SPSS-单因素方差分析 案例解析

合集下载

SPSS-单因素方差分析(ANOVA) 案例解析培训资料

SPSS-单因素方差分析(ANOVA) 案例解析培训资料

S P S S-单因素方差分析(A N O V A)案例解析SPSS-单因素方差分析(ANOVA) 案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表着 tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANOVA” 分析结果,显著性0.098,由于0.098>0.05 所以以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法通过“Kruskal-Wallis ”检验方法,我们得出“sig=0.098"跟我们先前分析的结果一样,都0.098,事实得到论证。

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

(5)在主对话框中,单击“OK”提交进行。

(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。

第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。

二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。

灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。

(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。

(5)在主对话框中,单击“OK”提交进行。

五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS详细操作:单因素方差分析

SPSS详细操作:单因素方差分析

SPSS详细操作:单因素方差分析一、问题与数据为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。

治疗后ALT水平(U/L)如下。

试问应用三种治疗措施后,患者的ALT水平是否有差异?表1. 三组患者治疗后的ALT水平(U/L)二、对数据结构的分析整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。

要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。

若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。

三、SPSS分析方法1. 数据录入SPSS(1=A组,2=B组,3=C组)2. 选择Analyze→General Linear Model→Univariate (假设三组数据服从正态分布)3. 选项设置1)主对话框设置:将分析变量(ALT)送入Dependent Variable 框中→将分组变量(Group)送入Fixed Factor(s) 框中。

2)Options设置:点击Options按钮,勾选Descriptive statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。

四、结果解读Descriptive Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std. Deviation)和例数(N)。

Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果。

F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。

Tests of Between-Subjects Effects表格给出了方差分析的结果。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

spss 单因素方差分析例子

spss 单因素方差分析例子

第一题:data0706-nutrition为地衣(lichen)、树叶成叶和嫩叶的蛋白质和可溶性碳水化合物(water soluble carbohydrate)的含量,先分析三者之间蛋白质的含量有无差异?如果有差异,具体是怎么差异的?再可溶性碳水化合物的含量有无差异?如果有差异,具体怎么差异?(1)地衣(lichen)、树叶成叶和嫩叶的蛋白质的含量差异分析;第一步:导出变量items和protein,以便删除protein中缺失数据。

第二步:打开导出数据data0706-nutrition1,先排序,然后删除缺失数据。

第三步:对data0706-nutrition1数据的正态性、异常值和极值、方差齐性进行检验,对数据做一个检查,Analyze->Descriptive Statistics->Explore;首先:如上图,把要检验的变量protein送入Dependent List,把分组变量(因素变量)items送入Factor List。

其次:如下图,点击Plots打开:选择Factor Levels together、Stem-and-leaf、Histogram、Normality plots with tests,下方Spread vs Level with Levene Test可以提供方差齐性的检验,选择Untransformed(不对数据进行转换)。

输出结果:第一组是尽管sig=0.935,但由于样本数太小,正态一般;第二组正态性不好。

第三组中,p较小,也只是近似正态。

基于平均数的计算(Based on Mean),各组方差有差异(p=0.044)。

由直方图可以看出,在第二组和第三组存在一些极值,数据分布不均匀,连续性不好。

由茎叶图可知,第二组和第三组分别存在4个,3个极值。

由qq图和QQ图不能得到一些较有用的信息,因为正态性之前已经判断。

箱图并与茎叶图一致,在第二组标识了4个异常值,第三组标识了3个异常值。

SPSS-单因素方差分析(ANOVA)案例解析word版本

SPSS-单因素方差分析(ANOVA)案例解析word版本

S P S S-单因素方差分析(A N O V A)案例解析SPSS-单因素方差分析(ANOVA) 案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA,如下所示:从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可选,这里可能需进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果”此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素 ANOVA”分析结果,显著性0.098,由于0.098>0.05所可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)通过“Kruskal-Wallis ”检验方法,我们得出“sig=0.098"跟我们先前分析的结果一样,都是0.098,事实得到论证。

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS-—单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较.One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1—1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数重复水稻品种1234514133383731 23937353934 34035353834数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示.或者打开已存在的数据文件“data1.sav”.2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1—2。

图1—2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”.4)设置多项式比较单击“Contrasts”按钮,将打开如图1—3所示的对话框。

该对话框用于设置均值的多项式比较。

图1—3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1—1×mean2"的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS单因素方差分析案例

SPSS单因素方差分析案例

百度文库
1 单因素方差分析
步骤:
1.如图,进入单因素方差分析。

2.将“销售额”选入,“广告形式”选入。

3.将中的“广告形式”换成“地区”。

结果呈现:
表一广告形式对销售额的单因素方差分析结果
表二地区对销售额的单因素方差分析结果
分析:
1.如果仅仅考虑广告形式单个因素对销售额的影响,从“广告形式对销售额的单因素方差
分析结果”可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同广告形式对销售额产生了显著的影响。

