参数估计和假设检验(二)

合集下载

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。

总体参数是指总体的其中一种性质,比如总体均值、总体方差等。

样本数据是从总体中随机抽取的一部分数据,用来代表总体。

参数估计的目标是使用样本数据来估计总体参数的值。

常见的参数估计方法有点估计和区间估计。

(1)点估计点估计是通过一个统计量来估计总体参数的值。

常见的点估计方法有样本均值、样本方差等。

点估计的特点是简单、直观,但是估计值通常是不准确的。

这是因为样本的随机性导致样本统计量有一定的误差。

因此,点估计通常会伴随着误差界限,即估计值的置信区间。

(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。

常见的区间估计方法有置信区间和可信区间。

置信区间是指当重复抽样时,包含真实总体参数的概率。

置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

可信区间是指在一次抽样中,包含真实总体参数的概率。

可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。

例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。

2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。

在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。

在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。

然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。

假设检验包含两种错误,即第一类错误和第二类错误。

第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。

第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。

常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设为未知参数θ的无偏一致估计,且是θ2的( )A.无偏一致估计。

B.无偏非一致估计。

C.非无偏一致估计。

D.非无偏非一致估计。

正确答案:C解析:根据无偏估计和一致估计的概念可得的非无偏一致估计,故选C。

知识模块:参数估计2.设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2)。

B.X服从参数为μ的指数分布。

C.P{X=m}=μ(1—μ)m—1,m=1,2,…。

D.X服从[0,μ]上均匀分布。

正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为,故选A。

对于选项B,X服从参数为μ的指数分布,则E(X)=,μ的矩估计,对于选项C,X服从参数为μ的几何分布,E(X)=,μ的矩估计,对于选项D,E(X)=,μ的矩估计。

知识模块:参数估计3.总体均值μ置信度为95%的置信区间为,其含义是( )A.总体均值μ的真值以95%的概率落入区间。

B.样本均值以95%的概率落入区间。

C.区间含总体均值μ的真值的概率为95%。

D.区间含样本均值的概率为95%。

正确答案:C解析:根据置信区间的概念,故选C。

均值μ是一个客观存在的数,说“μ以95%的概率落入区间”是不妥的,所以不选A,而B、D两项均与μ无关,无法由它确定μ的置信区间。

知识模块:参数估计4.下列关于总体X的统计假设H0属于简单假设的是( )A.X服从正态分布,H0:E(X)=0。

B.X服从指数分布,H0:E(X)≥1。

C.X服从二项分布,H0:D(X)=5。

D.X服从泊松分布,H0:D(X)=3。

正确答案:D解析:A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D选项的假设可以完全确定总体分布,因而是简单假设,故选D。

概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。

2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。

2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。

(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验第五章参数估计和假设检验本章重点1、抽样误差的概率表述;2、区间估计的基本原理;3、小样本下的总体参数估计方法;4、样本容量的确定方法;本章难点1、一般正态分布 标准正态分布;2、t分布;3、区间估计的原理;4、分层抽样、整群抽样中总方差的分解。

统计推断:利用样本统计量对总体某些性质或数量特征进行推断。

两类问题:参数估计和假设检验基本特点:(1)以随机样本为基础;(2)以分布理论为依据;(3)推断的只是一种可能的结果;(4)是归纳推理和演绎推理的结合。

本章主要内容:阐述常用的几种参数估计方法。

第一节参数估计一、参数估计的基本原理两种估计方法点估计 区间估计1.点估计:以样本指标直接估计总体参数。

点估计优良性评价准则(1)无偏性。

估计量 的数学期望等于总体参数,即 , 该估计量称为无偏估计。

(2)有效性。

当 为 的无偏估计时, 方差 越小, 无偏估计越有效。

(3)一致性。

对于无限总体,如果对任意 ,有,则称 是 的一致估计。

(4)充分性。

一个估计量如能完全地包含未知参数信息,即为 充分估计量。

2.点估计的缺点:不能反映估计的误差和精确程度区间估计:利用样本统计量和抽样分布估计总体参数的可能区间【例1】CJW 公司是一家专营体育设备和附件的公司,为了监控公司的服务质量, CJW 公司每月都要随即的抽取一个顾客样本进行调查以了解顾客的满意分数。

