【高教版】2020年三校生高考模拟考试数学试卷(三)

合集下载

2020年高三第三次模拟考试卷文科数学(三)(含答案)

2020年高三第三次模拟考试卷文科数学(三)(含答案)

c 2 ,则角 C ( )
A. 5π 6
B. π 6
C. π 4
D. π 3
uur uuur 10 . 在 △ ABC 中 , A, B 分 别 是 双 曲 线 E 的 左 、 右 焦 点 , 点 C 在 E 上 . 若 BA BC 0 ,
uur uuur uuur
( BA BC) AC 0 ,则双曲线 E 的离心率为(
黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3 .非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草
稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:本大题共
12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,

A. 36
B. 18
C. 6 2
D. 5 2
8.如图茎叶图表示的是甲、乙两人在 5 次综合测评中的成绩,其中乙中的两个数字被污损,且已知
甲、乙两人在 5 次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为(

2
A.
9
1
B.
5
3
C.
10
1
D.
3
9. △ ABC 的内角 A, B,C 的对边分别为 a, b, c ,已知 sin B sin A(sin C cosC) 0 , a 2 ,
增设一个起点站,为了研究车辆发车间隔时间
x 与乘客等候人数 y 之间的关系,经过调查得到如下
数据:
间隔时间 x (分钟)
10
11
12
13
14
15
等候人数 y (人)
23

2020年高考数学全真模拟试卷 (三)(含答案解析)

2020年高考数学全真模拟试卷 (三)(含答案解析)

2020年高考数学全真模拟试卷(三) 考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)已知在△ABC 中,AB =,AC =BC =,若O 为△ABC 的外心且满足AO x AB y AC =+u u u r u u u r u u u r ,则6x y +=( )A. 1B. 3C. 5D. 6 2. 已知AB u u u v =(2,3),AC u u u v =(3,t ),||BC uuu r =1,则AB BC ⋅u u u r u u u r =A. -3B. -2C. 2D. 3 3.若函数321y x x mx =+++是R 上的单调函数,则实数m 的取值范围是( )A. 1,3⎛+∞⎫ ⎪⎝⎭ B. 1,3⎛⎤-∞ ⎥⎝⎦ C. 1,3⎡⎫+∞⎪⎢⎣⎭ D.1,3⎛⎫-∞ ⎪⎝⎭ 4.“43m =”是“直线420x my m -+-=与圆224x y +=相切”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 5.设A ,B ,C 是半径为1的圆上三点,若AB =AB AC ⋅u u u r u u u r 的最大值为( )A. B. 32 C. 3 6.若复数2(1i z i i=-是虚数单位),则z 的共轭复数z =( )A. 1i +B. 1i -C. 1i -+D. 1i --7. 已知数列{a n }中,12a =,111n n a a +--3=,若n a 1000≤,则n 的最大取值为( ) A. 4B. 5C. 6D. 7 8. 若非零向量a r ,b r 满足||||a b =r r ,向量2a b +r r 与b r 垂直,则a r 与b r 的夹角为( )A. 150°B. 120°C. 60°D. 30° 9.已知2333211,,log 32a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系为( )A. a b c >>B. a c b >>C. c a b >>D. c b a >>10.在△ABC 中,5sin 13A =,3cos 5B =,则cos C =( )A. 5665B. 3365- C. 5665或1665-D. 1665- 11.已知函数()sin 3cos f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( )A. 3π- B. 0 C. 3πD. 23π 12.某几何体的三视图如图所示,则它的体积为( )A. 23B. 43 C. 13 D. 16第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 设正三棱锥P -ABC 的高为H ,且此棱锥的内切球的半径R =17H ,则22H PA=_______. 14.下列四个结论中,错误的序号是___________.①以直角坐标系中x 轴的正半轴为极轴的极坐标系中,曲线C 的方程为22sin()2804a πρρθ-++-=,若曲线C 上总存在两个,则实数a 的取值范围是()()3,11,3--⋃;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量~(2,),~(3,)B p B p ξη,若5(1)9P ξ≥=,则6(2)27P η≥=;④已知n 为满足1232727272727(3)S a C C C C a =++++⋅⋅⋅⋅⋅⋅+≥能被9整除的正数a 的最小值,则1()nx x -的展开式中,系数最大的项为第6项.15. 已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A. 22παβ-=B. 22παβ+=C. 2παβ+=D. 2παβ-= 16. 边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u v u u u v u u u v ,则BP BC ⋅=u u u v u u u v ______.三、解答题(本题共7道小题,每小题10分,共70分) 如图,在三棱柱ABC -A 1B 1C 1中,D 、E 分别是AC 、BB 1的中点.(Ⅰ)证明:BD ∥平面AEC 1;(Ⅱ)若这个三棱柱的底面是等边三角形,侧面都是正方形,求二面角1A EC B --的余弦值.18.在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为5252525x t y ⎧⎪⎪⎨⎪⎪⎩=+,=-(t 为参数).(1)求C 与l 的直角坐标方程;(2)过曲线C 上任意一点P 作与l 垂直的直线,交l 于点A ,求PA 的最大值. 19.在△ABC 中,3sin 2sin ,tan 35A B C==.(1)求cos2C ;(2)若1AC BC -=,求△ABC 的周长.20.已知函数()y f x =与函数x y a =(0,a >且1)a ≠图象关于y x =对称 (Ⅰ)若当[]0,2x ∈时,函数(3)f ax -恒有意义,求实数a 的取值范围;(Ⅱ)当2a =时,求函数())(2)g x f x f x =⋅最小值.21. 已知函数()2cos 3cos )f x x x x =+.(I )求函数()f x 的最小正周期和对称中心坐标;(II )讨论()f x 在区间[0,]2π上的单调性.22.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,tan ()a b A a b => .(Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围.23..某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为12.已知1名工人每月只有维修1台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得10万元的利润,否则将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有2名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有4名维修工人.(ⅰ)记该厂每月获利为X 万元,求X 的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?试卷答案1.B【分析】由余弦定理可得,2cos6BAC∠=,再根据数量积的定义可求出AO AB⋅u u u r u u u r,AC AB⋅u uu r u u u r,然后依据AO x AB y AC=+u u u r u u u r u u u r,利用数量积运算性质计算AO AB⋅u u u r u u u r,即可求出。

2020年山东省普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)

2020年山东省普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)

绝密★启用前山东省2020年普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1||A x x B x x =-≤≤=≤,则A B = ( )A. {|12}x x -≤≤B. {|02}x x <≤C. {|12}x x ≤≤D. {|1x x ≤-或2}x >【答案】B【解析】【分析】 先求出集合{03}B x x =<≤,再利用交集的定义得出答案.【详解】因为3{|log 1}B x x =≤可得{03}B x x =<≤,集合{|12}A x x =-≤≤, 所以{|02}A B x x ⋂=<≤故选B【点睛】本题主要考查了交集的定义,属于基础题.2.已知复数z 满足(1)1z i =+,则复平面内与复数z 对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】 把已知等式变形,利用复数代数形式的乘除运算化简,求出z 的坐标得答案. 【详解】由()131i z i +=+,得()()()()1131313131313131313i i i z i i i i +-++-+-====++++-, ∴复数z 在复平面内对应的点的坐标为(13+,13-),在第四象限. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是( )。

2020年全国3卷高考理科数学仿真试卷(三)答案

2020年全国3卷高考理科数学仿真试卷(三)答案

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

(完整版)2020年普通高等学校招生全国统一考试模拟卷(3)(文科数学含答案详解)

(完整版)2020年普通高等学校招生全国统一考试模拟卷(3)(文科数学含答案详解)

