中考数学高分秘籍第13讲 二次函数及其应用

合集下载

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用中考重点:二次函数的性质与应用二次函数是初中数学中的重要内容之一,它在中考中的考查频率较高。

掌握二次函数的性质与应用,能够帮助我们解决与二次函数相关的问题,提高解题能力。

本文将重点讨论二次函数的性质和应用,探索其在数学中的作用。

一、二次函数的定义及一般式表示二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数且a≠0。

其中,a决定了二次函数的开口方向,b决定了函数的对称轴位置,c表示函数与y轴的交点。

二次函数的一般式表示形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。

一般式可以转化为顶点式表示或者因式分解式表示,从而更方便地研究二次函数的性质。

二、二次函数的性质1. 对称性:二次函数的图像关于对称轴对称。

对称轴的表示为x = -b / (2a),在二次函数图像上即为顶点的横坐标。

2. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

3. 极值点与最值:二次函数的极值点即顶点,其横坐标为-x / (2a),纵坐标为f(-x /(2a))。

当a>0时,二次函数的最小值为f(-x / (2a));当a<0时,二次函数的最大值为f(-x / (2a))。

4. 零点:二次函数与x轴的交点称为零点,可以通过求解二次方程ax² + bx + c = 0来确定。

二次函数有两个零点时称为有两个实根,有一个零点时称为有一个实根,没有实根时称为无实根。

三、二次函数的应用1. 求解问题:二次函数常常用于求解与平面图形有关的问题。

例如,已知抛物线y = ax² + bx + c与x轴交于A、B两点,求抛物线经过的最高点的坐标。

通过求解顶点坐标可以得到问题的解。

2. 最值问题:二次函数能够用于解决最值问题。

例如,已知二次函数y = ax² + bx + c,在一定范围内求函数的最值。

山东省菏泽市中考数学复习课件:第3章第13讲

山东省菏泽市中考数学复习课件:第3章第13讲

技法点拨►利用二次函数的最值解答商品销售中的“最大利 润”问题时,可采用以下步骤: (1)设出自变量,用含有自变量的代数式表示销售单价或销 售量及销售收入; (2)用含自变量的代数式表示销售成本; (3)确定二次函数的解析式; (4)根据函数解析式求出最值及取得最值时自变量的值,一 定要注意自变量x的取值范围.
432 如图,设总占地面积为S(m2),CD的长度为x(m),由题意 知,AB=CD=EF=GH=x,∴BH=48-4x.∵0<BH≤50,CD>0 ,∴0<x<12.∴S=AB·BH=x(48-4x)=-4(x-6)2+ 144.∴x<6时,S随x的增大而增大.∴x=6时,S可取得最大 值,最大值为S=144.
解:(1)设 y=kx+b,根据题意,
80=60k+b, k=-2,

解得
100=50k+b. b=200.
∴y=-2x+200(30≤x≤60). (2)w=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000. (3)∵当 30≤x≤60 时,w随 x的增大而增大,∴当 x=60 时,w有最大值为 1950 元. ∴当销售单价为60 元时,该公司日获利最大,为 1950 元.
(二)利用二次函数求最大利润问题 【例2】 [2017·滨州模拟]一种进价为每件40元的T恤,若 销售单价为60元,则每周可卖出300件,为提高利益,就对 该T恤进行涨价销售,经过调查发现,每涨价1元,每周要 少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销 售单价x(元)之间的函数关系式,并求出销售单价定为多少 元时,每周的销售利润最大?
第三章 函数及其图象 第13讲 二次函数的应用
考点梳理过关
考点 二次函数的应用

二次函数的综合运用

二次函数的综合运用

二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。

二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。

本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。

一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。

为了简化讨论,我们以函数 y = x² + 2x - 3 为例。

1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。

对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。

而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。

根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。

2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。

对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。

令 y' = 0,解得 x = -1。

将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。

同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。

二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。

下面以函数 y = x² + 2x - 3 为例进行具体分析。

1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。

对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。

根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。

二次函数的应用

二次函数的应用

二次函数的应用在数学中,二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。

二次函数是一种常见且重要的函数类型,在实际生活中有广泛的应用。

本文将介绍二次函数的应用,并通过具体的实例来说明其在不同领域中的作用。

一、二次函数在物理学中的应用二次函数在物理学中常常用于描述运动的轨迹、抛物线的形状以及力学的相关问题。

例如,当一个物体在空中自由落体时,其下落的高度与时间之间的关系可以用二次函数来描述。

假设物体从高度为h的位置自由落下,忽略空气阻力的影响,记时间为t,则物体的高度可以表示为h = -gt^2 + vt + h0,其中g是重力加速度,v是物体的初速度,h0是物体的初始位置。

该二次函数描述了物体下落的抛物线轨迹。

二、二次函数在经济学中的应用二次函数在经济学中的应用非常广泛,可以用于描述成本、收益、利润等与产量或销量之间的关系。

例如,对于某个企业而言,其生产的产品的总成本可以由二次函数表示。

假设该企业的总成本C与产量x之间的关系可以表示为C = a'x^2 + b'x + c',其中a'、b'、c'为常数。

该二次函数描述了生产成本随着产量的增加而递增的曲线,对企业的经营决策具有重要的参考意义。

三、二次函数在工程学中的应用在工程学中,二次函数常常用于描述曲线的形状以及材料的弯曲变形。

例如,对于一座桥梁而言,其横截面的弯曲变形可以用二次函数来表示。

假设桥梁横截面的变形高度与距离之间的关系可以表示为y = ax^2 + bx + c,其中y表示高度,x表示距离。

该二次函数描述了桥梁横截面弯曲变形的形状,对于设计和构建安全的桥梁至关重要。

四、二次函数在生物学中的应用在生物学研究中,二次函数常常用于描述某些生物过程的增长或衰减。

例如,某种细菌的数量随着时间的推移而增长,其增长过程可以用二次函数来描述。

假设细菌数量与时间之间的关系可以表示为N = at^2 + bt + c,其中N表示细菌数量,t表示时间。

广东中考数学第13讲 二次函数的综合运用

广东中考数学第13讲 二次函数的综合运用

导航
考点演练 1.若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,-1),则 关于x的方程ax2+bx+c=0的根的情况是( C ) A.有两个大于1的不相等实数根 B.有两个小于1的不相等实数根 C.有一个大于1另一个小于1的实数根 D.没有实数根
导航
2.如图,抛物线y=ax2+bx+c(a≠0)与直线y=kx+h(k≠0)交于 A,B两点,下列是关于x的不等式或方程,结论正确的是( D ) A.ax2+(b-k)x+c>h的解集 是2<x<4 B.ax2+(b-k)x+c>h的解集是x>4 C.ax2+(b-k)x+c>h的解集是x<2 D.ax2+(b-k)x+c=h的解是x1=2,x2=4
导航
2.(1)已知二次函数y=ax2+bx+c的图象如图1,对称轴为直线 x=1,则不等式ax2+bx+c>0的解集是 -1<x<3 . (2)二次函数y=-x2+bx+c的部分图象如图2所示,由图象可 知,不等式-x2+bx+c<0的解集为 x<-1或x>5 .
导航
3.二次函数的实际应用 根据题目所给两个变量的数量关系、根据图表所给两个变量 的关系、根据图形所给周长、面积、相似比等关系列出二次 函数关系式,求出最大(小)值. 3.用总长为80 m的篱笆围成一个面积为S m2的矩形场地,设矩 形场地的一边长为x m,则当x= 20 m时,矩形场地的面积S 最大.
导航
3.二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x 的一元二次方程x2+bx-t=0(b、t为实数)在-1<x<4的范 围内有解,则t的取值范围是 -1≤t<8 .
2
又因为x1=1.3, 所以x2=-2-x1=-2-1.3=-3.3.故答案为:-3.3.
导航

