MT-016 DAC基本架构III:分段DAC

合集下载

DAC基本架构II二进制DAC

DAC基本架构II二进制DAC
MT-015 指南
DAC基本架构II:二进制DAC
作者:Walt Kester 简介 虽然串DAC和温度计DAC是迄今最为简单的DAC架构,但需要高分辨率时,它们绝不是 最有效的。二进制加权DAC每位使用一个开关,首创于1920年代(参见参考文献1、2和3)。 自此以后一直颇受欢迎,成为现代精密和高速DAC的支柱架构。 二进制加权DAC 图1所示的电压模式二进制加权电阻DAC是教材中常用的最简单DAC示例。然而,该DAC 本身不具单调性,而且实际上难以成功制造并实现高分辨率。此外,电压模式二进制DAC 的输出阻抗会随着输入代码的不同而改变。
Page 4 of 10
MT-015
VREF
<< R
*
R
R
R
2R MSB
2R
2R
2R
2R
LSB CURRENT OUTPUT
INTO VIRTUAL GROUND
* GAIN TRIM IF REQUIRED
图6:电流模式R-2R梯形电阻网络DAC常用于乘法DAC
以电流模式工作时,开关直接连接到输出线,因此其开关毛刺大于电压模式下的开关毛 刺。然而,由于电流模式梯形电阻网络的开关始终处于地电位,因此其设计要求较低,具 体来说,其电压额定值不影响基准电压额定值。如果使用能够承载任一方向电流的开关 (如CMOS器件),则基准电压可以具有任一种极性,甚至可以是交流电压。这种结构是乘 法DAC (MDAC)最常用的一种结构。 如果开关是先合后开型(在此类DAC中就是如此),并且电阻为薄膜型,则由于开关始终处 于或非常接近地电位,最大基准电压可能远远超过逻辑电压。对于CMOS MDAC,在采用 5V单电源供电的同时支持±30 V基准电压(甚至60V峰峰值交流基准电压)并不罕见。 在所有DAC中,输出均为基准电压与数字代码的乘积,如此说来,所有DAC都是乘法 DAC。但有些DAC使用外部基准电压,它可以在很宽的范围内变化。这些才是一般所称 的“乘法DAC”或MDAC,其模拟输出等于模拟输入与数字代码的乘积,它们能在许多不同 的应用中发挥重要作用。按照MDAC的严格定义,当其基准电压降至0时,它仍能继续正 常工作,但对于在10:1甚至6:1基准电压范围内工作的DAC,使用该术语则不那么严格,此 类器件称为“半乘法”DAC可能更准确。

【2017年整理】DAC解码芯片的泰斗

【2017年整理】DAC解码芯片的泰斗

DAC解码芯片的泰斗---转目前,烧友们对DIY/DAC解码器风头正劲,近日从一朋友那里弄来一些关于DAC解码芯片的资料,愿与大家分享。

DAC芯片通常由Crystal、Burr Brown、AKM、Analog这4家公司包揽。

Burr Brown公司隶属于半导体业界著名的重量级厂家德州仪器公司,其最为人熟知的DAC 芯片莫过于PCM1704。

众多Hi End厂家都对其大加赞赏,其中包括不少坚持传统两声道的Hi End厂家,如Mark Levinson最顶级的解码器NO.360(4495美元)就采用了PCM1704。

它是一块精密的24bit D/A转换芯片,拥有超低失真和低电平响应线性。

其采用了2μm BICMOS制造工艺和一种非常独特的示意数量型架构(Sign Magnitude)。

在其内部设计了两个23bit完全互补的D/A转换器,从而取得24bit的精度。

这两个D/A转换器公用一个时钟参考,公用一个R 2R型梯形电阻网络,通过不断分压来取得准确的数位电流源信号。

R 2R梯形电阻网络使用的双平衡电流回路可以确保在任何电平下对电压信号都有理想的跟踪能力。

这两个D/A转换器在内部数据计算上完全独立,可以有非常线性的电平响应,尤其是在低电平(即小音量)下线性良好。

R 2R梯形电阻网络里的电阻都是将镍铬薄膜电阻经激光微调制得的,因此精度足够高。

另外,两个D/A转换器也是经过精密配对才加以使用的。

PCM1704 的信噪比达到了令人惊异的 120dB,并且是标准型 K 级芯片。

其总谐波失真和噪声达到了0.0008%(-101.94 dB),也是标准型K级芯片。

标准型K级的动态范围达到了112dB。

PCM1704的取样频率范围为16~96kHz,过取样频率为96kHz的8倍过取样。

另外,其输入音频数据格式为20bit或24bit,快速电流输出为±1.2mA/200ns,电源电压为±5V。

ADI技术指南合集第一版– 数模转换器 62页 2.2M 超清书签版

ADI技术指南合集第一版– 数模转换器 62页 2.2M 超清书签版

Page 5 of 6
5
MT-014
但新的伪随机顺序,这需要更多的逻辑,但正如我们所说的,即使复杂的逻辑现在也已变 得非常便宜,而且很容易利用CMOS工艺实现。还有其它更复杂的技术,使用数据本身来 选择各位,从而将电流不匹配转化为整形噪声。同样,这些技术太过复杂,不适合在此类 指南中进行讨论。(详细讨论见参考文献4和5)
2
Page 2 of 6
MT-014
在理想电位计中则不然,对于全0和全 1代码,应将可变抽头连接到电阻串的一端或另一 端。因此,虽然数字电位计与通用串DAC基本相同,但前者少一个电阻,并且电阻串的任 何一端都没有其它内部连接。图3所示为一个简单的数字电位计。
TERMINAL A R R R R R R R TERMINAL B
VREF
R R R R R R R R CIRCA 1920 SWITCHES WERE RELAYS OR VACUUM TUBES
tyw藏书
3-TO-8 DECODER
8 TO SWITCHES
3-BIT DIGITAL INPUT
ANALOG OUTPUT
图2:最简单的电压输出温度计DAC: 开尔文分压器(“串DAC”)
A I B I C I D I E I F DECODER
TO SWITCHES CURRENT OUTPUTS MAY HAVE COMPLIANCE OF 1 OR 2 V
7
OUTPUT
OUTPUT
3-BIT DIGITAL INPUT
图6:提供互补电流输出的高速温度计DAC
数字电位计......................................................................................37 有意为之的非线性 DAC ..............................................................47 评估高速 DAC 性能 ......................................................................51 过采样插值 DAC............................................................................67

