Matlab学习系列34. 马尔可夫预测
系统预测马尔可夫预测
解:
划分状态。 按销售额多少作为划分状态的标准。 状态1——滞销:销售额60万元; 状态2——平销:60万元销售额
100万元; 状态3——畅销:销售额100万元。
19
则各状态出现的次数Mi为:
M1=7; M2=5; M3=8。 根据统计数据计算比例数,建立状态 转移概率矩阵。
20
由状态i转移为状态j的次数记为Mij,
24
条件
设市场中提供某种商品的厂商共有n家。 当前的市场占有率,即本期市场占有率为:
用Pij代表经过一个时期后i厂商丧失的顾 客转移到j厂商的概率,或j厂商得到由i 厂商转来的顾客的概率。特别是当i=j时, Pij代表i厂商保留上期顾客的概率。这样 Pij即为市场占有率的转移概率。
25
转移概率矩阵
3
一、Markov预测原理
例1:出租公司车站租、还车一步转移概率。
机场 租 风景区 车 宾馆
机场 0.8 0.2 0.2
还车 风景区
0.2
0
0.2
宾馆 0 0.8 0.6
p11
p12
p13 0.8 0.2
0
P
p21
p22
p23
0.2
0
0.8
p31
p32
p33 0.2 0.2 0.6
4
一、Markov预测原理
若假定各期的转移概率不变,则那 么对于下K期市场占有率的预测,可 以看成是在当前状态下经过K步转移 所达到的状态。即:S(K)=S(0)PK。
31
例5
已知市场上有A、B、C三种品牌
的洗衣粉,上月的市场占有率分布
为(0.3 0.4 0.3),并且转移概率矩
阵为:
马尔可夫预测方法
几个基本概念 马尔可夫预测法
马尔可夫链是最简明的马尔可夫过程, 它是状态、时 间都是离散量的马尔可夫过程. 它有极为深厚的理论基础,如拓扑学、函数论、泛函分 析、近世代数和几何学; 又有广泛的应用空间,如近代 物理、随机分形、公共事业中的服务系统、电子信息、 计算机技术等. 自然界很多现象遵从这样的演变规则:由时刻t0系统 或 过程所处的状态(现在)可以决定系统或过程在时刻t>t0 所处的状态(将来),而无需借助于t0以前系统或过程所处 状态(过去)的历史资料. 如微分方程初值问题即属于此.
同理可得
7 0.538 5 13 2 P22 P( E2 E2 ) P( E2 E2 ) 0.153 8 13 4 P23 P( E2 E3 ) P( E3 E2 ) 0.307 7 13 P21 P( E2 E1 ) P( E1 E2 )
即
1 0.200 0 1 0.538 5 2 0.363 6 3 2 0.466 7 1 0.1538 3 0.454 5 3 0.3333 0.307 7 0.1818 1 2 3 3 求解该方程组得: 1=0.365 3, 2=0.352 5, 3
所以
3 P 0.200 0 11 P ( E1 E1 ) P ( E1 E1 ) 15
7 P 0.466 7 12 P ( E1 E2 ) P ( E2 E1 ) 15
5 P 0.333 3 13 P ( E1 E3 ) P ( E3 E1 ) 15
n
i
1
使得
P
(3.7.4)
这样的向量α称为平衡向量,或终极向 量。这就是说,标准概率矩阵一定存在平 衡向量。
马尔可夫预测算法
马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。
方法由来马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。
针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。
基础理论在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。
因此,变化过程可用时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。
这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。
在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。
这就要研究无限多个,即一族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:⎪⎪⎭⎫⎝⎛⋅⋅⋅=⋅⋅⋅==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由一种状态到另一种状态的变化。
设客观事物有N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。
马尔科夫预测
第 6 章马尔可夫预测马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。
它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。
6.1 马尔可夫预测的基本原理马尔可夫(A.A.Markov )是俄国数学家。
二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。
具有这种特性的随机过程称为马尔可夫过程。
设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。
6.1.1 马尔可夫链为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。
如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。
设有参数集T ( , ),如果对任意的t T ,总有一随机变量X t 与之对应,则称{X t ,t T} 为一随机过程。
如若T 为离散集(不妨设T {t0,t1,t2,...,t n,...} ),同时X t的取值也是离散的,则称{X t ,t T} 为离散型随机过程。
设有一离散型随机过程,它所有可能处于的状态的集合为S {1,2,L ,N} ,称其为状态空间。
系统只能在时刻t0,t1,t2,...改变它的状态。
为简便计,以下将X t n等简记为X n。
一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。
在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。
这个性质称为无后效性,即所谓马尔可夫假设。
具备这个性质的离散型随机过程,称为马尔可夫链。
用数学语言来描述就是:马尔可夫链如果对任一n 1,任意的i1,i2, ,i n 1, j S恒有P X n j X1 i1,X2 i2,L ,X n 1 i n 1 P X n j X n 1 i n 1 (6.1.1)则称离散型随机过程{X t ,t T} 为马尔可夫链。
马尔科夫预测法简介
故可用矩阵式表达所有状态:
[S1(k),S2(k), …… ,SN(k)]= [S1(0),S2(0), …… ,SN(0)] P[k]
即 S(k) = S(0) P [k] 当满足稳定性假设时,有
S(k) = S(0) Pk 这个公式称为已知初始状态条件下的市场占有
率k步预测模型.