2019年普通高等学校招生全国统一考试模拟卷(3)文科数学本试题卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集,集合,,则()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.选C.2.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当时,被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】由已知有,因为,所以在第三象限,所以,,故表示的复数在复平面中位于第三象限,选C.3.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则途中直角三角形中较大锐角的正弦值为()A.B.C.D.【答案】B【解析】设小正方形的边长为,直角三角形的直角边分别为,,,由几何概型可得,解得,(舍),所以直角三角形边长分别为,,,直角三角形中较大锐角的正弦值为,选B.4.下列命题中:①“”是“”的充分不必要条件②定义在上的偶函数最小值为5;③命题“,都有”的否定是“,使得”④已知函数的定义域为,则函数的定义域为.正确命题的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】①或,所以“”是“”的充分不必要条件;②因为为偶函数,所以,因为定义区间为,所以,因此最小值为5;③命题“,都有”的否定是“,使得”;④由条件得,,;因此正确命题的个数为①②④,选C.5.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝玉和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的,分别为()A.90,86B.94,82C.98,78D.102,74【答案】C【解析】执行程序:,,;,,;,,;,,,故输出的,分别为,.故选:C.6.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】D【解析】由三视图可知:该几何体由两部分构成,一部分侧放的四棱锥,一部分为四分之一球体,∴该几何体的体积是,故选:D.7.已知实数,满足:,则的最大值()A.8B.7C.6D.5【答案】D【解析】根据不等式组画出可行域是封闭的四边形区域,对目标函数进行分类,当时,令,,这时可行域为直线下方的部分,当目标函数过点时有最大值.当时,令,,这时可行域为直线上方的部分,这时当目标函数过点时有最大值,代入得到最大值为.故答案为:D.8.设,函数的图象向右平移个单位后与原图象重合,则的最小值是()A.B.C.D.【答案】A【解析】将的图象向右平移个单位后对应的函数为,∵函数的图象向右平移个单位后与原图象重合,所以有,即,又,,故,故选A.9.已知函数与其导函数的图象如图,则满足的的取值范围为()A.B.C.D.【答案】D【解析】根据导函数与原函数的关系可知,当时,函数单调递增,当时,函数单调递减,由图象可知:当时,函数的图象在图象的下方,满足;当时,函数的图象在图象的下方,满足;22222正视图侧视图俯视图所以满足的解集为或,故选D .10.若正项递增等比数列满足,则的最小值为()A .B .C .2D .4【答案】D 【解析】因为,所以,当且仅当时取等号,即的最小值为,选D .11.设正三棱锥的高为,且此棱锥的内切球的半径,则()A .B .C .D .【答案】D 【解析】取线段中点,设在底面的射影为,连接,,设,则,设,则正三棱锥的表面积,由体积得,,,,,,,选D .12.已知,若函数恰有三个零点,则下列结论正确的是()A .B .C .D .【答案】D 【解析】,可知函数在区间单调递增,在单调递减,在单调递增,如下图,,,,令,则,因为要有三个零点,∴有解,设为,,由,根据图象可得:当时,,,符合题意,此时,当时,可求得,不符合题意.综上所述,,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.向量,满足,,与的夹角为,则________.【答案】【解析】由可得,即,代入可得,整理可得,解得,故答案为.14.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为____________.【答案】【解析】由抛物线定义,抛物线上的点到焦点的距离等于这点到准线的距离,即.所以周长,填.15.在中,内角,,所对的边分别为,,,已知,且,则面积的最大值为________.【答案】【解析】由已知有,,(1)q g x 2t 1210t t 12t t 124e t 222e44et 22214e+e4kt t 12240,et t 12241et t由于,,又,则,,当且仅当时等号成立.故面积的最大值为.16.过双曲线的焦点与双曲线实轴垂直的直线被双曲线截得的线段的长称为双曲线的通径,其长等于(、分别为双曲线的实半轴长与虚半轴长).已知双曲线()的左、右焦点分别为、,若点是双曲线上位于第四象限的任意一点,直线是双曲线的经过第二、四象限的渐近线,于点,且的最小值为,则双曲线的通径为__________.【答案】【解析】如图所示:连接,由双曲线的定义知,,当且仅当,,三点共线时取得最小值,此时,由到直线的距离,,由定义知通径等于,故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.设是数列的前项和,已知,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)∵,,∴当时,,得;····1分当时,,∴当时,,即,····3分又,····4分∴是以为首项,为公比的等比数列.····5分∴数列的通项公式为.····6分(2)由(1)知,,····7分,····8分当为偶数时,;····10分当为奇数时,,∴.····12分18.2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:年龄段人数(单位:人)180********约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.(1)抽出的青年观众与中年观众分别为多少人?(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?热衷关心民生大事不热衷关心民生大事总计青年12中年5总计30(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?0.1000.0500.0250.0100.0012.7063.841 5.024 6.63510.828.【答案】(1),;(2)列联表见解析,没有的把握认为年龄层与热衷关心民生大事有关;(3).【解析】(1)抽出的青年观众为18人,中年观众12人····2分(2)列联表如下:热衷关心民生大事不热衷关心民生大事总计青年61218中年7512总计131730····4分,····6分∴没有的把握认为年龄层与热衷关心民生大事有关.····7分(3)热衷关心民生大事的青年观众有6人,记能胜任才艺表演的四人为,,,,其余两人记为,,则从中选两人,一共有如下15种情况:,,,,,,,,,,,,,,,····10分抽出的2人都能胜任才艺表演的有6种情况,····11分所以.····12分19.如图,在四棱锥中,四边形是菱形,,平面平面,,,在棱上运动.(1)当在何处时,平面;(2)已知为的中点,与交于点,当平面时,求三棱锥的体积.【答案】(1)当为中点时,平面;(2).【解析】(1)如图,设与相交于点,当为的中点时,平面,····2分证明∵四边形是菱形,可得:,又∵为的中点,可得:,∴为的中位线,····3分可得,····4分又∵平面,平面,∴平面.····6分(2)为的中点,,则,又,,且,又,...····9分又,点为的中点,到平面的距离为.····11分.····12分20.在平面直角坐标系中,点,圆,点是圆上一动点,线段的中垂线与线段交于点.(1)求动点的轨迹的方程;(2)若直线(斜率存在)与曲线相交于,两点,且存在点(其中,,不共线),使得被轴平分,证明:直线过定点.B【答案】(1);(2).【解析】(1)由已知,,圆的半径为,依题意有:,····1分····3分故点的轨迹是以,为焦点,长轴长为4的椭圆,即,,.故点的轨迹的方程为.····5分(2)令,,因,,不共线,故的斜率不为0,可令的方程为:,则由,得则,①····7分被轴平分,,即,亦即②····8分而代入②得:③····9分①代入③得:····10分∵直线的斜率存在,∴,∴,此时的方程为:,过定点,综上所述,直线恒过定点.····12分21.设函数.(1)讨论的单调性;(2)设,当时,,求的取值范围.【答案】(1)见解析;(2).【解析】(1)由题意得,.····1分当时,当,;当时,;∴在单调递减,在单调递增····2分当时,令得,,①当时,,;当时,;当时,;所以f(x)在,单调递增,在单调递减····3分②当时,,所以在单调递增····4分③当时,,;当时,;当时,;∴在,单调递增,在单调递减.····5分(2)令,有.····6分令,有,当时,,单调递增.∴,即.····7分①当,即时,,在单调递增,,不等式恒成立····9分②当,时,有一个解,设为根.∴有,,单调递减;当时,;单调递增,有.∴当时,不恒成立;····11分综上所述,的取值范围是.····12分l(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】在平面直角坐标系中,曲线的参数方程为:(为参数,),将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与,相交于,两点,且,求的值.【答案】(1);(2)或.【解析】(1)的普通方程为,把,代入上述方程得,,∴的方程为,令,,所以的极坐标方程为;····5分(2)在(1)中建立的极坐标系中,直线的极坐标方程为,由,得,由,得,所以,∴,而,∴或.····10分23.选修4-5:不等式选讲已知函数,.(1)当时,若的最小值为,求实数的值;(2)当时,若不等式的解集包含,求实数的取值范围.【答案】(1)或;(2).【解析】(1)当时,,因为的最小值为3,所以,解得或.····5分(2)当时,即,当时,,即,因为不等式的解集包含,所以且,即,故实数的取值范围是.····10分。