ADI(Analog Devices)CN-0348电路参考设计手册说明书

ADI(Analog Devices)CN-0348电路参考设计手册说明书

电路笔记CN-0348Circuits from the Lab™ reference circuits are engineered and tested for quick and easy s ystem integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit /CN0348.连接/参考器件AD5541A 串行输入、电压输出、无缓冲型16位DAC ADA4500-2 轨到轨输入/输出、零输入交越失真放大器ADR4550超低噪声、高精度5 V 基准电压源16位单电源缓冲电压输出数模转换,积分和微分非线性误差小于±1 LSBRev. 0C i r cu i t s fr o m t h e Lab ™ ci r cu i t s fr o m An al o gD evi ces h ave b een d esi g n ed an d b u i l t b y An al o g D evi ces en g i n eer s. St an d ar d en g i n eer i n g p r act i ces h ave b een emp l o yed i n t h e d esi g n an d co n st r u ct i o n o f each ci r cu i t , an d t h ei r fu n ct i o n an d p er fo r man ce h ave b een t est ed an d ver i ed i n a l ab en vi r o n men t at r o o m t emp er at u r e. H o wever , yo u ar e so l el y r esp o n si b l e fo r t est i n g t h e ci r cu i t an d d et er mi n i n g i t s su i t ab i l i t y an d ap p l i cab i l i t y fo r yo u r u se an d ap p l i cat i o n . Acco r d i n g l y, i n n o even t sh al l An al o g D evi ces b e l i ab l e fo r d i r ect , i n d i r ect , sp eci al , i n ci d en t al , co n seq u en t i al o r p u n i t i ve d amag es d u e t o an y cau se wh at so ever co n n ect ed t o t h e u se o f an y C i r cu i t s fr o m t h e Lab ci r cu i t s. (C o n t i n u ed o n l ast p ag e)One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www Fax: 781.461.3113 ©2014 Analog Devices, Inc. All rights reserved.ADR4550CS DIN SCLK LDAC3.3VV LOGIC V DDV OUTREF AGNDDGNDSERIAL INTERFACEAD5541AADA4500-26V5V11994-001V INGNDV OUT0.1µF0.1µF1µFVOUT图1. ±1 LSB 线性16位缓冲电压输出DAC(原理示意图,未显示去耦和所有连接)评估和设计支持电路评估板CN-0348电路评估板(EVAL-CN0348-SDPZ)系统演示平台(EVAL-SDP-CB1Z)设计和集成文件原理图、布局文件、物料清单电路功能与优势图1所示电路是一款完整的单电源16位缓冲电压输出DAC ,它利用一个CMOS DAC 和一个无交越失真的创新放大器将积分和微分非线性误差保持在±1 LSB 。

DAC芯片选型(1)

DAC芯片选型(1)
DAC8814
16位、四路、串行输入乘法数模转换器
DAC8820
16位并行输入乘法DAC
DAC8822
Dual, Parallel Input, 16-Bit, Multiplying Digital-to-Analog Converter
DAC8830
16位超低功耗电压输出数模转换器
DAC8831
DAC7731
具有内部+10V参考和串行I/F的16位单通道数模转换器
DAC7734
16位四路电压输出串行输入数模转换器
DAC7741
具有内部+10V参考和并行I/F的16位单通道数模转换器
DAC7742
具有内部参考的16位单通道并行接口
DAC7744
16位四路电压输出数模转换器
DAC8501
乘法、低功耗、轨至轨输出、16位串行输入数模转换器
TLV5610IYZ
采用晶圆芯片级封装的2.7V至5.5V、12位和10位八路DAC
TLV5613
12位,DAC,并行电压输出,可编程设定时间/功耗,自动断电
TLV5614
12位3us四路DAC,具有串行输入、可编程稳定时间、低功耗和H/W或S/W断电功能
TLV5614Y
采用晶圆芯片级封装的2.7V至5.5V 12位DAC
TLV5606
10位、3或9 us DAC、串行输入、可编程建立时间/功耗、超低功耗
TLV5608
2.7V至5.5V 10位8通道串行DAC
TLV5608IYE
采用晶圆芯片级封装的2.7V至5.5V、12位和10位八路DAC
TLV5617A
10位2.5双路DAC,具有串行输入、可编程稳定时间

