极限pH对肌原纤维蛋白降解的作用(SCI)

合集下载

采用酸碱提取法对鲢肌肉蛋白分离特性的影响

采用酸碱提取法对鲢肌肉蛋白分离特性的影响

于鱼肌 肉分离蛋 白的制备能显著提高产率 ,使废水 中蛋 白质 的含 量大 大 降低 ,从而 减少 了废水 处理 成 本 J 。此外 ,前 期研究 发 现 ,在 功 能性 方 面 用该
收稿 1 : 0 1 0 — 0 3期 2 1 — 1 1
基金项 目: 辽宁省海洋与渔业厅科研 计划项 目 (0 9 3 201 ) 作者简介:傅润泽 (9 8 ,男 ,硕士研究生。E m i uu z@16 cm 1 8 一) — al rne 2 .o :f 通信作者 :刘俊荣 ( 9 3 ),女 ,教授 ,博士。E m i jno g l . d. n 16 - - a :l rn@do e u c l u u
第 2 卷第 6期 6
20I1 I 年 2月
大 连
海 洋

学 学 报
V0 . 6 No 6 12 . De c.20 I l
J RNAL OF DA I OU L AN E OC AN I ER I Y UN V S T
文章编 号:0 5 18 (0 1 0 - 5 9 0 29 - 3 8 2 1 )6 03 - 5
典 的低 值鱼 蛋 白的有效 利 用途径 ,但 二者 都有一 定 的局 限性 。鱼粉 的局 限性在 于其 功 能性差 ,只 能用
方 法分 离 的鱼蛋 白也有 明显 的优势 - 。 9 J
鲢为中国淡水养殖 四大鱼类之一 ,虽然 易饲 养、生长快 、成本低 ,但其肉薄、鱼刺多,风味不 及其它淡水鱼 ,在市场上不很受欢迎 ,是典型的低 值水产品。本研究中,作者采用酸碱处理法分别对 鲢普通肉和血合肉进行加工处理 , 得到普通 肉分离 蛋 白 (slt ria u c r e ,I 一 ) 和 I a dod r m sl po i MP 1 o e ny e tn 血合 肉分离蛋 白 (s a ddr m s e r e ,I P I le a uc o i M ot k l p tn 2 ,并 对 处理过 程 中所 表 现 出来 的鲢 肌 肉蛋 白质 )

pH对肌原纤维蛋白及其热诱导凝胶非共价键作用力与结构的影响

pH对肌原纤维蛋白及其热诱导凝胶非共价键作用力与结构的影响

价键作用力、二级结构和微观 结构与 p H 密切相 关;p H 从7 . 0 降到 5 . 0 ,静 电斥力减小 、 疏水相互作用增大、分子问 氢键增大 , 是0 【 一 螺旋含量减 小、D 一 折叠含量增多 以 及凝胶微观 结构 变得无序 、孔径减小 的原 因。
关键词 :肌原 纤维蛋 白凝胶 ;静 电;疏水 ;氢键; 二级结构;粒径;微观结构
ZHANG Xi n g, YANG Yu Li ng , M A Yun , WANG J i n g Yu
f C o l l e g e o fF o o d S c i e n c e a n d E n g i n e e r i n g , N a n j i n g U n i v e r s i t y o f Fi n a n e e a n d E c o n o mi c s / C o l l a b o r a t i v e I n n o v a t i o n C e n t e r f o r
并通过分析 酰胺带 I 最大峰 的波数计算蛋 白和凝胶的二级结构含量;用粒度仪 测定肌原纤维蛋 白粒径 大小和分布情
况;用扫描电镜观察凝胶微观结构 。【 结果 】p H由 7 . 0降至 5 . 0 ,肌原纤维蛋 白热诱导凝胶的 Z e t a电位值从一 1 7 . 8 7
显著 变化到一 0 . 2 6 3( 尸 < 0 . 0 5 ) ,表 明 肌 原纤维蛋 白凝胶分子表面所带负电荷急剧减少 ,静 电斥力显著减弱; 归一化
中 国农业科学
2 0 1 7 , 5 0 ( 3 ) : 5 6 4 . 5 7 3
S c i e n t i a Ag r i c u l t u r a S i n i c a

超高压对肌原纤维蛋白酶解特性的影响

超高压对肌原纤维蛋白酶解特性的影响
p r o t e i n wa s t h e ma x i mum . Un d e r t h i s pr e s s u r e,wi t h t h e d we l l t i me i n c r e a s i n g,t h e d e g r e e o f h y d r o l y s i s
ZH AN G Y i n gf i
Ab s t r a c t C h i c k e n b r e a s t w a s t a k e n a s t h e r a w ma t e i r a l a n d i t w a s t r e a t e d b y d i f f e r e n t p r e s s u r e s
f r a g me n t s .
Ke y wo r ds p r e s s u r e;my o ib f r i l ;d e g r e e o f h y d r o l y s i s;s u l f h y d r y l e f f e c t
超 高 压技术 , 把 液体 或气 体加 压 到 I O O MP a以上
a l s o wa s i n c r e a s i n g . Af te r p r e s s ur e t r e a t me nt ,i t wa s b e n e i f c i a l t o f o m r h i g h mo l e c u l a r we i g h t pe p t i d e
酶解 , 通过测定其水解度 、 巯 基含 量 及 肽 分 子 量 分 布 , 来研 究超 高压 对 肌 原 纤 维 酶 解 特 性 的 影 响 。 结 果 表 明 : 在 压

高压均质处理次数对肌原纤维蛋白水溶液结构及理化特性的影响

高压均质处理次数对肌原纤维蛋白水溶液结构及理化特性的影响

DOI:10.7506/spkx1002-6630-20180911-111
中图分类号:TS251.1
文献标志码:A
文章编号:1002-6630(2019)15-0127-08
引文格式:
及理化特性的影响[J]. 食品科学, 2019,
lead to the aggregation of MPs in aqueous solutions, thereby affecting its solubility and stability. The solubility and stability of MPs
remained quite good after 4 cycles of HPH treatment. Therefore, the aqueous solubility of MPs can be controlled by selecting the
appropriate cycles of HPH treatment, which will provide a new idea for its application in food processing.
Keywords: myofibrillar proteins; high pressure homogenization; solubility; stability; non-thermal processing
40(15): 127-134. DOI:10.7506/spkx1002-6630-20180911-111.
LI Yufeng, XUE Siwen, CHEN Xing, et al. Changes in structure and physicochemical properties of myofibrillar proteins