[2020年三校生高考数学卷] 2020三校生高考数学

[2020年三校生高考数学卷] 2020三校生高考数学

[2020年三校生高考数学卷] 2020三校生高考数学全文结束》》年三校生高考数学卷一、选择题。

1、集合A ={1,2,3,4,5},B ={2,4,5,8,10}, 则A ∩B =:A、 {1,2,3,4,5,8,10}B、{2,4}C、{2,4,5}D、∅2、不等式A、B、C、∪D、3、在内下列函数是增函数的是;A、 y=2x = =x2 =log1x221x4、直线2x−y+5=0的斜率和y轴上的截距分别是;A、2,2B、-2,-5 ,5 ,25、下列计算正确的是A、3=a56、在1,2,3,4四个数中任取两个数,则取到的数都是奇数的概率为;A、6B、6547、直线2x+3y−4=0与3x−2y+1=0的位置关系是、A、直线B、相交但不垂直C、平行D、垂合二、填空题:1、函数y=|5的定义域为__________;4x|−351152、已知 , b 、且a⊥b, 则m=__________;3、在数列{an}中,若a1=16,an+1=2an, 则该数列的通项an=__________;4、一个玩具下半部分是半径为3的半球,上半部是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的表面积是__________;三、解答题;,1、求经过直线x+y−2=0和x−y=0的交点,圆心为的圆的方程2、已知sin α=−5,α是第四象限的角,则tan α的值和cos α的值;3、为了参加国际马拉松比赛,某同学给自己制定了10天的训练计划。

第一天跑2000米,以后每天比前一天多跑500米,这位同学第七天跑了多少米,10天总共跑了多长的距离,41。

2020年普通高等学校招生全国统一考试文科数学模拟试题III卷(6页)

2020年普通高等学校招生全国统一考试文科数学模拟试题III卷(6页)

2020年普通高等学校招生全国统一考试文科数学模拟试题III 卷文科数学试题III 卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|40}{|326}A x x B x x ,=-<=-<<,则A B =I ( )A. 3(,2)2-B. (2,2)-C. 3(,3)2-D. (2,3)-2.复数12z i =+,若复数1z , 2z 在复平面内的对应点关于虚轴对称,则12z z =( ) A. 5-B. 5C. 34i -+D. 34i -3.下列函数中,在其定义域内既是偶函数又在(,0)-∞上单调递增的函数是 ( ) A. 2()f x x =B. ||()2x f x =C. 21()log ||f x x = D. ()sin f x x =4.若a =r 2b =r ,且()-⊥r r r a b a ,则a r 与b r的夹角是( )A.6π B.4π C.3π D.2π 5.为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的2000名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取1名,抽到20岁~50岁女居民的概率是0.19.现用分层抽样的方法在全小区抽取64名居民,则应在50岁以上抽取的女居民人数为( )A. 24B. 16C. 8D. 126.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A.1003B.1043C. 27D. 187.已知2sin()4πα+=,则sin 2α=( )A.12C. 12-D. 8.已知数列{}n a 为等差数列,前n 项和为n S ,且55a =则9S =( ) A. 25B. 90C. 50D. 459.函数f (x )=3344xx -的大数图象为( ) A. B.C. D.10.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若1b =,c =23C π=则ABC S ∆=( )A.B.4C.2D.3411.已知椭圆22221x y a b+=(0)a b >>的两个焦点分别是1F ,2F ,过1F 的直线交椭圆于P ,Q 两点,若212PF F F =且1123PF QF =,则椭圆的离心率为( )A.34B.45C.35D.512.已知定义在R 上的函数满足(2)()f x f x +=-,2(]0,x ∈时,()sin f x x x π=-,则20201()i f i ==∑( )A. 6B. 4C. 2D. 0二、填空题:本大题共4小题,每小题5分,共20分.13.设x ,y 满足约束条件2102702350x y x y x y --≥⎧⎪+-≤⎨⎪+-≥⎩,则23z x y =-的最小值为__________.14.如图,y=f (x )是可导函数,直线l: y=kx+2是曲线y= f (x )在x=3处的切线,令g (x )=xf (x ),其中是g (x )的导函数,则'(3)g=.15.已知双曲线的方程为()222210,0x y a b a b -=>>,双曲线的一个焦点到一条渐近线的距离为3(c 为双曲线的半焦距长),则双曲线的离心率e 为__________.16.如图所示,某住宅小区内有一个正方形草地ABCD ,现欲在其中修建一个正方形花坛EFGH ,若已知花坛面积为正方形草地面积的23,则θ=________三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分)17.记n S 为等比数列{}n a 的前n 项和,18a =,322(3)S a =+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)已知12n n T a a a =L ,且n T 的最大值.18.在直三棱柱111ABC A B C -中,13,2,AB AC AA BC D ====是BC中点,F 是1CC 上一点.(1)当2CF =时,证明:1B F ⊥平面ADF ; (2)若1FD B D ⊥,求三棱锥1B ADF-体积.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中“植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制的剂吸收不足量”的植株共1株.(1)完成以22⨯下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)若在该样本“制剂吸收不足量”的植株中随机抽取3株,求这3株中恰有1株“植株存活”的概率. 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++20.已知动点M 到定点()1,0F 的距离比M 到定直线2x =-的距离小1. (1)求点M轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线1l ,2l ,分别交曲线C 于点A ,B 和M ,N .设线段AB ,MN 的中点分别为P ,Q ,求证:直线PQ 恒过一个定点; (3)在(2)的条件下,求FPQ ∆面积的最小值.21.已知函数()ln xf x ax x=-. (1)若函数()f x 在()1,+∞上是减函数,求实数a 的最小值;(2)若存在1x ,22,x e e ⎡⎤∈⎣⎦,使()()12f x f x a '≤+成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分.22.在直角坐标系xOy 中,曲线1C 的参数方程为11cos :sin x C y αα=+⎧⎨=⎩ (α为参数),曲线222:12xC y +=.(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求1C ,2C 的极坐标方程; (2)若射线((0)6πθρ=≥与1C 异于极点的交点为A ,与2C 的交点为B ,求AB .23.已知关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M 的值;(2)正数 a b c ,,满足2a b c M ++=,求证:111a b b c+≥++.的。

2020届普通高等学校高三招生全国统一考试模拟(三)数学(理)模拟试题word版有答案

2020届普通高等学校高三招生全国统一考试模拟(三)数学(理)模拟试题word版有答案

普通高等学校招生全国统一考试模拟试题理数(三)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合(){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ⋂=A. ()2,+∞B. []2,4C. (]1,3D. (]2,42.设i 为虚数单位,给出下面四个命题:1:342p i i +>+;()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =;()()23:112p z i i =++共轭复数对应的点为第三象限内的点; 41:2i p z i +=+的虚部为15i . 其中真命题的个数为A .1B .2C .3D .43.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为A .0.85B .0.80C .0.60D .0.564.已知函数()f x =的值域为A ,且,a b A ∈,直线()()2212x y x a y b +=-+-=与圆有交点的概率为 A .18B .38C.78D.145.一条渐近线的方程为43y x =的双曲线与抛物线2:8C y x =的一个交点为A ,已知AF =(F 为抛物线C 的焦点),则双曲线的标准方程为A .2211832x y -=B .2213218y x -= C .221916x y -=D .2291805y x -= 6.如图,弧田由圆弧和其所对弦围成,《九章算术》中《方田》章给出计算弧田面积所用的经验公式为:以弦乘矢,矢又自乘,并之,二而一”,即弧田面积12=(弦×矢+矢2).公式中“弦”指圆弧所对的线段,“矢”等于半径长与圆心到弦的距离之差,按照上述的经验公式计算弧田面积与实际面积存在误差,则圆心角为3π,弦长为1的弧田的实际面积与经验公式算得的面积的差为 A .138-B .31168π+- C .123623π+- D .53325-7.已知()()32210012100223nn x dx x x a a x a x a x =+-=+++⋅⋅⋅+⎰,且,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为 A .823B .845C .965-D .8778.已知函数()()sin 2cos 2,0,66f x x x x f x k ππ⎛⎫⎡⎤=++∈= ⎪⎢⎥⎝⎭⎣⎦当时,有两个不同的根12,x x ,则()12f x x k ++的取值范围为A .)1,3⎡⎣B .)3,23⎡⎣C .33,12⎛⎫+ ⎪ ⎪⎭D .)3,2⎡⎣ 9.运行如图所示的程序框图,输出的S 值为 A .2018201722⨯- B .2018201822⨯+ C. 2019201822⨯-D .2019201722⨯+10.已知直线()()21350m x m y m +++--=过定点A ,该点也在抛物线()220x py p =>上,若抛物线与圆()()()222:120C x y rr -+-=>有公共点P ,且抛物线在P 点处的切线与圆C 也相切,则圆C 上的点到抛物线的准线的距离的最小值为 A .35-B. 33-C .3D .32-11.已知几何体的三视图如图所示,则该几何体的外接球的表面积为 A .2143π B .1273πC.1153π D .1243π12.已知函数()f x 的导函数为()'fx ,且满足()32123f x x ax bx =+++,()()''24f x f x +=-,若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞ C.[)66ln6,++∞ D .[)4ln 2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。