常用DAC芯片及相关性能解析

常用DAC芯片及相关性能解析

常用DAC芯片及相关性能解析巧妇难为无米之炊。

纵有再好的电路设计和和发烧器件,如果作为解码器的心脏——DAC芯片精度不够,那么音质很难有出色的表现。

这里转篇文章,供感兴趣的朋友参考。

TDA154014-BIT DAC (SERIAL OUTPUT)Philips早期的cd使用的芯片,1986年11月14日研发,解析力一般,音色温暖,28脚封装,供电比较特殊(+5v,-5v,-17v),I2S架构S/N 80dB/min 85dB/Type后缀表示不同的封装模式TDA1540D14-BIT DAC (SERIAL OUTPUT)TDA1540PN14-BIT DAC (SERIAL OUTPUT)TDA1540TD14-BIT DAC (SERIAL OUTPUT)TDA1541DUAL 16-BIT DACPhilips最出名的dac芯片,1985年11月研发,韵味十足,柔情似水,人声出色,个频段十分均衡耐听为Philips打下了大大的疆土28脚封装,供电(+5,-5,-15),I2S架构,S/N 90dB/min 95dB/Type 声道分离80dB后缀A是1541的升级版,S1表示精选TDA1541ASTEREO HIGH PERFORMANCE 16-BIT DACTDA1541A/N2STEREO HIGH PERFORMANCE 16-BIT DACTDA1541A/N2/R1STEREO HIGH PERFORMANCE 16-BIT DACTDA1541A/N2/S1STEREO HIGH PERFORMANCE 16-BIT DAC(至今还在一些DAC内能见到身影,经典程度可见一斑)TDA1543DUAL 16-BIT DAC ECONOMY VERSION I2S INPUT FORMAT Philips为小型设备开发的芯片,1991年2月研发解析力一般,音色温暖,中频迷人,密度很厚度令人吃惊8脚封装(T为16脚),供电+5v,S/N 96dB 分离90dBTDA1543TDUAL 16-BIT DAC ECONOMY VERSION I2S INPUT FORMATTDA1545STEREO CONTINUOUS CALIBRATION DAC第一款CONTINUOUS CALIBRATION dac,1993年3月研发|音色不明8脚封装(ATT为14脚),供电+5v,S/N 98dB 声道分离95dB TDA1545ASTEREO CONTINUOUS CALIBRATION DACTDA1545ATSTEREO CONTINUOUS CALIBRATION DACTDA1545ATTSTEREO CONTINUOUS CALIBRATION DACTDA1547DUAL TOP-PERFORMANCE BITSTREAM DACPhilips为顶级音频设备开发的超级芯片,1991年9月研发采用比特流技术的1比特dac,和他搭配的采用比特流技术的芯片SAA7350,他整合了三阶静噪和1比特dac两片芯片音色兼顾韵味和速度,收放自如,频响宽广,气势宏伟,适合各种音乐32脚封装,供电(+-5,-3.5)S/N 113dB/A计权THD-101dB声道分离115dBAD Audio D/A Convertersart#DAC DNR (dB) SNR (dB) DAC THD+N @ 1 kHz (-3dB) Product Description Price* (1000-4999) FunctionAD1955120 120 110 Multibit Sigma-Delta D/A w/ SACD Playback $6.86 DAC(同为当今顶级DAC之一的“AD1955”与BB顶旗舰“PCM1792”互有特色)AD1853 116 117 104 24-bit 192 kHz Multibit Sigma-Delta DAC (Current Output) $7.59 DACAD1852 114 114 104 Stereo, 24-bit 192 kHz Multibit Sigma-Delta D/A (V oltage Output) $5.57 DACAD1854 113 112 97 Complete Single Chip Stereo Audio D/A $4.05 DACAD1953 112 112 100 SigmaDSP 3 Ch, 26-/48-Bit Processing D/A $7.14 DAC, Signal ProcessorAD1954 112 112 100 SigmaDSP 3 Ch, 26-/48-Bit Processing D/A$7.14 DAC, Signal ProcessorAD1933 110 110 96 192 kHz, 24-Bit CODEC w/ PLL $3.66 DACAD1833A 110 110 95 Multi-Ch, 24-bit 192 kHz, Sigma-Delta D/A $3.98 DACAD1958 109 108 96 Stereo, 24-bit 192 kHz Multibit Sigma-Delta D/A w/ PLL ** DACAD1934 108 108 96 192 kHz, 24-Bit CODEC w/ PLL, IC and SPI. $3.15 DACAD1851 96 110 90 16-Bit, 16 3 FS PCM Audio DACs Dual 5V Supplies $4.71 DACAD1857 94 - 90 Stereo, Single Supply 16/18/20-bit Sigma-Delta D/A ** DACAD1859 94 - 88 Stereo, Single Supply 18-bit Integrated Sigma-Delta D/A $4.45 DACAD1858 94 - 90 Stereo, Single Supply 16-bit Sigma-Delta D/A ** DAC AD1868 92 98 88 Single Supply Dual 18-Bit Audio DAC ** DACAD1866 90 95 86 Single Supply Dual 16-Bit Audio DAC $10.57 DAC (关东:原文对AD的DAC介绍的很简单。

介绍几款高级DAC解码芯片

介绍几款高级DAC解码芯片

介绍几款高级DAC解码芯片(整篇)
我的Hi-Fi 发烧2010-02-08 01:32:19 阅读285 评论0 字号:大中小
大家知道计算机的芯片不断地换代、翻新.在音响领域中变化较快的要算编码、解码技术了,如CD机中的解码芯片就是不断变化的一个典型.比较有名的BB(BurrBrown)公司近几年生产的解码芯片就有PCM1710、PCM 1702、PCM 1717、PCM 1732、PCM 1738等,而最近出品的PCM 1704、比它的前者PCM 1702、具有更高的性能, 分辨率达24bit,其性能如下表所示,PCM 1704与8倍超取样数字滤波器DF1704相配合可达到768kHz(96kHz的8倍)的超取样速率.用它组成的DAC 现在DAC解码器(以下简称DAC)已日渐在国内的DIY朋友中流行起来,不少朋友曾问及笔者,用什么样的芯片好,各个D/A芯片之音的音色有何分别?似乎大家都认为,决定一台DAC一的音质的因素是D
198511 20
2
2
1702 1704
4
8
48
4
43
1991
1702
8 8
2。

