高等代数第一章 2
高等代数知识点总结
f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式
高等代数课件ppt1.2
仍为数域 P上的多项式.
f ( x) g( x) 0
2) f ( x ), g ( x ) P [ x ]
① ( f ( x ) g ( x )) m ax( ( f ( x )), g ( x ))) ② 若 f ( x ) 0, g ( x ) 0, 则 f ( x ) g ( x ) 0, 且
个非负整数,形式表达式
a n x a n1 x
n n1
a1 x a 0
其中 a 0 , a 1 , a n
P,
称为数域P上的一元多项式.
常用 f ( x ), g ( x ), h ( x ) 等表示.
§1.2 一元多项式
注: 多项式
①
ai x
i
f ( x ) a n x a n1 x
加法: 若 n m , 在 g ( x ) 中令
bn bn 1 bm 1 0
则
f ( x) g( x)
n
( a i bi ) x i . bi ) x i
减法: f ( x ) g ( x )
§1.2 一元多项式
i0 n
(a
i0
i
乘法:
f ( x ) g ( x ) a n bm x
n m
( a n bm 1 a n 1bm ) x
n m 1
( a 1 b 0 a o b1 ) x a 0 b) x
i
s1 i j s
注:
f ( x)g( x)
( f ( x ) g ( x )) ( f ( x )) ( g ( x ))
高等代数教案
全套高等代数教案第一章:高等代数概述1.1 高等代数的定义与意义理解高等代数的基本概念了解高等代数在数学及其它领域中的应用1.2 基本术语和符号学习常见的代数运算符掌握基本的代数表达式1.3 基本定理和性质学习线性方程组的解的存在性定理理解线性空间的基本性质第二章:矩阵和行列式2.1 矩阵的基本概念理解矩阵的定义和矩阵元素的意义学习矩阵的运算规则2.2 行列式的定义和性质理解行列式的概念掌握行列式的计算方法2.3 矩阵和行列式的应用学习矩阵在几何中的应用了解矩阵在概率论和统计中的应用第三章:线性方程组3.1 高斯消元法学习高斯消元法的原理和步骤掌握高斯消元法的应用3.2 矩阵的秩理解矩阵秩的概念学习矩阵秩的计算方法3.3 线性方程组的解的结构理解线性方程组解的存在性定理学习线性方程组解的方法第四章:特征值和特征向量4.1 特征值和特征向量的定义理解特征值和特征向量的概念学习特征值和特征向量的计算方法4.2 矩阵的对角化理解矩阵对角化的概念掌握矩阵对角化的方法4.3 特征值和特征向量的应用学习特征值和特征向量在几何中的应用了解特征值和特征向量在物理中的应用第五章:向量空间和线性变换5.1 向量空间的基本概念理解向量空间和子空间的概念学习向量空间的基和维数5.2 线性变换的基本概念理解线性变换的定义和性质学习线性变换的矩阵表示5.3 线性变换的应用学习线性变换在几何中的应用了解线性变换在信号处理中的应用第六章:特征多项式和最小多项式6.1 特征多项式的定义和性质理解特征多项式的概念学习特征多项式的计算方法6.2 最小多项式的定义和性质理解最小多项式的概念掌握最小多项式的计算方法6.3 特征多项式和最小多项式的应用学习特征多项式和最小多项式在矩阵对角化中的应用了解特征多项式和最小多项式在多项式环中的应用第七章:二次型7.1 二次型的定义和基本性质理解二次型的概念学习二次型的标准形和规范形7.2 惯性定理和二次型的分类理解惯性定理的概念学习二次型的分类方法7.3 二次型的应用学习二次型在几何中的应用了解二次型在优化问题中的应用第八章:线性微分方程组8.1 线性微分方程组的定义和性质理解线性微分方程组的概念学习线性微分方程组的解的结构8.2 常系数线性微分方程组的解法学习常系数线性微分方程组的解法掌握常系数线性微分方程组的通解8.3 线性微分方程组的应用学习线性微分方程组在物理学中的应用了解线性微分方程组在经济学中的应用第九章:特征值问题的数值解法9.1 特征值问题的数值解法概述了解特征值问题的数值解法的概念学习特征值问题的数值解法的方法9.2 幂法和反幂法学习幂法和反幂法的原理和步骤掌握幂法和反幂法的应用9.3 稀疏矩阵和迭代法理解稀疏矩阵的概念学习迭代法的原理和步骤第十章:高等代数的进一步研究10.1 向量丛和纤维丛理解向量丛和纤维丛的概念学习向量丛和纤维丛的分类方法10.2 群表示论的基本概念理解群表示论的概念学习群表示论的基本性质10.3 高等代数的其它研究领域了解高等代数在数学物理方程中的应用学习高等代数在和机器学习中的应用重点和难点解析重点环节一:矩阵的秩秩的概念是高等代数中的重要概念,理解秩的计算方法和秩的性质对于后续学习线性变换、矩阵对角化等高级内容至关重要。