2020届全国高考三卷模拟试卷数学(文)试题(三)解析版

2020届全国高考三卷模拟试卷数学(文)试题(三)解析版


0

x

1,
g ( x)

0

)
上单调递增,
在 (1, ) 上单调递减. g(2) 0 , g(x)max g(1) e ,当 x 2,g(x) 0. x ,g (x) ,
x ,g (x) 0 . 由 g 2 (x) (3a 1)g(x) 2a2
的最大值即:圆心到原点的距离+半径,即 9 3 3 3 3 ,故选 D.
文科数学参考答案·第 1页(共 7页)
11 . 设 P(x0,y0 ),A(x1,y1),B(x2,y2 )
, 则 kAB

y1 y2 x1 x2

x12 x22 22 x1 x2

x1 x2 2
2.
z

1i 2i

(1 i)(2 i) (2 i)(2 i)

1 5

3 5
i
,点

1 , 5
3 5

在第四象限,故选
D.
3.由判定定理和性质定理知,只有 B 选项正确,故选 B. 4.作出可行域,由 z x y,得 y x z ,当 y x z 与边界直线 x y 2 0 重合时, z 取得最小值,
2
2
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
题号
13
14
15
16
答案
π
6
3
x2 y2 1
①③
5
33
【解析】
13.由正弦定理 AC AB ,∴ 2 2 ,∴ sin C 1 , 又 AB AC,∴ C π .

2020届数学模拟考试三模试题含解析

2020届数学模拟考试三模试题含解析
7.某部队在演习过程中,用悬挂的彩旗来表达行动信号,每个信号都由从左到右排列的4面彩旗组成,有红、黄、蓝三种颜色的彩旗.若从所有表达的信号中任选一种,则这种信号中恰有2面红色旗子的概率为( )
A. B。 C。 D。
【答案】A
【解析】
【分析】
首先求彩旗表达信号的所有方法种数,以及信号中恰有2面红色旗子的方法种数,再根据古典概型计算。
【详解】由题中数据可得:甲的平均数为 ,
乙的平均数为 ,
因为甲乙成绩的平均数相等,所以 ,解得: ,
所以甲的成绩为: ,其中位数为 ,
乙的成绩为: ,其中位数为 。
故选:B.
【点睛】本题主要考查由茎叶图计算中位数,属于基础题型.
5.函数 的图像大致是( )
A. B。
C. D.
【答案】C
【解析】
【分析】
【答案】丁
【解析】
【分析】
根据题意,先得到甲的卡片数字只能是6,从而可分别得出其他同学的卡片数字,进而可得出结果。
【详解】由题意,因为甲、乙两名同学卡片上的数字都是偶数,所以甲的是4、乙的是6,或乙的是4、甲的是6;
又甲、丙两名同学卡片上的数字之和大于9,则甲的卡片数字只能是6,所以乙的是4,丙的是5,故丁的是3。
【详解】由条件可知悬挂的彩旗表达行动信号,共有 种,若恰有2面红色旗子,则有 种,所以这种信号中恰有2面红色旗子的概率 .
故选:A
【点睛】本题考查古典概型,属于基础题型,本题的关键是正确理解题意,并能转化为数学问题.
8。已知线段 是圆 的一条动弦,且 ,若点 为直线 上的任意一点,则 的最小值为( )
B. 已知 ,当 不变时, 越大, 的正态密度曲线越矮胖
C. 若在平面 内存在不共线的三点到平面 的距离相等,则平面 平面