20春北师大9下 中考梳理:第13讲 二次函数的应用

20春北师大9下 中考梳理:第13讲 二次函数的应用

第13讲二次函数的应用
一、知识清单梳理
知识点一:二次函数的应用关键点拨
实物抛物线
一般步骤若题目中未给出坐标系,则需要建立坐标
系求解,建立的原则:①所建立的坐标系
要使求出的二次函数表达式比较简单;②
使已知点所在的位置适当(如在x轴,y轴、
原点、抛物线上等),方便求二次函数丶表
达式和之后的计算求解.
①据题意,结合函数图象求出函数解析式;
②确定自变量的取值范围;
③根据图象,结合所求解析式解决问题.
实际问题中求最值①分析问题中的数量关系,列出函数关系
式;
②研究自变量的取值范围;
③确定所得的函数;
④检验x的值是否在自变量的取值范围内,
并求相关的值;
⑤解决提出的实际问题.
解决最值应用题要注意两点:
①设未知数,在“当某某为何值时,什么
最大(最小)”的设问中,“某某”要设为
自变量,“什么”要设为函数;
②求解最值时,一定要考虑顶点(横、纵
坐标)的取值是否在自变量的取值范围内.
结合几何图形①根据几何图形的性质,探求图形中的关系
式;
②根据几何图形的关系式确定二次函数解
析式;
③利用配方法等确定二次函数的最值,解决
问题
由于面积等于两条边的乘积,所以几何问
题的面积的最值问题通常会通过二次函数
来解决.同样需注意自变量的取值范围.。

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。

本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。

正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。

在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。

- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。

- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。

例如,抛物线可以用来描述通货膨胀率的变化。

2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。

- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。

- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。

- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。

3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。

例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。

此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。

二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。

掌握这些技巧,可以帮助我们更好地理解和解决实际问题。

中考重点二次函数的应用

中考重点二次函数的应用

中考重点二次函数的应用二次函数的应用在中考中是一个重点考察的内容。

二次函数是一种常见的数学模型,它可以描述抛物线的形状和变化规律。

掌握二次函数的应用,不仅可以帮助我们解决实际问题,还可以提高我们的数学思维和问题解决能力。

1. 图像的性质和变化规律:二次函数的标准形式为:$y=ax^2+bx+c$,其中$a$、$b$、$c$为实数且$a \neq 0$。

当$a>0$时,抛物线开口朝上;当$a<0$时,抛物线开口朝下。

抛物线的顶点坐标为$(-\frac{b}{2a},-\frac{\Delta}{4a})$,其中$\Delta=b^2-4ac$为判别式,用来确定抛物线与$x$轴的交点个数和位置。

当$\Delta>0$时,抛物线与$x$轴有两个交点;当$\Delta=0$时,抛物线与$x$轴有一个交点;当$\Delta<0$时,抛物线与$x$轴没有交点。

根据顶点坐标和开口方向,可以确定抛物线的图像。

2. 求解问题:二次函数的应用主要涉及到求解实际问题。

比如下面的例题:例题1:一辆汽车以每小时80千米的速度行驶,从起点开始,经过2小时后到达目的地,求汽车在2小时内行驶的距离。

解析:设汽车行驶的距离为$y$千米,行驶的时间为$x$小时。

根据已知条件,可以建立二次函数模型:$y=80x$。

代入$x=2$,可以得到汽车在2小时内行驶的距离为$y=80\times2=160$千米。

例题2:甲、乙两地的距离为100千米,两辆汽车同时从两地出发,甲地汽车的速度为每小时60千米,乙地汽车的速度为每小时80千米,问多长时间后两辆汽车相遇?解析:设两辆汽车相遇的时间为$x$小时,则甲地汽车行驶的距离为$60x$千米,乙地汽车行驶的距离为$80x$千米。

根据已知条件,可以建立二次函数模型:$60x+80x=100$。

化简得到$140x=100$。

解方程可得$x=\frac{10}{14}=\frac{5}{7}$小时,即两辆汽车在$\frac{5}{7}$小时后相遇。

初中数学二次函数的解法与应用知识点总结

初中数学二次函数的解法与应用知识点总结

初中数学二次函数的解法与应用知识点总结二次函数是初中数学中重要的内容之一,它在代数与几何中都有广泛的应用。

本文将总结二次函数的解法与应用知识点,帮助同学们更好地理解和掌握这一内容。

一、二次函数的标准形式与一般形式二次函数的标准形式为:y = ax² + bx + c,其中 a、b、c 为常数,且a ≠ 0。

二次函数的一般形式为:y = ax² + bx + c,其中 a、b、c 可以是任意实数。

二、二次函数图像的性质1. 开口方向:- 当 a > 0 时,二次函数开口朝上;- 当 a < 0 时,二次函数开口朝下。

2. 对称轴:对于二次函数 y = ax² + bx + c,其对称轴为 x = -b / (2a)。

对称轴平分了抛物线,并且抛物线上任意两点关于对称轴对称。

3. 最值点:- 当 a > 0 时,二次函数的最小值为 c - (b² / (4a)),对应的 x 坐标为-b / (2a);- 当 a < 0 时,二次函数的最大值为 c - (b² / (4a)),对应的 x 坐标为-b / (2a)。

三、二次函数的解法1. 求零点:通过解二次方程 ax² + bx + c = 0 来求二次函数的零点。

- 当Δ = b² - 4ac > 0 时,方程有两个不相等的实数根;- 当Δ = b² - 4ac = 0 时,方程有两个相等的实数根;- 当Δ = b² - 4ac < 0 时,方程无实数根。

2. 求顶点:二次函数的顶点为最值点,可通过顶点公式 x = -b / (2a) 来求得。

四、二次函数的应用知识点1. 面积与最值:在给定条件下,一个矩形的面积最大或最小值可以由一个二次函数的最值点确定。

2. 抛物线的运动轨迹:- 在自由落体的问题中,我们可以利用二次函数来建立小球的运动模型;- 在抛体运动的问题中,我们也可以通过二次函数来描述物体的轨迹。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中非常重要的一个概念,它在各个领域中都有广泛的应用。

