问题;23(3)如图,当直线l 在直线 l1与直线 l2之间时,3<1<2,求出直线l 经过点 A 、点C 时的1+3+2 的值即可解决问题;【解答】解:(1)∵抛物线 y=m2﹣2m﹣3 (m≠0)与 y轴交于点A,∴点 A的坐标为(0,﹣3);∵抛物线 y=m2﹣2m﹣3 (m≠0)的对称轴为直线 =1,∴点 B的坐标为(1,0).(2)∵∠ACB=45°,∴点 C的坐标为(1,﹣4),把点 C 代入抛物线 y=m2﹣2m﹣3 得出 m=1,∴抛物线的解析式为 y=2﹣2﹣3.(3)如图,当直线 l1 经过点 A 时,1=3=0,2=2,此时1+3+2=2,当直线 l2 经过点 C 时,直线 AB 的解析式为y=3﹣3,∵C(1,﹣4),∴y=﹣4 时,=﹣此时,1=2=1,3=﹣,此时1+3+2=,当直线 l 在直线 l1与直线l2之间时,3<1<2∴.【点评】本题考查二次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,解答(3)题时,利用了“数形结合”的数学思想,降低了解题的难度.五、解答题(共 2 道小题,每小题 7 分,共 14 分)27.(7 分)已知,△A BC中,∠A CB=90°,AC=BC,点D 为BC边上的一点.(1)以点 C为旋转中心,将△ACD 逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC=,BF=1,连接CF,则 CF的长度为.【分析】(1)直接利用旋转的性质即可得出结论;(2)先判断出△CBE≌△CAD,得出∠CBE=∠CAD,∠BCE=∠ACD=90°,即可得出结论;(3)先利用相似三角形的性质求出BD= ,CD=(3﹣),用BC=BD+CD= ,建立方程求出BD=,CD= ,∴BD=CD,再利用三角形的面积求出CM=1,进而根据勾股定理得,AM=2,再△AMC∽△BNF,求出FN= ,BN= ,∴DN=BD﹣BN= ,得出CN=CD+DN= ,最后用勾股定理即可得出结论.【解答】解:(1)如图 1,△BCE即为所求;(2)证明:如图 2,∵△CBE 由△CAD 旋转得到,∴△CBE≌△CAD,∴∠CBE=∠CAD,∠BCE=∠ACD=90°,∴∠CBE+∠E=∠CAD+∠E,∴∠BCE=∠AFE=90°,∴AF⊥BE;(3)如图3,在Rt△ABC中,BC=AC=,∴AB=AC=,在Rt△ABF 中,根据勾股定理得,AF=3,设 AD=,∴DF=3﹣,由旋转知,CE=CD,BE=AD=由(2)知,∠BFD=90°=∠BCE,∵∠B=∠B,∴△BFD∽△BCE,∴,∴= ,∴BD= ,CD=(3﹣),∵BC=BD+CD=,∴+ (3﹣)= ,∴=,∴BD=,CD=,过点 C 作CM⊥AD 于 M,∴S△ACD=AC×CD=AD×CM,∴CM==1,在Rt△AMC 中,根据勾股定理得,AM=2,过点 F 作FN⊥BC 于 N,∴∠BNF=90°=∠AMC,由旋转知,∠CAM=∠FBN,∴△AMC∽△BNF,∴=,∴= ,∴ FN=,BN= ,∴DN=BD﹣BN= ,∴CN=CD+DN=,在Rt△CNF中,CF==故答案为:.【点评】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,三角形的面积公式,解本题的关键是求出BD,CD的值.28.(7分)对于平面直角坐标系Oy中的点 P,给出如下定义:记点P到轴的距离为d1,到y 轴的距离为 d2,若d1≥d2,则称d1 为点P 的最大距离;若d1<d2,则称 d2 为点 P 的最大距离.例如:点 P(﹣3,4)到到轴的距离为 4,到 y 轴的距离为 3,因为3<4,所以点P 的最大距离为 4.(1)①点A(2,﹣5)的最大距离为5 ;②若点B(a,2)的最大距离为 5,则 a的值为±5;(2)若点 C在直线y=﹣﹣2上,且点C 的最大距离为 5,求点 C的坐标;(3)若⊙O 上存在点 M,使点 M 的最大距离为 5,直接写出⊙O的半径r 的取值范围.【分析】(1)①直接根据“最大距离”的定义,其最小距离为“最大距离”;②点 B(a,2)到轴的距离为 2,且其“最大距离”为 5,所以a=±5;(2)根据点C的“最大距离”为5,可得=±5 或y=±5,代入可得结果;(3)如图,观察图象可知:当⊙O于直线=5,直线=﹣5,直线 y=5,直线y=﹣5 有交点时,⊙O 上存在点 M,使点 M 的最大距离为 5,【解答】解:(1)①∵点 A(2,﹣5)到轴的距离为 5,到 y轴的距离为2,∵2<5,∴点 A 的“最大距离”为 5.②∵点 B(a,2)的“最大距离”为 5,∴a=±5;故答案为 5,±5.(2)设点 C的坐标(,y),∵点 C 的“最大距离”为 5,∴=±5 或y=±5,当 =5 时,y=﹣7,当 =﹣5 时,y=3,当 y=5 时,=﹣7,当 y=﹣5 时,=3,∴点C(﹣5,3)或(3,﹣5).(3)如图,观察图象可知:当⊙O于直线=5,直线=﹣5,直线 y=5,直线y=﹣5 有交点时,⊙O 上存在点 M,使点 M 的最大距离为 5,∴.【点评】本题考查一次函数综合题、“最大距离”的定义、圆的有关知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.。