三校生高考数学模拟试卷3

三校生高考数学模拟试卷3

三校生高考数学模拟试卷3三校生高考数学模拟试卷3对于许多即将参加三校生高考的同学们来说,数学是一门至关重要的科目。

而在高考前,进行模拟考试是非常必要的。

最近,我们学校组织了一次高考数学模拟试卷3的考试,旨在帮助同学们熟悉考试形式和提升应试能力。

在本文中,我将分享一些有关这次模拟试卷的看法和体会。

首先,让我们来了解一下什么是三校生高考。

三校生高考是指中等职业学校、中等技术学校和职业高中的毕业生参加的高考。

与普通高考相比,三校生高考在考试科目、考试形式和内容上都有所不同。

其中,数学科目在三校生高考中占有较大比重,对于很多同学来说也是相对较难的一门课程。

在这次模拟试卷3的考试中,我们遇到了各种类型的题目,包括计算题、应用题和证明题等。

总体来说,这次模拟试卷的难度适中,但也有一些比较有挑战性的题目。

从题型上来看,填空题和选择题的比例较大,这也符合三校生高考数学的实际考试情况。

在备考过程中,我发现自己在一些基础知识方面还需要加强。

例如,在这次模拟试卷中,有一道关于三角函数的题目,如果对相关概念掌握不够扎实,就很难顺利解答。

此外,我还需要提高自己的解题速度和准确率,特别是在做一些计算题和应用题时,需要更加细心和耐心。

为了提高自己的数学成绩,我采取了一些具体的措施。

首先,我会对每个知识点进行系统的学习和复习,确保自己对基础知识有更加深入的理解。

其次,我会通过做题来巩固自己的知识,特别是做一些历年高考数学真题和模拟试卷,这样可以更好地了解自己的薄弱环节,并针对性地进行提高。

最后,我会积极参加各种数学竞赛和辅导班,这样可以与其他同学进行交流和学习,同时也可以拓展自己的解题思路和方法。

总之,这次高考数学模拟试卷3的考试对我来说是一次非常有价值的经历。

通过这次考试,我更加清晰地了解了自身的数学水平,同时也发现了自己在备考过程中需要加强的地方。

我相信,在未来的备考过程中,我会更加努力地学习和提高自己的数学能力,争取在高考中取得优异的成绩。

2020年高考模拟试卷数学卷(3)及参考答案

2020年高考模拟试卷数学卷(3)及参考答案

2020年普通高校招生考试模拟卷数学试题卷本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页;非选择题部分3至6页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式: 如果事件A 、B 互斥,那么柱体的体积公式P (A +B )= P (A )+ P (B )V =Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 P (A •B )= P (A )•P (B )锥体的体积公式如果事件A 在一次试验中发生的概率为p , V =13Sh那么n 次独立重复试验中事件A 恰好发生 其中S 表示锥体的底面积,h 表示锥体的高.k 次的概率球的表面积公式P n (k )=(1)(0,1,2,,)k k n k n C p p k n --=LS =4πR 2台体的体积公式球的体积公式V =13(S 1S 2) h V =43πR 3其中S 1、S 2表示台体的上、下底面积, 其中R 表示球的半径h 表示棱台的高.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3P x x =->,104x Q xx ⎧-⎫=≤⎨⎬+⎩⎭,则()R C P Q =UA.(]3,1-B.(],4-∞-C.(]1-∞,D.[)1+∞,2.抛物线24y x =的焦点坐标 A.()1,0B.()0,1C.1016⎛⎫⎪⎝⎭,D.1016⎛⎫⎪⎝⎭,3.复数z 满足()122i z +=(i 为虚数单位),则z 的虚部是 A.45- B.45i-C.43D.43i 4.已知{}n a 是公比不为1的等比数列且公比为q ,前n 项和为n S ,则“10a >”是“4652S S S +>” 的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.函数sin ln 2y x x π⎛⎫=-⋅ ⎪⎝⎭的图像可能是ABCD6.某几何体的三视图如图所示,则该几何体的体积为 A.335333937.已知ξ为随机变量,则下列说法错误的是A.21122P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B.()()()221D D ξξ=-211113C.()()1D D ξξ=-D.()()()22E E ξξ≤8.若0,0a b ≥≥,当11x y x y m ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,且以,a b 为坐标点(),P a b 所形成的平面区域的面积为16,则m = A.136B.133C.3D.69.已知123,,e e e u r u u r u r为空间单位向量,1223311===2e e e e e e ⋅⋅⋅u r u u r u u r u r u r u r .若空间向量a r满足12=a e a e ⋅⋅r u r r u u r ,且对于任意,x y R ∈,()124a xe ye -+≥r u r u u r,则3a e λ-r u r 的最小值为10.三棱锥P ABC -中,三个侧面与底面所成角相等,三个侧面的面积分别为12,16,20且底面面积为24,则三棱锥P ABC -的外接球的表面积为 A.193πB.793πC.763πD.3163π非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.计算:3log = ,93log4log 43+= . 12.已知()()()sin sin cos sin 0x x x A wx b A ϕ⋅+=++>,则A =,=b.13.已知多项式()()32234567012345671+12x x x a a x a x a x a x a x a x a x ++=+++++++,则3a =,7a =.14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若4,3b c ==,3CD BD =,3cos 8A =,则=a,=AD.15.若a 为实数,且关于x的方程x =有实数解,则a 的取值范围是.16.某校共开设了六门选修课:物理、化学、生物、政治、历史、地理,要求每名学生选三门课,其中物。

2020高考模拟数学试题(全国Ⅲ卷)-理科

2020高考模拟数学试题(全国Ⅲ卷)-理科

绝密★启用前|铭师堂试题2020高考模拟数学试题(全国Ⅲ卷)—理科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={﹣2,﹣1,0,1,2,3},B ={x ∈Z |x 2﹣1<0},则A ∩(∁A B )=( ) A .{﹣2,-1,1,2,3} B .{﹣2,﹣1,0,1,2,3} C .{﹣2,2,3}D .{﹣1,0,1}2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.(1+2x 2)(x −1x )6的展开式中,含x 2的项的系数是( ) A .﹣40B .﹣25C .25D .554.在△ABC 中,B =2π3,AB =3,E 为AB 的中点,S △BCE =3√38,则AC 等于( ) A .√13 B .√10C .√7D .35.已知函数y =asinxx在点M (π,0)处的切线−1πx +b =y ,则( )A .a =﹣1,b =1B .a =﹣1,b =﹣1C .a =1,b =1D .a =1,b =﹣1 6.函数f(x)=2x 2+3xx的大致图象是( )A .B .C .D .7.已知函数f(x)=Asin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点(−π,0)对称 B .函数的图象关于直线x =−π6对称 C .函数f (2x )的最小正周期为π D .当π6≤x ≤7π6时,函数f (x )的图象与直线y =2围成的封闭图形面积为2π8.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我也不知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q9.已知三棱锥D ﹣ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D ﹣ABC 的体积取到最大值时,球O 的表面积为( ) A .5π3B .2πC .5πD .20π310.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .√10−1 B .2√2−1 C .2√2 D .√1011.过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于B ,点Q 是圆x 2+y 2=a 2上的动点.若FB →=2FA →,|BQ |的最大值为9,则此双曲线的方程为( ) A .x 24−y 212=1 B .x 24−y 216=1 C .x 29−y 227=1D .x 29−y 236=112.已知函数f (x )={|log 2x|,x >0x 2+4x +1,x ≤0,若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则x 4x 3−x 1x 32+x 2x 324的取值范围是( )A .(2,+∞)B .[2,174)C .(2,174]D .[2,+∞)第II 卷二、非选择题:本卷包括填空题和解答题两部分。

2020高考数学仿真模拟试卷三及答案解析点拨(65张)

2020高考数学仿真模拟试卷三及答案解析点拨(65张)

之一.已知一个“刍童”的下底面是周长为 18 的矩形(这个矩形的长不小于 宽),上底面矩形的长为 3,宽为 2,“刍童”的高为 3,则该“刍童”的体积 的最大值为( )
10.已知抛物线 y2=4x 的焦点为 F,过焦点 F 的直线交抛物线于 A,B
两点,O 为坐标原点,若|AB|=6,则△AOB 的面积为( )
A. 6
B.2 2
C.2 3
D.4
答案 A
解析 由题意,易知直线 AB 的斜率存在且不为 0,设直线 AB 的方程为
y=k(x-1),与抛物线方程联立可得 y2-4ky-4=0,设 A(x1,y1),B(x等差数列前 n 项和公式及通项公式,得
S9=9a1+9×2 8d=27, a10=a1+9d=8,
解得ad1==1-,1,
an=a1+(n-1)d=n-2,∴a100=100-2=98.故选 C.
6.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体 的体积为( )
4套仿真模拟
2020高考仿真模拟(三)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分,考试时 间 120 分钟.
第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出 的四个选项中,只有一项是符合题目要求的.
1.已知全集为实数集 R,集合 A={x|x2-3x<0},B={x|log2x>0},则
则 y1+y2=4k,y1y2=-4,则|y1-y2|= y1+y22-4y1y2=4 1+k12,由弦长公
式可得
1+k12×|y1-y2|=41+k12=6,∴k2=2,|y1-y2|=2 6.三角形的面
积为 S=12|OF|×|y1-y2|=12×1×2 6= 6.故选 A.

【高教版】江西省2020年三校生高考数学全真模拟题(三)

【高教版】江西省2020年三校生高考数学全真模拟题(三)

江西省2020年三校生高考数学全真模拟题(三)命题人:赖斌 审核人:李发彬 命题时间:2019.3 份数:95第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、R ∈2…………………………………………………………………………………(A B )2、若a>b,则-5a>-5b ………………………………………………………………………(A B )3、函数42)(x x x f +=是一个偶函数……………………………………………………(A B )4、81632=…………………………………………………………………………………(A B ) 5、若)3,1(-=a )2,2(,-=a 则)1,1(=+b a ……………………………………………(A B )6、过直线外一点,可以作无数个平面与这条直线平行…………………………………(A B )7、如果,54sin =a 则53cos -=α………………………………………………………(A B )8、由数字1,2,3,4,5可以组成60个数字不重复的三位数………………………………(A B ) 9、5>x 是3>x 的必要不充分条件……………………………………………………(A B )10、椭圆14322=+y x 的焦点坐标为(-1,0),(1,0)……………………………………(A B ) 二、单项选择题:本大题共8小题,每小题5分,共40分。