酸碱度对蛋白质结构和功能的影响研究

酸碱度对蛋白质结构和功能的影响研究

酸碱度对蛋白质结构和功能的影响研究蛋白质是生命体内最重要、最复杂的分子之一,它们能够完成生命过程中各种重要的功能,包括细胞信号传导、酶催化和细胞骨架支撑。

蛋白质的正确结构对于它们的功能至关重要,而酸碱度则是影响蛋白质结构和功能的重要因素之一。

当蛋白质处于不同的酸碱度条件下时,它们的结构和性质都有所不同。

这是因为蛋白质分子中包含大量的氨基酸,它们在不同的酸碱度下会发生离子化反应,从而影响蛋白质分子的构象。

具体来说,蛋白质分子中含有一些带有酸性侧链的氨基酸(如谷氨酸和天冬酰胺酸),以及一些带有碱性侧链的氨基酸(如赖氨酸和精氨酸)。

在不同的酸碱度下,这些酸性和碱性侧链会发生质子化/去质子化反应,从而影响蛋白质分子的电荷状态和构象。

在生理条件下,蛋白质分子通常处于生物体内pH=7.4左右的生理酸碱度条件下。

在这种情况下,大多数氨基酸的侧链都是去质子状态,蛋白质分子呈现出相对稳定的立体构象,从而实现生理功能。

但是,在某些情况下,如疾病、环境污染等,生物体内酸碱度会发生改变,这就可能影响蛋白质分子的构象和功能。

例如,在胃液中,pH值约为2,非常酸性。

这种酸性条件下,许多蛋白质分子(如胃蛋白酶、粘液等)能够保持其稳定性和酶活性。

这是因为这些蛋白质分子中含有大量的酸性侧链,使得它们在这样的酸性条件下仍能够保持解离状态,从而维持稳定的立体构象。

另外,某些环境污染物质,如重金属离子、农药等,也能够影响蛋白质的构象和功能。

这些物质能够与蛋白质分子中的氨基酸侧链相互作用,从而导致蛋白质分子发生构象变化或失去酶活性,甚至导致其变性。

这些现象表明酸碱度对蛋白质分子的构象和功能有着密切的关联。

因此,了解酸碱度对蛋白质结构和功能的影响,有助于我们更深入地认识蛋白质的生物学性质,并为研究蛋白质相关疾病、设计药物、开发新型酶等提供理论基础。

此外,我们还需要深入研究蛋白质与外部环境相互作用的机制,从而有效地防止环境污染物质对生物体的危害。

酸碱度对蛋白质结构的影响分析

酸碱度对蛋白质结构的影响分析

酸碱度对蛋白质结构的影响分析蛋白质是生命体内最重要的分子之一,它们负责许多重要的生物学过程,如细胞信号传导、代谢以及细胞膜的组建等。

蛋白质的结构是决定其功能的关键因素之一。

在细胞内,蛋白质通常处于一个特定的环境中,包括温度、pH值等。

本文将探讨酸碱度对蛋白质结构的影响。

pH值是衡量酸碱度的指标。

在水中,pH值是通过自由氢离子(H +)和氢氧离子(OH-)的浓度计算而得。

在特定的pH值下,蛋白质的结构和功能特征就会发生变化,因此,pH值的变化可能会改变蛋白质的性质,从而影响其在细胞内所扮演的角色。

首先,酸性环境可能导致蛋白质结构发生变化。

在低pH值下,蛋白质通常处于酸性环境中,氢离子的浓度增加,可能会导致蛋白质的氢键和离子键断裂。

这种结构变化可能导致蛋白质失去其原有的结构和功能,从而无法完成其生物学任务。

同时,这种变化还可能会导致蛋白质的聚集,甚至会形成不可逆的蛋白质团块。

其次,碱性环境也可能影响蛋白质结构。

在高pH值下,蛋白质通常处于碱性环境中,氢离子的浓度降低,OH-离子的浓度增加,可能会导致蛋白质骨架浸润水分子,从而导致分子间相互作用受到影响,结构失去稳定性并发生变化。

在此环境下,蛋白质的极性依然存在,但它可能会发生变化,极性氨基酸的质子接受能力可能会受到影响,进而导致氢键和离子键的破裂。

总的来说,pH值的变化能够改变蛋白质的结构和功能特征。

一个适当的pH值能够使蛋白质结构更加的稳定,更好地发挥着三维结构所带来的相互作用和生物学活性,进而有效地参与细胞的正常功能。

而酸性或碱性环境下的pH值改变,则会直接导致蛋白质的骨架出现结构性变化,从而影响其结构的稳定性和生物学特性。

总之,酸碱度是蛋白质生物学过程中不可忽视的重要因素之一。

对于生命体来说,维持pH值在一个适当的范围内是至关重要的。

对于研究蛋白质结构和功能的科学家来说,了解酸碱度对蛋白质结构的影响是非常必要的。

只有理解这种影响,才能更好地探究其生物学功能,为相关领域的研究提供有价值的参考。

纤维蛋白(原)降解产物13_解释说明以及概述

纤维蛋白(原)降解产物13_解释说明以及概述

纤维蛋白(原)降解产物13 解释说明以及概述1. 引言1.1 概述纤维蛋白(原)降解产物13是一种重要的生物分子,它在许多生理和病理过程中发挥着关键的作用。

它是由纤维蛋白原分子在特定条件下降解而形成的产物,具有复杂的结构和多样的功能。

本文将对纤维蛋白(原)降解产物13进行全面的解释说明,并概述其在不同领域中的应用和意义。

1.2 文章结构本文将按以下结构展开对纤维蛋白(原)降解产物13的探讨:第二节将对纤维蛋白(原)降解产物13的定义和特点进行详细介绍。

第三节将重点探讨纤维蛋白(原)降解产物13在疾病中的作用和意义。

第四节将介绍相关于纤维蛋白(原)降解产物13的研究方法和技术进展。

最后一节将对本文进行总结,并对未来纤维蛋白(原)降解产物13研究方向提出展望。

1.3 目的通过撰写本文,旨在全面了解纤维蛋白(原)降解产物13的概念、形成机制、特点和重要性。

同时研究其在血栓形成、肿瘤发展以及其他疾病中的作用和意义。

此外,还将介绍纤维蛋白(原)降解产物13的检测方法、与其他分子的相互作用以及定量和质量分析技术进展。

本文旨在为相关领域的科研人员提供有关纤维蛋白(原)降解产物13的最新研究进展,并对未来的研究方向进行探讨。

通过深入了解纤维蛋白(原)降解产物13,我们或许能够更好地理解其作用机制,并为相关疾病的治疗和预防提供新的思路和策略。

以上就是对文章“1. 引言”部分内容的详细清晰撰写。

2. 纤维蛋白(原)降解产物13的定义和特点:2.1 纤维蛋白(原)降解产物13的概念纤维蛋白(原)降解产物13是指在纤维蛋白(Fibrinogen)或纤维蛋白原(Fibrinogen precursor)降解过程中产生的一种分子。

在血液凝结过程中,纤维蛋白被酶类作用分解为多个片段,其中一个重要的片段就是纤维蛋白(原)降解产物13。

这一分子通常由D段、E段和Bb fragment等部分组成。

2.2 纤维蛋白(原)降解产物13的形成机制纤维蛋白(原)降解产物13在凝血级联反应中起着关键作用。

肌肉ph的名词解释

肌肉ph的名词解释

肌肉ph的名词解释肌肉pH是指肌肉细胞内的酸碱平衡的程度,用pH值来表示。

pH值是一个描述溶液酸碱性的指标,它是以对数形式表示氢离子浓度的负对数。

在肌肉内,pH值的变化会影响肌肉功能、代谢以及身体的整体健康状况。

肌肉是人体重要的组织之一,它由肌肉纤维和细胞组成,能够产生力量和运动。

肌肉纤维的收缩和松弛需要能量,这个过程产生的代谢产物包括氢离子(H+)和乳酸。

然而,当肌肉活动过度或运动强度过高时,这些代谢产物会在肌肉内积累,导致肌肉pH下降。

肌肉细胞内的pH值通常保持在较为稳定的范围内,维持正常的生理功能。

在静息状态下,肌肉pH通常在7.0至7.4之间。

这个范围内的酸碱平衡有利于肌肉细胞内各种酶的正常活动和代谢功能的顺利进行。

然而,当肌肉活动剧烈时,代谢产物的积累会导致肌肉pH下降,达到酸性环境,这会对肌肉功能产生影响。

肌肉酸化会引发一系列的生理反应。

首先,酸化可以干扰肌肉纤维的收缩能力,导致力量和耐力下降。

其次,酸化还会影响肌肉中的蛋白质结构和功能,破坏细胞内的稳态平衡。

此外,酸性环境还会降低肌肉细胞内钙离子的敏感性,影响肌肉收缩和松弛的协调性。

这些影响会导致肌肉疲劳、疼痛和运动能力下降。

为了维持肌肉内的酸碱平衡,人体有多种调节机制。

其中,最主要的机制是肌肉细胞内的缓冲系统。

肌肉中的缓冲系统通过吸收或释放氢离子来维持pH值的稳定。

在肌肉活动较强烈时,酸性环境会刺激缓冲系统的工作,以抵消酸化带来的影响。

这就是为什么经过一段时间的恢复,肌肉pH会逐渐恢复到正常水平。

此外,饮食和水分的摄入也可以影响肌肉pH。

饮食中的碱性食物(如水果、蔬菜等)可以提供碱性物质,帮助中和肌肉内的酸性环境。

另外,适当的水分摄入有助于稀释代谢产物,减轻肌肉酸化。

总之,肌肉pH是肌肉酸碱平衡的指标,对肌肉功能和整体身体健康至关重要。

了解肌肉pH的变化及其影响,有助于人们更好地理解肌肉代谢和运动效果,以及如何通过合理的饮食和训练调节肌肉pH,提高运动表现和健康水平。

温度、pH值对离体模型中肌原纤维蛋白去磷酸化反应的影响

温度、pH值对离体模型中肌原纤维蛋白去磷酸化反应的影响

Abstract: This study determined the effect of temperature (25, 15, and 4 ℃) and pH (5.2, 5.8, and 6.4) on dephosphorylation
of myofibrillar protein, aiming to provide a theoretical basis for improving meat quality. Myofibrillar protein from
dephosphorylation, which caused no loss of activity. Increasing temperature and pH in a certain range could promote the
dephosphorylation ability of AP, thereby decreasing the phosphorylation level of myofibrillar protein and making the reaction
sequential fluorescence staining of the gels using Pro-Q Diamond and SYPRO Ruby. Moreover, AP activity was measured
by a commercial kit. The results demonstrated that at pH 5.8 and 6.4, the phosphorylation level of myofibrillar protein in
start earlier. These findings can be important for improving meat quality and provide a new idea for meat preservation.