昌平初三上学期期末考试数学试题及答案

昌平初三上学期期末考试数学试题及答案

昌平初三上学期期末考试数学试题及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#昌平区2010—2011学年第一学期初三年级期末考试数 学 试 卷 2011.1一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知1cos 2=A ,则锐角A 的度数是A .30︒B .45︒C .60︒D .75︒2.抛物线21y x =-的顶点坐标是 A .(01),B .(01)-,C .(10),D .(10)-,3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若40BOC ∠=, 则∠C 的度数等于A .20B .40C .60D .804.在△ABC 中,∠C =90°,cos A=53,那么tan B 的值等于A .35B . 45C . 34D . 435.两个圆的半径分别是2cm 和7cm ,圆心距是5cm ,则这两个圆的位置关系是A .外离B .外切C .相交D .内切6.如图,在ABC △中,DE BC ∥,且3AE =,5,EC =6DE =,则BC 等于A.10 B.16 C.12D.1857.如图所示,直线l 与半径为5 cm 的⊙O 相交于A、B 两点,且与半径OC 垂直,垂足为H ,AB =8 cm ,若要使直线l 与⊙O 则l 应沿OC 方向向下平移 A . 1cm B .2cm第5题图AEABCD lC . 3 cmD .4cm8.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度始终保持不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为二、填空题(共4道小题,每小题4分,共16分)9.如图,已知PA ,PB 分别切⊙O 于点A 、B ,60P ∠=,8PA =, 那么弦AB 的长是 .10.圆锥的母线长为3,底面半径为2,则它的侧面积为 .11.将一副直角三角板(含45角的直角三角板ABC 及含30角的直角 三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的 面积之比等于 .12.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点 C 作直线切半圆于点E ,交AD 边于点F ,则FEEC= .三、解答题(共10道小题,共50分) 13.(4分)计算:1230tan 345sin 2-︒+︒14.(4分)已知: 如图,在△ABC 中,D ,E 分别是AB ,AC 上一点, AADBCO ABPOF A EBCDOA. B. C. D.且∠AED =∠B .若AE =5,AB = 9,CB =6 ,求ED 的长.15. (5分)如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC =4,求⊙O 的直径.16. (6分)已知二次函数2y x 2x 3=--.(1)用配方法把该函数化为k h x a y +-=2)(的形式,并写出抛物线223y x x =--的对称轴和顶点坐标;(2)在直角坐标系中,直接画出抛物线223y x x =--.(注意:关键点要准确,不必写出画图象的过程.)(3)根据图象回答:①x 取什么值时,抛物线在x②x 取什么值时,y 的值随x17.(5分)如图,在ABC △中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD=,4sin 5B =. (1)求线段DC 的长; (2)求ta n ∠EDC 的值. ABCDE18. (5分)如图,M 为线段AB 上的点,AE 与BD 交于点C , ∠DME =∠A =∠B ,且MD 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形; (2)选择(1)中的一个结论进行证明.19.(5分)已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点, OB ,DE 相交于点(1)求证:DE 是⊙O 的切线;(2)求EF :FD 的值.20.(5分)小明利用所学的数学知识测量生活中一建筑物的高.他从自家楼房顶C 处,测得对面直立的建筑物AB 的顶端A 的仰角为45,底端B 的俯角为30,已量得21DB =米. (1)在原图中画出从点C 看点A 时的仰角及看点B 时的俯角,并分别标出它们的大小;(2)请你帮助小明求出建筑物AB 的高.BM FGDECA B DB21.(5分)已知抛物线C1:221)1(,其中m≠0.y mx m x m=++++(1)求证:m为任意非零实数时,抛物线C1与x轴总有两个不同的交点;(2)求抛物线C1与x轴的两个交点的坐标(用含m的代数式表示);(3)将抛物线C1沿x轴正方向平移一个单位长度得到抛物线C2,则无论m取任何非零实数,C2都经过同一个定点,直接写出这个定点的坐标.注:答题卡上的直角坐标系为备用.22. (6分)已知⊙O,半径为6米,⊙O外一点P,到圆心O的距离为10米,作射线PM,PN,使PM经过圆心O,PN与⊙O相切,切点为H.(1)根据上述条件,画出示意图;(2)求PH的长;(3)有两动点A,B,同时从点P出发,点A以5米/秒的速度沿射线PM方向运动,点B以4米/秒的速度沿射线PN方向运动.设运动的时间为t(秒).当t为何值时,直线AB与⊙O相切四、解答题(共3道小题,共22分)23.(7分)一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10(2010)1⨯-=(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买(2)写出专买店当一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少24.(8分)已知正方形ABCD ,边长为3,对角线AC ,BD 交点O ,直角MPN 绕顶点P 旋转,角的两边分别与线段AB ,AD 交于点M ,N (不与点B ,A ,D 重合). 设DN =x ,四边形AMPN 的面积为y .在下面情况下,y 随x 的变化而变化吗若不变,请求出面积y 的值;若变化,请求出y 与x 的关系式.(1)如图1,点P 与点O 重合;(2)如图2,点P 在正方形的对角线AC 上,且AP =2PC ; (3)如图3,点P 在正方形的对角线BD 上,且DP =2PB .25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C .(1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.图1(P )NDMO CBA 图2PABCOM D N图3P A BCOMDN昌平区2010—2011学年初三年级期末考试数学试卷参考答案及评分标准 2011.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共10道小题,共50分) 13.(4分)解:原式=32333222-⨯+⨯………………………………3分 =1-3 ………………………………4分14.