11、函数x y lg =的定义域是( ) .A .()+∞∞-,B .[0,+∞]C .(0,+∞)D .(1,+∞) 12.式子log 39的值为( ) .A .1B .2C .3D .9 13.已知锐角α的终边经过点(1,1),那么角α为( ) . A .30° B .90° C .60° D .45°14、已知一个圆的半径是2,圆心点是A (1,0),则该圆的方程是( ) . A .4)1(22=+-y x B .4)1(22=++y x C. 2)10(22=+-y x D .2)1(22=++y x 15、已知a=4, b=9,则a 与b 的等比中项是( ) . A .6 B . -6 C .±6 D .±61 16、同时抛掷两枚均匀的硬币,出现 两个反面的概率是( ) .A .21 B .31 C .41 D .51 17、设椭圆14522=+y x 的两个焦点分别是F 1、F 2,AB 是经过F 1的弦,则△ABF 2的周长是( ) .A .25B .45C .252+D .254+ 18、如图,直线PA 垂直于直角三角形ABC 所在的平面,且∠ABC=90°,在△PAB ,△PBC,,△PAC 中,直角三角形的个数是( ) .A .0B .1C .2D . 3第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、cos 300°=______________________ .20、设a =x 2+2x ,b =x 2+x +2,若x >2,则a 、b 的大小关系是_________________ . 21、已知正方体的表面积是54cm 2,则它的体积是________________ .22、已知双曲线162x -192=y 则它的离心率是____________ . 23、四本不同的图书,分给四个同学,每人一本,则不同的分法有________种(用数字作答). 24、当a >0且a ≠1时,函数f(x)=a x -2-3的图象必过定点______________ .四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、已知)5,3(-=a,),15(m b -=(1)当实数m 为何值时,b a ⊥;(2)当实数m 为何值时b a// .班级:_____________________姓名:_____________________座位号:_________________***************************密*********************封*********************线****************************26、已知数列{}n a 满足a 1=1, a 2=3,a n+2+a 2=2a n +1(n ∈N *) (1)求a 3,a 4的值; (2)求数列{}n a 的前N 项和S .27、现用长8m 的铝合金制作一个矩形窗户的边框,问怎样设计,才能既使铝合金恰好用完,又使窗户的面积最大?28、已知函数f(x)=lg xx+-11.(1)f(-31)+f(-32)的值;(2)求证:函数f (x )为奇数函数;(3)解不等式f (x )<129、如图,已知矩形ABCD ,MA ⊥平面ABCD ,若AB=MA=1,AD=3。

【高教版】2020年三校生高考模拟考试数学试卷(三)

【高教版】2020年三校生高考模拟考试数学试卷(三)


A. 1 3
B. 3
1
C.
3
D. 3
18、某小组有 6 名男生,7 名女生,从中各选一名学生去听讲座,则不同选法种数是(

A.6
B.7
C . 13
D . 42
第Ⅱ卷(非选择题 共 80 分)
三、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 19、 lg100 log2 1 ( 3 1)0 _____________________; 20、已知 f (x) x 6 ,则 f (0) __________________;
24、以椭圆焦点 F1、 F2 为直径的两个端点的圆,恰好过椭圆的两顶点,则这个椭圆的离心率
是____________________ .
四、解答题:本大题共 6 小题,25~28 小题每小题 8 分,29~30 小题每小题 9 分,共 50 分. 解答应写出过程或步骤. 25、已知集合 A {x x2 ax 15 0} ,B {x x2 5x b 0} ,如果 A B {3},求 a,b 及 A B .
21、已知 5 件产品中有 3 件正品,2 件次品,若从中任取一件产品,则取出的产品是正品的概
率等于______________;
22、已知
a
3,
b

2
,则
a

b
的夹角为 45o
,则
a

b
_____________;
23、已知 A(1,3), B(5,1) ,则线段 AB 的中点坐标为__________________;
江西省 2020 年三校生高考模拟考试数学试卷(三)

东北三省三校2020届高三数学第三次模拟考试试题 文(含解析)

东北三省三校2020届高三数学第三次模拟考试试题 文(含解析)