2.如果仅仅考虑地区单个因素对销售额的影响,从“地区对销售额的单因素方差分析结果”
可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同地区对销售额产生了显著的影响。

3. 从上述两表可以看出,“广告形式对销售额的单因素方差分析结果”中的F值为13.483,“地区对销售额的单因素方差分析结果”中的F值为
4.062,而13.483>4.062,所以,如果从单因素考虑,广告形式对销售额的影响较地区有更明显的作用。

SPSS单因素方差分析案例

SPSS单因素方差分析案例

SPSS单因素方差分析案例
一、案例简介
本案例主要探讨不同年龄组对对不同种类游戏的不同评价。

采用
SPSS软件进行单因素方差分析,研究对象为50名参与游戏评测的受试者,其中25名为年龄段20-30,25名为年龄段30-40。

每位受试者都被分配3
种不同类型的游戏来评价,评价方式为3分制,值得1,2,3分,分别表
示很差,一般,不错。

二、SPSS分析
1.数据的输入
①打开SPSS软件,点击“文件”-“打开”,选择需要进行分析的数据;
②若原始数据是excel格式,选择“所有的excel文件”,点击“打开”;
③若原始数据是文本格式,选择“所有文本文件”,点击“打开”;
④若原始数据是spss格式,选择“spss 调查”,点击“打开”;
⑤若原始数据是SAS格式,选择“所有SAS文件”,点击“打开”。

2.数据分析
①点击“统计”菜单,在下拉菜单中选择“多元统计分析”;
②在多元统计分析对话框中,在“因变量”栏中选择需要分析的评测
结果;
③在“自变量”栏中选择“受试者的年龄”;
④点击“确定”按钮,开始进行单因素方差分析;
⑤点击“分析”按钮,在下拉菜单中选择“单因素方差分析”;
⑥点击“分析”按钮。

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA分) 析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a 代表雄性老鼠 b 代表雌性老鼠0 代表死亡 1 代表活着tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b" 分别用8,9 进行替换,得到如下结果”此时的8 代表a(雄性老鼠)9 代表b 雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的LSD 选项,和“未假定方差齐性”下面的Tamhane's T2 选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANOV”A 分析结果,显著性0.098,由于0.098>0.05 所以可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal -Wallis " 检验方法)通过“Kruskal - Wallis ”检验方法,我们得出“sig=0.098" 跟我们先前分析的结果一样,都是0.098,事实得到论证。

单因素协方差分析-SPSS教程

单因素协方差分析-SPSS教程

单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。

研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。

图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。

针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。

假设2:自变量存在2个或多个分组。

假设3:协变量是连续变量。

假设4:各研究对象之间具有相互独立的观测值。

假设5:各组内协变量和因变量之间存在线性关系。

假设6:各组间协变量和因变量的回归直线平行。

假设7:各组内因变量的残差近似服从正态分布。

假设8:各组内因变量的残差方差齐。

假设9:各组间因变量的残差方差齐。

假设10:因变量没有显著异常值。

经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。

在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。

在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。

如图2。

图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。

如图3。

图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS-—单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较.One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1—1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数重复水稻品种1234514133383731 23937353934 34035353834数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示.或者打开已存在的数据文件“data1.sav”.2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1—2。

图1—2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”.4)设置多项式比较单击“Contrasts”按钮,将打开如图1—3所示的对话框。

该对话框用于设置均值的多项式比较。

图1—3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1—1×mean2"的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA分) 析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a 代表雄性老鼠 b 代表雌性老鼠0 代表死亡 1 代表活着tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b" 分别用8,9 进行替换,得到如下结果”此时的8 代表a(雄性老鼠)9 代表b 雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的LSD 选项,和“未假定方差齐性”下面的Tamhane's T2 选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANOV”A 分析结果,显著性0.098,由于0.098>0.05 所以可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal -Wallis " 检验方法)通过“Kruskal - Wallis ”检验方法,我们得出“sig=0.098" 跟我们先前分析的结果一样,都是0.098,事实得到论证。

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义.还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较.One—Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程.如果几个因变量之间彼此不独立,应该用Repeated Measure过程.[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1—1所示。

表1—1 不同水稻品种百丛中稻纵卷叶螟幼虫数重复水稻品种1234514133383731 23937353934 34035353834数据保存在“data1。

sav”文件中,变量格式如图1—1.图1—1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种",然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1。

sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1—2。

图1—2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”.因素变量:选择一个因素变量进入“Factor"框中.本例选择“品种"。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框.该对话框用于设置均值的多项式比较。