根据以往的调查,满意分数的标准差稳定在20分左右。

最近一次对100名顾客的抽样显示,满意分数的样本均值为82分,试建立总体满意分数的区间。

抽样误差抽样误差:一个无偏估计与其对应的总体参数之差的绝对值。

抽样误差 = (实际未知)要进行区间估计,关键是将抽样误差E 求解。

若 E 已知,则区间可表示为:区间估计:估计未知参数所在的可能的区间。

区间估计优良性评价要求θθ⇒ˆθˆθθ=ˆE θˆ0>εθˆ2)ˆ(θθ-E0)|ˆ(|=≥-∞→εθθn n P Lim n θˆθθαθθθ-=1)ˆˆ(UL P <<[]E x x +-,E是抽样误差的组成部分,而由于全面调查所形成的层间方差不是抽样误差的组成部分。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。

参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。

下面将详细介绍这两种方法以及它们的应用。

1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。

在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。

参数估计的目标是利用样本数据去估计总体参数的值。

最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。

-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。

置信区间的计算方法通常是基于样本统计量的分布进行计算。

在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。

-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。

-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。

2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。

在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。

假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。

原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。

-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。

-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。

-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。

在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。

常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。

参数估计与假设检验的关系

参数估计与假设检验的关系

1-2

参数估计与假设检验的区别
2、区间估计通常求得的是以样本估计值为中心的双侧置 信区间。 假设检验不仅有双侧检验也有单侧检验。 3、区间估计立足于大概率1-α,通常以较大的把握程度( 可信度)1-α去估 计总体参数的置信区间。 假设检验是立 足于小概率α ,通常以很小的显著水平去检验对总体参数 的先验假设是否成立。
双侧检验!
1-7

用置信区间进行检验
(例题分析)
H0: = 1000
置信区间为
H1: 1000
= 0.05
n = 49
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
x z 2
n
,
x
z
2
n
9911.96
50 ,991 1.96 16
50 16
966.5,1015.5
3. 右侧检验:求出单边置信上限
X z
n
或X
t
S n
4. 若总体的假设值0大于单边置信上限,拒绝H0
1-6

用置信区间进行检验
(例题分析)
【例】一种袋装食品每包的标准重量应为
1000克。现从生产的一批产品中随机抽取16 袋,测得其平均重量为991克。已知这种产 品重量服从标准差为50克的正态分布。试确 定这批产品的包装重量是否合格?( = 0.05)
参数估计与假设检验的区别
1、参数估计是根据样本资料估计总体参数的真值,假设检验是根 据样本资料来检验对总体参数的先验假设是否成立。 例如,通过 随机抽取的样本对某地区居民的平均收入进行推断:
参数估计:要求以一定的概率估计总体平均收入 假设检验:要求以一定的概率判断总体平均收入是否达到某

实习二 参数估计与假设检验

实习二 参数估计与假设检验
H0:
0.05
②.计算t 统计量
t X1 X2 S X1 X2 t ( n1 n 2 2) =3.34

=12+12-2=22
③.确定概率P值,下结论 P=0.008,拒绝H0 ,接受H1。银屑病患者与正常人的血 清IL-6均数不相等.
完全随机设计t检验的假设检验步骤
H0:μ 1= μ
2
H1: μ
1
≠ μ
2
α=0.05
X1 X 2 t t ( ), n1 n2 2 S X1 X 2
查相应ν的t界值表,确定P值
P≤α
拒绝H0,接受H1
作出推断结论
P>α
不能拒绝H0
完全随机设计t检验的适用条件
独立性
正态性
方差齐性(equal variances): 两样本来自的两总体方差相等 方差齐性判断: • 经验判断 • 作方差齐性检验
2 1
2 ? 2
完全随机设计两组比较假设检验思路
方差齐
先作方差齐性检验
t检验
t 检验
方差不齐
变量变换
秩和检验
实习内容
练习题 实习指导第七、八章案例辨析、选择题
理论复习
配对设计
2.同体配对: 例3 用两种方法测定12份血清样品中Mg2+含量(mmol/L) 的结果见下表,试问两种方法测定结果有无差异?
d d n 0.04 0.0033 12
配对设计t检验可解决的问题
例3 用两种方法测定12份血清样品中Mg2+含量(mmol/L)的结果
见如表(见下页)。试问两种方法测定结果有无差异?
①. 建立假设,确定检验水准 H0: d