东北三省三校2020届高三数学第三次模拟考试试题文(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】C【解析】【分析】先求出集合,然后再求出即可.【详解】∵,,∴.故选C.【点睛】解答集合运算的问题时,首先要分清所给的集合是用列举法还是用描述法表示的,对于用描述法表示的集合,在运算时一定要把握准集合中元素的特征.2.,则()A. B. C. D.【答案】A【解析】【分析】根据复数的乘法运算法则展开,再求模即可.【详解】所以,故答案 A【点睛】本题考查复数的乘法运算和求模,基础题.3.已知向量的夹角为,,,则()A. -16B. -13C. -12D. -10【答案】C【解析】根据数量积的运算律和数量积的定义求解即可得到答案.【详解】∵向量的夹角为,,,∴,∴.故选C.【点睛】本题考查数量积的运算,解题时根据运算律和定义求解即可,属于基础题.4.已知双曲线的离心率为2,则其渐近线方程为()A. B. C. D.【答案】D【解析】【分析】由离心率为2可得,于是得,由此可得渐近线的方程.【详解】由得,即为双曲线的渐近线方程.∵双曲线的离心率为2,∴,解得,∴双曲线的渐近线方程为.故选D.【点睛】解题时注意两点:一是如何根据双曲线的标准方程求出渐近线的方程;二是要根据离心率得到.考查双曲线的基本性质和转化、计算能力,属于基础题.5.等比数列的各项和均为正数,,,则()A. 14B. 21C. 28D. 63【答案】C【分析】根据题中的条件求出等比数列的公比,再根据即可得到所求.【详解】设等比数列的公比为,∵,,∴,即,解得或,又,∴,∴.故选C.【点睛】本题考查等比数列项的运算,解题时注意将问题转化为基本量(首项和公比)的运算,另外解题时还需注意数列中项之间性质的灵活应用,以减少计算量、提高解题的效率.6.设命题,则为()A. B.C. D.【答案】A【解析】【分析】根据含有量词的命题的否定的定义进行求解即可.【详解】∵命题,∴为:.故选A.【点睛】对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.7.如图,直角梯形中,,,,在边上任取点,连交于点,则的概率为()A. B. C. D.【答案】B【解析】【分析】由相似三角形求出AE的长,利用几何概型概率计算公式求解即可.【详解】由已知三角形ABC为直角三角形, ,可得AC=2.当时,因为所以即,所以,且点E的活动区域为线段AD,AD=1.所以的概率为故答案为B.【点睛】本题考查几何概型中的“长度”之比,基础题.8.运行程序框图,如果输入某个正数后,输出的,那么的值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】依次运行框图中给出的程序,根据输出结果所在的范围来判断图中的值.【详解】依次运行框图中的程序,可得:第一次:;第二次:;第三次:;第四次:;第五次:;……因为输出的,所以程序运行完第四次即可满足题意,所以判断框中的值为4.故选B.【点睛】程序框图的补全及逆向求解问题思路:①先假设参数的判断条件满足或不满足;②运行循环结构,一直到运行结果与题目要求的输出结果相同为止;③根据此时各个变量的值,补全程序框图.此类试题要求学生要有比较扎实的算法初步的基本知识,以及综合分析问题和解决问题的能力,要求较高,属中档题.9.已知四面体中,平面平面,为边长2的等边三角形,,,则四面体的体积为()A. B. C. D.【答案】A【解析】【分析】先利用面面垂直求出四面体的高,因为是等腰直角三角形易求面积,利用三棱锥的体积公式即得.【详解】解:取BD中点M,因为为边长2的等边三角形,所以,且.又因为平面平面且交线为BD,所以,而且是等腰直角三角形,且面积为2,所以,故答案为A.【点睛】本题考查面面垂直的性质,锥体体积的运算,基础题.10.一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:全体被调查者80后被调查者80前被调查者电子产品56.9% 66.0% 48.5%服装23.0% 24.9% 21.2%手表14.3% 19.4% 9.7%运动、户外用品10.4% 11.1% 9.7%珠宝首饰8.6% 10.8% 6.5%箱包8.1% 11.3% 5.1%个护与化妆品 6.6% 6.0% 7.2%以上皆无25.3% 17.9% 32.1%根据表格中数据判断,以下分析错误的是()A. 都市熟男购买比例最高的高价商品是电子产品B. 从整体上看,80后购买高价商品的意愿高于80前C. 80前超过3成一年内从未购买过表格中七类高价商品D. 被调查的都市熟男中80后人数与80前人数的比例大约为【答案】D 【解析】【分析】根据表格中给出的信息,对四个选项分别进行分析、判断后可得答案.【详解】对于选项A,从表中的数据可得都市熟男购买电子产品的比例为,为最高值,所以A正确.对于选项B,从表中后两列的数据可看出,前6项的比例均是80后的意愿高于80前的意愿,所以B正确.对于选项C,从表中的最后一列可看出,80前一年内从未购买过表格中七类高价商品的比例为,约为3成,所以C正确.对于选项D,根据表中数据不能得到被调查的都市熟男中80后人数与80前人数的比例,所以D不正确.故选D.【点睛】本题考查统计图表的应用和阅读理解能力,解题的关键是读懂表中数据的意义,然后结合所求进行分析、判断,属于基础题.11.椭圆上存在两点,关于直线对称,若为坐标原点,则=()A. 1B.C.D.【答案】C【解析】【分析】由题意设直线的方程为,与椭圆方程联立后求得到点的坐标与参数的关系,然后根据的中点在直线上求出参数的值,进而得到点的坐标,进而得到向量的坐标,于是可得结果.【详解】由题意直线与直线垂直,设直线的方程为.由消去整理得,∵直线与椭圆交于两点,∴,解得.设,的中点为,则,∴,,∴点的坐标为.由题意得点在直线上,∴,解得.∴,∴,∴.故选C.【点睛】本题考查直线和椭圆的位置关系,解题的关键是得到直线的方程.其中题中的对称是解题的突破口,对于此类问题要注意两对称点的连线与对称轴垂直、两对称点的中点在对称轴上,解题是要注意这两点的运用,属于中档题.12.如图,直角梯形,,,,是边中点,沿翻折成四棱锥,则点到平面距离的最大值为()A. B. C. D.【答案】B【解析】【分析】由题意得在四棱锥中平面.作于,作于,连,可证得平面.然后作于,可得即为点到平面的距离.在中,根据等面积法求出的表达式,再根据基本不等式求解可得结果.【详解】由翻折过程可得,在如图所示的四棱锥中,底面为边长是1的正方形,侧面中,,且.∵,∴平面.作于,作于,连,则由平面,可得,∴平面.又平面,∴.∵,,∴平面.在中,作于,则平面.又由题意可得平面,∴即为点到平面的距离.在中,,设,则,∴.由可得,∴,当时等号成立,此时平面,综上可得点到平面距离的最大值为.故选B.【点睛】本题综合考查立体几何中的线面关系和点面距的计算,解题的关键是作出表示点面距的垂线段,另外根据线面平行将所求距离进行转化也是解答本题的关键.在求得点面距的表达式后再运用基本不等式求解,此时需要注意等号成立的条件,本题难度较大.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知等差数列的前项和为,且,,则__________.【答案】80【解析】【分析】解方程组求出等差数列的首项和公差后再根据前项和公式求解即可.【详解】设等差数列的公差为,由题意得,解得,∴.故答案为:.【点睛】本题考查等差数列中的基本运算,解题时注意方程思想的运用,同时将问题转化为等差数列的首项和公差的问题是解题的关键,属于基础题.14.函数的一条对称轴,则的最小值为__________.【答案】2【解析】【分析】根据题意得到,进而得,最后根据题中的要求得到答案.【详解】∵函数的一条对称轴,∴,∴,又,∴的最小值为.故答案为:.【点睛】本题考查函数的性质,解题时要把作为一个整体,然后再结合正弦函数的相关性质求解,同时还应注意的符号对结果的影响,属于中档题.15.若函数在上单调递增,则的取值范围是__________.【答案】【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围.【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数取值范围是.故答案为:.【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题. 16.已知,,其中,则下列判断正确的是__________.(写出所有正确结论的序号) ①关于点成中心对称; ②在上单调递增; ③存在,使; ④若有零点,则;⑤的解集可能为.【答案】①③⑤ 【解析】 【分析】 对于①,根据函数为奇函数并结合函数图象的平移可得正确.对于②,分析可得当时,函数在上单调递减,故不正确.对于③,由,可得,从而得,可得结果成立.对于④,根据③中的函数的值域可得时方程也有解.对于⑤,分析可得当时满足条件,由此可得⑤正确.【详解】对于①,令,则该函数的定义域为,且函数为奇函数,故其图象关于原点对称.又函数的图象是由的图象向上或向下平移个单位而得到的,所以函数图象的对称中心为,故①正确. 对于②,当时,,若,则函数在上单调递减,所以函数单调递增;函数在上单调递增,所以函数单调递减.故②不正确. 对于③,令,则当时,,则.所以,令,则成立.故③正确.对于④,若有零点,则,得,从而得,故,结合③可得当有零点时,只需即可,而不一定为零.故④不正确.对于⑤,由,得.取,则,整理得.当时,方程的两根为或.又函数为奇函数,故方程的解集为.故⑤正确.综上可得①③⑤正确.故答案为:①③⑤【点睛】本题考查函数性质的运用及命题真假的判定,解题时要结合函数的性质对函数的零点情况进行分析,注意直接推理的应用,同时在判断命题的真假时还要注意举反例的方法的运用,难度较大.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【答案】(I);(Ⅱ).【解析】【分析】(Ⅰ)将切函数化为弦函数,整理后两边约掉,然后逆用两角和的余弦公式得到,于是,从而.(Ⅱ)将代入所求值的式子后化简得,然后再结合的范围得到所求.【详解】(Ⅰ)由条件得,∵,∴,∴,∵,∴,∴.(Ⅱ)由(Ⅰ)得,∴,∵,∴,∴,∴的取值范围是.【点睛】本题考查三角形中的三角变换问题,解题时注意三角形内角和定理的运用,同时要注意三角变换公式的合理应用.对于求范围或最值的问题,一般还是要以三角函数为工具进行求解,解题时需要确定角的范围.18.如图四棱锥中,底面,是边长为2的等边三角形,且,.(I)求证:平面平面;(Ⅱ)若点是棱的中点,求直线与所成角的余弦值.【答案】(I)证明见解析;(Ⅱ) .【解析】【分析】(I)先证出平面,再利用面面垂直的判定定理即可.(Ⅱ) 取中点,连接,,则,可得或其补角是异面直线与所成的角. 在中利用余弦定理求解即可.【详解】(Ⅰ)证明:底面,取中点,连接,则,,点共线,即又,平面平面,平面平面(Ⅱ)解:取中点,连接,,则或其补角是异面直线与所成的角中,,,即中,,.中,,,,由余弦定理得中,所以直线与所成角的余弦值为 .【点睛】本题考查线面垂直的性质定理,判定定理,面面垂直的判定定理,异面直线所成的角的作法及运算,基础题.19.现代社会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率()等指标.(I )10 名实验对象实验前、后握力(单位:)测试结果如下: 实验前:346,357,358,360,362,362,364,372,373,376 实验后:313,321,322,324,330,332,334,343,350,361完成茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少?(Ⅱ)实验过程中测得时间(分)与10名实验对象前臂表面肌电频率()的中的位数()的九组对应数据为,.建立关于时间的线性回归方程;(Ⅲ)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(Ⅱ)中9组数据分析,使用鼠标多少分钟就该进行休息了? 参考数据:; 参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,【答案】(I )茎叶图见解析,;(Ⅱ);(Ⅲ)60分钟.【解析】【分析】(Ⅰ)结合所给数据可得茎叶图;分别求出实验前、后握力的平均数后比较可得结果.(Ⅱ)根据所给公式并结合条件中的数据可得,于是可得线性回归方程.(Ⅲ)分析九组数据可得,在40分钟到60分钟的下降幅度最大,由此可得结论.【详解】(Ⅰ)根据题意得到茎叶图如下图所示:由图中数据可得,,∴,∴故实验前后握力的平均值下降.(Ⅱ)由题意得,,,又,∴,∴,∴关于时间的线性回归方程为.(Ⅲ)九组数据中40分钟到60分钟的下降幅度最大,提示60分钟时肌肉已经进入疲劳状态,故使用鼠标60分钟就该休息了.【点睛】本题考查统计的基本问题,即数据的整理、分析和应用,解题时由于涉及到大量的计算,所以在解题时要注意计算的合理性和准确性,同时要充分利用条件中给出的中间数据,属于中档题.20.抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过作的垂线交准线于点,交抛物线于两点.(Ⅰ)求证:直线与抛物线相切;(Ⅱ)若点满足,求此时点的坐标.【答案】(I)证明见解析;(Ⅱ).【解析】【分析】(Ⅰ)设,由此可得直线的斜率,进而得到直线的斜率,由此得到的方程为,令可得点的坐标,于是可得直线的斜率.然后再由导数的几何意义得到在点A处的切线的斜率,比较后可得结论.(Ⅱ)由(Ⅰ)知,直线的方程为,将直线方程与椭圆方程联立消元后得到二次方程,结合根与系数的关系及可求得点A的坐标.【详解】(Ⅰ)由题意得焦点.设,∴直线的斜率为,由已知直线斜率存在,且直线的方程为,令,得,∴点的坐标为,∴直线的斜率为.由得,∴,即抛物线在点A处的切线的斜率为,∴直线与抛物线相切.(Ⅱ)由(Ⅰ)知,直线的方程为,由消去整理得,设,则.由题意得直线的斜率为,直线的斜率为,∵,∴,∴,∴,整理得,解得或.∵,∴,又,且,∴存在,使得.【点睛】解答本题时要注意以下几点:(1)题中所需要的点的产生的方法,即由线与线相交产生点的坐标;(2)注意将问题合理进行转化,如根据线的垂直可得斜率的关系;(3)由于解题中要涉及到大量的计算,所以在解题中要注意计算的合理性,通过利用抛物线方程进行曲线上点的坐标间的转化、利用“设而不求”、“整体代换”等方法进行求解.21.已知函数 .(I)当时,求函数的单调区间;(Ⅱ)若对任意的恒成立,求整数的最大值.【答案】(I)的减区间为,无增区间;(Ⅱ)3.【解析】【分析】(I) 利用二次求导即得.(Ⅱ)先分离参数得到令,通过二次求导和零点存在性定理确定零点所在区间及整数的最大值.【详解】(I)的定义域为当时,令,,,单调递增,,单调递减的减区间为,无增区间;(Ⅱ)令,则令,则,在上单调递增,,存在唯一,使得即,列表表示:单调递减极小值单调递增整数的最大值为3.【点睛】本题考查利用导数研究函数的单调性,利用零点存在性定理确定零点所在区间,中档题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.已知曲线的参数方程为(为参数),,为曲线上的一动点.(I)求动点对应的参数从变动到时,线段所扫过的图形面积;(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)存在点满足题意,且.【解析】【分析】(Ⅰ)先判断出线段所扫过的图形由一三角形和一弓形组成,然后通过分析图形的特征并结合扇形的面积可得所求.(Ⅱ)设,由题意得,然后根据点在曲线上求出后可得点的坐标.【详解】(Ⅰ)设时对应的点为时对应的点为,由题意得轴,则线段扫过的面积. (Ⅱ)设,,∵为线段的中点,∴,∵在曲线上,曲线的直角坐标方程为,∴,整理得,∴,∴,∴存在点满足题意,且点的坐标为.【点睛】本题考查参数方程及其应用,解题的关键是将问题转化为普通方程后再求解,考查转化和计算能力,属于中档题.选修4-5:不等式选讲23.已知函数.(Ⅰ)解不等式: ;(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.【答案】(I);(Ⅱ).【解析】【分析】(Ⅰ)由题意得不等式为,然后根据分类讨论的方法,去掉绝对值后解不等式组即可.(Ⅱ)根据题意先得到,故由题意得恒成立,分类讨论去掉绝对值后可得所求范围.【详解】(Ⅰ)由题意得不等式为.①当时,原不等式化为,解得,不合题意;②当时,原不等式化为,解得,∴;③当时,原不等式化为,解得,∴.综上可得∴原不等式的解集为.(Ⅱ)∵,∴.当且仅当且,即时等号成立,∴.由题意得恒成立,①当时,可得恒成立,即恒成立,∴,由,可得上式显然成立;②当时,可得恒成立,即恒成立,∵,∴;③当时,可得恒成立,即恒成立,∴.综上可得,∴故的取值范围是.【点睛】解绝对值不等式的关键是通过对对变量的分类讨论,去掉绝对值后转化为不等式(组)求解,考查转化和计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省2020年三校生高考模拟考试数学试卷(三)
注意事项:本试卷分是非选择题、选择题和填空、解答题两部分,满分为150分,考试时间为120分钟,试题答案请写在答题卡上,不能超出答题卡边界,解答题必须有解题过程。