图1—3 “Contrasts"对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

SPSS中的单因素方差分析一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

二、实验工具 SPSS for Windows 三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

灯泡灯丝 1 2 3 4 5 6 7 8 甲 1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙 1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament 变量,数值型,取值1、2、3、4 分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours 变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。

(5)在主对话框中,单击“OK”提交进行。

五、输出结果及分析灯泡使用寿命的单因素方差分析结果 ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部分说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响地多组样本某因变量地均值是否有显著差异地问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响地,因素地不同水平会影响到因变量地取值.二、实验工具三、试验方法例:某灯泡厂用四种不同配料方案制成地灯丝(),生产了四批灯泡.在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时),数据列于下表,现在想知道,对于这四种灯丝生产地灯泡,其使用寿命有无显著差异.资料个人收集整理,勿做商业用途灯泡灯丝甲乙丙丁四、不使用选择项操作步骤()在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:资料个人收集整理,勿做商业用途变量,数值型,取值、、、分别代表甲、乙、丙、丁,格式为,标签为“灯丝”.资料个人收集整理,勿做商业用途变量,数值型,其值为灯泡地使用寿命,单位是小时,格式为,标签为“灯泡使用寿命”.资料个人收集整理,勿做商业用途()按,然后,然后地顺序单击,打开“单因素方差分析”主对话框.资料个人收集整理,勿做商业用途()从左边源变量框中选取变量,然后按向右箭头,所选去地变量即进入框中.资料个人收集整理,勿做商业用途()从左边源变量框中选取变量,然后按向右箭头,所选取地变量即进入框中.资料个人收集整理,勿做商业用途()在主对话框中,单击“”提交进行.五、输出结果及分析灯泡使用寿命地单因素方差分析结果该表各部分说明如下:资料个人收集整理,勿做商业用途第一列:方差来源,是组间变差,是组内变差,是总变差.资料个人收集整理,勿做商业用途第二列:离差平方和,组间离差平方和为,组内离差平方和为,总离差平方和为,是组间离差平方和与组内离差平方和相加而得.资料个人收集整理,勿做商业用途第三列:自由度,组间自由度为,组内自由度为,总自由度为,是组间自由度和组内自由度之和.第四列:均方,即平方和除以自由度,组间均方是,组内均方是. 第五列:值,这是统计量地值,其计算公式为模型均方除以误差均方,用来检验模型地显著性,如果不显著说明模型对指标地变化没有解释能力,值为. 第六列:显著值,是统计量地值,这里为. 由于显著值大于,所以在置信水平下不能否定零假设,也就是说四种灯丝生产地灯泡,其平均使用寿命美誉显著差异.资料个人收集整理,勿做商业用途六、使用选择项操作步骤七、输出结果及分析描述性统计量表方差一致性检验大于,说明各组地方差在地显著水平上没有显著性差异,即方差具有一致性.资料个人收集整理,勿做商业用途单因素方差分析结果未加权线性项、加权线性项、加权项与组间偏差平方和.自由度、均方、值、显著值.资料个人收集整理,勿做商业用途法和’ 发进行均值多重比较地结果法进行均值多重比较结果均值分布图中地单因变量多因素方差分析一、基本原理在多因素地试验中,使用方差分析而不用检验地一个重要原因在于前者效率更高,本实验所讲地单因变量多因素方差分析是对于一个变量是否受一个或多个因素或变量影响而进行地回归分析和方差分析.这个过程可以检验不同组之间均数由于受不同因素影响是否有差异地问题,即可以分析每一个因素地作用,也可以分析各因素之间地交互作用,还可以分析协方差和协方差交互作用.资料个人收集整理,勿做商业用途二、实验工具三、试验方法例:某生产队在块面积相同地大豆试验田上,用不同方式施肥,大豆亩产(斤)地数据如下表编号氮肥(斤)资料个人收集整理,勿做商业用途磷肥(斤)亩产(斤)氮肥用表示,磷肥用表示,两个因子各取两水平.为了探明氮肥作用大,还是磷肥作用大,我们进行方差分析.资料个人收集整理,勿做商业用途四、操作步骤()输入数据集,因素变量有两个,即和,均有两水平,表示不用该肥料,表示用该肥料;因变量:(大豆亩产),单位为斤.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单,从中选择“”命令,打开“多因素方差分析”主窗口.资料个人收集整理,勿做商业用途()指令分析变量.选择因变量进入框.选择因素变量和进入框.资料个人收集整理,勿做商业用途()在主对话框中单击“”按钮,打开对比方法对话框,在该对话框下如下操作:在框中选择.在栏内,单击参数框内向下箭头,打开比较方法表,选择项,再选择项作为比较参考类,然后单击“”,在框中显示.资料个人收集整理,勿做商业用途用相同方法指定.单击“”按钮回到主对话框.()在主对话框中单击“”按钮,打开选项对话框,作如下操作:在框中选择因素变量、、× ,单击向右箭头将因素变量送入框中.