本文将介绍二次函数在几个常见领域的具体应用,包括物理学、经济学和工程学等。

一、物理学中的应用1. 自由落体运动在物理学中,二次函数被广泛应用于自由落体运动的描述中。

自由落体运动是指在只受重力作用下的物体运动。

根据质点在自由落体运动中的运动方程可知,物体的落地时间t与物体下落高度h之间存在二次函数的关系。

这种关系可以用二次函数公式f(t) = -gt^2 + h 来表示,其中g为重力加速度。

2. 弹性力学在弹性力学中,二次函数常被用来描述弹性体的变形情况。

例如,当一个弹簧受力拉伸或压缩时,其长度与施加在它上面的力之间存在二次函数的关系。

这种关系可以用二次函数公式f(x) = kx^2 来表示,其中k为弹簧的弹性系数。

二、经济学中的应用1. 成本和产量关系在经济学中,二次函数被广泛应用于成本和产量之间的关系模型中。

例如,在某产品的生产过程中,成本通常与产量呈二次函数的关系。

随着产量的增加,成本会逐渐增加,但增速逐渐减缓。

这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。

2. 市场需求二次函数在经济学中还常被用来描述市场需求的变化情况。

例如,对于某个产品的需求量与其价格之间一般存在倒U型的关系,即需求量随着价格的升高或降低逐渐减少。

这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。

三、工程学中的应用1. 抛物线型拱桥在工程学中,二次函数被广泛应用于抛物线型拱桥的设计与建造中。

抛物线型拱桥由一段段的抛物线组成,而抛物线正是二次函数的图像。

通过使用二次函数来描述拱桥的形状,工程师可以更好地控制拱桥的承重和稳定性。

2. 圆环轨道设计二次函数还可以用来设计圆环轨道。

例如,在某高速铁路项目中,为了确保列车的平稳运行和最佳速度分布,工程师使用了二次函数来设计轨道的曲率。

二次函数的解法与应用

二次函数的解法与应用

二次函数的解法与应用二次函数是高中数学中的重要内容之一,它是一种形如y=ax²+bx+c 的函数,其中a、b、c为常数,且a不等于零。

在本文中,将介绍二次函数的解法与应用。

一、二次函数的解法二次函数的解法主要有两种方法:一是利用配方法法,二是利用求根公式法。

1. 配方法法对于一般的二次函数y=ax²+bx+c,可以利用配方法将其变形为完全平方的形式,从而求出函数的解。

配方法的步骤如下:(1)将二次项系数a乘以1/2,得到1/2a;(2)将1/2a的平方加上常数项c,得到1/4a²+c;(3)将二次项系数b乘以1/2,得到1/2b;(4)将1/2b²与1/4a²+c进行配方,即(1/2b+√(1/4a²+c))(1/2b-√(1/4a²+c)),得到一个完全平方;(5)将得到的完全平方表达式与1/2a相乘,即(1/2a)(1/2b+√(1/4a²+c))(1/2a)(1/2b-√(1/4a²+c)),得到二次函数的解。