极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响

极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响

极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响王颖;李欣;李铮;朱杰;张社奇;张德权【摘要】为了研究羊肉宰后成熟过程中极限pH对肌原纤维蛋白特型即肌联蛋白、伴肌动蛋白、肌间线蛋白和肌钙蛋白-T降解及肌原纤维小片化指数的影响.本文选取50只羊的右侧背最长肌,贮存于4℃条件下,在宰后时间点分别为1h、1、2、3、5d和7d时,测定其pH.按照宰后2d的pH将肉样分成三组:高极限pH组(5.72±0.03),中极限pH组(5.54±0.01)和低极限pH组(5.40±0.02).在每个宰后时间点,测定肌联蛋白、伴肌动蛋白、肌间线蛋白、肌钙蛋白-T降解程度和肌原纤维小片化指数(MFI).结果表明:肌联蛋白在高极限pH组中宰后1d开始降解;在宰后1d时,高极限pH组肌间线蛋白相对灰度值显著低于中极限pH组和低极限pH组(p<0.05);肌钙蛋白-T在高极限pH组中,宰后1d已出现降解条带.而伴肌动蛋白在中极限pH组中降解较快,在宰后1d开始降解.另外在宰后1、2、3、5、7d时,高极限pH组和中极限pH组的肌原纤维小片化指数显著高于低极限pH组的肌原纤维小片化指数(p<0.05).极限pH通过影响这些肌原纤维蛋白降解来促进宰后肌肉成熟过程并且肌联蛋白、肌间线蛋白和肌钙蛋白-T的降解,加快了宰后前期嫩化过程.这为揭示宰后肉嫩度形成机理提供理论基础.【期刊名称】《食品工业科技》【年(卷),期】2019(040)002【总页数】6页(P13-18)【关键词】极限pH;肌联蛋白;伴肌动蛋白;肌间线蛋白;肌钙蛋白-T;肌原纤维小片化指数【作者】王颖;李欣;李铮;朱杰;张社奇;张德权【作者单位】中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京100193;西北农林科技大学理学院生物物理研究所,生物力学与工程研究室,陕西杨凌712100;中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京100193;中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京100193;西北农林科技大学理学院生物物理研究所,生物力学与工程研究室,陕西杨凌712100;西北农林科技大学理学院生物物理研究所,生物力学与工程研究室,陕西杨凌712100;中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京100193【正文语种】中文【中图分类】TS251.1评价肉类品质的指标主要有嫩度、多汁性、风味、色泽和系水力等,嫩度是评价肉品质的最重要的指标之一[1-2]。

pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响_费英

pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响_费英

中国农业科学 2010,43(1):164-170 Scientia Agricultura Sinica doi: 10.3864/j.issn.0578-1752.2010.01.019收稿日期:2009-05-22;接受日期:2009-07-22 基金项目:国家自然科学基金(30771526)作者简介:费 英,硕士研究生。

Tel :025-********;Fax :025-********;E-mail :feifeifeishaoye @ 。

通信作者周光宏,教授。

Tel :025-********;Fax :025-********;E-mail :ghzhou@ pH 对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响费 英1,韩敏义1,2,杨凌寒1,周光宏1,徐幸莲1,彭增起1(1南京农业大学食品科技学院/农业部农畜产品加工与质量控制重点开放实验室,南京 210095;2河北科技大学生物科学与工程学院,石家庄 050018)摘要:【目的】研究pH 对猪肉肌原纤维蛋白二级结构α-螺旋及其热诱导凝胶硬度、保水性及微观结构的影响。

【方法】采用圆二色谱(circular dichroism, CD)测定不同pH 下,猪肉肌原纤维蛋白α-螺旋含量的变化;用物性测试仪测定相应pH 下肌原纤维蛋白热诱导凝胶的硬度,用离心法测定其保水性,同时利用扫描电镜拍摄其微观结构。

【结果】随着pH 偏离肌原纤维蛋白等电点(pI)向中性范围靠近,其α-螺旋含量及其热诱导凝胶的保水性都逐渐增大;而凝胶硬度在pH 6.0时达最大值;在远离等电点的中性条件下,肌原纤维蛋白凝胶具有较高有序性的微观结构,而且结构均匀,酸性条件下凝胶的微观结构有序性低,不均匀,且存在聚合物。

【结论】猪肉肌原纤维蛋白α-螺旋含量与其热诱导凝胶保水性呈正相关关系;蛋白含天然结构α-螺旋较多时,凝胶微观结构比较有序,反之,凝胶微观结构比较粗糙。

关键词:猪肉肌原纤维蛋白;pH;α-螺旋;硬度;保水性;微观结构Studies on the Secondary Structure and Heat-Induced Gelation ofPork Myofibrillar Proteins as Affected by pHFEI Ying 1, HAN Min-yi 1,2, YANG Ling-han 1, ZHOU Guang-hong 1, XU Xing-lian 1, PENG Zeng-qi 1(1Key Laboratory of Meat Processing and Quality Control, Ministry of Education/College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095; 2College of Bioscience and Bioengineering, Hebei University of Science and Technology,Shijiazhuang 050018)Abstract: 【Objective 】 The objective is to study the effect of pH on the secondary structure, α-helix of pork myofibrillar protein, and the hardness, water holding capacity (WHC) and microstructure of its heat-induced gel. 【Method 】 The α-helix of pork myofibrillar protein under different pH were measured by circular dichroism (CD), and the hardness, WHC and microstructure of the heat-induced gel were determined by texture analyzer, centrifugation method and scanning electron microscope (SEM), respectively. 【Result 】 The α-helix of pork myofibrillar protein and WHC of its heat-induced gel increased with pH away from pI, the hardness reached its maximum when pH was 6.0, the gel had a uniform and orderly microstructure in neutral, while it had disorderly and uneven microstructure with polymer in the acidic. 【Conclusion 】 The α-helix of myofibrillar protein is positive correlated with the WHC of its heat-induced gelation, and the gel has an orderly microstructure with more α-helix, while rough microstructure with less α-helix.Key words: pork myofibrillar protein; pH; α-helix; hardness; water holding capacity; microstructure0 引言【研究意义】肌原纤维蛋白是肌肉中具有重要生物学功能的盐溶性蛋白,主要是由肌球蛋白、肌动蛋白、肌动球蛋白和调节蛋白(原肌球蛋白、肌钙蛋白)等形成的结构蛋白质群,其热诱导凝胶对肉制品的功1期费英等:pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响 165能特性如硬度、保水性、质地等有着十分密切的关系[1]。

超高压对肌原纤维蛋白酶解特性的影响

超高压对肌原纤维蛋白酶解特性的影响

超高压对肌原纤维蛋白酶解特性的影响张颖利【摘要】以鸡胸肉为原材料,在不同的压力大小及保压时间处理下,对从鸡胸肉中提取的肌原纤维蛋白进行酶解,通过测定其水解度、巯基含量及肽分子量分布,来研究超高压对肌原纤维酶解特性的影响.结果表明:在压力为100MPa条件下,肌原纤维蛋白的水解度最大;且在此压力下,随着保压时间的增加水解度也随之增大;压力处理过后,有利于大分子量肽段的形成.【期刊名称】《肉类工业》【年(卷),期】2017(000)006【总页数】5页(P37-41)【关键词】压力;肌原纤维;水解度;巯基;影响【作者】张颖利【作者单位】双汇集团技术中心河南漯河 462002【正文语种】中文超高压技术,把液体或气体加压到100MPa以上的技术称为“超高压技术”(ultra-high pressure, 简称UHP)[1]。

高压处理是近二十几年来新起的一项冷杀菌技术,其特点是在保持肉类及其制品营养和风味的前提下,延长制品的贮藏期、提高安全性、改善组织结构、调节酶活力等,是目前肉品科学领域研究的一个热点[2~4]。

食品超高压处理技术是将食品密封在弹性容器或置于无菌压力系统中,常以水或其它流体物质作为传递压力的媒介物,在高压下处理一定时间,以达到加工、保藏的目的。

由于超高压是低温处理,不会太大影响蛋白质等高分子物质的共价键,但能改善组织结构、保持食品原有风味及营养价值,具有热加工不可比拟的优点[5]。

因此,超高压技术在21世纪食品领域最有广泛的应用。

超高压处理能通过影响蛋白质的结构和性质,从而影响酶对蛋白质的催化特性。

超高压处理对蛋白的影响主要是在于蛋白三级、四级结构的非共价键(氢键、离子键和疏水键等),蛋白质经超高压处理后结构伸展而变得松散,从而暴露出更多位点,易于酶解反应的进行[6]。

肌原纤维蛋白的结构可以体现出肌原纤维蛋白的性质,蛋白通过与水相互作用从而形成凝胶,从溶液界面看实际上是改变了肌原纤维蛋白的性质,这些改变对蛋白的感官性质产生了直接的影响[7]。

800-蛋白质浓度、pH、离子强度对鲢鱼肌原纤维蛋白粘度的影响与在线粘度计(黏度-)

800-蛋白质浓度、pH、离子强度对鲢鱼肌原纤维蛋白粘度的影响与在线粘度计(黏度-)