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。

本文将详细介绍参数估计与假设检验的基本原理和应用。

一、参数估计参数估计是通过样本数据推断总体的未知参数。

在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。

参数是总体的特征指标,例如均值、方差、比例等。

参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。

参数估计分为点估计和区间估计两种方法。

点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。

常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。

区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。

置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。

二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。

在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。

原假设通常表示一种无关,即不发生预期效应或差异。

备择假设则表示研究者所期望的效应或差异。

在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。

然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。

最后,比较检验统计量与临界值,以决定是否拒绝原假设。

三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。

以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。

在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。

在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。

四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。

第4章 参数估计与假设检验

第4章 参数估计与假设检验
2 2 1.25 1.16 14.36 13.60 1.96 0.69, 0.83 2570 2000
2 2Leabharlann y 14.36, n2 2000, 2 1.16
, 2 (2 )
2 1
2
2 2 2 未知但 1 2
(2) 2 未知
S S 或 X t S f=n-1 , X t 2 X t 2 2 n n n
X ~ t (n 1) 选取样本函数 t S n P t t P t t 1 2 2 X P t 1 2 S n 得 的置信度为 1 的置信区间为
23.67,62.27
此题因为是大样本,故用两种方法计算结果相同, 而公式**较简便。如果是小样本,只能按小样本的 公式*计算。若按大样本公式计算,结果误差偏大。
(2 ) , 2 未知且
2 1 2
2 1
2
2
若为小样本,取样本函数 t
2 1 2
X Y 1 2
n
2
n

2
n
0 5 1.960 u 0.0 1 2.576 u0.1 1.645 u0.2 2
例2 伤寒论用桂枝39张处方,桂枝用量服从σ=3g的正 态分布,根据样本均数8.14g,显著水平0.05,估计桂枝用 量μ的置信区间 解:μ 的置信度0.95的置信区间为
3 8.14 1.96 =(7.1984,9.0816)g 39
2 x (1 ) 已知 2 e X u ~ N 0,1 2 / n
2

统计学第六章 参数估计和假设检验

统计学第六章 参数估计和假设检验

n
2
2
x
26
【例】为估计市场上某产品的平均日销售额, 计划进行一次抽样调查。历史资料反映该产 品日销售额的标准差为20万元。如果要求这 次估计的可靠性为95%,估计允许的误差为5 万元。应抽取多少天的销售额进行调查?
nZ /22 22 1.962 5 2 202 61.46 x
因为n为整数,为保证目的调查天数应为62。
n
100
结论:统计量的值落在接受域内,所以不能 认为合格率不足98%。
49
用Excel进行参数估计
• Excel提供了抽样极限误差的计算方法。根 据抽样极限误差,可以自己定义函数求出 置信区间
50
样本均值服从正态分布情况
• Excel中的“CONFIDENCE”函数可以计算 样本均值服从正态分布条件下的抽样极限 误差
30
小概率事件原理
➢在一次试验中,小概率事件是不可能发生 的
➢显著性水平α:即小概率的大小界定。
31
原假设和备择假设
• 在参数检验中,首先要对某一总体参数提 出一个假设,然后通过抽样调查来验证其 可信与否。这一假设被称为原假设(零假 设、无效假设),记为H0。如果抽样调查 的结果拒绝了原假设,就必须接受另一个 假设——备择假设,记为H1。
样本
部分—整体 随机原则
总体
统计量
总体参数
4
参数估计的优良标准
1.无偏性。估计统计量的数学期望等于被估计参 数的真值。
2.一致性。当样本单位数充分大时,样本指标充 分靠近总体指标。
3.有效性。估计的方差比其他估计量小
5
点估计
➢也叫定值估计,就是根据总体指标的结构 形式设计样本指标,并直接以一个样本统 计量实现值来估计总体参数。