《高等代数》第一章主要内容
§1.4 整数的一些整除性质
• • 整除概念:设a,b是两个整数.如果存在一个整数d,使得b=ad,那么就说a整除b (或者说b被a整除)用符号a∣b来表示a整除b.这时a叫作b的一个因数,而b叫 作a的一个倍数. 整除的基本性质:⑴ a∣b,b ∣ c=>a ∣ c. ⑵ a∣b, a ∣ c =>a ∣ (a+b). ⑶ a∣b,而c∈Z =>a ∣ bc. 由⑵与⑶得⑷ a∣bi,而ci ∈Z ,i=1,2, …,t => a ∣ (b1c1+ …+btct). ⑸每一个整数都可以被1和-1整除. ⑹每一个整数a都可以 被它自己和它的相反数-a整除. ⑺ a∣b且b ∣ a =>b=a 或 b=-a. 定理1.4.1(带余除法)设a,b是整数且a≠0,那么存在一对整数q和r,使得 b=aq+r 且0≦r ﹤∣a∣. 满足以上条件的整数q和r是唯一确定的. 最大公因数概念:设a,b是两个整数. 满足下列条件的整数d叫作a与b的一个最大 公因数: (ⅰ)d∣a,d∣b; (ⅱ)如果c∈Z 且c∣a,c∣b,那么c∣d . 一般地, 设a1,a2, …,an是n个整数.满足下列条件的整数d叫作a1,a2, …,an 的一个最大公 因数(ⅰ)d ∣ai, i=1,2, …,n ;(ⅱ) 如果c∈Z 且c∣ ai, i=1,2, …,n,那么 c∣d. 定理1.4.2 任意n(n≧2)个整数a1,a2, …,an 都有最大公因数.如果d是 a1,a2, …,an 的一个最大公因数,那么-d也是一个最大公因数; a1,a2, …,an 的 两个最大公因数至多相差一个符号. 定理1.4.3 设d是整数a1,a2, …,an 的一个最大公因数,那么存在整数t1,t2, …,tn, 使得 t1a1+t2a2+…+tnan=d. 定理1.4.4 n个整数a1,a2, …,an 互素的充要的条件是存在整数t1,t2, …,tn,使 得 t1a1+t2a2+…+tnan=1. 定理1.4.5 一个素数如果整除两个整数a与b的乘积,那么它至少整除a与b中的 一个
高等代数
说明
的标准分解式, ① 若已知两个多项式 f ( x ), g ( x ) 的标准分解式, 则可直接写出
( f ( x ), g( x ) ) .
f ( x ), g ( x ) 的标准
( f ( x ), g( x ) ) 就是那些同时在
分解式中出现的不可约多项式方幂的乘积, 分解式中出现的不可约多项式方幂的乘积,所带 方幂指数等于它在 f ( x ), g ( x ) 中所带的方幂指数 中较小的一个. 中较小的一个.
(
)(
x2 + 2
)
(在有理数域上) 在有理数域上)
= x 2 = x 2
(
)(
x+ 2
)(
x2 + 2
)
(在实数域上) 在实数域上)
(
) ( x + 2 ) ( x 2i ) ( x +
在复数域上) 2i (在复数域上)
)
§1.5 因式分解定理
一,不可约多项式
定义: 定义: 设 p( x ) ∈ P[ x ] ,且 ( p ( x ) ) ≥ 1 ,若 p( x )
f ( x ) = p1 ( x ) p2 ( x ) ps ( x )
= q1 ( x )q2 ( x ) qt ( x )
⑴
pi ( x ), q j ( x ) ( i = 1,2, , s ; j = 1,2, , t . ) 都是不可约
多项式. 多项式 作归纳法. 对 s 作归纳法. 若 s = 1, 则必有 s = t = 1, f ( x ) = p1 ( x ) = q1 ( x )
§1.5 因式分解定理
例如, 例如,若 f ( x ), g ( x ) 的标准分解式分别为
高等代数(第1章)
称为系数在数域P中的一元多项式,简称为数域P上 符号x 可以是为未知数, 的一元多项式.