14bit-200MHz电流舵型DAC设计

14bit-200MHz电流舵型DAC设计

14bit-200MHz电流舵型DAC设计电流舵型数字模拟转换器(DAC)是一种常用的高速数据转换器。

本文将介绍一种14bit-200MHz电流舵型DAC的设计。

首先,我们需要了解电流舵型DAC的工作原理。

电流舵型DAC将输入的数字信号转换为相应的电流输出。

它通常由一个数字控制器和一个电流输出阵列组成。

数字控制器负责将输入的数字信号转换为相应的电流值,而电流输出阵列则将这些电流输出到相应的负载上。

在设计14bit-200MHz电流舵型DAC时,我们需要考虑以下几个关键因素。

首先是分辨率,即DAC能够提供的最小电流变化量。

在这里,我们选择了14bit的分辨率,这意味着DAC能够提供2^14(即16384)个不同的电流输出。

其次是速度,即DAC 能够提供的最大输出频率。

在这里,我们选择了200MHz的输出频率,以满足高速数据转换的需求。

在实际设计中,我们使用了多级电流调节电路来实现高分辨率的输出。

该电路使用了多级放大器和模拟开关,通过对输入的数字信号进行逐级放大和开关控制,来实现精确的电流输出。

此外,我们还使用了高速时钟和数字控制器,以确保DAC能够在高速数据转换的要求下正常工作。

为了验证设计的有效性,我们进行了一系列的仿真和实验。

仿真结果显示,在14bit分辨率和200MHz输出频率下,设计的电流舵型DAC能够提供准确的电流输出。

实验结果也验证了这一点,同时还证明了设计的稳定性和可靠性。

总而言之,本文介绍了一种14bit-200MHz电流舵型DAC的设计。

通过合理选择分辨率和输出频率,并采用多级电流调节电路和高速时钟,我们成功地实现了高精度和高速的数据转换。

这种设计可以广泛应用于高速数据通信、图像处理、医疗设备等领域,为实际应用提供了一种有效的解决方案。

DAC接口基本原理

DAC接口基本原理
MT-019 指南
DAC接口基本原理
作者:Walt Kester 简介 本教程概述与内置基准电压源、模拟输出、数字输入和时钟驱动器的DAC接口电路相关的 一些重要问题。由于ADC也需要基准电压源和时钟,因此本教程中与这些主题相关的大多 数概念同样适用于ADC。 DAC基准电压 越来越多的人简单地将DAC视作具有数字输入和一个模拟输出的器件。但模拟输出取决于 是否存在称为基准电压源的模拟输入,且基准电压源的精度几乎始终是DAC绝对精度的限 制因素。在匹配基准电压源和数据转换器时,基准电压源向导(Voltage Reference Wizard)等 设计工具非常有用。如需获取这些工具及其它,请访问 ADI公司网站的设计中心 (Design Center)部分。 有些ADC和DAC内置基准电压源,而有些则没有。有些ADC使用电源作为基准电压源。 不幸的是,与ADC/DAC基准电压源相关的标准是少之又少。有些情况下,内置基准电压 源的转换器通常可以通过以更为精密和稳定的外部基准电压源覆盖或替换内部基准电压源 来提高直流精度。其它情况下,通过使用外部低噪声基准电压源,也可以改善高分辨率 ADC的无噪声码分辨率。 各种各样的ADC和DAC以各种各样的方式支持使用外部基准电压源来替代内部基准电压 源。图1所示为一些常见配置(但显然并不是全部)。图1A所示为需要外部基准电压源的转 换器。通常建议在ADC/DAC REF IN引脚附近添加合适的去耦电容。基准电压源数据手册 中通常指定了合适的电容值。另外,基准电压源在使用必要的容性负载时保持稳定是非常 重要的(详见下文)。 图1B所示为内置基准电压源的转换器,其中基准电压源也引出到器件上的某个引脚。这 样,只要负载不超过额定值,就可以在电路中的其它位置上使用该器件。另外,还要在转 换器引脚附近放置电容。如果内置基准电压源可以通过引脚输出来供外部使用,ADC或 DAC数据手册上通常会指定其精度、稳定性和温度系数。

什么是开关树型DAC(数模转换器)

什么是开关树型DAC(数模转换器)

什么是开关树型DAC(数模转换器)
电路结构开关树型D/A 转换器电路由电阻分压器和接成树状的开关网络组成。

图11.4.1 是输入为3 位二进制数码的开关树型D/A 转换器电路结构图。


中这些开关的状态分别受3 位输入代码状态的控制。

图11.4.1 开关树型D/A 转换器11.4.2 工作原理当d2=1 时S21 接通而S20 断开;当d2=0 时S20 接通而S21 断开。

同理,S11 和S10 两组开关的状态由d1 的状态控制,S01 和S00 两组开关由d0 的状态控制。

由图可知对于输入为n 位二进制数的D/A 转换器则
有优缺点1.电阻种类单一,有利于提高转换速度。

2.输出端不取电流,对开关
的导通内阻要求不高。

3.速度快。

4.缺点是转换位数增加时,电阻开关器件
的数量呈2n 增加。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

24位高精度音频ΣΔDAC

24位高精度音频ΣΔDAC

24位高精度音频ΣΔDAC
黄薇;郑士源
【期刊名称】《微电子学与计算机》
【年(卷),期】2007(24)1
【摘要】文章介绍了一种应用于高品质音频领域的24位ΣΔ数-模转换器
(ΣΔDAC)。