(4分)解:∵∠AED =∠ABC ,∠A =∠A ,∴△AED ∽△ABC . ………………………………2分 ∴BCDEAB AE =. ………………………………3分 ∵AE =5,AB = 9,CB =6,∴695DE =, ∴.310=DE ………………………………4分A BCED15. (5分) 解:连结OA ,OB .∵∠BAC =120°,AB =AC =4,∴∠CBA =∠C =30°. ………………………………2分 ∴ ∠O =60° ………………………………3分 ∵OB =OA ,∴△OAB 是等边三角形. ………………………………4分 ∴OB =OA =4.则⊙O 的直径是8. ………………………………5分16. (6分) 解:(1)y =x 2-2x -3 = x 2-2x +1-4=(x -1)2-4 ……………………………… 1分 ∴抛物线-2-32y =x x 的对称轴是x =1,顶点坐标是(1,-4). ……………………………… 3分(2)如图. ……………………………… 4分(3)① x < -1或x >3; ……………………………… 5分② x ≤1. ……………………………… 6分17.(5分)解:(1)在Rt BDA △中,90BDA =∠,12AD =,4sin 5AD B AB ==, 15AB ∴=. ……………………………1分9BD ∴===.1495DC BC BD ∴=-=-=. ……………………………2分AE(2)在Rt ADC △中,90ADC =∠,512tan ==DC AD C . ……………………………3分 DE 是斜边AC 上的中线,12DE AC EC ∴==. EDC C ∴=∠∠. ……………………………4分∴ta n ∠EDC=512tan =C . ……………………………5分18.(5分)(1)答:图中三对相似三角形是:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM …………………………3分(2)证明△AMF ∽△BGM .证明:∵∠AFM =∠DME +∠E ,∠BMG =∠A +∠E , 又∵∠DME =∠A ,∴∠AFM =∠BMG . …………………………………4分 ∵∠A =∠B ,∴△AMF ∽△BGM . …………………………………5分19.(5分)(1)证明:连结CD (如图), …………………… 1分 ∵AC 是⊙O 的直径, ∴90ADC BDC ∠=∠=.E 是BC 的中点, DE BE EC ∴==.B MF GDECA∴DBE BDE∠=∠OA OD=,ADO A∴∠=∠.90DBE A∠+∠=,90BDE ADO∴∠+∠=.90EDO∴∠=.即OD DE⊥.∵点D在⊙O上,∴DE是⊙O的切线 . ……………………………………………………………… 3分(2)解:连结OE.∵E是BC的中点,O是AC的中点,∴OE∥AB,OE=12 AB.∴△OEF∽△BDF.在Rt ABC△中,AC = 4,BC=根据勾股定理,得AB = 8,∴OE= 4,∵sin∠ABC=4182 ACAB==,∴∠ABC=30°.∴∠A=60°.∴AOD△是边长为2的等边三角形.∴2AD=,BD= AB-AD =6.∴EF:FD = OE:BD = 4:6 = 2:3 .………………………………………… 5分20.(5分)A(1)如图. ………………………………………… 1分(2)据题意,得 四边形CDBG 是矩形,CG =DB =21. …………… 2分 在Rt CG △A 中,∠AGC =90°,45ACG =∠.21AG CG ∴==. ………………………………………… 3分 在Rt BCG △中,∠BGC=90°,∴tan 3021BG CG =⋅== …………………4分 ∴ 建筑物的高AB =(21+37)米. ……………………… 5分21. (5分)()222214214(1)44144b ac m m m m m m m-=+-+=++--()证明:10=>,∴一元二次方程mx 2+(2m +1)x +m +1=0有两个不相等的实数根.即:m 取任意非零实数,抛物线C 1与x 轴总有两个不同的交点. ……………… 2分 (2)解:∵ mx 2+(2m +1)x +m +1=0的两个解分别为:x 1=-1,x 2=-mm 1+, ∴A (-1,0),B (-mm 1+,0) . ……………………………… 4分 (3) 解:∵抛物线C 1与x 轴的一个交点的坐标为A (-1,0),∴将抛物线C 1沿x 轴正方向平移一个单位长度得到抛物线C 2与x 轴交点坐标为(0,0), 即 无论m 取任何非零实数,C 2必经过定点(0,0). ………………… 5分 22.(6分)(1)如图. …………………………………… 1分(2)连结OH .∵PN 与⊙O 相切,切点为H ,M∴OH ⊥PN . ∴∠PHO =90°.在Rt △PHO 中,PO =10,OH =6,根据勾股定理,得8PH ==. ………………… 3分 (3)画图. …………………………………………… 4分 分两种情况,如图所示.①当点A 在点O 左边时,直线A 1B 1切⊙O 于M 1. 连结O M 1,则∠OM 1 B 1= 90°. 在△PB 1A 1和△PHO 中,1482PB t t PH ==,15102PA t tPO ==. ∴11PB PA PH PO =. 又∠P =∠P , ∴△PB 1A 1∽△PHO . ∴∠PB 1A 1=∠PHO =90°. ∴∠HB 1M 1= 90°. ∴四边形B 1M 1OH 为矩形, ∴B 1H =M 1O . ∴8-4t = 6.∴t = . ………………… 5分 ②当点A 在点O 右边时.同理,得 t = . ………………… 6分 即 当t 为秒或秒时,直线AB 与⊙O 相切. 四、解答题(共3道小题,共22分) 23.( 7分 )M解:(1)设一次购买x 只,则20-0.1(10)x -=16,解得50x =.∴一次至少买50只,才能以最低价购买 . ………………… 2分 (2)当1050x <≤时,2[200.1(10)12]0.19y x x x x =---=-+ …………… 4分当50x >时,(2016)4y x x =-=. ……………………………………5分(3)220.190.1(45)202.5y x x x =-+=--+.① 当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大. ② 当45<x ≤50时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当46x =时,y 1=,当50x =时,y 2=200. ………………………………………………6分 y 1>y 2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象. 当45x =时,最低售价为200.1(4510)16.5--=(元).∴为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到元 . …………………………………………………………7分24.( 8分 )解:(1)当x 变化时,y 不变. 如图1,94AFOE AMON y S S ===正方形四边形. ……………………………………… 2分(2)当x 变化时,y 不变.如图2,作OE ⊥AD 于E ,OF ⊥AB 于F . ……………………………………… 3分FE A B C OM D N(P )图1图2PABCOM DN F E图3PA BCO M DNEF∵AC 是正方形ABCD 的对角线, ∴∠BAD =90°,AC 平分∠BAD .。