也可以是其它待定事物.
习惯上记为f (x),g(x)……或f, g……上述形 n 式表达式可写为 i
2012-12-2
f (x)
a
i0
i
x
8
几个概念:
零多项式 ——系数全为0的多项式 多项式相等 —— f (x)=g(x)当且仅当同次项的系 数全相等 (系数为零的项除外) 多项式 f (x)的次数 ——f (x)的最高次项对应的幂 次,记作(f (x)) 或deg (f (x)) .
数域 一元多项式 整除的概念 最大公因式 因式分解定理 重因式 多项式函数 复系数与实系数多项式的因式分解 有理系数多项式
3
2012-12-2
§1
数域
要说的话:对所要讨论的问题,通常要明确所考 虑的数的范围,不同范围内同一问题的回答可能 是不同的。例如,x2+1=0在实数范围与复数范围 内解的情形不同。 常遇到的数的范围:有理数集 、实数集、复数集 共性(代数性质):加、减、乘、除运算性质 有些数集也有与有理数集 、实数集、复数集相同 的代数性质 为在讨论中将其统一起来,引入一个一般的概 念——数域。
解之得
a
6 5
,b
13 5
,c
6 5
.
2012-12-2
15
例2 设 f (x), g(x)与h(x)为实数域上多项式.证明:如果 f 2(x)= x g2(x)+ x h2(x) 则 f (x)=g(x)=h(x)=0 证:反证. 若f (x)0,则f 2(x) 0.由 若g(x)0,由于
大一高等代数第一章知识点总结
大一高等代数第一章知识点总结导读:在大一高等代数第一章学习中,我们了解了数学中的代数运算、集合论、函数与映射、二次函数等重要基础知识。
本文将对这些知识点进行总结和归纳,帮助读者更好地理解和掌握这些概念。
一、代数运算1. 代数运算的基本性质:加法和乘法运算的结合律、交换律和分配律。
这些性质是进行代数运算的基础,通过它们可以将复杂的代数式简化,或将代数式转换为更方便计算的形式。
2. 代数运算的逆元:对于加法运算,零是唯一的单位元,每个元素都有唯一的相反元;对于乘法运算,一是唯一的单位元,每个非零元素都有唯一的倒数。
3. 代数方程与不等式:代数方程是由字母和数构成的等式,通过方程解的求解过程,可以得到含有未知数的具体数值;不等式则是不等关系构成的不等式。
二、集合论1. 集合的概念:集合是由一定规则约定所组成的一种对象的整体。
2. 集合的运算:包括交集、并集、补集和差集等。
运用这些运算可以对集合元素进行组合或筛选,从而得到满足一定条件的集合。
3. 集合的表示方法:包括列举法、描述法、乘积集和无穷集等。
不同的表示方法适用于不同的问题求解。
三、函数与映射1. 函数的概念:函数是两个集合之间的一种对应关系,每个自变量对应唯一的因变量。
2. 函数的性质:包括定义域、值域、单调性、奇偶性等。
这些性质描述了函数的基本特征,可以帮助我们更好地理解和分析函数。
3. 映射的概念:映射是一种更广义的函数,它可以是一对一的、多对一的或一对多的关系。
四、二次函数1. 二次函数的概念与性质:二次函数是一种具有二次项和一次项的一元多项式函数。
它的图像呈现抛物线形状,关键点包括顶点、焦点和对称轴等。
2. 二次函数的图像与方程:通过观察二次函数的图像可以了解其方程的特征,反之也可以通过方程描述二次函数的图像。
3. 二次函数的应用:二次函数在实际生活中有广泛应用,如物体抛出运动、摄影中焦距的调整等。
通过掌握二次函数的性质和应用,能够更好地理解和解决相关实际问题。
高等代数习题北大第四版答案一到四章
从 而 ( f ( x), g( x))h( x) 是 f (x)h(x) 与 g( x)h( x) 的 一 个 最 大 公 因 式 , 又 因 为
( f (x), g( x)) h( x) 的首项系数为1,所以 ( f (x)h(x), g(x)h(x)) = ( f ( x), g( x))h( x) 。
u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)