2. 求根公式法对于一般的二次函数y=ax²+bx+c,可以利用求根公式法求出函数的解。

求根公式的表达式如下:x=(-b±√(b²-4ac))/(2a)其中,±表示求两个解,b²-4ac称为判别式。

当判别式大于零时,函数有两个不等实数根;当判别式等于零时,函数有两个相等实数根;当判别式小于零时,函数无实数根。

二、二次函数的应用二次函数在实际生活中有广泛的应用,其中包括抛物线的运动轨迹、经济学中的成本函数与收益函数、物理学中的自由落体运动等。

1. 抛物线的运动轨迹抛物线的形状可以用二次函数来表示,例如自由落体运动中物体的高度随时间的变化可以用二次函数来描述。

通过求解二次函数的解,可以得到物体的运动轨迹并进行分析。

2. 经济学中的成本函数与收益函数在经济学中,成本函数和收益函数通常可以用二次函数来表示。

初中复习方略数学第十三讲 二次函数的应用

初中复习方略数学第十三讲 二次函数的应用

第十三讲 二次函数的应用知识清单·熟掌握抛物线型问题应用二次函数解决抛物线型实际问题的思路1.建立平面直角坐标系:根据题意,建立适当的坐标系,建系的原则一般是把顶点作为坐标原点.2.设函数解析式:根据所建立的坐标系,设出解析式.3.求解析式:将题中所给的数据转化为点的坐标,代入函数解析式,求出待定系数,确定函数解析式.4.解决实际问题:把问题转化为已知抛物线上点的横坐标(或纵坐标),求其纵坐标(或横坐标),再转化为线段的长,解决实际问题.1.飞机着陆后滑行的距离y(单位:m)与滑行时间t(单位:s)的函数关系式满足y =-65 t 2+60t ,则飞机着陆至停下来滑行的距离是25 m .(×) 2.小强在一次训练中,掷出的实心球飞行高度y(米)与水平距离x(米)之间的关系大致满足二次函数y =-112 x 2+23 x +53,则小强此次成绩为10米.(√)利润最大化问题应用二次函数性质解决最优化问题的思路1.分析题中数量关系,确定变量.2.根据等量关系,构建二次函数模型.3.根据函数性质,确定最值.在实际问题中二次函数的最值不一定是顶点的纵坐标,要注意自变量的取值的限制对最值的影响.考点一应用二次函数解决抛物线型实际问题类型一:隧道和拱桥问题【典例1】(2021·衢州中考)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【思路点拨】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可.【自主解答】(1)根据题意可知点F 的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为:y 1=a 1x 2.将F(6,-1.5)代入y 1=a 1x 2有:-1.5=36a 1,求得a 1=-124 , ∴y 1=-124x 2, 当x =12时,y 1=-124×122=-6, ∴桥拱顶部离水面高度为6 m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2=a 2(x -6)2+1,将H(0,4)代入其表达式有:4=a 2(0-6)2+1,求得a 2=112 , ∴右边钢缆所在抛物线表达式为:y =112(x -6)2+1, ②设彩带的长度为L m ,则L =y 2-y 1=112 (x -6)2+1-⎝ ⎛⎭⎪⎫-124x 2 =18 x 2-x +4=18 (x -4)2+2, ∴当x =4时,L 最小值=2,答:彩带长度的最小值是2 m .类型二:运动轨迹问题【典例2】(2021·北部湾中考)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线C 1:y =-112 x 2+76x +1近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线C 2:y =-18x 2+bx +c 运动. (1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线C 2的函数解析式(不要求写出自变量x 的取值范围).(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【思路点拨】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b ,c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:-18 m 2+32 m +4-⎝ ⎛⎭⎪⎫-112m 2+76m +1 =1,解出m 即可; (3)求出山坡的顶点坐标为⎝⎛⎭⎪⎫7,6112 ,根据题意即-18 ×72+7b +4>3+6112,再解出b 的取值范围即可. 【自主解答】(1)由题意可知抛物线C 2:y =-18x 2+bx +c 过点(0,4)和(4,8),将其代入得:⎩⎪⎨⎪⎧4=c 8=-18×42+4b +c ,解得:⎩⎪⎨⎪⎧b =32c =4 ,∴抛物线C 2的函数解析式为:y =-18 x 2+32 x +4. (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:-18 m 2+32 m +4-⎝ ⎛⎭⎪⎫-112m 2+76m +1 =1, 整理得:(m -12)(m +4)=0,解得:m 1=12,m 2=-4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.(3)C 1:y =-112 x 2+76 x +1=-112 (x -7)2+6112, 当x =7时,运动员到达坡顶,即-18 ×72+7b +4>3+6112, 解得:b >3524.此类问题一般涉及抛球、投篮、隧道、拱桥、喷泉水柱等.解决此类问题的关键是理解题目中的条件所表示的几何意义.最高点为抛物线的顶点,抛出点为抛物线中的c 值,落地点为抛物线与x 轴的交点,落地点到抛出点的水平距离是此落地点横坐标的绝对值.(1)投篮判断是否能投中即判断篮网是否在球的运动轨迹所在的抛物线图象上;(2)判断货车是否能通过隧道即判断两端点的坐标是否在抛物线的下方;(3)判断船是否能通过拱桥即判断船的高度是否比船自身的宽度对应的y 值小;(4)判断人是否会被喷泉淋湿即判断人所处位置的水的高度是否比人的身高低.(2021·台州中考)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t (单位:s)之间的关系式是h=vt-4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2, 则t1∶t2=__ 2 __.考点二利润最大化问题类型一:顶点处取最值【典例3】(2021·达州中考)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9 750元,并让利于民,则定价应为多少元?【解析】(1)由题意得:W=(48-30-x)(500+50x)=-50x2+400x+9 000,x=2时,W=(48-30-2)(500+50×2)=9 600(元),答:工厂每天的利润W元与降价x元之间的函数关系为W=-50x2+400x +9 000,当降价2元时,工厂每天的利润为9 600元;(2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800,∵-50<0,∴x=4时,W最大为9 800,即当降价4元时,工厂每天的利润最大,最大为9 800元.(3)-50x2+400x+9 000=9 750,解得:x1=3,x2=5,∵让利于民,∴x1=3不合题意,舍去,∴定价应为48-5=43(元),答:定价应为43元.类型二:不在顶点处取最值【典例4】(2021·鄂州中考)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x=160时,y=840;当x=190时,y=960.(1)求y与x之间的函数关系式(不求自变量的取值范围).(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2 160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【思路点拨】(1)根据已知条件用待定系数法求一次函数的解析式即可.(2)根据题意写出利润关于种植面积的解析式,然后根据x≤240和二次函数的性质求出利润的最大值.【自主解答】(1)设y 与x 之间的函数关系式y =kx +b(k≠0),依题意得:⎩⎪⎨⎪⎧840=160k +b 960=190k +b ,解得:⎩⎪⎨⎪⎧k =4b =200 , ∴y 与x 之间的函数关系式为y =4x +200;(2)设老张明年种植该作物的总利润为W 元,依题意得: W =[2 160-(4x +200)+120]·x=-4x 2+2 080x =-4(x -260)2+270 400,∵-4<0,∴当x<260时,W 随x 的增大而增大,由题意知: x≤240,∴当x =240时,W 最大,最大值为-4(240-260)2+270 400=268 800(元), 答:种植面积为240亩时总利润最大,最大利润268 800元. 