初中数学 昌平第一学期末初 三 数 学 考试考试卷及答案

初中数学  昌平第一学期末初 三 数 学 考试考试卷及答案

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知⊙O1和⊙O2的半径分别为3和5,如果O1O2= 8,那么⊙O1和⊙O2的位置关系是A.外切 B. 相交 C. 内切 D. 内含试题2:在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是A. B. C. D.试题3:如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是A.1 B. C. D.2试题4:在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是评卷人得分A.① B .②C.③ D.④试题5:如图,在△中,点分别在边上,∥,若,,则等于A. B. C. D.试题6:当二次函数取最小值时,的值为A.B.C.D .试题7:课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是A.米B.米C.米D .米 x k b 1 . c o m试题8:已知:如图,在半径为4的⊙O中,AB为直径,以弦(非直径)为对称轴将折叠后与相交于点,如果,那么的长为A.B.C.D.试题9:如果,那么锐角的度数为 .试题10:如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.试题11:在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .试题12:在平面直角坐标系中,直线和抛物线在第一象限交于点A, 过A作轴于点.如果取1,2,3,…,n时对应的△的面积为,那么_____;_____.试题13:如图1,正方形ABC D是一个6 ×6网格的示意图,其中每个小正方形的边长为1,位于AD中点处的点P按图2的程序移动.(1)请在图中画出点P经过的路径;(2)求点P经过的路径总长.试题14:计算:.试题15:现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图的方法解答).试题16:如图,从热气球C处测得地面A、B两处的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B 在同一直线上,求AB两处的距离.试题17:已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).(1)求此抛物线的函数表达式;(2)如果点是抛物线上的一点,求△ABD的面积.试题18:如图,在△ABC中,∠AB C=2∠C,BD平分∠ABC,且,,求AB的值.试题19:如图,在平面直角坐标系中,⊙A与y轴相切于点,与x轴相交于M、N两点.如果点M的坐标为,求点N的坐标.试题20:(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;(2)如果,是(1)中图象上的两点,且,请直接写出、的大小关系;(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.试题21:已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,BE=2,求∠F的度数.试题22:阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 如果,求的值.他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.请你回答:(1)AB和EH的数量关系为,CG和EH的数量关系为,的值为 .(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为(用含a的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为(用含m,n的代数式表示).试题23:由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A市位于台风中心M北偏东15°的方向上,距离千米,B 市位于台风中心M正东方向千米处. 台风中心以每小时30千米的速度沿MF向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A市、B市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图试题24:已知二次函数y = x2 –kx + k – 1(k>2).(1)求证:抛物线y = x2 –kx + k - 1(k>2)与x轴必有两个交点;(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C ,若,求抛物线的表达式;(3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.试题25:已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.试题1答案:A试题2答案:C试题3答案:D试题4答案:B试题5答案:D试题6答案:A试题7答案:B试题8答案:A试题9答案:试题10答案:试题11答案:试题12答案:4 ,2n(n+1)试题13答案:解:(1)如图所示:(2)由题意得,点P经过的路径总长为:.