;
r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i
高等代数第1章多项式
f(x)-g(x)q1(x)=f1(x) deg f1(x)n-1 f1(x)-g(x)q2(x)=f2(x) deg f2(x)n-2 fk(x)-g(x)qk+1(x)=fk+1(x) f1(x), f2(x),, fk(x)的次数渐减,直到小于g(x)的次数
上式可改写为 f(x) = f1(x) + g(x)q1(x) f1(x)= f2(x) +g(x)q2(x) +) fk(x)=fk+1(x)+g(x)qk+1(x) . f(x)=fk+1(x)+g(x)[q1(x)+q2(x)++qk+1(x)] 于是,令q(x)=[q1(x)+q2(x)++qk+1(x)], r(x)=fk+1(x), deg r(x)<deg g(x)或r(x)=0. 唯一性 假设另有q1(x)和r1(x),满足 f(x) = q1(x)g(x) + r1(x) 其中deg(r1(x))<deg(g(x))或者r1(x)=0
四、综合除法
• 指用一次多项式除任一多项式的简便方法 • 1、理论根据
• • • • • • •
设 f(x)=anxn+an-1xn-1++a1x+a0 (an0) 则f(x)被x-c除所得商式是一个n-1次多项式, 设为 q(x)=bn-1xn-1+bn-2xn-2++b1x+b0 所以 f(x)=(x-c)q(x)+r, 其中r为余数,即 f(x)=anxn+an-1xn-1++a1x+a0 =(x-c)(bn-1xn-1+bn-2xn-2++b1x+b0)+r 比较两边系数,得
高等代数课件 第一章
定理1.4.2 任意 n(n 2)个整数 a1, a2 ,, an 都有最
大公因数。如果d是a1, a2 ,, an 的一个最大公因数,那 么 - d 也是一个最大公因数;a1, a2 ,, an 的两个最大公因
数至多只相差一个符号。
证 由最大公因数的定义和整除的基本性质,最后一个论断 是明显的。
称f 是A到B 的一个单映射,简称单射.
定义3:如果f 既是满射,又是单射,即如果f 满
足下面两个条件: ① f (A) B
② f (x1) f (x2 ) x1 x2 对于一切 x1, x2 A ,那 么就称f 是A 到B 的一个双射或一一映射。
一个有限集合A到自身的双射叫做A的一个置换.
而 r1 d 。这与d是 I 中的最小数的事实矛盾。这样,
必须所有 ri 0 ,即 d | ai ,1 i n 。
另一方面,如果 c Z, c | ai ,1 i n 。那么 c | (t1a1 tnan ),即c | d 。这就证明了d 是 a1, a2 ,, an的
一个最大公因数。
那么存在一对整数q和r,使得
b aq r且0 r | a |
满足以上条件整数q和r 的唯一确定的。
证 令 S {b ax | x Z,b ax 0。因为 a 0,所以S 是N 的一个非空子集。根据最小数定理(对于N),S 含有一个最小数。也就是说,存在q Z ,使得 r=b-aq 是S 中最小数。于是b=aq+r,并且 r 0 。如果 r | a |,
这时y 叫做 x 在f 之下的象,记作 f (x) .
注意: ① A与B可以是相同的集合,也可以是不同的集
合 ② 对于A的每一个元素x,需要B中一个唯一确定
的元素与它对应. ③ 一般说来,B中的元素不一定都是A中元素的
高等代数(北大版)第一章-多项式1.9
定理13 艾森斯坦因Eisenstein判别法
设 f ( x) an xn an1xn1 a1x a0 , 是一个整系数多项式,若有一个素数 p, 使得
1 p | an 2 p | an1,an2 , ,a0 3 p2 | a0 则 f ( x)在有理数域上是不可约的.
2.Gauss引理 定理10 两个本原多项式的积仍是本原多项式.