类型三:在自变量不同取值范围上求最值【典例5】(2020·荆门中考)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x 为正整数)的销售价格p(元/千克)关于x(天)的函数关系式为p =⎩⎪⎨⎪⎧25x +4(0<x≤20)-15x +12(20<x≤30) ,销售量y(千克)与x 之间的关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)当月第几天,该农产品的销售额最大?最大销售额是多少?(销售额=销售量×销售价格)【思路点拨】(1)根据函数图象中的数据,可以得到y 与x 之间的函数关系式,并写出x 的取值范围;(2)根据题意和(1)中的结果,可以得到利润与x 之间的函数关系,然后根据二次函数的性质,即可得到当月第几天,该农产品的销售额最大,最大销售额是多少.【解析】(1)当0<x≤20时,设y 与x 的函数关系式为y =ax +b ,则⎩⎪⎨⎪⎧b =8020a +b =40 ,解得⎩⎪⎨⎪⎧a =-2b =80 , 即当0<x≤20时,y 与x 的函数关系式为y =-2x +80,当20<x≤30时,设y 与x 的函数关系式为y =mx +n ,则⎩⎪⎨⎪⎧20m +n =4030m +n =80 ,解得⎩⎪⎨⎪⎧m =4n =-40 , 即当20<x≤30时,y 与x 的函数关系式为y =4x -40,由上可得,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-2x +80(0<x≤20)4x -40(20<x≤30) . (2)设当月第x 天的销售额为w 元,当0<x≤20时,w =⎝ ⎛⎭⎪⎫25x +4 ×(-2x +80) =-45(x -15)2+500,∴当x =15时,w 取得最大值,此时w =500,当20<x≤30时,w =⎝ ⎛⎭⎪⎫-15x +12 ×(4x-40)=-45 (x -35)2+500, ∴当x =30时,w 取得最大值,此时w =480,由上可得,当x =15时,w 取得最大值,此时w =500.答:当月第15天,该农产品的销售额最大,最大销售额是500元.1.求关于利润的二次函数解析式的两种思路(1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销售价-销售量×进价=销售量×(销售价-进价)来解决;(2)若题目中未给出销售量与单价之间的函数解析式,则要先求出销售量与单价之间的函数解析式,解析式一般是一次函数关系,再根据销售利润=销售量×(销售价-进价)来解决.2.求二次函数的最值的两种方法(1)可直接利用公式法求顶点的纵坐标,即y =ax 2+bx +c 的最大值为4ac -b 24a (a <0)或最小值为4ac -b 24a(a >0). (2)若顶点在已知给定的自变量取值范围内,则函数在顶点处取得最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值.1.(2021·连云港中考)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是__1__264__元.2.(2021·南充中考)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=-1100 x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)【解析】(1)设苹果的进价为x元/千克,根据题意得:300x+2=200x-2,解得:x=10,经检验x=10是原方程的根,且符合题意,答:苹果的进价为10元/千克.(2)当0≤x≤100时,y=10x;当x >100时,y =10×100+(x -100)(10-2)=8x +200;∴y =⎩⎪⎨⎪⎧10x (0≤x≤100)8x +200(x >100). (3)当0≤x≤100时,w =(z -10)x=⎝ ⎛⎭⎪⎫-1100x +12-10 x =-1100(x -100)2+100, ∴当x =100时,w 有最大值为100;当100<x≤300时,w =(z -10)×100+(z -8)(x -100)=⎝ ⎛⎭⎪⎫-1100x +12-10 ×100+⎝ ⎛⎭⎪⎫-1100x +12-8 (x -100) =-1100x 2+4x -200 =-1100(x -200)2+200, ∴当x =200时,w 有最大值为200;∵200>100,∴一天购进苹果数量为200千克时,超市销售苹果利润最大,为200元. 答:一天购进苹果数量为200千克时,超市销售苹果利润最大. 考点三 几何图形面积问题【典例6】 (2020·孝义市质检)如图所示,正方形区域ABCD 是某公园健身广场示意图,公园管理处想在其四个角的三角形区域内种植草皮加以绿化(阴影部分),剩余部分安装健身器材作为市民健身活动场所(四边形EFGH),其中AB=100米,且AE=AH=CF=CG.则当AE的长度为多少时,市民健身活动场所的面积达到最大?【解析】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°.∵AE=AH=CF=CG,∴BE=BF=DG=DH,∴△AHE,△BEF,△CGF,△DGH都是等腰直角三角形;设AE=x米,则BE=(100-x)米.设四边形EFGH的面积为S,则S=100×100-2×12 x2-2×12(100-x)2=-2x2+200x(0<x<100).∵S=-2(x-50)2+5 000.∵-2<0,∴当x=50时,S有最大值为5 000.答:当AE=50米时,市民健身活动场所的面积达到最大.解决此类问题一般是根据几何图形的性质,先找变量,再确定变量与该图形周长或面积之间的关系,用变量表示出其他边的长,从而确定二次函数的解析式,再根据题意及二次函数的性质解题即可.(2019·连云港中考)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是(C)A .18 m 2B .18 3 m 2C .24 3 m 2D .4532 m 2人教版九年级下册 P29 练习 T2某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?【思路点拨】设出每间房的定价,从而利用租房利润减去维护费,可得利润函数,利用配方法,即可求得结论.【自主解答】设房价为(180+10x)元,则定价增加了10x 元,此时空闲的房间为x ,由题意得,y =(180+10x)(50-x)-(50-x)×20=-10x 2+340x +8000=-10(x -17)2+10890故可得当x =17,即房间定价为180+170=350元的时候利润最大. 答:房间定价为350元时,利润最大.(变换条件与问法)(2021·济宁中考)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【解析】(1)设甲种商品每箱盈利x 元,则乙种商品每箱盈利(x -5)元, 根据题意得:900x +400x -5=100, 整理得:x 2-18x +45=0,解得:x =15或x =3(舍去),经检验,x =15是原分式方程的解,符合实际,∴x -5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元.(2)设甲种商品降价a 元,则每天可多卖出20a 箱,利润为w 元,由题意得:w =(15-a)(100+20a)=-20a 2+200a +1 500=-20(a -5)2+2 000,∵-20<0,∴当a =5时,函数有最大值,最大值是2 000元.答:当降价5元时,该商场利润最大,最大利润是2 000元.(变换条件与问法)(2021·黄冈中考)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.【解析】(1)由题知,y=5-(x-50)×0.1,整理得y=10-0.1x(40≤x≤100);(2)设月销售利润为z,由题知,z=(x-40)y=(x-40)(10-0.1x)=-0.1x2+14x-400=-0.1(x-70)2+90,∴当x=70时,z有最大值为90,即当月销售单价是70元时,月销售利润最大,最大利润是90万元;(3)由(2)知,当月销售单价是70元时,月销售利润最大,即(70-40-a)×(10-0.1×70)=78,解得a=4,∴a的值为4.。