试题14答案:.解:原式===.试题15答案:解:列表如下:O1O2 AO1(O1,O1) (O1,O2) (O1,A)O2(O2,O1) (O2,O2) (O2,A)A (A,O1) (A,O2) (A,A)所以,两次所献血型均为O型的概率为.试题16答案:解:依题意,可知:,.∴..∴AB两处的距离为米.试题17答案:解:(1) ∵抛物线与y轴相交于点C(0,3),∴设抛物线的解析式为.∵抛物线与x轴相交于两点,∴解得:∴抛物线的函数表达式为:.(2)∵点是抛物线上一点,∴.∴.试题18答案:解:∵BD平分∠ABC,∴∠ABC=2∠1=2∠2.∵∠ABC=2∠C,∴∠C=∠1=∠2.∴.∴.又∵∠A=∠A,∴△ABD∽△ACB.∴.∴.∴(舍负).试题19答案:解:连接AB、AM,过点A作AC⊥MN于点C.∵⊙A与y轴相切于点B(0,),∴AB⊥y轴. 又∵AC⊥MN,x 轴⊥y轴,∴四边形BOCA为矩形.∴AC=OB=,OC=BA.∵AC⊥MN,∴∠ACM= 90°,MC=CN.∵M(,0),∴OM=.在 Rt△AMC中,设AM=r.根据勾股定理得:.即,求得r=.∴⊙A的半径为.即AM=CO=AB =.∴MC=CN=2 .∴N(,0) .试题20答案:解:(1).画图象,如图所示.(2).(3)如图所示,将抛物线向上平移两个单位后得到抛物线,抛物线与x 轴交于点A、B,则A、B两点的横坐标即为方程的根.-31-231试题21答案:(1)证明:连接OD.∵AB=AC,∴. ∵OD=OC,∴.∴.∴∥.∴.∵DE⊥AB,∴.∴.∴.∴DE是⊙O的切线.(2)解:连接AD.∵AC为⊙O的直径,∴.又∵DE⊥AB,∴Rt∽Rt.∴.∴.∵⊙O的半径为4,∴AB=AC=8.∴.∴.在Rt中,∵,∴.又∵AB=AC,∴是等边三角形.∴∴.试题22答案:解:(1),, .(2).(3).试题23答案:解:(1)如图1,过点A作AC⊥MF于点C, 过点B作BD⊥MF于点D.依题意得:∠AME=15°,∠EMD=60°,,,∴∠AMC=45°,∠BMD=30°.∴,.∵台风影响半径为60千米,而,,∴A市不会受到此次台风影响,B市会受到此次台风影响.(2)如图2,以点B为圆心,以60千米为半径作交MF于P、Q两点,连接PB.∵,台风影响半径为60千米,∴.∵BD⊥PQ,PQ=2PD=60.∵台风移动速度为30千米/小时,∴台风通过PQ的时间为小时.即B市受台风影响的持续时间为小时.试题24答案:(1)证明:∵,又∵,∴.∴即.∴抛物线y = x2 –kx + k - 1与x轴必有两个交点.(2) 解:∵抛物线y = x2 –kx + k - 1与x轴交于A、B两点,∴令,有.解得:.∵,点A在点B的左侧,∴.∵抛物线与y轴交于点C,∴.∵在Rt中, , ∴, 解得.∴抛物线的表达式为.(3)解:当或时,x轴与相离.当或或时,x轴与相切.当或时,x轴与相交.试题25答案:解:(1) 30°.(2)当点E在线段CD上时,;当点E在CD的延长线上,时,;时,;时,.(3)作于点G, 作于点H.由AD∥BC,AD=AB=CD,∠BAD=120°,得∠ABC=∠DCB=60°,易知四边形AGHD是矩形和两个全等的直角三角形.则GH=AD , BG=CH.∵,∴点、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=,.作于Q.在Rt△EQC中,CE=2, ,∴, .∴E'Q=.作于点P.∵△ADE绕点A顺时针旋转120°后,得到△ABE'.∴△A EE'是等腰三角形,.∴在Rt△AP E'中,E'P=.∴EE'=2 E'P=.∴在Rt△EQ E'中,E'Q=.∴.∴.∴,.∴在Rt△E'AF中,, ∴Rt△AG E'∽Rt△FA E'.∴∴.∴.由(2)知:.[来源:Z*xx*]∴.。

昌平期末初三数学试卷答案

昌平期末初三数学试卷答案

一、选择题(每题5分,共25分)1. 若实数a、b满足a+b=2,则a²+b²的最小值为______。

答案:42. 在直角坐标系中,点A(2,3)关于y轴的对称点为______。

答案:(-2, 3)3. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积为______。

答案:40cm²4. 已知一元二次方程x²-4x+3=0,则该方程的两个根之和为______。

答案:45. 下列函数中,y是x的一次函数的是______。

A. y=√xB. y=x²C. y=2x-3D. y=x³答案:C二、填空题(每题5分,共25分)6. 若|a|+|b|=5,且a+b=3,则ab的值为______。

答案:-47. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数为______。

答案:75°8. 已知一次函数y=kx+b的图象经过点(2,-3),则该函数的解析式为______。

答案:y=2x-39. 若等差数列{an}的首项为3,公差为2,则第10项an=______。

答案:2110. 若等比数列{bn}的首项为2,公比为3,则第5项bn=______。

答案:162三、解答题(共50分)11. (10分)解下列方程:(1)2x²-5x+2=0(2)√(x+3)=2答案:(1)x₁=1,x₂=2(2)x=112. (10分)已知函数f(x)=3x²-4x+1,求:(1)函数f(x)的对称轴;(2)函数f(x)在x=1时的最大值。