参数估计和假设检验的基本原理

参数估计和假设检验的基本原理

参数估计和假设检验的基本原理参数估计和假设检验是统计学中两个重要的概念和方法,用于从样本数据中得出总体参数的估计和对统计假设进行验证。

本文将介绍参数估计和假设检验的基本原理,以及它们在统计学中的应用。

一、参数估计的基本原理参数估计是用样本数据对总体参数进行估计的方法。

在统计学中,样本是从总体中抽取的一部分数据,总体是我们研究的对象。

参数是总体的数值特征,如总体均值、比例、方差等。

参数估计的基本原理是通过样本数据来推断总体参数的取值范围。

常用的参数估计方法有点估计和区间估计。

1. 点估计点估计是利用样本数据得到一个点作为总体参数的估计值。

点估计的基本原理是从样本中选取一个统计量作为总体参数的估计值。

常见的点估计方法有样本均值、样本比例以及最大似然估计等。

2. 区间估计区间估计是通过样本数据得到一个包含总体参数真值的区间。

区间估计的基本原理是根据样本数据计算出一个区间,使得总体参数落在这个区间内的概率达到预先指定的置信水平。

常见的区间估计方法有置信区间和预测区间等。

二、假设检验的基本原理假设检验是用于验证统计假设的方法。

统计假设是对总体参数或总体分布的陈述或假定,通常包括原假设和备择假设。

假设检验的基本原理是根据样本数据来判断原假设是否能够拒绝。

假设检验通常包括以下步骤:1. 建立假设首先,我们需要明确原假设和备择假设。

原假设通常是我们要进行验证的假设,备择假设则是对原假设的否定或补充。

2. 选择检验统计量接下来,我们选择一个合适的检验统计量,它能够在原假设成立时与备择假设有所区别。

3. 设置显著水平显著水平是在假设检验中预先设定的,用于判断拒绝原假设的临界值。

常见的显著水平有0.05和0.01。

4. 计算统计量的值根据样本数据计算检验统计量的值。

5. 判断拒绝域根据显著水平和检验统计量的分布,确定一个拒绝域。

如果检验统计量的值落在拒绝域内,就拒绝原假设;否则,接受原假设。

6. 得出结论根据拒绝或接受原假设的结果,得出关于总体的结论。

06参数估计与假设检验(医学统计学)

06参数估计与假设检验(医学统计学)

三、总体均数的区间估计
(一) 已知
95%可信区间:
一般情况
其中 为标准正态分布的双侧界值。
(二) 未知
Confidence interval
通常未知,这时可以用其估计量S 代替,但
已不再服从标准正态分布,而是服从
著名的t 分布。
William Gosset
图6-1 不同自由度的 t 分布图
t分布
四、两总体均数差的区间估计
实际中,有时需要计算两个总体均数差值的可信 区间,例如通过计算两种降压药物平均降压的差 值比较两种药物的差别,其双侧 100(1 )%可信 区间的计算公式为 ( X1 X 2 ) t /2, SX1X2 其中, n1 n2 2 为自由度,SX1X2 为两样本均数之 差的标准误。
样本率来代替总体率,其估计值为:
p(1 p)
Sp
n
二、参数估计
点估计: 是使用单一的数值直接作为总体参数的估 计值,如用估计相应的,用估计相应的。该法表 达简单,但未考虑抽样误差的影响,无法评价参 数估计的准确程度。
区间估计(interval estimation)是指按预先给定的概 率,计算出一个区间,使它能够包含未知的总体 均数。事先给定的概率称为可信度,计算得到的 区间称为可信区间(confidence interval,CI)。
n
250
六、两总体率差值的区间估计
在大样本情况下,可采用正态近似法对两总体率 差值进行可信区间估计,其计算公式为:
( p1 p2 ) z S /2 )( n1
1 n2
),pc =
X1 n1
X2 n2
X1和X2分别表示两组中某事件发生的例数。
例6-7 某医院口腔科医生用极固宁治疗牙本质过 敏症,以双氟涂料作对照,进行了1年的追踪观察 ,结果见表6-1所示,试估计两组有效率差别95% 的可信区间。