用两个半带滤波器和一个梳状滤波器来实现64倍的过采样。

优化设计选择了多位ΣΔ调制器用CT输出级用来实现高信噪比,并降低系统对时钟抖动的敏感度。

DWA算法被用来实现数字-模拟接口的线性特性。

整个DAC的信噪比达到96dB,动态范围90dB。

采用中芯国际0.13#m工艺,整个电路面积为1.5mm2。

【总页数】4页(P15-17)
【关键词】∑ΔDAC(∑Δ数/模转换器);∑Δ调制器;过采样;半带滤波器;梳状滤波器;DWA
【作者】黄薇;郑士源
【作者单位】北京大学微电子系;深圳安凯微电子股份有限公司
【正文语种】中文
【中图分类】TN4
【相关文献】
1.高精度∑-△音频DAC省面积插值器的设计与ASIC实现 [J], 付洁;邹月娴
2.高精度音频∑-ΔDAC的设计 [J], 邓玉清;唐宁;曹杰
3.18位高精度音频∑-△DAC设计 [J], 徐双武;白天蕊;胡纯意;陶而芳;杨修
4.TI跃居全球DAC市场领头羊—再接再厉推出18bit高精度DAC9881 [J], 徐俊毅
5.一种面积优化的高精度音频∑-△DAC数字前端实现 [J], 黄春波;张涛
因版权原因,仅展示原文概要,查看原文内容请购买。