证: 设 f ( x) an xn an1xn1 g( x) bm xm bm1xm1
是两个本原多项式.
a0, b0
h( x) f ( x)g( x) dnm xnm dnm1xnm1 d0 反证法.若 h( x)不是本原的,则存在素数 p,
p | dr , r 0,1, , n m. 又 f ( x)是本原多项式,所以 p 不能整除 f ( x)的
每一个系数.
令ai 为 a0 ,a1, ,an 中第一个不能被 p 整除的数,即 p | a1, , p | ai1, p | ai .
同理,g( x) 本原,令 bj为 b0 , ,bm 中第一个不能被
p 整除的数,即 p | b0, p | b1, , p | bj1, p | bj .
又 di j aibj ai1bj1 , 在这里 p | di j , p | aibj , p | ai1bj1, 故 h( x)是本原的.
矛盾.
二、整系数多项式的因式分解
定理11 若一非零的整系数多项式可分解成两 个次数较低的有理系数多项式,则它一定可分解 成两个次数较低的整系数多项式的乘积.
于是有, a f1( x) g( x)ch1( x) cg( x)h1( x)
高等代数
例6: Q, R, C 对通常加法和乘法均是 域。 有理数域 Q, 实数域 R, 复数域 C.
若 F的子集合 K 对 F中的原运算仍是一个域 , 称 K为 F的子域,而 F称为 K的扩域。
C的子域被称作数域, 有理数域 Q是最小的数域 - -是任意数域的子域。 7
II
Polynomial form
an q1 = X bm
nm
,
则 g q1 与 f 的首项相同。
令 f s = r , q1 + q 2 + + q s = q , 即可。
唯一性,设 f = q g + r = gq0 + r0,
= 于是 g(q q0) r0 r 若两边均非零,则由 deg g(q q0)) deg g > deg r0 r) ( ≥ ( 矛盾, 故q = q0, r = r0 。
群 : 设 G 是非空集合 , 在 G 中定义了一个二元 运算 (即对 G 中任意 a , b 有 G 中唯一元素 (记为 a b )与之对应 , 且满足如下规律 : (1)封闭性 . 对任意 a , b ∈ G , 总有 a b ∈ G . ( 2 )结合律 .a ( b c ) = ( a b ) c ( 对任 a , b, c ∈ G ). ( 3)( 恒元 )存在 e ∈ G , 使 e a = a 对任 a ∈ G . ( 4 )( 逆元 )对任 a ∈ G , 总存在 b ∈ G , b a = e.
例3: n阶可逆方阵的全体(按 通常矩阵的 乘法)是乘法群。称为 一般线性群 .-- general linear group 简记为 GL n (F). 而 SL n (F)={ A ∈ M n (F) detA =1 } 称为特殊线性群-- Special Linear group
《高等代数》数分高代定理大全
数分高代定理大全《高等代数》第一章带余除法 对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式(),()q x r x 存在,使()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的(),()q x r x 是唯一决定的.定理 1 对于数域P 上的任意两个多项式(),()f x g x ,其中()0,()|()g x g x f x ≠的充分必要条件是()g x 除()f x 的余式为零.定理 2 对于[]P x 中任意两个多项式()f x ,()g x ,在[]P x 中存在一个最大公因式()d x ,且()d x 可以表示成()f x ,()g x 的一个组合,即有[]P x 中多项式(),()u x v x 使()()()()()d x u x f x v x g x =+.定理 3 []P x 中两个多项式()f x ,()g x 互素的充分必要条件是有[]P x 中的多项式(),()u x v x 使()()()()1u x f x v x g x +=.定理 4 如果((),())1f x g x =,且()|()()f x g x h x ,那么()|()f x h x .定理 5 如果()p x 是不可约多项式,那么对于任意的两个多项式(),()f x g x ,由()|()()p x f x g x 一定推出()|()p x f x 或者()|()p x g x .&因式分解及唯一性定理 数域P 上每一个次数1≥的多项式()f x 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式1212()()()()()()(),s t f x p x p x p x q x q x q x ==那么必有s t =,并且适当排列因式的次序后有()(),1,2,,,i i i p x c q x i s ==其中(1,2,,)i c i s =是一些非零常数.定理 6 如果不可约多项式()p x 是()f x 的k 重因式(1)k ≥,那么它是微商()f x '的1k -重因式.定理 7(余数定理) 用一次多项式x α-去除多项式()f x ,所得的余式是一个常数,这个常数等于函数值()f α.