, 结果与讨论
造成粘度的下降。 由因素间互作关系的系数差异显著性检验
二次回归正交旋转设计及试验数据回归系 分析可知,蛋白质浓度与离子浓度间有显著的
数差异 显 著 性 分 析 见 表 , 和 表 *。由 表 * 可 知,蛋 白 质 浓 度 与 粘 度 呈 线 性 正 相 关(" ! =+=’),可见蛋白质浓度在 <!’<67/68 范 围 内,粘度随着蛋白质浓度的增加而增加。这主
G
’,+5>(’) <+:’(9’) =+*> >+G
< >+=*(9’) >+*5(’) =+>* <+;
: >+=*(9’) >+*5(’) =+*> :+=
> >+=*(9’) <+:’(9’) =+>* G+G
; >+=*(9’) <+:’(9’) =+*> G+,
5 ’<+==(’+:;,) :+<=(=) =+<< ’,+:
,$3 % K>0@A@S:DI0@A@<DV,UD<=@<>9?NK*N?EH=FDGE8@
@GG@CE?DGG<DS@A?ED<91@DAC@<E9>AGHACE>DA9I"<D"@<Q E>@?DG 0@9E9A=G>?8"<DE@>A[K]*KVDD= R@C8ADI, !)-%,!-:3%!!3%3 , K>0@A@SCDI0@A@<DV,R@W9=9J,UD<=@<>9?NK*OGQ

纤维蛋白(原)降解物

纤维蛋白(原)降解物

纤维蛋白(原)降解物纤维蛋白(原)降解物是一种由纤维蛋白原分解所得的产物。

纤维蛋白是一种重要的结缔组织蛋白质,广泛存在于人体的肌肉、韧带、血管壁等组织中,具有维持组织结构和功能的重要作用。

纤维蛋白(原)降解物的研究对于了解纤维蛋白的生物学功能、疾病发生机制以及相关药物研发具有重要意义。

纤维蛋白(原)降解物的形成是由一系列酶的作用下进行的。

这些酶主要包括纤维蛋白酶和纤维蛋白原酶。

纤维蛋白酶是一类特异性降解纤维蛋白的酶,可以将纤维蛋白分解为较小的多肽片段。

纤维蛋白原酶则是一种将纤维蛋白原转化为活性纤维蛋白酶的酶。

这两类酶的协同作用,使得纤维蛋白在生理和病理过程中得以降解和重组。

纤维蛋白(原)降解物的产生与一系列生理和病理过程密切相关。

在生理过程中,纤维蛋白(原)的降解和重组参与了许多重要的生理功能,如组织修复和再生、血凝过程等。

在病理过程中,纤维蛋白(原)的异常降解和重组则与多种疾病的发生和发展密切相关。

例如,在心血管疾病中,血管壁的纤维蛋白(原)降解和重组导致血管损伤和斑块形成;在肺纤维化中,肺组织中纤维蛋白(原)的异常降解和重组导致肺组织纤维化;在肝纤维化中,肝脏中纤维蛋白(原)的累积和异常降解导致肝脏纤维化。

纤维蛋白(原)降解物的研究对于相关疾病的治疗和预防具有重要意义。

通过研究纤维蛋白(原)降解物的生成机制和调控途径,可以寻找到新的治疗靶点和药物开发方向。

例如,针对纤维蛋白降解酶的抑制剂可以用于抑制纤维蛋白的异常降解,从而减缓相关疾病的发展进程。

此外,纤维蛋白(原)降解物的检测和监测也可以作为相关疾病的诊断和预后的重要指标。

纤维蛋白(原)降解物是纤维蛋白分解的产物,其形成与一系列酶的作用密切相关。

纤维蛋白(原)的异常降解和重组与多种疾病的发生和发展密切相关,对于相关疾病的治疗和预防具有重要意义。

纤维蛋白(原)降解物的研究不仅可以增加对纤维蛋白生物学功能的理解,还可以为相关疾病的治疗和药物研发提供新的思路和方向。

极限ph值

极限ph值

极限ph值
极限pH值是指在化学反应中产生的最大或最小的酸碱度值。

pH值是指溶液中水的酸
碱度,它描述了溶液中水中的氢离子(H+)浓度。

pH值越低,溶液越酸;pH值越高,溶液
越碱。

极限pH值在化学反应中起着至关重要的作用。

如果反应中产生的H+离子浓度超出了
物质的酸碱平衡范围,则会导致反应失去控制,从而无法实现反应目标。

此时,需要进行
一些适当的调整,以维持pH值在合理的范围内。

酸碱度可用于衡量许多化学过程的重要性,例如工业制造和生物化学。

在这些过程中,精确控制pH值可以确保最佳的化学反应条件和最高的产品质量和产量。

在实际应用中,氢离子的浓度常常过高或过低,无法直接使用通常的pH表进行测量。

因此,在这些情况下,需要使用特殊的pH计或其他测量设备,以测量具有较高或较低酸碱度的溶液的pH值。

另外,pH值还可以用来确定水体生态系统的健康状况。

当水体的pH值过低或过高时,它可能会对生物环境产生不利影响。

例如,过低的pH值可能导致鱼类较少,而过高的pH
值可能导致水生生物中毒。

综上所述,极限pH值是化学反应过程中的关键因素,也是生态系统的健康和稳定性的重要指标之一。

需要注意的是,在使用pH值进行化学反应控制和生态保护时,必须密切关注pH值的变化,适时采取措施来保持pH值在合理的范围内。

pH值调控对生物胺类化合物降解的影响

pH值调控对生物胺类化合物降解的影响

pH值调控对生物胺类化合物降解的影响pH值是指溶液中氢离子(H+)的浓度。

对于许多生物体来说,pH值的范围非常重要,因为它可以影响生物体的各个方面,包括代谢、生长和生殖能力等。

在许多情况下,pH值的范围控制生物体对环境的适应能力。

生物胺类化合物(Biogenic amines)是一类产生于生物组织中的有机化合物,它们通常是一些芳香胺和脂肪胺,包括酪胺、组胺、花生四烯酸、肾上腺素、去甲肾上腺素、血清素等,它们在许多情况下都是强烈的神经递质,可影响我们的情绪、觉醒等方面。