12位200MHz电流舵型DAC的设计

12位200MHz电流舵型DAC的设计

12位200MHz电流舵型DAC的设计电流舵型数字模拟转换器(DAC)是一种常用的模拟信号数字化处理器件,广泛应用于通信、测量、音频等领域。

本文将介绍一种12位200MHz电流舵型DAC的设计。

该设计的DAC采用了舵型结构,通过控制电流源的大小和开关时间来实现模拟信号的数字化。

在12位精度和200MHz的工作频率下,要求DAC输出的量化误差小于1LSB,并且带宽满足信号传输的要求。

首先,设计者需要根据DAC的精度要求选择适当的电流源和电流比例,以及合适的开关时间。

为了提高输出的精度和稳定性,可以采用多级结构和增加校准电路等方法。

其次,设计者需要根据工作频率要求选择合适的开关元件和时钟频率。

在高频率下,开关元件的响应速度和失真问题需要特别注意。

同时,时钟频率的稳定性和相位噪声也对输出信号的质量有影响。

在电路设计方面,设计者需要考虑电源噪声、功耗和布线等问题。

为了降低电源噪声对输出信号的干扰,可以采用滤波器和隔离电路等措施。

功耗问题需要在满足性能要求的前提下进行优化。

布线设计需要考虑信号的传输速度和阻抗匹配等因素,以提高信号的稳定性和抗干扰能力。

另外,为了验证设计的正确性和性能,设计者需要进行电路仿真和实验验证。

在仿真过程中,可以使用专业的电路仿真软件进行电路性能和稳定性的分析。

实验验证可以通过搭建实际的电路原型进行,通过测量输出信号的电压值和频谱分析等手段来评估设计的质量。

综上所述,12位200MHz电流舵型DAC的设计需要考虑精度、带宽、电源噪声、功耗、布线等多方面的因素。

通过合理的选择和优化,设计者可以实现满足要求的电流舵型DAC设计,为数字信号处理提供高质量的模拟信号转换。

AD5765双极性数字-模拟转换器应用说明书

AD5765双极性数字-模拟转换器应用说明书

AN-1573APPLICATION NOTEOne Technology Way • P .O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • High Accuracy, Bipolar Voltage Output Digital-to-Analog ConversionUsing the AD5765 DACRev. A | Page 1 of 3CIRCUIT FUNCTION AND BENEFITSThis circuit provides high accuracy, bipolar data conversion using the AD5765, a quad, 16-bit, serial input, bipolar voltage output digital-to-analog converter (DAC). This circuit utilizes the ADR420 precision voltage reference to achieve optimal DAC performance over the full operating temperature range. The only external components necessary for this precision 16-bit DAC are a reference voltage source, decoupling capacitors on the supply pins and reference inputs, and an optional short-circuit, current setting resistor. Use this implementation to save costs and reduce board space. The circuit is well suited for both closed-loop servo control and open-loop control applications.08273-001Figure 1. High Accuracy, Bipolar Configuration of the AD5765 DAC Using a Precision ReferenceAN-1573Application NoteRev. A | Page 2 of 3TABLE OF CONTENTSCircuit Function and Benefits ......................................................... 1 Revision History ............................................................................... 2 Circuit Description ........................................................................... 3 References . (3)REVISION HISTORY8/2018—Rev. 0 to Rev. ADocument Title Changed from CN-0073 to AN-1573 ...... U niversal Changes to Circuit Function and Benefits Section .......................... 1 Deleted Data Sheets and Evaluation Board Section ..................... 2 Changes to Circuit Description Section............................................ 3 Changed Learn More Section to References Section . (3)6/2009—Revision 0: Initial VersionApplication NoteAN-1573Rev. A| Page 3 of 3CIRCUIT DESCRIPTIONThe AD5765 is a high performance DAC that offers guaranteed monotonicity, integral nonlinearity (INL) of ±1 least significant bit (LSB) for the C grade device, low noise, and a 10 µs settling time. Performance is guaranteed over the following supply voltage ranges: • The AV DD supply range is from 4.75 V to 5.25 V .•The AV SS supply range is from −4.75 V to −5.25 V . The nominal full-scale output voltage range is ±4.096 V .Use a precision voltage reference for the DAC to achieve optimum performance over its full operating temperature range. The AD5765 incorporates reference buffers that eliminate the need for both a positive and negative externalreference and associated buffers, and that lead to further savings in both cost and board space. Because the voltages applied to the reference inputs (REFAB and REFCD) are used to generate the buffered positive and negative internal references for the DAC cores, any error in the external voltage reference reflects in the outputs of the device.When choosing a voltage reference for high accuracyapplications, consider the following four possible sources of error: initial accuracy, temperature coefficient of the output voltage, long term drift, and output voltage noise. Table 1 lists other 2.048 V precision reference candidates from Analog Devices, Inc., and their respective attributes.In any circuit where accuracy is important, careful considera-tion of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board (PCB) on which the AD5765 is mounted must be designed so that the analog and digital sections are physically separated and confined to certain areas of the board. If the AD5765 is in a system where multiple devices require an AGND to DGND connection, the connection can be made at one point only.Establish the star ground point as close as possible to the device. The AD5765 must have ample supply bypassing of 10 µF in parallel with 0.1 µF on each supply, located as close to the package as possible, ideally directly against the device. The 10 µF capacitors are the tantalum bead type. The 0.1 µF capacitor must have low effective series resistance (ESR) and low effective series inductance (ESL), such as the common ceramic types that provide a low impedance path to ground at high frequencies to handle transient currents due to internal logic switching.The power supply traces of the AD5765 must be as wide as possible to provide low impedance paths and to reduce theeffects of glitches on the power supply line. Shield fast switching signals, such as clocks, with digital grounds to avoid radiating noise to other parts of the board, and never run these signals near the reference inputs. A ground line routed between the SDIN and the SCLK lines helps reduce crosstalk between the pins (not required on a multilayer board that has a separate ground plane; however, it is helpful to separate the lines). Minimizing noise on the reference inputs is essential because the reference couples through to the DAC output. Avoidcrossover of digital and analog signals. Traces on opposite sides of the board must run at right angles to each other reducing the effects of feedthrough on the board. A microstrip technique is recommended but is not always possible with a double-sided board. With the microstrip technique, the component side of the board is dedicated to the ground plane, and signal traces are placed on the solder side. To achieve the best layout andperformance, use at least a 4-layer multilayer board where there is a ground plane layer, a power supply layer, and two signal layers.REFERENCESKester, Walt. 2005. The Data Conversion Handbook . Analog Devices. Chapters 3 and 7. MT-015 Tutorial, Basic DAC Architectures II: Binary DACs . Analog Devices. MT-031 Tutorial, Grounding Data Converters and Solving the Mystery of AGND and DGND . Analog Devices. MT-101 Tutorial, Decoupling Techniques . Analog Devices. Voltage Reference Wizard Design Tool.Table 1. Precision 2.048 V ReferencesPart Number Initial Accuracy, Maximum (mV) Long-Term Stability, Typical (ppm) Temperature Coefficient, Maximum (ppm/°C) 0.1 Hz to 10 Hz Voltage Noise,Typical (µV p-p) ADR430 ±1 40 3 3.5 ADR420±1503 1.75©2009–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN08273-0-8/18(A)。

DAC信噪比公式来源

DAC信噪比公式来源

Page 6 of 7
MT-001
(dB) 0 20 40 60 RMS QUANTIZATION NOISE LEVEL 80 100 120 BIN SPACING =
M 33dB = 10log10 2
ADC FULLSCALE N = 12-BITS M = 4096 74dB = 6.02N + 1.76dB
SNR = 6.02 N + 1.76 dB + 10 log10 fs , 带宽BW范围. 2 ⋅ BW
等式10
以两倍以上的信号带宽的速率对信号进行采样的过程称为“过采样”。过采样、量化噪声整 形和数字滤波均是Σ-Δ型转换器的重要概念,不过任何ADC架构都可以采用过采样技术。
Page 3 of 7
Page 5 of 7
MT-001
(A) CORRELATED NOISE fS = 80.000 MSPS, fIN = 2.000 MHz
0 −50 −100 −150 −200 0 0
(B) UNCORRELATED NOISE fS = 80.000 MSPS, fIN = 2.111 MHz
DIGITAL OUTPUT
ANALOG INPUT
ERROR (INPUT – OUTPUT)
பைடு நூலகம்
q = 1 LSB
图1:理想N位ADC的量化噪声
Rev.A, 10/08, WK Page 1 of 7
MT-001
贝尔实验室的W. R. Bennett1948年发表的经典论文(参考文献1)中,分析了量化噪声的实际 频谱。采用上述简化假设,他的详细数学分析可以简化为图1所示。继Bennett的经典论文 之后,还有其它一些关于转换器噪声的重要论文和著作(参考文献2-6)。 图2更详细地显示了量化误差与时间的关系。同样,一个简单的锯齿波形就能提供足够准 确的分析模型。锯齿误差的计算公式如下: e(t) = st, –q/2s < t < +q/2s. e(t)的均方值可以表示为: e (t) = 进行简单的积分和简化可得:

[DAC]常用音频DAC解码芯片性能比较

[DAC]常用音频DAC解码芯片性能比较

[DAC]常用音频DAC解码芯片性能比较1,TDA1541:飞利浦顶级CD机王,大量采用。

虽然是16BIT的,但效果超一流,中音温暖迷人,音乐味道浓郁。

属于温暖甜美类型,适合古典,听人声,是这几款里面最好的。

缺点是,解稀力和动态由于是16BIT的限制,稍有不足,但也不差了。

制作容易做成功。

2,TDA1547:1541的升级版,指标更高,但飞利浦等大厂觉得不好,还是继续沿用1541。

很烧友觉得,音乐味道反而没1541好,所以虽然指标高,实际效果并不见得比1541更好,用的厂家少,周边配套电路设计成熟度也比较低。

3,PCM63:一代经典,用的机器很多了。

这个我研究不多。

也是比较老款的芯片了。

4,AD1955:一款让人又爱又恨的芯片,细节和动态很好,能量感也好,除了PCM1704/1794,大概这个算细节/动态/解析力最高的了。

但有的人觉得声音象白开水,缺少音乐性,反正这各有所好吧。

但我发现这1955很难做好,高音容易毛,我听过几个AD1955都不行,都高音过亮刺耳+缺乏音乐感染力,暂时还没听到过做成功的案例。

据烧友说“雨田”版的1955不错,不过价格厉害。

AD1955的设计需要会软件编程的,如果只用硬件是很难完全发挥优势的。

5,CS4397:水晶公司芯片,高端主力款。

声音中性,音乐感染力好,解析力和动态都高于TDA1541,音乐味道高于AD1955,是介于1541和1955的风格中间。

这特性造就了声音比较厚实,高音最细腻,属于中性偏温暖类型的声音,声音甜美。

大量名机选用,例如美国MBO的机器,参考线路多,设计成熟。

6,CS43122:比CS4397高音解稀力更好2分,中音差1分,低音质感好1分,实际效果和4397这2款难分上下各有特色,音色稍有区别。

为当年水晶公司的顶级款。

芯片现在已经挺产了。

7,CS4398:CS43122停产后推出的新的芯片,为现在水晶公司最高级别款。

声音风格类同于CS43122,现在与CS4397一起并肩作战于DAC解码芯片市场。

利用16位DAC提供具有可编程的40通道输出

利用16位DAC提供具有可编程的40通道输出

利用16位DAC提供具有可编程的40通道输出电路功能与优势本电路采用多通道DAC 配置,各组通道具有不同的输出范围。

它利用AD5370 提供40 个DAC 通道,具有16 位分辨率。

AD5370 经过配置,8 个通道具有±10V 的输出范围,另外24 个通道具有−4V 至+8 V 的输出范围。

AD5370 是业界唯一一款提供上述工业信号电平输出和灵活的多种输出范围的40 通道、16 位分辨率DAC。

它与XFET®系列低噪声精密基准电压源一起构成的解决方案,可提供业界领先的DAC 通道密度、最小尺寸特性、灵活性和性能。

图1. 利用AD5370 DAC 提供具有可编程输出电压范围的40 通道输出(原理示意图,未显示去耦和所有连接)电路描述AD5370 是一款40 通道、16 位DAC,提供64 引脚LFCSP 和64 引脚LQFP 两种封装。

它有两个基准电压输入引脚。

VREF0 是DAC 通道VOUT0 至VOUT7 的基准电压引脚,VREF1 是DAC 通道VOUT8 至VOUT39 的基准电压引脚。

图1 所示为AD5370 的典型配置,它使用两个外部基准电压源。

AD5370 的标称输出范围为基准电压的四倍。

采用3 V 基准电压源时,AD5370 的默认偏移DAC 寄存器值允许−4V 至+8 V 的输出范围。

采用5 V 基准电压源时,对VOUT0 至VOUT7 相关的偏移DAC 寄存器进行编程,可提供±10V 的输出范围。

ADR435 为5 V 低噪声精密基准电压源。

ADR423 为3 V 低噪声精密基准电压源。

按照图1 所示方式连接时,AD5370 的VOUT0 至VOUT7 将具有±10V 的输出范围,VOUT8 至VOUT39 将具有−4V 至+8 V 的输出范围。