答案:(1)对称轴为x=2/3(2)最大值为013. (10分)在△ABC中,AB=AC,∠B=45°,求△ABC的面积。

答案:S△ABC=AB²/2=AC²/214. (10分)已知一元二次方程x²-4x+3=0,求:(1)方程的判别式;(2)方程的两个根的乘积。

最新初中九年级数学昌题库 平区初三数学期末考试题及答案

最新初中九年级数学昌题库 平区初三数学期末考试题及答案

昌平区2012—2013年第一学期初三年级期末质量抽测数 学 试 卷 2013.1学校 姓名 考试编号一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红球..的概率是 A .16B.14C. 13D.124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切B. 相交C. 内切D. 内含5.若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最短边的长为A. 15B. 10C. 9D. 3 6.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为 A .2(2)5y x =++ B .2(2)5y x =+- C .2(2)5y x =-+ D .2(2)5y x =--7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部CBA分的面积为A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC , 在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于A.49π B.23π C. 43π D. π 二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 . 10.当x = 时,二次函数222y x x =+-有最小值. 11.如图,在△ABC 中,∠ACB =∠ADC= 90°,若sin A =35,则cos ∠BCD 的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是 cm 2; 当EF =7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距AB 为1.7米,求这棵树的高度.15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有交点,求k 的取值范围.DCBAFE DCBAA BCD E16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2). (1)以原点O 为旋转中心,将△ABC 绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回....甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y轴交于点C .(1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y 的取值范围. 四、解答题(共4道小题,每小题5分,共20分)19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C , AC =2,DT,求∠ABT 的度数.20. 如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,求CD BD的值.ABCD21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC . (1)求证:BE 与⊙O 相切; (2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且P A=PB =1,PD,则∠APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且P A =2,PB =1,PF 则∠APB 的度数等于 ,正六边形的边长为 .五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分) 23. 如图,小明在一次高尔夫球训练中,从山坡下P 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD 为12米时,球移动的水平距离PD 为9米 .已知山坡P A 与水平方向PC 的夹角为30o,AC ⊥PC 于点C , P 、A 两点相距请你建立适当的平面直角坐标系解决下列问题. (1)求水平距离PC 的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P 点直接打入球洞A .24.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD 做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s. 经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求a的值.25.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(- 4),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC 相似?如果存在,求出点N的坐标;如果不存在,请说明理由.昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1 一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分)13.解:原式=2+ ……………… 3分 =1. …………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,, 1.7AD CE BE DE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, …………………… 2分∴33CD ==. ………………………… 3分∴3 1.7 4.7CE =+=. ………………………… 4分答:这棵树的高度为4.7米. 15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ ……………… 2分解之,得 1,2.k k ≠-⎧⎨≤⎩……………………… 4分∴ 2k ≤且1k ≠-. ………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………… 1分如图所示. ………………………3分 (2)如图所示. ……………………………………5分17.解:2 4 52 4 52 5 5554甲乙 4 5 52. …………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………… 4分 ∴甲、乙获胜的机会不相同. ………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m ,∴m = 3. …………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………… 2分 与y 轴交点C (0,3). ………………………… 3分(2)当y ﹥0 时,-1 < x < 3. …………………… 4分(3)当-1≤x ≤2时,0≤y ≤4. ……………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O 于T ,∴∠OTD = 90°.…………………………… 1分 ∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ……………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. ……………………… 3分 ∴∠CET = 90°,CE DT ==.∴2BC CE ==∵tan ABC AC BC ∠== ∴∠ABC = 30°. …………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. …………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥, ∴DE ∥AC ,∠2=45° . ∴DE=AE , AE CD BEBD=. …………………………… 2分∵1tan 2B =,∴12DE BE =. ………………………………………… 3分 ∴12AE BE = . …………………………………… 4分 ∴12CD BD= . …………………………… 5分21. (1)证明:连接OE . ………………………………… 1分∵四边形ABC D 是矩形, ∴AD ∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC, ∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………… 2分(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.21EABCD∵DC =2 ,∠C = 90°,∴DB = 6. ………………… 3分 ∵∠A = 90°, ∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =AD =.∴2DE =.连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB ∥EF .∴DEF ∆∽DAB ∆. …………………… 4分∴DE DFAD BD =.6DF =. ∴214DF =. ∴⊙O 的半径为218. …………………………………5分 22.