定理 8 []P x 中n 次多项式(0)n ≥在数域P 中的根不可能多于n 个,重根按重数计算.定理 9 如果多项式()f x ,()g x 的次数都不超过n ,而它们对1n +个不同的数121,,n ααα+有相同的值,即()(),1,2,1,i i f g i n αα==+那么()()f x g x =.代数基本定理 每个次数1≥的复系数多项式在复数域中有一根.复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理 10(高斯(Gauss )引理) 两个本原多项式的乘积还是本原多项式. 定理 11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积. 定理 12 设110()n n n n f x a x a x a --=+++是一个整系数多项式,而rs是它的有理根,其中,r s 互素,那么必有0|,|n s a r a .特别地,如果()f x 的首项系数1n a =,那么()f x 的有理根是整根,而且是0a 的因子.)定理 13 (艾森斯坦(Eisenstein )判别法) 设110()n n n n f x a x a x a --=+++是一个整系数多项式,如果有一个素数p ,使得1.|n p a /; 2.120|,,,n n p a a a --;3.20|p a /那么()f x 在有理数域上是不可约的.第二章 定理 1 对换改变排列的奇偶性. 定理 2 任意一个n 级排列与排列12n 都可以经过一系列对换互变,并且所作对换的个数与这个排列有相同的奇偶性.定理 3 设111212122212n n n n nna a a a a a d a a a =,ij A 表示元素ij a 的代数余子式,则下列公式成立:—1122,,0,.k i k i kn in d k i a A a A a A k i =⎧+++=⎨≠⎩当当 1122,,0,.l j l j nl nj d j a A a A a A j =⎧+++=⎨≠⎩当l 当l定理 4 (克拉默法则) 如果线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式0d A =≠,那么该线性方程组有解,并且解是唯一的,解可以通过系数表为1212,,,,nn d d d x x x d dd===其中j d 是把矩阵A 中第j 列换成方程组的常数项12,,,n b b b 所成的行列式,即1,11,111112,12,12122,1,11,1,2,,.j j n j j n j n j n j n n nna a ab a a a a b a d j n a a a b a -+-+-+==定理 5 如果齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵的行列式0A ≠,那么它只有零解.换句话说,如果该方程组有非零解,那么必有0A =.@定理 6 (拉普拉斯定理) 设在行列式D 中任意取定了(11)k k n ≤≤-个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D .定理 7 两个n 级行列式1112121222112n n n n nna a a a a a D a a a =和1112121222212n n n n nnb b b b b b D b b b =的乘积等于一个n 级行列式111212122212n n n n nnc c c c c c C c c c =,其中ij c 是1D 的第i 行元素分别与2D 的第j 列的对应元素乘积之和:1122ij i j i j in nj c a b a b a b =+++.第三章定理 1 在齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 中,如果sn ,那么它必有非零解.定理 2 设12,,r 与1,,,r 2是两个向量组,如果1)向量组12,,r 可以经1,,,r 2线性表出,2)rs ,那么向量组12,,r 必线性相关..定理 3 一向量组的极大线性无关组都含有相同个数的向量 定理 4 矩阵的行秩与列秩相等. 定理 5 n n 矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式为零的充分必要条件是A 的秩小于n .定理 6 一矩阵的秩是r 的充分必要条件为矩阵中有一个r级子式不为零,同时所有1r级子式全为零.定理 7 (线性方程组有解判别定理) 线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解的充分必要条件为它的系数矩阵111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵11121121222212n n s s sn s a a a b a a a b A a a a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有相同的秩。
第一章知识点(高等代数)