参数估计和假设检验练习题

参数估计和假设检验练习题

参数估计和假设检验练习题作业⼆(⼀)单项选择题1.标准误的英⽂缩写为:A.S B.SE C.S D.SDX2.通常可采⽤以下那种⽅法来减⼩抽样误差:A.减⼩样本标准差B.减⼩样本含量C.扩⼤样本含量D.以上都不对3.配对设计的⽬的:A.提⾼测量精度B.操作⽅便C.为了可以使⽤t检验D.提⾼组间可⽐性4.以下关于参数估计的说法正确的是:A.区间估计优于点估计B.样本含量越⼤,参数估计准确的可能性越⼤C.样本含量越⼤,参数估计越精确D.对于⼀个参数只能有⼀个估计值5.关于假设检验,下列那⼀项说法是正确的A.单侧检验优于双侧检验B.采⽤配对t检验还是成组t检验是由实验设计⽅法决定的C.检验结果若P值⼤于0.05,则接受H0犯错误的可能性很⼩D.⽤u检验进⾏两样本总体均数⽐较时,要求⽅差齐性6.两样本⽐较时,分别取以下检验⽔准,下列何者所取第⼆类错误最⼩A.α=0.05 B.α=0.01 C.α=0.10 D.α=0.207.统计推断的内容是A.⽤样本指标推断总体指标B.检验统计上的“假设”C.A、B均不是D.A、B均是8.当两总体⽅差不齐时,以下哪种⽅法不适⽤于两样本总体均数⽐较A.t检验B.t’检验C.u 检验(假设是⼤样本时)D.F检验A.1X=2X,1S=2SB.作两样本t检验,必然得出⽆差别的结论C.作两⽅差齐性的F检验,必然⽅差齐D.分别由甲、⼄两样本求出的总体均数的95%可信区间,很可能有重叠10.以下关于参数点估计的说法正确的是A.CV越⼩,表⽰⽤该样本估计总体均数越可靠B.σ越⼩,表⽰⽤该样本估计总体均数越准确XC.σ越⼤,表⽰⽤该样本估计总体均数的可靠性越差XD.S越⼩,表⽰⽤该样本估计总体均数越可靠(⼆)名词解释(三)是⾮题1.若两样本均数⽐较的假设检验结果P值远远⼩于0.01,则说明差异⾮常⼤。

P⼩于0.01只能说明两样本均数有差异,但并不能说明差异的⼤⼩。

2.对同⼀参数的估计,99%可信区间⽐90%可信区间好。

第七章假设检验

第七章假设检验

第三节
u检验
u检验(u test ),亦称z检验(z test) 大样本均数(率)与总体均数(率)比较的u检 验、 两个大样本均数(率)比较的u检验 一、大样本均数比较的u检验 二、大样本率的u检验
一、大样本均数比较的u检验
假定样本数据服从正态分布 ,当总体标准差 未知时,可用样本标准差作为估计值 这里的总体均数一般是指已知的理论值、标准 值或经过大量观察所得到的稳定值,记作µ 0 (或记为 )
两个样本率p1、p2的差值服从正态分布
u p1 p2
1 2
p p
2 2 p p p p 1 (1 1 ) / n1 2 (1 2 ) / n2
1 2 1 2
样本率p介于0.1~0.9之间,每组例数大于60 例
n1 p1 n2 p2 ˆ0 n1 n2
两样本均数比较的u检验
该检验方法适用于完全随机设计中两组 计量资料差别的比较 两样本均数差值服从正态分布
u Leabharlann 1 X 2X1X2
X
1X2
2 2 2 2 X / n 1 1 2 / n2 X2 1