解:150︒ . …………………………………………… 1分 (1)135°……………………………………… 3分 (2)120°…………………………………… 5分五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………… 1分∴cos 3012PC =︒= . ………………………… 2分 ∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分∴设抛物线的解析式为2(9)12y a x =-+. …4分 ∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). …………… 5分(3)由(1)知C (12 , 0) ,易求得AC =∴12A(. ……………………………… 6分 当x =12时,2432(129)12=273y =--+≠ ……………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . ………………………………… 1分 又∵60A ∠=, ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . ………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120, ∴12秒后点Q 到达AB 的中点N . …………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ……………………………4分(3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. ……………………………5分① 当点Q 在NB 上时(如图1),13NF a =,∴1243BF a =-.∵点E 是BD 的中点,若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立.∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM=. ∴243242448a -=.∴4a =,112BF =. ………………………… 6分② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm. ∴36123a ==. …………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C重合.由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm. ∴ 72243a ==. …………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm/s 或24cm/s.25.解:(1)∵抛物线的顶点坐标为4C-(, ∴抛物线的对称轴为直线4x =-.∵抛物线在x 轴上截得的线段AB 的长为6,∴ A (-1 , 0 ),B ( -7 , 0 ) . ………………………1分图1图23)图3设抛物线解析式为()24y a x =+ ∴()2014a =-++解得,9a =-. ∴ 二次函数的解析式为)24y x =++ ……………2分 (2)作点A 关于y 轴的对称点A ',可得 A '(1.0).连接A 'C 交y 轴于一点即点M ,此时MC + MA 的值最小.由作法可知,MA = M A '. ∴MC + MA = MC + M A '=A 'C .∴当点M 在线段A 'C 上时,MA + MC 取得最小值. ……………3分 ∴线段A 'C 与y 轴的交点即为所求点M .设直线C A '的解析式为y kx b =+(k≠0),∴40k b,k b.=-+=+⎪⎩∴k b ==……………4分 ∴直线C A '的解析式为y x =+ ∴点M 的坐标为( 0…………………5分 (3)由(1)可知,C (-4),设对称轴交x 轴于点D ,∴AD = 3.∴在Rt △ADC中,3tan CAD ∠=∴∠CAD = 30o ,∵AC = BC ,∴∠ABC = ∠CAB = 30o.∴∠ACB = 120°. …………………………………6分①如果AB = A N1= 6,过N1作E N1⊥x轴于E.由△ABC∽△BA N1得∠BA N1= 120o,则∠EA N1= 60o .∴N1E = 33,AE =3.∵A(-1 , 0 ),∴OE = 2.∵点N在x轴下方,∴点N2(2,-………………………………………7分②如果AB = B N2,由对称性可知N2(-10,-……………………8分③如果N3A = N3B,那么点N必在线段AB的中垂线即抛物线的对称轴上,在x轴下方的抛物线上不存在这样的点N.经检验,点N1 (2,-与N2 (-10,-都在抛物线上. …………9分综上所述,存在这样的点N,使△NAB∽△ABC,点N的坐标为(2,-或(-10,-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌平区2012—2013年第一学期初三年级期末质量抽测数学 试 卷 2013.1一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在Rt △ABC 中,90C=∠o,3AC=,4BC=,则sin A 的值为A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红球..的概率是 A .16B.14C. 13D. 124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切 B. 相交 C. 内切 D. 内含5.若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最短边的长为 A. 15 B. 10 C. 9 D. 36.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为 A .2(2)5y x =++ B .2(2)5y x =+- C .2(2)5y x =-+ D .2(2)5y x =--CBA7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部分的面积为 A .0.36πm 2 B .0.81πm 2 C .2πm 2 D .3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作»AC ,在扇形BAC 内作⊙O 与AB 、BC 、»AC都相切,则⊙O 的周长等于 A. 49π B.23π C. 43π D. π二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 .10.当x = 时,二次函数222y x x =+-有最小值.11.如图,在△ABC 中,∠ACB =∠ADC= 90°,若sin A =35,则cos ∠BCD的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是 cm 2; 当EF =7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.CBAFEDCBA14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有交点,求k 的取值范围.16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2).(1)以原点O 为旋转中心,将△ABC 绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回....甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y 轴交于点C .(1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y 的取值范围.A BCD ExO yACB图1 图2 图3 图4四、解答题(共4道小题,每小题5分,共20分)19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C , AC =2,DT,求∠ABT 的度数.20. 如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,求CDBD的值.21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC . (1)求证:BE 与⊙O 相切; (2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.PCBAABC PP 'D PACBABC DPFEABCD请你回答:图1中∠APB的度数等于. 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且P A=PB=1,PD,则∠APB的度数等于,正方形的边长为;(2)如图4,在正六边形ABCDEF内有一点P,且P A=2,PB=1,PF则∠APB的度数等于,正六边形的边长为.五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分)23.如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡P A与水平方向PC的夹角为30o,AC⊥PC于点C,P、A两点相距请你建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A.24.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s. 经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求a的值.25.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(- 4),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点N的坐标;如果不存在,请说明理由.昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分)13.