然而,生物胺类化合物含量过高可能会引起人体不适,包括头痛、荨麻疹、呼吸急促、恶心和呕吐等症状,甚至可能导致死亡。

因此,研究如何在食品加工和贮存过程中控制生物胺类化合物的生成和含量得到了越来越多的重视。

因为pH值对生物胺类化合物含量的影响很大,所以我们可以通过控制pH值的范围来降低生物胺类化合物的含量。

正常情况下,生物胺类化合物的产生与细菌发酵有关,pH值越高,细菌的生长速度就越快,从而导致生物胺类化合物的生成速度加快。

因此,在贮存高蛋白含量的食品如肉类、奶制品和鱼类时,应控制pH值以防止生物胺类化合物的生成。

另外,在发酵食品制造中,也要控制pH值。

例如,酸奶和芝士等发酵食品都需要在细菌的代谢作用下生成酸,以维持一定的酸度(pH值约为4.2-4.6)。

通过控制发酵过程中的pH值,可以有效地控制细菌的生长速度和酸度的变化,从而降低生物胺类化合物的含量。

除了在食品加工和贮存方面,pH值调控还可以应用于其他领域,例如药物合成和环境保护。

环境污染物的存在通常会改变自然水域的pH值,而pH值的变化又会影响水生生物的健康和生存。

因此,在处理水的过程中,可以通过调节pH值以去除污染物,同时提高水生生物的生存条件。

总结而言,pH值的控制对生物胺类化合物的降解有着重要的影响。

在食品加工、贮存、药物合成和环境保护等众多领域中,pH值调控都具有重要的应用价值。

ph值可以影响蛋白质的等电点名词解释

ph值可以影响蛋白质的等电点名词解释

ph值可以影响蛋白质的等电点名词解释pH值可以影响蛋白质的等电点蛋白质作为生物体内最重要的生物大分子之一,参与了许多生物学过程的调控和实施。

它们在体内扮演着酶、激素、结构材料以及运输物质等各种角色。

蛋白质的结构与功能密切相关,而其结构的一个关键特征是其等电点。

pH值是一个表示溶液酸碱程度的指标,它与蛋白质的等电点之间存在着密切的关联。

蛋白质的等电点(pI,isoelectric point)是指在某一特定pH值下,蛋白质在水溶液中呈现电中性状态的pH值。

在等电点条件下,蛋白质的净电荷为零。

蛋白质由氨基酸组成,而氨基酸通过不同的官能团(如羧基和氨基)来赋予蛋白质不同的净电荷。

在不同的pH值下,蛋白质的官能团可能会发生质子化或去质子化反应,从而导致蛋白质净电荷的变化。

蛋白质分子表面的氨基酸残基一般会带有电荷。

在酸性条件下,pH值低于等电点,氨基酸的羧基会捕获溶液中的质子,形成带正电荷的离子。

相对应地,在碱性条件下,pH值高于等电点,氨基酸的氨基会释放质子,从而形成带负电荷的离子。

而在等电点附近,正负电荷的数量大致相等,导致蛋白质分子呈现中性状态。

蛋白质的等电点是由其氨基酸组成的序列所决定的。

氨基酸分子中的官能团呈现不同的酸碱性质,因此在不同的pH值下,会发生不同程度的质子化和去质子化反应。

当蛋白质处于等电点时,它的净电荷为零,这意味着蛋白质会在电场中停止迁移,同时也表示其在溶液中具有最低的溶解度。

pH值对蛋白质的等电点产生影响的原因在于它直接影响了氨基酸的离子化状态。

随着pH值的变化,蛋白质分子的电荷状态会发生变化,从而导致其结构和功能的改变。

在酸性条件下,蛋白质分子会呈现更多的正电荷,从而对负电荷的配体更有亲和力。

相反,在碱性条件下,负电荷较多的蛋白质分子会更倾向于结合正电荷的配体。

蛋白质的等电点不仅与其结构和功能密切相关,还在许多实际应用中发挥着重要作用。

在生物制药领域中,等电点的了解对于蛋白质的纯化和稳定性具有重要意义。

pH调节法诱导兔肉肌原纤维蛋白性质变化的研究

pH调节法诱导兔肉肌原纤维蛋白性质变化的研究

pH调节法诱导兔肉肌原纤维蛋白性质变化的研究余娱乐;贺稚非;李洪军【期刊名称】《食品与发酵工业》【年(卷),期】2018(044)005【摘要】pH调节法(pH-shifting)是一种简单、高效的蛋白提取方法,可用于植物或动物分离蛋白的制备.实验以兔肉为原料,研究pH调节法对兔肉功能性蛋白肌原纤维蛋白性质的影响.实验结果表明,pH调节法无论酸法(pH 3.0~5.5)还是碱法(pH 12.0~5.5)均会诱导兔肉肌原纤维蛋白性质发生一定变化.酸碱处理后蛋白溶解性降低,浊度增大.蛋白乳化活性/乳化稳定性下降,总巯基含量减少,表面疏水性增大,但活性巯基含量无显著变化.pH调节还导致肌原纤维蛋白凝胶强度、凝胶持水性降低,凝胶白度变化不大.2种处理条件下,酸法pH 3.0~5.5处理的肌原纤维蛋白变性程度较小,更适合制备兔肉分离蛋白.【总页数】6页(P90-95)【作者】余娱乐;贺稚非;李洪军【作者单位】西南大学食品科学学院,重庆北碚,400716;西南大学食品科学学院,重庆北碚,400716; 重庆市特色食品工程技术研究中心,重庆北碚,400716;西南大学食品科学学院,重庆北碚,400716; 重庆市特色食品工程技术研究中心,重庆北碚,400716【正文语种】中文【相关文献】1.pH调节法制备兔肉分离蛋白及其性质研究 [J], 余娱乐;贺稚非;李洪军2.解冻后兔肉待加工过程中肌原纤维蛋白功能性质的变化 [J], 林静;张斌斌;王晓君;尚永彪3.低场NMR研究pH对肌原纤维蛋白热诱导凝胶的影响 [J], 韩敏义;费英;徐幸莲;周光宏4.血清白蛋白的构象研究:Ⅳ.pH诱导HSA构象变化的光谱研究 [J], 梁宏;宋仲容5.红藻氨酸诱导癫痫发作大鼠海马EphA5受体及其配体ephrinA3基因表达变化的研究 [J], 余璐;郑金瓯;梁志坚;吴原因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Research ArticleEffect of Ultimate pH on Postmortem Myofibrillar Protein Degradation and Meat Quality Characteristics of Chinese Yellow Crossbreed CattlePeng Li,1,2Tiantian Wang,1Yanwei Mao,1Yimin Zhang,1Lebao Niu,1Rongrong Liang,1Lixian Zhu,1and Xin Luo11Department of Food Science and Engineering,Shandong Agricultural University,Tai’a n,Shandong271018,China2Department of Food Science and Engineering,Qingdao Agricultural University,Qingdao,Shandong266109,ChinaCorrespondence should be addressed to Xin Luo;luoxin@Received6March2014;Revised15July2014;Accepted21July2014;Published13August2014Academic Editor:Francisco P.PeixotoCopyright©2014Peng Li et al.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.This paper describes the complex effects of postmortem ultimate pH(pHu)on Chinese Y ellow crossbreed cattle quality during postmortem ageing and provides an explanation of how pHu affects beef tenderness.High pHu beef had the highest initial tenderness(P<0.05)compared with other groups at1day postmortem.Intermediate and low pHu beef had similar initial WBSF at 1day postmortem,but intermediate pHu beef had slower tenderization rate than low pHu beef(P<0.05).Purge loss,cooking loss, L∗,a∗,and b∗values decreased with increasing pHu during ageing(P<0.05).Myofibril fragmentation index(MFI)was higher in high pHu beef than intermediate and low pHu beef throughout ageing(P<0.05).Protein degradation studies found that desmin and troponin-T appeared degraded within0.5h postmortem for high and low pHu beef,compared to>2days for intermediate pHu beef.Overall,Chinese Y ellow crossbred cattle tenderness is related to pHu,which may be affected by proteolytic enzymatic activity.Therefore,pHu may be used to predict beef tenderness and other quality characteristics during postmortem ageing.To achieve consistent tenderness,different ageing times should be used,depending on pHu.1.IntroductionTenderness has been identified as one of the most important characteristics that determine the consumer eating satisfac-tion of beef[1].Variability in the meat tenderness is the most critical quality problem facing the beef industry.Variable ten-derness is a limiting factor for product acceptability,causing a reduction in beef consumption.Consumers are concerned with uniform in the tenderness of beef and would probably pay a higher price for beef as long as it has satisfactory tenderness[2].Tenderness and rate of tenderization depend on many intrinsic(species,animal age,type of muscle,and muscle location)and extrinsic factors(preslaughter stress,slaughter conditions,and postslaughter handling)of the animal and on their interaction.Beef tenderness has long been associated with pHu,with meat that achieves high pHu(>6.2)and low pHu(<5.8)being acceptably tender after appropriate ageing time[3].Ultimate pH(pHu)can also markedly affect other meat quality parameters,including colour,water-holding capacity,and shelf life.Thus,pHu has been widely used as an indicator of potential meat quality[1,4].Additionally, the rate of tenderization is related with pHu;high pHu meat tenderises more rapidly than low pHu meat during ageing [5,6].pHu variation is often associated with postmortem mus-cle glycogen content and metabolism,which is affected by many factors including psychological stress,animal diet, season,transport,and lairage times,thus affecting initial meat shear force values and rate of tenderization[7].Although many factors influencing pHu values have been discussed, no single factor can explain more than50%of the variation in pHu.Thus,the inconsistencies in meat quality due to variation in pHu will continue to pose a problem to meat processors until the exact relationship between all the factors is understood.Hindawi Publishing Corporatione Scientific World JournalVolume 2014, Article ID 174253, 8 pages /10.1155/2014/174253Meat tenderness may be influenced by the breakdown of myofibrillar structure protein due to postmortem proteolytic activity.Much research has been focused on determining the contribution of various myofibrillar proteins to meat tenderness.It has been consistently reported that tender meat has faster and more extensive degradation of desmin, troponin-T,nebulin,and titin,compared with tough meat.By monitoring the degradation of these proteins during ageing, researchers have attempted to determine a suitable ageing time to obtain acceptable tenderness[8,9].At present,little information is available concerning the effects of pHu on beef quality and myofibrillar protein degradation in Chinese cattle.Y ellow Cattle is the most common Chinese breed,accounting for approximately80% of the national herd and crossbreeds predominate in com-mercial trade[10].The inconsistent tenderness of beef is a severe problem in Chinese Y ellow cattle,resulting in greater uncertainty in producing consistent high-value chilled beef. Tenderness of meat from Chinese Y ellow crossbred cattle may be improved by extending ageing time[10],but much energy and time may be wasted if all carcasses are given extended ageing,when some carcasses may have good tenderness without extended ageing.This paper describes the complex effects of pHu on beef quality characteristics from Chinese Y ellow crossbreed cattle during postmortem aging and provides an explanation of how pHu affects beef tenderness and rate of tenderisation.2.Materials and Methods2.1.Animals,Experimental Design,and Treatments.Thirty Chinese Y ellow crossbreed cattle[Luxi(Chinese native Y ellow cattle)×Limousine;Limousine has a lower input than the crossbreed,about24months old and of mean live weight450.4±48.3kg(mean±SD)]were selected from a commercial feedlot(Shandong Xinlv Food Ltd.,China).The cattle were kept in lairage overnight and stunned by electrical stunning prior to slaughter.The carcasses were transferred to a chilling room(2±2∘C)within30min postmortem. About10g of Longissimus dorsi(LD)muscle samples was cut from the same side of each carcass at0.5,3,6,12,and 24h postmortem,snap-frozen in liquid nitrogen,and stored at−80∘C until analysed.At24h postmortem,the pHu of LD was measured using a portable pH meter(SenvenGo,Mettler