二次函数的解析式与应用

二次函数的解析式与应用

二次函数的解析式与应用二次函数是一种常见的数学函数形式。

它的解析式可以用来描述许多自然和社会现象,而且在工程、经济学、物理学等领域有着广泛的应用。

本文将讨论二次函数的解析式以及它在实际问题中的应用。

一、二次函数的解析式二次函数的一般解析式可以表示为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

这个解析式中的变量x代表自变量,变量y代表因变量。

二次函数图像为一条开口向上或向下的抛物线,其中a控制了抛物线的开口方向和大小,b控制了抛物线的平移,c为抛物线与y轴的交点。

以一个具体的例子来说明,假设有一条二次函数曲线,其解析式为y = 2x^2 + 3x - 1。

根据这个解析式,我们可以得到多个点的坐标并绘制出曲线。

同时,我们也可以通过解析式计算出该二次函数的顶点、判别式、零点等重要信息,这些信息可以帮助我们更好地理解二次函数的特性和性质。

二、二次函数的应用1. 自然科学领域中的应用二次函数在自然科学领域中有广泛的应用。

以物理学为例,二次函数可以用来描述物体的运动轨迹、抛物线的轨迹等。

在力学中,一个自由落体经过时间t下落的距离h可以用二次函数来表示,解析式为h = -gt^2 + vt + h0,其中g为重力加速度,v为初速度,h0为初始高度。

通过这个二次函数,我们可以计算出物体在不同时间下的高度,从而预测它的轨迹。

2. 经济学领域中的应用在经济学中,二次函数可以用来建模和分析许多经济现象。

例如,成本函数通常以二次函数的形式出现。

通过分析成本函数的最小值,我们可以确定最佳生产量以实现成本最小化。

此外,二次函数还可以用来描述价格与需求之间的关系,帮助我们预测市场行为和做出战略决策。

3. 工程学领域中的应用在工程学中,二次函数被广泛应用于建筑、电子、通信等领域。

例如,二次函数可以用来描述桥梁的抗弯形状,以确保结构的稳定性和安全性。

另外,二次函数还可以用来优化电子电路的设计、天线的指向性、信号传输的衰减等问题。

第13讲 二次函数及其应用-2020年中考数学考点必过精品专题(解析版)

第13讲 二次函数及其应用-2020年中考数学考点必过精品专题(解析版)

第13讲 二次函数及其应用1.二次函数的概念及解析式(1)概念:形如y =ax 2+bx +c(其中a ,b ,c 是常数,且a≠0) 的函数叫做二次函数,利用配方可以把二次函数y =ax 2+bx +c 表示成y =a(x +b2a )2+4ac -b 24a.(2)二次函数解析式的三种形式:①一般式y =ax 2+bx +c(a ,b ,c 是常数,a≠0);②交点式y =a(x -x 1)(x -x 2)(a ,x 1,x 2是常数,a≠0)(x 1,0)、(x 2,0)是函数与x 轴的交点坐标; ③顶点式y =a(x +h)2+k(a ,h ,k 是常数,a≠0),其顶点坐标为 . ④三种解析式之间的关系: 顶点式――→配方一般式――→因式分解交点式 ⑤解析式的求法:确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三个待定系数a ,b ,c(或a ,h ,k 或a ,x 1,x 2),因而确定二次函数解析式需要已知三个独立的条件: a .已知抛物线上任意三个点的坐标时,选用一般式. b .已知抛物线的顶点坐标时,选用顶点式.c .已知抛物线与x 轴两个交点的坐标(或横坐标x 1,x 2)时,选用交点式. 2.二次函数的图象和性质二次函数y =ax 2+bx +c(其中a ,b ,c 是常数,且a≠0)的图象是抛物线. (1)当a >0时,抛物线的开口向上;对称轴是直线x =-b2a ;当x =-b2a 时,y 有最小值,为4ac -b 24a;在对称轴左边(即x <-b2a )时,y 随x 的增大而减小;在对称轴右边(即x>-b2a)时,y 随x 的增大而增大;顶点(-b 2a ,4ac -b24a)是抛物线上位置最低的点;(2)当a <0时,抛物线的开口向下;对称轴是直线x =-b2a;当x=-b2a时,y有最大值,为4ac-b24a,在对称轴左边(即x<-b2a)时,y随x的增大而增大.在对称轴右边(即x>-b2a)时,y随x的增大而减小;顶点(-b2a,4ac-b24a)是抛物线上位置最高的点.4.二次函数函数的变换(1)二次函数图象的平移:①二次函数的平移可看作是二次函数的顶点坐标的平移,即解决这类问题先把二次函数化为顶点式,由顶点坐标的平移确定函数的平移.②平移规律:将抛物线y=a(x-h)2+k向左移m个单位得y=a(x-h+m)2+k;向右平移m个单位得y=a(x -h-m)2+k;向上平移m个单位得y=a(x-h)2+k+m;向下平移m个单位得y=a(x-h)2+k-m.简记为“h:左加右减,k:上加下减”.(2)二次函数图象的对称:①两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 的符号相反;②两抛物线关于y 轴对称,此时顶点关于y 轴对称,a 的符号不变;(3)二次函数图象的旋转:开口反向(或旋转180°),此时顶点坐标不变,只是a的符号相反.5.二次函数与一元二次方程之间的关系方程ax2+bx+c=0的解是二次函数y=ax2+bx+c与x轴交点的横坐标.解一元二次方程ax2+bx+c=k 就是求二次函数y=ax2+bx+c与直线y=k的交点的横坐标.(1)当b2+4ac>0时,抛物线与x轴有两个交点,方程有两个不相等的实数根;(2)当b2-4ac=0时,抛物线与x轴有一个交点,方程有两个相等的实数根;(3)当b2-4ac<0时,抛物线与x轴没有交点,方程无实数根.6.二次函数与一元二次不等式之间的关系“一元二次不等式” 实际上是指二次函数的函数值“y>0, y<0或y≥0,y≤0”,一元二次不等式的解集从图象上看是指抛物线在x 轴上方或x 轴下方的部分对应x的取值范围考点1:二次函数的图象与性质【例题1】(2019▪广西河池▪3分)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A .ac <0B .b 2﹣4ac >0C .2a ﹣b =0D .a ﹣b +c =0【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A.由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上,可得c >0,因此ac <0,故本选项正确,不符合题意;B.由抛物线与x 轴有两个交点,可得b 2﹣4ac >0,故本选项正确,不符合题意;C.由对称轴为x =﹣2ba=1,得2a =﹣b ,即2a +b =0,故本选项错误,符合题意; D.由对称轴为x =1及抛物线过(3,0),可得抛物线与x 轴的另外一个交点是(﹣1,0),所以a ﹣b +c =0,故本选项正确,不符合题意. 故选:C .归纳:本题考查二次函数的图象性质:(1)a 的正负决定图象的开口方向,c 的正负决定图象与y 轴的交点位置,a 和b 的正负决定图象对称轴的位置;(2)二次函数与方程的关系,即二次函数图象与坐标轴的交点情况可转化为二次方程根的判别式的正负;(3)二次函数的开口方向与对称轴决定其增减性. 考点2: 二次函数的实际应用【例题2】(2019•湖北省鄂州市•10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【分析】(1)直接利用销售单价每降1元,则每月可多销售5条得出y 与x 的函数关系式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值; (3)利用总利润=4220+200,求出x 的值,进而得出答案.【解答】解:(1)由题意可得:y =100+5(80﹣x )整理得 y =﹣5x +500; (2)由题意,得: w =(x ﹣40)(﹣5x +500) =﹣5x 2+700x ﹣20000 =﹣5(x ﹣70)2+4500 ∵a =﹣5<0∴w 有最大值 即当x =70时,w 最大值=4500 ∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元; (3)由题意,得:﹣5(x ﹣70)2+4500=4220+200 解之,得:x 1=66,x 2 =74,∵抛物线开口向下,对称轴为直线x =70, ∴当66≤x ≤74时,符合该网店要求 而为了让顾客得到最大实惠,故x =66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.归纳: 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式. 考点3: 二次函数与几何图形的综合应用【例题3】(2018·唐山乐亭县二模)如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A(12,52)和B(4,m),点P 是线段AB 上异于A ,B 的动点,过点P 作PC ⊥x 轴,交抛物线于点C. (1)点B 坐标为(4,6),并求抛物线的解析式; (2)求线段PC 长的最大值.【点拨】 (1)点B 坐标代入一次函数解析式可得m =6,将A ,B 坐标代入y =ax 2+bx +6,可求出抛物线的解析式;(2)垂直于x 轴的线段PC 的长就是将二次函数的解析式减去一次函数的解析式,整理后会发现仍然是二次函数的形式,利用二次函数的性质可得最大值.【解答】 解:(1)∵A(12,52),B(4,6)在抛物线y =ax 2+bx +6上,∴⎩⎪⎨⎪⎧(12)2a +12b +6=52,42a +4b +6=6,解得⎩⎪⎨⎪⎧a =2,b =-8.∴抛物线的解析式为y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6). ∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498.∵-2<0,12<n<4,∴当n =94时,线段PC 取得最大值498.归纳:用待定系数法求二次函数解析式的基本方法是:(1)根据题设条件,设出二次函数解析式:①当已知二次函数的任意三对x ,y 的值或抛物线上任意三点,通常用一般式y =ax 2+bx +c(a≠0);②当已知二次函数的顶点坐标或对称轴或最值,通常用顶点式y =a(x - h)2+ k (a≠0),顶点为(h ,k);(2)将题设条件代入所设解析式,列出方程(组);(3)解这个方程(组),求得系数;(4)将系数代入所设解析式.一、选择题:1. ( 2019甘肃省兰州市) (5分)已知,点A (1,y 1),B (2,y 2)在抛物线y =-(x+1)2 +2上,则下列结论正确的是( )A. 2> y 1> y 2B. 2 > y 2 > y 1C. y 1> y 2>2D. y 2 > y 1>2 【答案】A .【解析】根据二次函数顶点式得到函数的开口向下,对称轴为直线x =1,顶点坐标(-1,2 ),根据函数增减性可以得到,当x>-1时,y 随x 的增大而减小.因为-1<1<2.,所以2> y 1> y 2 .故选A.2. (2018•广西)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3【答案】D.【解答】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.3. (2019•江苏连云港•3分)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18 2C.24 m2D m2【答案】C【解答】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=6﹣12x,∴AD=CE=x,AB=AE+BE=x+6﹣12x=12x+6,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(x2=x﹣4)2,∴当x=4时,S最大=即CD长为4m时,使梯形储料场ABCD的面积最大为2;故选:C.4. (2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【答案】B.解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二、填空题:5. (2018·四川自贡·4分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为﹣1.【分析】由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.故答案为:﹣1.6. (2018四川省绵阳市)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2024年中考重点之二次函数的应用与推广