AD5370 内置两个偏移DAC 寄存器;利用这些寄存器,可以在器件功能与动态裕量的限制范围内调整输出范围的中间电平点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MT-016TUTORIAL Basic DAC Architectures III: Segmented DACsby Walt KesterSEGMENTED DACSWhen we are required to design a DAC with a specific performance, it may well be that no single architecture is ideal. In such cases, two or more DACs may be combined in a single higher resolution DAC to give the required performance. These DACs may be of the same type or of different types and need not each have the same resolution.In principle, one DAC handles the MSBs, another handles the LSBs, and their outputs are added in some way. The process is known as "segmentation," and these more complex structures are called "segmented DACs". There are many different types of segmented DACs and some, but by no means all, of them will be illustrated in this tutorial.Figure 1 shows two varieties of segmented voltage-output DAC. The architecture in Figure 1A is sometimes called a Kelvin-Varley Divider and is composed of two or more "string DACs." Since there are buffers between the first and second stages, the second string DAC does not load the first, and the resistors in this string do not need to have the same value as the resistors in the other one. All the resistors in each string, however, do need to be equal to each other or the DAC will not be linear. The examples shown have 3-bit first and second stages but for the sake of generality, let us refer to the first (MSB) stage resolution as M-bits and the second (LSB) as K-bits for a total of N = M + K bits. The MSB DAC has a string of 2M equal resistors, and a string of 2K equal resistors in the LSB DAC.KELVIN-VARLEY DIVIDERV V REFKELVIN DIVIDER ANDNOTE:MSB OF R-2R LADDERON RIGHTIF THE R-2R LADDER NETWORKIS MONOTONIC, THEWHOLE DAC ISMONOTONICOUTPUT(A)(B)ABFigure 1: Segmented Voltage-Output DACsBuffer amplifiers have offset, of course, and this can cause non-monotonicity in a buffered segmented string DAC. In the simpler configuration of a buffered Kelvin-Varley divider buffer (Figure 1A), buffer A is always "below" (at a lower potential than) buffer B, and the extra tap labeled "A" on the LSB string DAC is not necessary. The data decoding is just two priority encoders. In this configuration, however, buffer offset can cause non-monotonicity.But if the decoding of the MSB string DAC is made more complex so that buffer A can only be connected to the taps labeled "A" in the MSB string DAC, and buffer B to the taps labeled "B," then it is not possible for buffer offsets to cause non-monotonicity. Of course, the LSB string DAC decoding must change direction each time one buffer "leapfrogs" the other, and taps A and B on the LSB string DAC are alternately not used—but this involves a fairly trivial increase in logic complexity and is justified by the increased performance.Rather than using a second string of resistors, a binary DAC can be used to generate the three LSBs as shown in Figure 1B. It is quite hard to manufacture very high resolution R-2R ladder networks—to be more accurate, it is hard to trim them to monotonicity. So it is quite common to make high resolution DACs with a ladder network for the LSBs, and some other structure for two to five of the MSBs. This voltage-output DAC (Figure 1B) consists of a 3-bit string DAC followed by a 3-bit buffered voltage-mode ladder network.V 5564VREF 5464V REF 5364V REF5264VREF 5164V REF 5064V REF4964V REF 4864V REF OUTPUTFigure 2: Segmented Unbuffered String DACs Use Patented ArchitectureAn unbuffered version of the segmented string DAC architecture is shown in Figure 2. This version is more clever in concept (and, of course, can be manufactured on CMOS processes which make resistors and switches but not amplifiers, so it may be cheaper as well). It is intrinsically monotonic.Here, the resistors in the two strings must be equal, except that the top resistor in the MSB string must be smaller (1/2K of the value of the others), and the LSB string has 2K – 1 resistors rather than 2K. Because there are no buffers, the LSB string appears in parallel with the resistor in the MSB string that it is switched across and loads it. This drops the voltage across that MSB resistor by 1 LSB of the LSB DAC—which is exactly what is required. The output impedance of this DAC, being unbuffered, varies with changing digital code.In order to understand this clever concept better, the actual voltages at each of the taps has been worked out and labeled for the 6-bit segmented DAC composed of two 3-bit string DACs shown in Figure 2. The reader is urged to go through this simple analysis with the second string DAC connected across any other resistor in the first string DAC and verify the numbers. A detailed mathematical analysis of the unbuffered segmented string DAC can be found in the relevant patent filed by Dennis Dempsey and Christopher Gorman of Analog Devices in 1997 (Reference 1).Very high speed DACs for video, communications, and other HF reconstruction applications are often built with arrays of fully decoded current sources. The two or three LSBs may use binary-weighted current sources. It is extremely important that such DACs have low distortion at high frequency, and there are several important issues to be considered in their design.First of all, currents are never turned on and off—they are steered to one place or another. Turning a current off at high speed frequently involves inductive spikes and, in general, because of capacitance charging, it takes longer than current steering.Secondly, it is important that the voltage change on the chip required to switch the current should be kept as small as possible. A voltage change causes more charge to flow in stray capacitances and a larger charge-coupled glitch.Finally, the decoding must be done before the new data is applied to the DAC so that all the data is ready and can be applied simultaneously to all the switches in the DAC. This is generally implemented by using separate parallel latches for the individual switches in a fully decoded array. If all switches were to change state instantaneously and simultaneously there would be no skew glitch—by very careful design of propagation delays around the chip and time constants of switch resistance and stray capacitance the update synchronization can be made very good, and hence the glitch-related distortion is very small.Two examples of segmented current-output DAC structures are shown in Figure 3. Figure 3A shows a resistor-based approach for the 7-bit DAC where the 3 MSBs are fully decoded, and the 4 LSBs are derived from an R-2R network. Figure 3B shows a similar implementation using current sources. The current source implementation is by far the most popular for today's high-speed reconstruction DACs.(A)(B)Figure 3: Segmented Current-Output DACs:(A) Resistor-Based, (B) Current-Source BasedIt is also often desirable to utilize more than one fully-decoded thermometer section to make up the total DAC. Figure 4 shows a 6-bit DAC constructed from two fully-decoded 3-bit DACs. As previously discussed, these current switches must be driven simultaneously from parallel latches in order to minimize the output glitch.Figure 4: 6-Bit Current-Output Segmented DACBased on Two 3-Bit Thermometer DACsThe AD9775 14-bit, 160-MSPS (input)/400-MSPS (output) TxDAC® uses three sections of segmentation as shown in Figure 5. Other members of the AD977x-family and the AD985x-family also use this same basic core.Figure 5: AD9775 TxDAC® 14-Bit CMOS DAC CoreThe first 5 bits (MSBs) are fully decoded and drive 31 equally weighted current switches, each supplying 512 LSBs of current. The next 4 bits are decoded into 15 lines which drive 15 current switches, each supplying 32 LSBs of current. The 5 LSBs are latched and drive a traditional binary-weighted DAC which supplies 1 LSB per output level. A total of 51 current switches and latches are required to implement this ultra low glitch architecture.The basic current switching cell in the TxDAC family is made up of a differential PMOS transistor pair as shown in Figure 6. The differential pairs are driven with low-level logic to minimize switching transients and time skew. The DAC outputs are symmetrical differential currents, which help to minimize even-order distortion products (especially when driving a differential output such as a transformer or an op amp differential current-to-voltage converter). The overall architecture of the AD977x TxDAC® family and the AD985x-DDS family is an excellent tradeoff between power/performance, and allows the entire DAC function to be implemented on a standard CMOS process with no thin-film resistors.Figure 6: PMOS Transistor Current Switches REFERENCES:1.Dennis Dempsey and Christopher Gorman, "Digital-to-Analog Converter," U.S. Patent 5,969,657, filedJuly 27, 1997, issued October 19, 1999. (describes an elegant solution for segmented unbuffered string DACs).2.John A. Schoeff, "An Inherently Monotonic 12 Bit DAC," IEEE Journal of Solid State Circuits, Vol. SC-14, No. 6, December 1979, pp. 904-911. (describes one of the first monolithic DACs to use segmentation).3.Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 3. Alsoavailable as The Data Conversion Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter 3. Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.。

相关文档
最新文档