Toledo,Switzerland)and LD was removed from each carcass. Based on pHu,the muscles were segregated into three groups: high(pH>6.2,n=4),intermediate(pH5.8–6.2,n=7), and low(pH<5.8,n=19)pHu beef.Each of the LD muscles was cut into five segments,vacuum-packaged in polyethylene bags,weighted,and continuously stored in incubators with air temperature of4±1∘C.Then,all the samples were stored for1,3,5,7,and9d postmortem.2.2.Sampling and MeasurementsPurge Loss(PL).At24h postmortem,samples were weighed and then vacuum packaged.Purge loss during vacuum storage was determined by weighing samples after storage.Before weighing the samples,they were dried with paper towels.Purge loss was expressed as percentage of weight loss. Color Measurement.After purge loss measurement,samples were exposed in the air for30min before measurement.Meat color of the samples was measured using a colorimeter(SP62, X-Rite Inc.,Gryndville,MI,USA)with an8mm diameter measuring aperture,illuminant D65,and CIE L∗a∗b∗color scale.Color coordinate values were recorded as L∗lightness, a∗redness,and b∗yellowness values.Cooking Loss(CL).The samples after measurements of PL and color were weighed,placed individually in plastic bags, and immersed in a water bath at80∘C until they reached an internal temperature of75∘C.The temperature was monitored using thermocouples inserted in the center of the samples. After cooking,the samples were chilled at room temper-ature and then stored in a refrigerator overnight,surface dried,and weighed again.CL was determined by expressing cooked sample weight as a percentage of precooked samples weight.Tenderness.After measurements of CL,the same muscles were used for the determination of Warner-Bratzler shear force(WBSF).Shear force measurements were performed as described previously by Luo et al.[11].Six cores(1.25cm diameter)were excised,parallel to the longitudinal orienta-tion of the muscle fibers.The cores were sheared once using a texture analysis machine(TA-XT2i Stable Micro System, Godalming,England)with a HDP/BSW blade.The average of readings for the cores(1.25cm diameter)from the same sample was the WBSF value(kg).Myofibril Fragmentation Index.Myofibril fragmentation index(MFI)was determined using a slightly modified version of the procedure of Culler et al.[12].Small samples were taken from muscles at1,3,5,7,and9d postmortem,immediately frozen in liquid nitrogen,and stored at−80∘C until analysis. The frozen samples were minced in a cutter,after all visible fat and connective tissue had been removed.Four grams of minced meat was homogenized for30s in40mL of0.02M potassium phosphate buffer(pH7.0)containing100mM KCl, 1mM EGTA,1mM MgCl2,and1mM NaN3at about4∘C using a mixer.After centrifugation at1000×g for15min the supernatant was discarded.The sediment was resuspended in40mL buffer,stirred,and centrifuged and the supernatant discarded.The sediment was resuspended in10mL buffer and filtered through a polyethylene strainer to remove connective tissue and fat.An additional10mL of the buffer was used to facilitate the passage of myofibrils through the strainer. Determination of the protein concentration of the suspension was done by the biuret method[13].Then,the suspension was diluted with buffer to0.5±0.05mg/mL protein concentration. MFI is the value of absorbance of the myofibrillar suspension, measured at540nm multiplied by200.Gel Electrophoresis and Western Blotting.The myofibrillar protein fraction was separated using a modification of the method described by Sikes et al.[14].Four-gram samplefrom each muscle stored at−80∘C was knife-minced and homogenized with40mL of extraction buffer(50mM Tris-HCl,pH7.0,100mM KCl,and5mM EDTA)for2min.The sample was then centrifuged at1000×g for15min at4∘C,the supernatant was discarded and the pellet was resuspended in20mL of extraction buffer.The pellet was washed a further four times by suspending in20mL of extraction buffer and sedimenting at1000×g for15min at4∘stly, the pellet(myofibrillar protein fraction)was resuspended in20mL of extraction buffer.Protein concentration of the myofibrillar protein faction was determined by using the biuret method.The samples were diluted to2mg/mL in tracking dye(62.5mM Tris-HCl(pH6.8),10%glycerol,2% SDS,5%2-mercaptoethanol,and0.02%bromophenol blue)in preparation for SDS-PAGE.All samples were immediately denatured in a water bath at95∘C for5min,cooled,and then stored at−20∘C until further analysis.SDS-PAGE gel electrophoresis and western blotting were performed as previously described[8,9]with some modi-fications.Denatured myofibril protein(40μg)samples were loaded on12.5%SDS-polyacrylamide resolving gels with an acrylamide:bisacrylamide weight ratio of37.5:1.The gel was run in25mM Tris-HCl containing192mM glycine,1mM EDTA,and1%SDS at a constant current of20mA for6h. Prestained Multicolor Broad Range Protein Marker(Tiangen, Beijing,China;245kDa to11kDa)was used as the molecular weight marker of SDS-PAGE.After SDS-PAGE,gels were equilibrated for30min at room temperature in transfer buffer (25mM Tris,192mM glycine,and15%vol/vol methanol).Following SDS-PAGE,proteins were transferred onto Immobilon-P PVDF membranes(Millipore,IPVH00010) and blocked by incubating the membrane with5%nonfat dry milk powder diluted with PBST(0.08M Na2HPO4, 0.02M NaH2PO4,0.1M NaCl,and0.1%Tween)overnight at4∘C.Membranes were then washed three times with PBST and incubated with the chosen primary antibody for 1h at room temperature.Primary(monoclonal)antibodies from mouse,including antibodies to desmin(Sigma,D1033) and troponin-T(Sigma,T6277),were diluted to1:1000in PBST.After incubation with primary antibody,membranes were washed three times with PBST for10min each time. Subsequently,membranes were incubated with the secondary antibody(1:4000,goat anti-mouse IgG alkaline phosphatase-conjugated secondary antibody,Sigma,A3562)in PBST for 2h at room temperature,and the membrane was washed three times with PBST for10min each time.Alkaline phos-phatase staining was performed with BCIP/NBT Alkaline Phosphatase Colour Development Kit(Beyotime)according to manufacturer’s instructions.2.3.Statistical Analysis.The effects of pHu and ageing time on WBSF and MFI were evaluated using the analysis of variance. The mathematical model for PL,CL,L∗,a∗,and b∗included fixed effect due to pHu,ageing time,and pHu×ageing. When significant,differences between means were tested by the least significant difference(LSD)procedure.Statistical significance was set at P<0.05.All figures were plotted using SigmaPlot software(version12.0,Systat,San Jose,CA,USA).Ageing time (d)Shearforce(kg)2468101214HILFigure1:Effect of ultimate pH(pHu)and ageing time on shear force value of M.Longissimus dorsi from Chinese Y ellow crossbreed cattle,stored at4∘C.Table values are pHu group means±standard deviation(SD).(H=high pHu group,meat pH> 6.2;I= intermediate pHu group,pH5.8–6.2;L=low pHu group,pH< 5.8).Different letters at the same ageing time indicate significant differences(P<0.05).Statistical analyses were performed with SPSS19.0software (SPSS Science,Chicago,IL,USA).3.Results and Discussion3.1.Tenderness.The Warner-Bratzler shear force(WBSF) changes caused by the effects of pHu and ageing time(during 9days postmortem)are presented in Figure1,which showed that tenderness and rate of tenderization were related with pHu.pHu and ageing time both affected(P<0.05)the WBSF of LD.High pHu beef was lower WBSF,achieving good tenderness[15]at1day postmortem and remained more tender(P<0.05)than low and intermediate pHu meat during the ageing period.Results showed that the WBSF values were not different(P≥0.05)between low and intermediate pHu meat at1day postmortem.But during ageing period,the WBSF of intermediate pHu meat decreased more slowly than low pHu meat(P<0.05).Our findings are similar to previous research that has demonstrated that high pHu meat is consistently more tender than low and intermediate pHu meat even after extended ageing time and that tenderisation was delayed in meat with intermediate pHu[4,16].But with regard to ageing time, our results differ from some other results[17],possibly due to different cattle breeds and ageing conditions among the studies.3.2.Myofibrillar Fragmentation Index.The relationship between pHu and MFI is shown in Figure2.MFI significantly increased among the three pHu groups from1to9d postmortem(P<0.05).During ageing,high pHu groupAgeing time (d)M F I20406080100120H I LFigure 2:Effect of pHu and ageing time on myofibril fragmentation index of M.Longissimus dorsi samples from Chinese Y ellow crossbreed cattle stored at 4∘C.