当总体标准差未知,两组例数均超过30
ˆX
1X2
亦称样本率与总体率的比较的u检验,这里的 总体率一般是指已知的理论值、标准值或经大 量观察所获得的稳定值。
例7–3 全国调查的调查结果,学龄前儿童营 养性贫血患病率为23.5%。某医院为了解当
地学龄前儿童能够营养性贫血患病情况,对
当地1396例学龄前儿童进行了抽样调查,查
出营养性贫血患儿363例,患病率为26.0%。
ˆp p
1
2
1 1 ˆ0 (1 ˆ0 )( ) n1 n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拒绝域
0.05
在 = 0.05的水平上不拒绝H0
0
1.645
Z
结论: 不能认为该厂生产的元件 寿命显著地高于1200小时
22
4
1
2

总体均值的检验
(2未知小样本)
0011 0010 1010 1101 0001 0100 1011
1.假定条件 –总体为正态分布,2未知,且小样本 2.使用t 统计量
某一等级的轮胎的平均寿命在一 定的汽车重量和正常行驶条件下 大于40000公里,对一个由20个轮 胎组成的随机样本作了试验,测 得平均值为41000公里,标准差为 5000公里。已知轮胎寿命的公里 数服从正态分布,我们能否根据 这些数据作出结论,该制造商的 产品同他所说的标准相符?( = 0.05) 26
4
1
2
什么是假设?
(hypothesis)
0011 0010 1010 1101 0001 0100 1011
• 对总体参数的的数值所 作的一种陈述
–总体参数包括总体均值、 比例、方差等 –分析之前必需陈述
我认为该地区居民的平 均年储蓄额为1.5万元!
4
1
2
4
什么是假设检验?
(hypothesis testing)
4
1
2
21
解:
H0: 1200 H1: >1200 = 0.05 n = 100 临界值(s):
检验统计量:
0011 0010 1010 1101 0001 0100 1011
1245 1200 z 1.5 s n 300 100
x 0
由于|Z|=1.5<Zα =1.645 决策:
4
1
2
15
总体均值的检验——t检验
0011 0010 1010 1101 0001 0100 1011
4
1
2
16
2 已知大样本均值的检验
(例题分析)
0011 0010 1010 1101 0001 0100 1011
【例】某机床厂加工一种零件, 根据经验知道,该厂加工零件的 椭圆度近似服从正态分布,其总 体均值为 0=0.081mm,总体标准 差为=0.025。今换一种新机床进 行加工,抽取n=200个零件进行检 验,得到的椭圆度为0.076mm。试 问新机床加工零件的椭圆度的均 值与以前有无显著差异 ?(= 0.05)
由于|t|=3.16>tα /2=2.262