2024年中考重点之二次函数的应用与推广

2024年中考重点之二次函数的应用与推广一、引言二次函数是中学数学中的重要内容,也是2024年中考的重点之一。

本文将探讨二次函数的应用与推广,包括函数图像的特征、应用问题的解决以及二次函数在实际问题中的应用等方面。

二、函数图像的特征二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。

首先,我们来讨论二次函数图像的特征。

1. 开口方向根据二次函数的a的正负,可以确定二次函数图像的开口方向。

当a>0时,图像开口向上;当a<0时,图像开口向下。

2. 最值点和对称轴对于二次函数f(x) = ax^2 + bx + c,其中a不等于0。

函数的最值点和对称轴可以通过求解二次函数的一次项系数b的相反数除以2a来确定。

最值点为x = -b/(2a),对称轴为x = -b/(2a)。

3. 求解零点零点即为函数图像与x轴相交的点,可以通过解一元二次方程得到。

一元二次方程的解可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)来求解。

三、应用问题的解决二次函数的应用问题是中考中常见的题型,下面我们将通过解决一个应用问题来展示二次函数的运用。

例题:某商品的销售量与销售价格之间存在关系,销售量与价格的函数为f(x) = -2x^2 + 80x,其中x表示销售价格。

请问,该商品的销售价格应该是多少才能使得销售量最大?解析:根据题目给出的函数关系,我们知道销售量与价格之间是一个二次函数,图像开口向下。

由于题目是要求销售量最大,因此需要找到该二次函数的最值点。

根据最值点的求解公式x = -b/(2a),代入a = -2,b = 80,我们可以求得最值点的横坐标x = -80/(2*(-2)) = 20。

所以,该商品的销售价格应该是20。

四、二次函数在实际问题中的应用除了解决具体的问题之外,二次函数还可以在实际问题中广泛应用。

下面举几个例子来说明二次函数在实际问题中的应用。

中考冲刺 数学 提分攻略--第13讲 二次函数的图象和性质

中考冲刺 数学 提分攻略--第13讲 二次函数的图象和性质

第13讲二次函数的图象和性质【试试火力】1.(2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+12.(2017.江苏宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x ﹣2)2﹣13.(2017•乐山)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.√2C.32或√2 D.−32或√24.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()【把握火苗】火点1二次函数的概念一般地,形如① (a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.火点2二次函数的图象和性质抛物线开口向②,抛物线开口向③,并向情况讨论.火点3二次函数的图象与字母系数的关系所求的二次函数解析式最后要化成一般式.火点5二次函数与一元二次方程以及不等式之间的关系1.二次函数y=(x-h)2+k的图象平移时,主要看顶点坐标的变化,一般按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.2.二次函数的图象由对称轴分开,在对称轴的同侧具有相同的性质,在顶点处有最大值或最小值,如果自变量的取值中不包含顶点,那么在取最大值或最小值时,要依据其增减性而定.3.求二次函数图象与x轴的交点的方法是令y=0解关于x的方程;求函数图象与y轴的交点的方法是令x=0得y的值,最后把所得的数值写成坐标的形式.【突破火点】燃点1 二次函数的图象和性质例1 (2017湖北咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4 .【考点】HC:二次函数与不等式(组).【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n 在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.方法归纳:解答此类题首先将点坐标代入函数解析式,确定二次函数的各项系数.然后根据二次函数解析式、图象、性质的相互关系解题.燃点2 一元二次方程根的判别式和根与系数的关系例2二次函数的图象与字母系数的关系例2 (2017四川南充)二次函数y=ax2+bx+c(a、b、c是常数,且a ≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b【考点】H4:二次函数图象与系数的关系.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向上,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=﹣<0,∴b<0,∴abc<0,故B正确;∵当x=1时,y=a+b+c>0,∵4a<0∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选(D)方法归纳:解答二次函数信息问题时,通常先抓住抛物线对称轴和顶点坐标,再依据图象与字母系数之间的关系特征来求解.燃点3 确定二次函数的解析式例3(2017江苏盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A. B. C. D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.方法归纳:(1)待定系数法是求函数解析式的常用方法;(2)两函数图象的交点往往是不等关系的界点.【冰火不容】1.(2017江苏徐州)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<12.(2017广西百色)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是y=﹣x2+x+3 .3.(2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤4.(2017贵州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个5. (2017山东泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x ﹣1 0 1 3y ﹣3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x <1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A.1个B.2个C.3个D.4个6.(2017山东临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.47. (2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+38.(2017湖南株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.9. (2017湖北荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k 的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.10. (2017湖北江汉)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.【展示火情】【试试火力】1.(2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.2.(2017.江苏宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x ﹣2)2﹣1【考点】H6:二次函数图象与几何变换.【分析】由抛物线平移不改变y的值,根据平移口诀“左加右减,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.【解答】解:将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是y=(x﹣2)2+1.故选B.3.(2017•乐山)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.√2C.32或√2 D.−32或√2【考点】H7:二次函数的最值.【分析】将二次函数配方成顶点式,分m<﹣1、m>2和﹣1≤m≤2三种情况,根据y的最小值为﹣2,结合二次函数的性质求解可得.【解答】解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣3;2②若m>2,当x=2时,y=4﹣4m=﹣2,<2(舍);解得:m=32③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=√2或m=﹣√2<﹣1(舍),或√2∴m的值为﹣32故选:D.【点评】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.【把握火苗】①y=ax2+bx+c ②上③下④减小⑤增大⑥增大⑦减小⑧上⑨下⑩小⑪y ⑫左⑬右⑭原点⑮正⑯负○17唯一○18两个不同○19 20a+b+c没有○○21a-b+c ○22> ○23< ○24y=ax 2+bx+c ○25y=a(x-h)2+k ○26y=a(x-x 1)(x-x 2) ○27x ○28横 ○29> ○30< 【冰火不容】1. (2017江苏徐州)若函数y=x 2﹣2x+b 的图象与坐标轴有三个交点,则b 的取值范围是( )A .b <1且b ≠0B .b >1C .0<b <1D .b <1 【考点】HA :抛物线与x 轴的交点.【分析】抛物线与坐标轴有三个交点,则抛物线与x 轴有2个交点,与y 轴有一个交点.【解答】解:∵函数y=x 2﹣2x+b 的图象与坐标轴有三个交点,∴,解得b <1且b ≠0. 故选:A .2. (2017广西百色)经过A (4,0),B (﹣2,0),C (0,3)三点的抛物线解析式是 y=﹣x 2+x+3 . 【考点】H8:待定系数法求二次函数解析式.【分析】根据A与B坐标特点设出抛物线解析式为y=a(x﹣2)(x﹣4),把C坐标代入求出a的值,即可确定出解析式.【解答】解:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3,故答案为y=﹣x2+x+3.3.(2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y>0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy 随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.4.(2017贵州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.5. (2017山东泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x ﹣1 0 1 3y ﹣3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x <1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】HA:抛物线与x轴的交点;H3:二次函数的性质.【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=﹣1时,y=﹣3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.【解答】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选B.6.(2017山东临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.【点评】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.7. (2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【考点】H6:二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.8.(2017湖南株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,无法得到0<a<2;②﹣1<b<0,故①②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.9. (2017湖北荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k 的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;AB:根与系数的关系;H3:二次函数的性质.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)由于二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x1,x2,根据题意得(x1﹣3)(x2﹣3)<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.【解答】(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k>0,解得k<1,即k的取值范围是k<1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.10. (2017湖北江汉)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;H6:二次函数图象与几何变换;H7:二次函数的最值.【分析】(1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;【解答】解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n≤m,m=1,∴1≤n≤7,令y′=n2﹣4n=(n﹣2)2﹣4,∴n=2时,y′的值最小,最小值为﹣4,n=7时,y′的值最大,最大值为21,∴n2﹣4n的最大值为21,最小值为﹣4.。

二次函数及其应用

二次函数及其应用

二次函数及其应用《神奇的二次函数》嘿,同学们!你们知道吗?在数学的奇妙世界里,有一个超级厉害的家伙,叫做二次函数!就像我们玩游戏有厉害的绝招一样,二次函数可是解决好多数学问题的“大绝招”呢!先来说说它长啥样吧。

它的样子就像一个有点调皮的式子:y = ax² + bx + c 。

这看起来是不是有点复杂?其实呀,没那么可怕!比如说,有一天我和同桌小明一起做作业,就碰到了一道跟二次函数有关的难题。

题目是这样的:一个小球被抛出去,它的高度h 和时间t 的关系可以用二次函数h = -5t² + 10t + 1 来表示,那小球啥时候能达到最高呀?我一看,哎呀,这可咋办?小明却眨眨眼睛说:“咱们别怕,就像打怪升级一样,总能找到办法!”于是,我们就开始研究这个式子。

我们发现,要求最高的点,就得先找出对称轴!这就好像找到了打开宝藏的钥匙孔。

算对称轴的时候,我们可是费了好大的劲儿。

我都有点着急了,心里想:“这也太难了吧!”可小明鼓励我说:“别灰心,咱们再试试!”终于,算出了对称轴t = 1 。

这就意味着,在t = 1 的时候,小球能达到最高!这时候我忍不住感叹:“原来二次函数这么神奇,能算出小球的最高位置!”再想想,二次函数不就像一个魔法师嘛!能帮我们解决各种各样的问题。