学习必备欢迎下载第 1章多项式1.1 知识点归纳与要点解析一.多项式的定义与运算1.定义形式表达式 f (x)a n x n a n 1 x n 1a0称为数域P 上以x 为文字的一元多项式,其中 a0 ,a1 ,a n P , n是非负整数.当a n0 时,称多项式 f (x)的次数为n ,记为 f (x)n ,并称a n x n为 f (x)的首项, a n为f (x)的首项系数. a i x i为f (x) 的i次项, a i称为 f (x) 的i次项系数.当a n a n 1a10,a 00 时,称多项式 f (x)为零次多项式,即 f (x)0 ;当a n a n 1a1a00 时,称f (x) 为零多项式.注:零多项式是唯一不定义次数的多项式.2.多项式的相等数域P 上以x 为文字的两个一元多项式 f (x) 与g(x)相等是指它们有完全相同的项.还可以在它们首项系数相等的情况下,证注:证明两个多项式的相等除了利用定义外,明两个多项式相互整除.3.多项式次数设 f (x), g (x)P[ x] ,性质 1. 当f (x)g(x)0 时,(f (x)g(x))max(f (x)), (g(x)) ;性质 2.(f (x)g(x))(f (x))+(g(x)) .二.多项式的整除1.带余除法(1) 定义:设 f (x), g(x)P[x],g (x)0,则存在唯一的多项式q(x), r (x)P[x], 使r (x)g(x).其中q(x)为g(x)除f (x)的商式, f (x) =q(x)g(x)+r (x) .其中 r (x)=0 或r (x) 为 g(x) 除 f (x) 的余式.注:带余除法是多项式分类的工具,是辗转相除法的基础,也是求最大公因式的基础.2.综合除法3.整除的判定(1) 定义设 f (x), g(x)P[x] ,如果存在q(x)P[x] ,使得 f (x)=q(x)g(x) ,则称g(x)整除学习必备欢迎下载第 1章多项式1.1 知识点归纳与要点解析一.多项式的定义与运算1.定义形式表达式 f (x)a n x n a n 1 x n 1a0称为数域P 上以x 为文字的一元多项式,其中 a0 ,a1 ,a n P , n是非负整数.当a n0 时,称多项式 f (x)的次数为n ,记为 f (x)n ,并称a n x n为 f (x)的首项, a n为f (x)的首项系数. a i x i为f (x) 的i次项, a i称为 f (x) 的i次项系数.当a n a n 1a10,a 00 时,称多项式 f (x)为零次多项式,即 f (x)0 ;当a n a n 1a1a00 时,称f (x) 为零多项式.注:零多项式是唯一不定义次数的多项式.2.多项式的相等数域P 上以x 为文字的两个一元多项式 f (x) 与g(x)相等是指它们有完全相同的项.还可以在它们首项系数相等的情况下,证注:证明两个多项式的相等除了利用定义外,明两个多项式相互整除.3.多项式次数设 f (x), g (x)P[ x] ,性质 1. 当f (x)g(x)0 时,(f (x)g(x))max(f (x)), (g(x)) ;性质 2.(f (x)g(x))(f (x))+(g(x)) .二.多项式的整除1.带余除法(1) 定义:设 f (x), g(x)P[x],g (x)0,则存在唯一的多项式q(x), r (x)P[x], 使r (x)g(x).其中q(x)为g(x)除f (x)的商式, f (x) =q(x)g(x)+r (x) .其中 r (x)=0 或r (x) 为 g(x) 除 f (x) 的余式.注:带余除法是多项式分类的工具,是辗转相除法的基础,也是求最大公因式的基础.2.综合除法3.整除的判定(1) 定义设 f (x), g(x)P[x] ,如果存在q(x)P[x] ,使得 f (x)=q(x)g(x) ,则称g(x)整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
as bo as 1b1 a1bs 1 a0bs
§1.2 一元多项式
s ai b j . i j
4.多项式运算性质
1) f ( x ) g( x ) 为数域 P上任意两个多项式,则
f ( x ) g( x ), f ( x ) g( x ) 仍为数域 P上的多项式.
f ( x ) 0, g( x ) ix , h( x ) x
§1.2 一元多项式
二、多项式环
定义 所有数域 P中的一元多项式的全体称为数域
P上的一元多项式环,记作 P[ x ] . P称为 P[ x ] 的系数域.
§1.2 一元多项式
x( g 2 ( x ) h2 ( x )) f 2 ( x ) 0, g 2 ( x ) h2 ( x ) 0. 于是 从而 ( xg 2 ( x ) xh2 ( x )) ( x( g 2 ( x ) h2 ( x ))) 为奇数. ( f 2 ( x )) 为偶数. x( g 2 ( x ) h2 ( x )) f 2 ( x ), 但
ai x i 称为i次项,ai 称为i次项系数. ① an x n 为 f ( x )的首项, n 为首项 a ② 若 an 0, 则称
系数,n 称为多项式 f ( x ) 的次数,记作 ( f ( x ))=n . ③ 若 a0 a1 an 0 ,即 f ( x ) 0,则称之 为零多项式.零多项式不定义次数.