(H =high pHu group,meat pH >6.2;I =intermediate pHu group,pH 5.8–6.2;L =low pHu group,pH <5.8).Different letters at the same ageing time indicate significant differences (P <0.05).had the highest MFI (P <0.05)compared with the low and intermediate pHu groups.The intermediate pHu group had the lowest MFI and the differences were significant (P <0.05)from day 5compared with the low pHu group.In general,meat tenderization is mainly due to ultra-structural changes that weaken the integrity of the myofibers in the muscle tissue [18].The MFI has been shown to be a good indicator of the extent of muscle myofibrillar protein degradation under postmortem conditions,and the MFI increase is the result of rupture of myofibrils in the I-band of the sarcomere during postmortem storage [19].Many studies indicate that MFI is related to meat pH and ageing time at a specified time postmortem,which is consistent with meat tenderisation.MFI is strongly correlated with WBSF and postmortem sensory tenderness [7].Our measurements revealed that at 24h postmortem high pHu group had a higher postmortem proteolytic activity compared to others [20].To some extent,these results may explain why the beef from the high pHu group had better initial tenderness.3.3.Water Holding Capacity.The effects of pHu and ageing time on purge loss and cooking loss of LD muscle is presented in Table 1.Both pHu and ageing time significantly affected the purge loss (P <0.001).Purge loss of all the pHu groups increased as ageing time was extended (P <0.05).Purge loss was significantly lower for the high pHu samples than for the other two groups (P <0.05).During the ageing period,the trend for intermediate pHu beef was in between those groups.This result is in agreement with the results of previous reports,showing that the extent of the pH decrease is a key factor influencing meat quality [21].Moreover,less cooking loss wasobserved in the high pHu group than the intermediate and low pHu beef (P <0.05)at all ageing periods.All groups had no difference in percentage of cooking loss throughout 9days of postmortem ageing (P ≥0.05).This result is similar to previous reports [22],which stated that muscle pH affected cooking loss and was not affected by ageing time.3.4.Meat Color.Each colour variable was affected by the pHu group and ageing time (P <0.001).An interaction (P <0.001)was also observed between ageing time and pHu after ageing (Table 1).At longer ageing times,L ∗,a ∗,and b ∗increased consistently (P <0.05).The meat from the high pHu group (pH >6.2)was darker,with lower meat surface L ∗,a ∗,and b ∗values than meat from the other pH groups (P <0.05).There are two explanations in the literature for dark color of high pH meat:(1)due to less light scattering,so that less light is reflected [23],and (2)due to high mitochondrial oxygen consumption in high pH meat,favoring formation of dark deoxymyoglobin [24,25].Both mechanisms may be involved in the dark color of meat samples from the high pHu group in this study.Li et al.[10]reported that L ∗value is correlated with WHC of muscles.Meat with intermediate pHu values seemed to have more rapid linear increase in a ∗values during storage than samples from the low or high pHu groups.In high pHu meat,a ∗values were the highest (17.4)at day 3(P <0.05)but decreased to 12.8by 9days ageing.3.5.Degradation of Desmin and Troponin-T in the Three pHu Groups.Desmin degradation pattern of the beef samples from three different pHu groups in the western blot analysis is shown in Figure 3.From 0.5h to day 3postmortem,intact desmin (54kDa)as well as 50,47,41,39,and 34kDa degradation products were present in abundance in the high pHu beef.But from day 5postmortem,intact desmin as well as 50,47,and 41kDa degradation products decreased greatly,while a 39kDa product increased at longer storage times.The degradation pattern of desmin in low pHu beef developed more slowly than in high pHu beef,where a 39kDa degradation product did not appear until day 3and no 34kDa product was observed (Figure 3).Compared to the high or low pHu beef,the intermediate pHu beef degraded much slower,with almost no disappearance of desmin (54kDa)during ageing (Figure 3).A representative immunoreactive troponin-T bands blot is shown in Figure 4.Bands 1and 2(molecular weight 42and 40kDa)likely represented isoforms of intact troponin-T,which is consistent with previous research [26].The remaining bands (3and 4,5and 6,7,and 8,molecular weight 38,36,34,32-,30,and 28kDa separately)were likely degradation products or a combination of intact isoforms and degradation products.From 0.5h postmortem,intact troponin-T isoforms of Bands 1and 2began decreasing and degradation products Bands 3and 4increased during ageing in both high and low pHu beef.Furthermore,in high pHu beef,there was also distinct appearance of degradation product Bands 7(30kDa)and 8(28kDa)from 0.5h postmortem,and the intensity increased noticeably from day 3postmortem,along with Bands 5and 6appearing clearly.High pHu12463879105(a)Intermediate pHu12345678910M and 363kDa3548(b)Low pHu21536410987(c)Figure 3:Representative Western blot of desmin and degradation products.Each lane was loaded with 40μg of protein.M is the molecular weight nes 1to 10represent the variability in desmin degradation from high,intermediate,and low pHu beef held at 4∘C for 0.5h,3h,6h,12h,24h,2d,3d,5d,7d,and 9d postmortem.Band 1=54kDa,Bands 2and 3=50and 47kDa,Band 4=41kDa,Band 5=39kDa,and Band 6=34kDa.High pHuM1234567891025kDa35kDa48kDa 20kDa(a)Intermediate pHu14329876510(b)Low pHu32541689107(c)Figure 4:Representative Western blot of troponin-T and degradation products.Each lane was loaded with 40μg of protein.M is the molecular weight nes 1to 10represent the variability in troponin-T degradation from high,intermediate,and low pHu beef aged at 4∘C for 0.5h,3h,6h,12h,24h,2d,3d,5d,7d,and 9d postmortem.Bands 1and 2=42and 40kDa,Bands 3and 4=38and 36kDa,Bands 5and 6=34and 32kDa,Band 7=30kDa,and Band 8=28kDa.However,in low pHu beef,intact troponins Bands 1and 2were present.Degradation Bands 5,6,7,and 8increased markedly from day 2postmortem.Among the degradation products,Band 7(30kDa)increased markedly during ageing.In contrast to high and low pHu beef,breakdown of intact troponin-T in the intermediate pHu beef was delayed,with breakdown product Bands 3and 5and 6appearing after 3days postmortem and in smaller quantities (Figure 4).Desmin is important to the ultrastructure of muscle as it is a constituent of costameres and intermediate filaments that anchor myofibrils sarcolemma and link adjacent myofibrils to each other at the Z-disk level,respectively.The postmortemTable1:Effect of ultimate pH(pHu)and ageing time on purge loss(PL),cooking loss(CL),and meat color of M.Longissimus dorsi in Chinese Y ellow crossbreed cattle(means±SEM).pHu groupAgeing timeSEMSignificance1d3d5d7d9d pHu Time pHu×TimePL%H0.58cB0.64bC0.84bC 1.02bC 1.67aCI0.88cB 1.15cB 1.70bB 2.09abB 2.24aB0.08∗∗∗∗∗∗NS L 1.45cA 1.83cA 2.40bA 2.74bA 3.31aACL%H16.0515.8117.5916.8317.64I22.68A20.97A23.70A23.63A25.10A 5.75∗∗∗NS NS L25.33A22.54A25.73A25.49A27.6AL∗H32.13cC35.63bC37.31aC35.24bB35.43bCI37.49dB39.15cB40.80bB43.38bA44.74aB 4.42∗∗∗∗∗∗∗∗∗L41.51cA43.01bA43.40bA43.95aA46.16aAa∗H13.31cC17.39a16.89abC15.93bC12.79cCI14.83dB16.44c16.72bcB17.28bB19.61aA 2.87∗∗∗∗∗∗∗∗∗L17.41A16.13c17.68aA17.85bA16.41bBb∗H 3.97bC 5.42a 4.83aC 4.65aB 3.15bBI 5.13cB 5.66c 6.73bB8.56aA8.44aA 1.53∗∗∗∗∗∗∗∗∗L7.35bA 5.98b7.60bA8.64aA8.70aANS:not significant;∗∗∗P<0.001.a,b,c,d=P<0.05in rows(ageing time effect).A,B,C=P<0.05in columns(pHu effect).degradation of desmin has been found to be concomitant with meat tenderization[27].By determining the difference in the postmortem muscle proteolysis among the three different pHu groups in this study,we found postmortem degradation of desmin was faster in high pHu beef than others,and the intermediate pHu beef had the slowest degra-dation,indicating that the rate and extent of myofibrillar protein degradation vary with muscle pHu.These results are partly supported by a previous study on postmortem bull LD where desmin disappeared faster in high pHu than in low pHu.In this study,it was readily apparent that there were some different degradation products between high and low pHu beef.In high pHu beef,desmin degradation fragments clearly resulted in the accumulation of a high molecular weight fragment(39kDa).Furthermore,in low pHu beef desmin was effectively degraded,but no clear electrophoretic fragments appeared,rather,a progressive disappearance of the initial desmin band(54kDa)and the appearance of a continuous smear of degradation products was observed (Figure3).An explanation for the observed phenomenon is possibly the differences in calpains and cathepsin B activities at the extremes of postmortem muscle pH.Troponin-T is well known to be degraded mainly into the approximately30kDa products during postmortem ageing. Many researchers have repeatedly shown that a30kDa degra-dation product of troponin-T increases with muscle ageing and is associated with tenderization.For example,Lametsch et al.