比如计算抛物线的形状,找到最大利润,规划场地面积等等。

就像盖房子,我们得先设计好图纸,知道房子的形状和大小。

二次函数就是那个能帮我们画出“数学房子”图纸的工具!你们说,二次函数是不是超级厉害?它就像一个藏着无数秘密和宝藏的神秘盒子,只要我们努力去探索,就能发现里面的奇妙之处!我觉得呀,数学世界因为有了二次函数,变得更加精彩有趣啦!咱们可不能害怕它,得勇敢地去揭开它神秘的面纱,发现更多的惊喜!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3﹣
3
3
x)=﹣
3 x2+3
3 x+18
33 3 =﹣
2
22
2
8
88
(x﹣4)2+24 3 ,
∴当 x=4 时,S 最大=24 3 . 即 CD 长为 4m 时,使梯形储料场 ABCD 的面积最大为 24 3 m2;
故选:C.
7
4. 如图,若二次函数 y=ax2+bx+c(a≠0)图象的对称轴为 x=1,与 y 轴交于点 C,与 x 轴交于点 A、点 B(﹣ 1,0),则 ①二次函数的最大值为 a+b+c; ②a﹣b+c<0; ③b2﹣4ac<0; ④当 y>0 时,﹣1<x<3,其中正确的个数是( )
b (1)当 a>0 时,抛物线的开口向上;对称轴是直线 x=-2a;
b
4ac-b2
当 x=-2a时,y 有最小值,为 4a ;
在对称轴左边(即 x<-2ba)时,y 随 x 的增大而减小;
在对称轴右边(即 x>-2ba)时,y 随 x 的增大而增大; 顶点(-2ba,4ac4-a b2)是抛物线上位置最低的点;
增减性可以得到,当 x>-1 时,y 随 x 的增大而减小.因为-1<1<2.,所以 2> y1> y2 .故选 A.
2.将抛物线 y= x2﹣6x+21 向左平移 2 个单位后,得到新抛物线的解析式为( ) A.y= (x﹣8)2+5 B.y= (x﹣4)2+5 C.y= (x﹣8)2+3 D.y= (x﹣4)2+3 【答案】D. 【解答】y= x2﹣6x+21 = (x2﹣12x)+21 = [(x﹣6)2﹣36]+21 = (x﹣6)2+3, 故 y= (x﹣6)2+3,向左平移 2 个单位后, 得到新抛物线的解析式为:y= (x﹣4)2+3. 故选:D.
6
3.如图,利用一个直角墙角修建一个梯形储料场 ABCD,其中∠C=120°.若新建墙 BC 与 CD 总长为 12m,则 该梯形储料场 ABCD 的最大面积是( )
A.18m2
B.18 3 m2
C.24 3 m2
45
D.
3 m2
2
【答案】C
【解答】解:如图,过点 C 作 CE⊥AB 于 E,
则四边形 ADCE 为矩形,CD=AE=x,∠DCE=∠CEB=90°,
【解答】 解:(1)∵A(12,52),B(4,6)在抛物线 y=ax2+bx+6 上,
∴íïì(12)2a+12b+6=52,解得íïìa=2,
îï42a+4b+6=6,
îïb=-8.
∴抛物线的解析式为 y=2x2-8x+6.
(2)设动点 P 的坐标为(n,n+2),则点 C 的坐标为(n,2n2-8n+6).
6.二次函数与一元二次不等式之间的关系
“一元二次不等式” 实际上是指二次函数的函数值“y>0, y<0 或 y≥0,y≤0”,一元二次不等式的解集从图象
上看是指抛物线在 x 轴上方或 x 轴下方的部分对应 x 的取值范围
2
考点 1: 二次函数的图象与性质 【例题 1】如图,抛物线 y=ax2+bx+c 的对称轴为直线 x=1,则下列结论中,错误的是( )
第 13 讲 二次函数及其应用
1.二次函数的概念及解析式 (1)概念:形如 y=ax2+bx+c(其中 a,b,c 是常数,且 a≠0) 的函数叫做二次函数,利用配方可以把二次函 数 y=ax2+bx+c 表示成 y=a(x+2ba)2+4ac4-a b2. (2)二次函数解析式的三种形式: ①一般式 y=ax2+bx+c(a,b,c 是常数,a≠0);
x1,x2),因而确定二次函数解析式需要已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式.
b.已知抛物线的顶点坐标时,选用顶点式.
c.已知抛物线与 x 轴两个交点的坐标(或横坐标 x1,x2)时,选用交点式.
2.二次函数的图象和性质
二次函数 y=ax2+bx+c(其中 a,b,c 是常数,且 a≠0)的图象是抛物线.
“h:左加右减,k:上加下减”.
(2)二次函数图象的对称:
①两抛物线关于 x 轴对称,此时顶点关于 x 轴对称,a 的符号相反;
②两抛物线关于 y 轴对称,此时顶点关于 y 轴对称,a 的符号不变;
(3)二次函数图象的旋转:开口反向(或旋转 180°),此时顶点坐标不变,只是 a 的符号相反.
5.二次函数与一元二次方程之间的关系 方程 ax2+bx+c=0 的解是二次函数 y=ax2+bx+c 与 x 轴交点的横坐标.解一元二次方程 ax2+bx+c=k 就 是求二次函数 y=ax2+bx+c 与直线 y=k 的交点的横坐标. (1)当 b2+4ac>0 时,抛物线与 x 轴有两个交点,方程有两个不相等的实数根; (2)当 b2-4ac=0 时,抛物线与 x 轴有一个交点,方程有两个相等的实数根; (3)当 b2-4ac<0 时,抛物线与 x 轴没有交点,方程无实数根.
故本选项正确,不符合题意.
故选:C.
归纳:本题考查二次函数的图象性质:(1)a 的正负决定图象的开口方向,c 的正负决定图象与 y 轴的交点位
置,a 和 b 的正负决定图象对称轴的位置;(2)二次函数与方程的关系,即二次函数图象与坐标轴的交点情况
可转化为二次方程根的判别式的正负;(3)二次函数的开口方向与对称轴决定其增减性.
4
考点 3: 二次函数与几何图形的综合应用 【例题 3】如图,直线 y=x+2 与抛物线 y=ax2+bx+6 相交于 A(12,52)和 B(4,m),点 P 是线段 AB 上异 于 A,B 的动点,过点 P 作 PC⊥x 轴,交抛物线于点 C. (1)点 B 坐标为(4,6),并求抛物线的解析式; (2)求线段 PC 长的最大值. 【点拨】 (1)点 B 坐标代入一次函数解析式可得 m=6,将 A,B 坐标代入 y=ax2+bx+6,可求出抛物线 的解析式;(2)垂直于 x 轴的线段 PC 的长就是将二次函数的解析式减去一次函数的解析式,整理后会发现仍 然是二次函数的形式,利用二次函数的性质可得最大值.
3
考点 2: 二次函数的实际应用 【例题 2】 “互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条 40 元,当 售价为每条 80 元时,每月可销售 100 条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销 售单价每降 1 元,则每月可多销售 5 条.设每条裤子的售价为 x 元(x 为正整数),每月的销售量为 y 条. (1)直接写出 y 与 x 的函数关系式; (2)设该网店每月获得的利润为 w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出 200 元资助贫困学生.为了保证捐款后每月利润不 低于 4220 元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价? 【分析】(1)直接利用销售单价每降 1 元,则每月可多销售 5 条得出 y 与 x 的函数关系式; (2)利用销量×每件利润=总利润进而得出函数关系式求出最值; (3)利用总利润=4220+200,求出 x 的值,进而得出答案. 【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得 y=﹣5x+500; (2)由题意,得: w=(x﹣40)(﹣5x+500) =﹣5x2+700x﹣20000 =﹣5(x﹣70)2+4500 ∵a=﹣5<0∴w 有最大值 即当 x=70 时,w 最大值=4500 ∴应降价 80﹣70=10(元) 答:当降价 10 元时,每月获得最大利润为 4500 元; (3)由题意,得: ﹣5(x﹣70)2+4500=4220+200 解之,得:x1=66,x2 =74, ∵抛物线开口向下,对称轴为直线 x=70, ∴当 66≤x≤74 时,符合该网店要求 而为了让顾客得到最大实惠,故 x=66 ∴当销售单价定为 66 元时,即符合网店要求,又能让顾客得到最大实惠. 归纳: 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标, 可设一般式;若已知二次函数图象与 x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴 与最大(或小)值,可设顶点式.
b (2)当 a<0 时,抛物线的开口向下;对称轴是直线 x=-2a;
1
b
4ac-b2
b
当 x=-2a时,y 有最大值,为 4a ,在对称轴左边(即 x<-2a)时,
y 随 x 的增大而增大.在对称轴右边(即 x>-2ba)时, y 随 x 的增大而减小;顶点(-2ba,4ac4-a b2)是抛物线上位置最高的点.
A.ac<0
Hale Waihona Puke B.b2﹣4ac>0C.2a﹣b=0
D.a﹣b+c=0
【分析】由抛物线的开口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断 c 与 0 的关系,然后根据对称
轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.
【解答】解:A.由抛物线的开口向下知 a<0,与 y 轴的交点在 y 轴的正半轴上,可得 c>0,因此 ac<0,故
则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,
在 Rt△CBE 中,∵∠CEB=90°,
1
1
∴BE= BC=6﹣ x,
2
2
3
11
∴AD=CE= 3 BE=6 3 ﹣ x,AB=AE+BE=x+6﹣ x= x+6,
2
22
1
11
∴梯形 ABCD 面积 S= (CD+AB)•CE= (x+ x+6)•(6
相关文档
最新文档