零多项式 f ( x ) 0 区别: 零次多项式 f ( x ) a , a 0 , ( f ( x ))=0.
§1.2 一元多项式
2.多项式的相等
若多项式 f ( x ) 与 g ( x ) 的同次项系数全相等,则 称 f ( x )与 g ( x )相等,记作 f ( x ) g ( x ).
§1.2 一元多项式
3.多项式的运算:加法(减法)、乘法
f ( x ) an x n an1 x n1 a1 x a0 a i x i ,
n i 0 m
g( x ) bm x m bm 1 x m 1 b1 x b0 b j x j ,
乘法:
f ( x ) g ( x ) anbm x n m (anbm 1 an1bm ) x n m 1
(a1b0 aob1 ) x a0b0
n m
i j s s 1
( ai b j ) x i
注:
f ( x ) g( x ) 中s 次项的系数为
2) f ( x ), g ( x ) P[ x ]
f ( x ) g( x ) 0
① ( f ( x ) g( x )) max( ( f ( x )), g ( x ))) ② 若 f ( x ) 0, g ( x ) 0, 则 f ( x ) g( x ) 0, 且
j 0
加法: 若 n m, 在 g ( x ) 中令
bn bn1 bm 1 0
则
f ( x ) g( x ) (a i bi ) x i .
i 0 n i 0 n
减法: f ( x ) g ( x ) (a i bi ) x i
§1.2 一元多项式
这与已知矛盾. 故 f ( x ) 0,
g 2 ( x ) h2 ( x ) 0. 从而
§1.2 一元多项式
又 f ( x ), g( x ) 均为实系数多项式 ,
从而必有 g( x ) h( x ) 0.
f ( x ) g( x ) h( x ) 0.
(2) 在 C上不成立.如取
个非负整数,形式表达式
an x n an1 x n1 a1 x a0
其中 a0 , a1 , an P , 称为数域P上的一元多项式. 常用 f ( x ), g ( x ), h( x ) 等表示.
§1.2 一元多项式
注: 多项式 f ( x ) an x n an1 x n1 a1 x a0 中,
§1.2 一元多项式
例1
设 f ( x ), g( x ), h( x ) R( x )
f 2 ( x ) xg 2 ( x ) xh2 ( x ), 则 (1) 证明: 若
f ( x )=g ( x ) h( x ) 0
(2) 在复数域上(1)是否成立?
§1.2 一元多项式
(1) 证:若 f ( x ) 0, 则
n n1 即, f ( x ) an x an1 x a1 x a0 ,
g( x ) bm x m bn1 x m 1 b1 x b0 ,
f ( x ) g( x ) m n, ai bi , i 0,1,2, , n .
第一章 多项式
§1 数域 §2 一元多项式 §3 整除的概念 §4 最大公因式 §5 因式分解 §6 重因式
ቤተ መጻሕፍቲ ባይዱ
§7 多项式函数
§8 复、实系数多项式 的因式分解 §9 有理系数多项式 §10 多元多项式 §11 对称多项式
一、一元多项式的定义 二、多项式环
§1.2 一元多项式
一、一元多项式的定义
1.定义 设 x是一个符号(或称文字),n 是一
( f ( x ) g( x )) ( f ( x )) ( g ( x ))
§1.2 一元多项式
f ( x ) g( x ) 的首项系数 f ( x ) 的首项系数× g ( x ) 的首项系数.
3) 运算律
f ( x ) g( x ) g( x ) f ( x ) ( f ( x ) g( x )) h( x ) f ( x ) ( g( x ) h( x )) f ( x ) g( x ) g( x ) f ( x ) ( f ( x ) g( x ))h( x ) f ( x )( g( x )h( x )) f ( x )( g( x ) h( x )) f ( x ) g( x ) f ( x )h( x ) f ( x ) g( x ) f ( x )h( x ), f ( x ) 0 g( x ) h( x )