决策:
拒绝 H0
.025
在 = 0.05的水平上拒绝H0
结论:
-2.262
0
2.262
t
有证据表明该机器的性能 不好
4
1
2
25
2 未知小样本均值的检验
(例题分析)
0011 0010 1010 1101 0001 0100 1011
【例】一个汽车轮胎制造商声称,
4
1
2
6
提出原假设和备择假设
0011 0010 1010 1101 0001 0100 1011
• 1. 2. 3. 4.
什么是备择假设?(alternative hypothesis) 与原假设对立的假设 研究者想收集证据予以支持的假设 总是有不等号: , 或 表示为 H1,例如 – H1: 3910(克) – H1: 3910(克) – H1: 3910(克)
0011 0010 1010 1101 0001 0100 1011
事先对总体参数或分布形式作出某种 假设,然后利用样本信息来判断原假设 是否成立
4
1
2
5
提出原假设和备择假设
0011 0010 1010 1101 0001 0100 1011
• 1. 2. 3. 4.
什么是原假设?(null hypothesis) 待检验的假设 研究者想收集证据予以反对的假设 总是有等号 , 或 表示为 H0,例如 – H0: 3190(克) – H0: 3190(克) – H0: 3190(克)
–常用的 值有0.01, 0.05, 0.10
4
1
2
11
作出统计决策
0011 0010 1010 1101 0001 0100 1011
1. 计算检验的统计量 2. 根据给定的显著性水平为,查表得出 相应的临界值 3. 将检验统计量的值与 水平的临界值进 行比较 4. 得出拒绝或不拒绝原假设的结论
4
1
2
12
一个总体参数的检验
总体均值的检验 总体比例的检验 0011 0010 1010 1101 0001 0100 1011 总体方差的检验
4
1
2
总体均值检验
0011 0010 1010 1101 0001 0100 1011
4
1
2
总体均值的检验——Z检验
0011 0010 1010 1101 0001 0100 1011
1. 假定条件
– 有两类结果 – 总体服从二项分布 – 可用正态分布来近似
2. 比例检验的 Z 统计量
Z ˆ p p0 ~ N (0,1) p0 (1 p0 ) n
p0为假设的总体比例
4
1
2
29
单个总体比例的检验
(例题分析)
0011 0010 1010 1101 0001 0100 1011
4
1
2
31
总体方差的检验 2 检验) (
0011 0010 1010 1101 0001 0100 1011
4
1
2
总体方差的检验——2 检验
0011 0010 1010 1101 0001 0100 1011
4
1
2
33
方差的卡方 (2) 检验
(例题分析)
0011 0010 1010 1101 0001 0100 1011
0.3
-0.3 -1.3
-0.4
-1.5 0.7
-0.7
0.6 1
1.4
-0.9 -0.5 -0.6
-0.6
1.3 0
-0.6
-0.5
0.7
1
-1.5
-0.2
健康饮品
4
绿色 绿色
健康饮品
1
-0.2
2
-1.9
1.1
34
解:
H : ≥1 H1: 2 1 = 0.05 df = 25 - 1 = 24 临界值(s): 决策: 结论:
t
X 0 S n
~ t (n 1)
4
1
2
23
2 未知小样本均值的检验
(例题分析) 0011 0010 1010 1101 0001 0100 1011
【例】 某机器制造出的肥
皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取10块肥皂为样本,测得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。
【例】一项统计结果声称,某
市老年人口 (年龄在65岁以 上)的比重为14.7%,该市老 年人口研究会为了检验该项 统计是否可靠,随机抽选了 400名居民,发现其中有57人 年龄在65岁以上。调查结果 是否支持该市老年人口比重 为14.7%的看法?(= 0.05)
双侧检验
4
1
2
30
解:
H : p= 14.7% H1: p 14.7% = 0.05 n = 400 临界值(s):
假设检验
0011 0010 1010 1101 0001 0100 1011
4
1
2
主要内容
0011 0010 1010 1101 0001 0100 1011
1. 假设检验的基本问题 2. 一个总体参数的检验
4
1
2
2
假设检验的基本问题
0011 0010 1010 1101 0001 0100 1011
【例】 根据过去大量资料,
某厂生产的灯泡的使用寿命 服 从 正 态 分 布 N ~ (1020 , 1002)。现从最近生产的一批 产品中随机抽取16只,测得 样本平均寿命为1080小时。 试在0.05的显著性水平下判 断这批产品的使用寿命是否 有显著提高?(=0.05)
单侧检验
4
1
2
19
解:
0011 0010 1010 1101 0001 0100 1011
由于|t|=0.894<tα =1.7291 决策: 在 = 0.05的水平上不拒绝H0
结论:
0
1.7291
t
不能认为制造商的产品同他所 说的标准相符
4
1
2
27
总体比例的检验
(Z 检验)
0011 0010 1010 1101 0001 0100 1011
4
1
2
单个总体比例检验
0011 0010 1010 1101 0001 0100 1011
1.645
Z
4
1
2
20
2 未知大样本均值的检验
0011 0010 1010 1101 0001 0100 1011
(例题分析)
单侧检验
【例】某电子元件批量生产的 质量标准为平均使用寿命1200 小时。某厂宣称他们采用一种 新工艺生产的元件质量大大超 过规定标准。为了进行验证, 随机抽取了100件作为样本, 测得平均使用寿命1245小时, 标准差300小时。能否说该厂 生产的电子元件质量显著地高 于规定标准? (=0.05)
常见的检验统计量有Z统计量、t统计量、
2统计量等。
相关文档
最新文档