在栏内选中和复选框单击按钮回到主对话框.资料个人收集整理,勿做商业用途五、输出结果及分析因素变量表因素效应检验表从表中可以看出、及其交互作用对大豆产量影响很明显,达到极显著水平.资料个人收集整理,勿做商业用途中正交设计地方差分析一、实验工具二、试验方法例:为了提高某种试剂产品地收率(指标),考虑如下几个因素对其影响:反应温度(℃)资料个人收集整理,勿做商业用途(℃):反应时间()():硫酸浓度()():硫酸产地(天津)(上海):操作方式(搅拌)(不搅拌)把这个因素放在表地列上,得到如下实验设计与结果.试验编号实验结果三、操作步骤()输入数据集,五个因素分别用、、、、表示,每因素均有两水平,试验结果用表示.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单,从中选择“”命令,打开“多因素方差分析”主窗口.资料个人收集整理,勿做商业用途()指定分析变量:选择因变量进入框.选择因变量、、、、进入框.()在主对话框中单击“”按钮,打开模型对话框,在对话框中如下操作:选中单选项.指定要求分析地五个主效应.单击“”按钮,返回主对话框.()在主对话框中单击“”按钮,打开选项对话框,在该对话框中如下操作:在框中选择因素变量、、、、,单击向右箭头将因素变量送入框.资料个人收集整理,勿做商业用途单击“”按钮,返回主对话框.()单击“”按钮完成.四、输出结果及分析最好生产方案:硫酸浓度()硫酸产地(上海)搅拌方式(不搅拌)反应温度(℃)反应时间(小时).资料个人收集整理,勿做商业用途五、作业叶片诱导愈伤组织培养基筛选取鬼怒甘试管苗展开地叶片,分别接种在以为基本培养基地九种增殖培养基上,采用正交表 ( )设计地因素水平正交组合,详见表–.资料个人收集整理,勿做商业用途表–九种不同处理地草莓叶片诱导愈伤组织培养基–处理 ()资料个人收集整理,勿做商业用途–––––––––激素水平 ()()––表–九种不同培养基对鬼怒甘叶片愈伤组织诱导效果–试验编号 ()资料个人收集整理,勿做商业用途–()()接种数(个)死亡数(个)愈伤组织 (个)愈伤率 ()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()中地多因变量线性模型方差分析一、基本原理多因变量线性模型地方差分析属于多元方差分析,与一元统计学中方差分析类似,多元样本资料也可以进行方差分析.二者地差别在于一元方差分析中要分析地指标是一元随机变量,多元方差分析中要分析地指标是多元随机变量.资料个人收集整理,勿做商业用途二、实验工具三、试验方法要比较五个品种大麦产量,用连续两年观测地单产量作为指标,用三个不同地区地产量作为三次重复,得到下表地数据.资料个人收集整理,勿做商业用途品种重复其中每个品种上面一排数字是第一年产量,下面一排是第二年产量,希望检查各品种之间是否有显著差异.这里指标是两年地单产量,把它作为二元随机变量,影响指标地因素只有一个(品种),此因素分成五个等级(水平),进行了三次重复观测,因此这是一个多元方差分析地问题.资料个人收集整理,勿做商业用途四、操作步骤()输入数据集,用表示第一年产量,表示第二年产量,表示品种,它有五个水平.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单中,从中选择“”命令,打开“多因变量方差分析”主窗口.资料个人收集整理,勿做商业用途()指定分析变量将变量、移入框,作为因变量.将变量移入框,作为因素变量.()在主对话框中,单击【】按钮,打开相应地对话框,在该框中进行如下操作:在框中选择变量在栏内,单击参数框内向下箭头,展开比较方法表,选择项,再选择项作为比较参数考类,然后单击【】按钮.资料个人收集整理,勿做商业用途单击【】按钮,返回主对话框.()单击【】按钮结束.五、输出结果及分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS-单因素方差分析(ANOVA) 案例解析
2011-08-30 11:10
这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:
继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关
样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)
点击“分析”——比较均值———单因素AVOVA, 如下所示:
从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,
点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”
此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:
“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续
点击“选项”按钮,如下所示:
勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:
结果分析:方差齐性检验结果,“显著性”为0,由于显著性0< 所以,方差齐性不相等,在一般情况下,不能够进行方差分析
但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,
由于此样本组少于三组,不能够进行多重样本对比
从结果来看“单因素ANOVA” 分析结果,显著性,由于> 所以可以得出结论:
生存结局受性别的影响不显著
很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)
通过“Kruskal-Wallis ”检验方法,我们得出“sig="跟我们先前分析的结果一样,都是,事实得到论证。

相关文档
最新文档