解:原式=2…………………………………………………………… 3分 =1. ………………………………………………………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,,1.7AD CE BEDE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, ……………………………………………………………… 2分∴33CD =⨯=. ……………………………………………………………… 3分∴3 1.7 4.7CE =+=. ……………………………………………………………… 4分答:这棵树的高度为4.7米.15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ …………………………………………………… 2分 解之,得 1,2.k k ≠-⎧⎨≤⎩………………………………………………………………………… 4分∴ 2k ≤且1k ≠-. ………………………………………………………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………………………………………………… 1分如图所示. ………………………………………………………………………………3分 (2)如图所示. ………………………………………………………………………………………5分17.解:2 5 5554甲乙 4 5 52. ………………………………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………………………………………… 4分 ∴甲、乙获胜的机会不相同. ………………………………………………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m ,∴m = 3. …………………………………………………………………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………………………………………… 2分 与y 轴交点C (0,3). ……………………………………………………………… 3分(2)当y ﹥0 时,-1 < x < 3. ………………………………………………………………… 4分 (3)当-1≤x ≤2时,0≤y ≤4. ………………………………………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O 于T ,∴∠OTD = 90°.………………………………………… 1分 ∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ………………………………………………………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. …………………………………………………………………… 3分 ∴∠CET = 90°,CE DT ==.∴2BC CE ==∵tan ABC AC BC ∠== ∴∠ABC = 30°. ………………………………………………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. ………………………………………………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥,∴DE ∥AC ,∠2=45° . ∴DE=AE , AE CD BEBD=. ………………………………………………………………… 2分∵1tan 2B =, ∴12DE BE =. ……………………………………………………………………………… 3分 ∴12AE BE = . ……………………………………………………………………………… 4分 ∴12CD BD= . ……………………………………………………………………………… 5分21. (1)证明:连接OE . ………………………………………………………………………… 1分∵四边形ABC D 是矩形, ∴AD ∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC, ∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………………………………………………………… 2分(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.∵DC =2 ,∠C = 90°,∴DB = 6. ……………………………………………………………………………… 3分 ∵∠A = 90°,21EABCD∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =,AD =∴2DE =连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB ∥EF .∴DEF ∆∽DAB ∆. …………………………………………………………………………… 4分∴DE DFAD BD =.6DF =. ∴214DF =. ∴⊙O 的半径为218. …………………………………………………………………………5分 22.解:150︒ . ……………………………………………………………………………………… 1分 (1)135……………………………………………………………………………… 3分 (2)120………………………………………………………………………………… 5分 五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………………………………………… 1分∴cos 3012PC =︒= . …………………………………………………………… 2分 ∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分 ∴设抛物线的解析式为2(9)12y a x =-+. ………… 4分 ∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). ……………………………… 5分(3)由(1)知C (12 , 0) ,易求得AC =∴12A(. ……………………………………………………………………… 6分 当x =12时,2432(129)12=273y =--+≠. ………………………………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . …………………………………………………………… 1分 又∵60A ∠=o, ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . …………………………………………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120,∴12秒后点Q 到达AB 的中点N . …………………………………………………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ………………………………………………………………4分 (3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. …………………………………………………………………………5分 ① 当点Q 在NB 上时(如图1),13NF a =, ∴1243BF a =-.∵点E 是BD 的中点,图1若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立. ∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM =. ∴243242448a -=.∴4a =,112BF =. ……………………………………………………………… 6分 ② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm . ∴36123a ==. ………………………………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C 重合. 由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm . ∴ 72243a ==. ……………………………………………………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm /s 或24cm /s.25.解:(1)∵抛物线的顶点坐标为4C-(, ∴抛物线的对称轴为直线4x =-.∵抛物线在x 轴上截得的线段AB 的长为6,∴ A (-1 , 0 ),B ( -7 , 0 ) . …………………………………………………1分 设抛物线解析式为()24y a x =+ ∴()2014a =-++解得,9a =-. 图23)图3∴ 二次函数的解析式为)24y x =++……………………………2分 (2)作点A 关于y 轴的对称点A ',可得 A '(1.0).连接A 'C 交y 轴于一点即点M ,此时MC + MA 的值最小.由作法可知,MA = M A '. ∴MC + MA = MC + M A '=A 'C .∴当点M 在线段A 'C 上时,MA + MC 取得最小值. …………………………………3分 ∴线段A 'C 与y 轴的交点即为所求点M .设直线C A '的解析式为y kx b =+(k ≠0),∴40k b,k b.=-+=+⎪⎩∴k b ==…………………………4分 ∴直线C A '的解析式为55y x =-+. ∴点M 的坐标为( 0,5). ………………………………………………………………5分 (3)由(1)可知,C (-4,设对称轴交x 轴于点D ,∴AD = 3.∴在Rt△ADC中,3tan CAD ∠=.∴∠CAD = 30o,∵AC = BC ,∴∠ABC = ∠CAB = 30o.∴∠ACB = 120°. …………………………………………………………………………6分 ①如果AB = A N 1= 6,过N 1作E N 1⊥x 轴于E . 由△ABC ∽△BA N 1得∠BA N 1 = 120o, 则∠EA N 1 = 60o. ∴N 1E = 33,AE =3.∵A(-1 , 0 ),∴OE = 2.∵点N在x轴下方,∴点N2(2,-…………………………………………………………………………7分②如果AB = B N2,由对称性可知N2(-10,-…………………………………………8分③如果N3A = N3B,那么点N必在线段AB的中垂线即抛物线的对称轴上,在x轴下方的抛物线上不存在这样的点N.经检验,点N1 (2,-与N2 (-10,-都在抛物线上 . ……………………………9分综上所述,存在这样的点N,使△NAB∽△ABC,点N的坐标为(2,-或(-10,-。

相关文档
最新文档