[18]recently reported that,at24h postmortem,the30 kDa band is present in tender bovine muscle and yet is not detected in tough bovine muscle.Results of this study showed that in high pHu beef the troponin-T degradation process started immediately after slaughter,with the clear appearance of a30kDa product.In the low pHu group,the degradation pattern seemed to be similar to that of the high pHu beef.Troponin-T related fragments with38and36kDa bands were detected within24h postmortem.Thereafter,the degradation products increased noticeably with ageing,but the30kDa did not become clear until day2postmortem.In intermediate pHu beef,troponin-T degradation was much slower,with only very weak degradation visible within24h postmortem, and almost no disappearance of intact troponin-T until day3 postmortem,and decreasing very slowly for the remainder of the storage period.These findings were similar to the results reported by Baron et al.[28],who found that troponin-T breakdown products began to appear between2and3day postmortem.Many reports have indicated that postmortem degra-dation of muscle proteins not only affects meat tenderness [29],but also determines the amount of purge loss during ageing and cooking.Pearce et al.[30]found that a high level of desmin degradation is associated with increasing WHC during postmortem ageing.The present study also found that intermediate pHu(pH5.8–6.2)was related to limited degradation of desmin and troponin-T,which may explain why the high pHu meat had better WHC.This study also found that the protein degradation intensity was affected by postmortem muscle pHu,which may partly explain why intermediate pHu beef tenderization rate during ageing was slower than for high(>6.2)or low(<5.8)pH groups.These results are consistent with previous research showing that nebulin and titin degradation was slowest at pHu6.0–6.3[27], corresponding to the intermediate pH group in this study.4.ConclusionThis study indicates that pHu is an important factor to affect the quality of Chinese Y ellow crossbreed cattle,especially for tenderness,including initial tenderness and tendernesschanges during the postmortem conversion of muscle to meat.The inconsistency of tenderness among the different pHu groups may be due to the low level of postmortem proteolysis at intermediate pH ranges(5.8–6.2).The rapid tenderisation of high(pH>6.2)and low pHu beef(pH< 5.8)was likely due to the early postmortem degradation of cytoskeletal proteins such as desmin and troponin-T,possibly due to the immediate activation ofμ-calpain at high pH, and cathepsins at low pH.Tenderisation of intermediate pHu meat was the slowest,possibly due to limited proteinase activities during the first days of ageing.Conflict of InterestsThe authors declare that there is no conflict of interests regarding the publication of this paper. AcknowledgmentsThis work was supported by the National Beef Cattle Indus-trial Technology System(Cars-038),the project of National Natural Science Fund(31271901)of China,and National “Twelfth Five-Y ear”Plan for Science and Technology Support (2012BAD28B03).References[1]J.Jelen´ıkov´a,P.Pipek,and L.Staruch,“The influence of ante-mortem treatment on relationship between pH and tenderness of beef,”Meat Science,vol.80,no.3,pp.870–874,2008.[2]R.Rødbotten,B.N.Nilsen,and K.I.Hildrum,“Prediction ofbeef quality attributes from early post mortem near infrared reflectance spectra,”Food Chemistry,vol.69,no.4,pp.427–436, 2000.[3]J.R.Hamoen,H.M.Vollebregt,and R.G.M.van derSman,“Prediction of the time evolution of pH in meat,”Food Chemistry,vol.141,no.3,pp.2363–2372,2013.[4]B.L.Knox,R.L.van Laack,and P.M.Davidson,“Relationshipsbetween ultimate pH and microbial,chemical,and physical characteristics of vacuum-packaged pork loins,”Journal of Food Science,vol.73,no.3,pp.M104–M110,2008.[5]T.R.Dutson,“The relationship of pH and temperature todisruption of specific muscle proteins and activity of lysosomal proteases,”Journal of Food Biochemistry,vol.7,no.4,pp.223–245,1983.[6]J.A.Silva,L.Patarata,and C.Martins,“Influence of ultimate pHon bovine meat tenderness during ageing,”Meat Science,vol.52, no.4,pp.453–459,1999.[7]F.O.Obanor,Biochemical basis of the effect of pre-slaughterstress and post-slaughter processing conditions on meat tender-ness[PhD dissertation],Lincoln University,Christchurch,New Zealand,2002.[8]D.J.Pulford,P.Dobbie,S.F.Vazquez,E.Fraser-Smith,D.A.Frost,and C.A.Morris,“Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels,”Meat Science,vol.83,no.1,pp.1–9, 2009.[9]S.Muroya,P.Ertbjerg,L.Pomponio,and M.Christensen,“Desmin and troponin T are degraded faster in type IIb musclefibers than in type I fibers during postmortem aging of porcine muscle,”Meat Science,vol.86,no.3,pp.764–769,2010. [10]K.Li,Y.Zhang,Y.Mao et al.,“Effect of very fast chilling andaging time on ultra-structure and meat quality characteristics of Chinese Y ellow cattle M.Longissimus lumborum,”Meat Science,vol.92,no.4,pp.795–804,2012.[11]X.Luo,Y.Zhu,and G.Zhou,“Electron microscopy of con-tractile bands in low voltage electrical stimulation beef,”Meat Science,vol.80,no.3,pp.948–951,2008.[12]R.Culler,G.Smith,and H.Cross,“Relationship of myofibrilfragmentation index to certain chemical,physical and sensory characteristics of bovine longissimus muscle,”Journal of Food Science,vol.43,no.4,pp.1177–1180,1978.[13]A.G.Gornall,C.J.Bardawill,and M.M.David,“Determinationof serum proteins by means of the biuret reaction,”The Journal of Biological Chemistry,vol.177,no.2,pp.751–766,1949. [14]A.Sikes,E.Tornberg,and R.Tume,“A proposed mechanism oftenderising post-rigor beef using high pressure-heat treatment,”Meat Science,vol.84,no.3,pp.390–399,2010.[15]Y.H.B.Kim,G.Luc,and K.Rosenvold,“Pre rigor processing,ageing and freezing on tenderness and colour stability of lamb loins,”Meat Science,vol.95,no.2,pp.412–418,2013.[16]L.P.Yu and Y. B.Lee,“Effects of postmortem pH andtemperature on bovine muscle structure and meat tenderness,”Journal of Food Science,vol.51,no.3,pp.774–780,1986. [17]D.Lomiwes,M.M.Farouk,E.Wiklund,and O.A.Y oung,“Small heat shock proteins and their role in meat tenderness:a review,”Meat Science,vol.96,no.1,pp.26–40,2014.[18]metsch,A.Karlsson,K.Rosenvold,H.J.Andersen,P.Roepstorff,and E.Bendixen,“Postmortem proteome changes of porcine muscle related to tenderness,”Journal of Agricultural and Food Chemistry,vol.51,no.24,pp.6992–6997,2003. [19]R.G.Taylor,G.H.Geesink,V.F.Thompson,M.Koohmaraie,and D.E.Goll,“Is Z-disk degradation responsible for post-mortem tenderization?”Journal of Animal Science,vol.73,no.5,pp.1351–1367,1995.[20]E.Huff-Lonergan,T.Mitsuhashi,D.D.Beekman,F.C.ParrishJr.,D.G.Olson,and R.M.Robson,“Proteolysis of specific mus-cle structural proteins by l-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle,”Journal of Animal Science,vol.74,no.5,pp.993–1008,1996.[21]J.D.Eilers,J.D.Tatum,J.B.Morgan,and G.C.Smith,“Modifi-cation of early-postmortem muscle pH and use of postmortem aging to improve beef tenderness,”Journal of Animal Science, vol.74,no.4,pp.790–798,1996.[22]O.Cetin,E.B.Bingol,H.Colak,and H.Hampikyan,“Effects ofelectrical stimulation on meat quality of lamb and goat meat,”The Scientific World Journal,vol.2012,Article ID574202,9 pages,2012.[23]D.B.MacDougall,“Changes in the colour and opacity of meat,”Food Chemistry,vol.9,no.1-2,pp.75–88,1982.[24]J.R.Bendall and A.A.Taylor,“Consumption of oxygen by themuscles of beef animals and related species.II.Consumption of oxygen by post-rigor muscle,”Journal of the Science of Food and Agriculture,vol.23,no.6,pp.707–719,1972.[25]W.R.Egbert and D.P.Cornforth,“Factors influencing color ofdark cutting beef muscle,”Journal of Food Science,vol.51,no.1, pp.57–59,1986.[26]A.D.Weaver,B.C.Bowker,and D.E.Gerrard,“Sarcomerelength influences postmortem proteolysis of excised bovine semitendinosus muscle,”Journal of Animal Science,vol.86,no.8,pp.1925–1932,2008.。

相关文档
最新文档