第Ⅰ卷(选择题 共70分)
一、是非选择题(本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B ,请把答案填涂在答题卡上)
1、石城职校所有女教师组成一个集合 ………………………………………………(A B )
2、若b a >,则)(*
N n b a n
n ∈>……………………………………………………(A B )
3、23
120sin =
o
………………………………………………………………………(A B ) 4、已知),1(),2,1(x b a -=-=ρρ
,且b a ρρ//,则2
1-=x ………………………………(A B )
5、函数x y =是偶函数 ………………………………………………………………(A B )
6、若直线的倾斜角为
4

,且过点)2,1(-,则直线的方程为01=-+y x ………(A B ) 7、正方体1111D C B A ABCD -中,异面直线BC 与1DD 所成的角为o
90…………(A B ) 8、等比数列}{n a 中,21=a ,165=a ,则2=q …………………………………(A B )
9、双曲线9422x y -渐近线方程为x y 2
3±=…………………………………………(A B )
10、某商场共有4个门,若从一个门进另一个门出,不同走法的种数有12种……(A B )
二、单项选择题(本大题共8小题,每小题5分,共40分,请把答案填涂在答题卡上)
11、设集合}3,0,3{-=A ,}0{=B ,则………………………………………………( ) A . B 为空集 B . A B ∈ C . A B ⊆ D . A B ⊇ 12、若1
.33
a
a >,则下列结论正确的是………………………………………………( )
A . 1>a
B . 1=a
C . 1<a
D . 10<<a
13、不等式022
>-+x x 的解集是 …………………………………………………( ) A . ),1()2,(+∞--∞Y B . )1,2(- C . ),2()1,(+∞--∞Y D . )2,1(-
14、函数⎩

⎧->--<+1,31
,1)(x x x x x f ,则=-+)2()0(f f ……………………………………( )
A . 0
B . 1
C . 2
D . 3
15、函数)1lg()(+=x x f 的定义域为…………………………………………………( ) A .}1{>x x B . }0{≠x x C . }1{->x x D . }1{-≠x x
16、在等差数列}{n a 中,1683=+a a ,则=10S ………………………………………( ) A . 80 B . 68 C . 48 D . 36
17、若直线013=++y x 与01=++y ax 互相垂直,则=a …………………………( ) A . 31-
B . 3-
C . 3
1
D . 3 18、某小组有 6 名男生,7 名女生,从中各选一名学生去听讲座,则不同选法种数是( ) A . 6 B . 7 C . 13 D . 42
第Ⅱ卷(非选择题 共80分)
三、填空题:本大题共6小题,每小题5分,共30分. 19、=-+-0
2)13(1log 100lg _____________________; 20、已知6)(+=x x f ,则=)0(f __________________;
21、已知5件产品中有3件正品,2件次品,若从中任取一件产品,则取出的产品是正品的概率等于______________;
22、已知2,3==b a ρρ,则a ρ与b ρ的夹角为o
45,则=⋅b a ρρ_____________;
23、已知)1,5(),3,1(B A ,则线段AB 的中点坐标为__________________;
24、以椭圆焦点1F 、2F 为直径的两个端点的圆,恰好过椭圆的两顶点,则这个椭圆的离心率是____________________ .
班级:_____________________姓名:_____________________座位号:_________________
***************************密*********************封*********************线****************************
四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.
25、已知集合}015{2
=+-=ax x x A ,}05{2
=+-=b x x x B ,如果}3{=B A I ,求b a ,及B A Y .
26、化简:)
2sin()sin()2cos()(tan )cos(2βαβααβββα----+
27、已知等比数列1 ,2 ,4 ,8 ,…… ,求该数列的通项公式n a 及n S
28、已知函数a x x f 34)(+=.
(1)求)0(f (用含a 的代数式表示); (2)若32)(-=a a f ,求a 的值 .
29、求与圆01022
2=+-+y x y x 同心,且与直线0243=++y x 相切的圆的方程 .
30、如图所示,四棱锥ABCD H -的底面为矩形各棱及底边CD ,AB 的长均为a ,AD ,BC 的长为a 2,P 为HA 的中点,连接PB ,PD ,BD . (1)证明://HC 平面BPD
(2)求:二面角A BD P --的余弦值。

相关文档
最新文档