例:东南亚各国味精市场占有率预测, 初期工作: a)行销上海,日本,香港味精,确定状态1,2,3. b)市场调查,求得目前状况,即初始分布 c)调查流动状况;上月转本月情况,求出一步状 态转移概率. 1)初始向量: 设 上海味精状况为1;
0.5
P = 0.78
0.22
此式说明了:若本季度畅销,则下季度畅销和滞销的可能性 各占一半
若本季度滞销,则下季度滞销有78%的把握,滞销风 险22%
二步状态转移矩阵为:
[2] 2
P=P=
0.5 0.5
0.5 0.5
0.78 0.22 0.78 0.22
0.64
0.36
= 0.5616 0.4384
求T
0.6 0.1 0.3 解:设 U = [U1 U2 U3] = [U1 U2 1-U1-U2]
由 UP = U 有
0.4 0.3 0.3
[U1 U2 1-U1-U2] 0.6 0.3 0.1 = [U1 U2 U3]
0.6 0.1 0.3
即
-0.2U1 + 0.6 = U1
0.2U1 + 0.2U2 + 0.1 =U2
定理二:设X为任意概率向量,则XT = U 即任意概率向量与稳态概率矩阵之点积为 固定概率向量。
事实上: U1 U2 …… UN
XT = X• : :
马尔可夫预测方法
状态转移概率。在事件的发展变化过程中, 状态转移概率。在事件的发展变化过程中, 从某一种状态出发, 从某一种状态出发,下一时刻转移到其它状 态的可能性,称为状态转移概率。由状态Ei 态的可能性,称为状态转移概率。由状态 转为状态E 转为状态 j的状态转移概率 P(E i → E j ) 是 P(Ei → E j ) = P(E j / Ei ) = Pij
Copyright 2007 Geocomputation Lab SNNU
主要内容: 主要内容:
几个基本概念 1、状态 、 2、状态转移过程 、 3、马尔可夫过程 、 4、状态转移概率 、 5、状态转移概率矩阵 、 马尔可夫预测法 1、状态转移概率 、 2、状态转移概率矩阵 、
Copyright 2007 Geocomputation Lab SNNU
二、马尔可夫预测法
表示事件在初始( = ) 状态概率 π j (k ):表示事件在初始(k=0)状 态为已知的条件下,经过k次状态转移后 次状态转移后, 态为已知的条件下,经过 次状态转移后,在 个时刻(时期) 的概率。 第k 个时刻(时期)处于状态 E j 的概率。 且:
j =1 根据马尔可夫过程的无后效性及Bayes条件概 条件概 根据马尔可夫过程的无后效性及 率公式, 率公式,有
(7.1) 7.1)
状态转移概率矩阵。 状态转移概率矩阵。假定某一个事件的发展 过程有n个可能的状态 个可能的状态, 过程有 个可能的状态,即E1,E2, …,En。 , 记为从状态E 转变为状态E 记为从状态 i转变为状态 j的状态转移概 率 P ( E i → E j ) ,则矩阵
Copyright 2007 Geocomputation Lab SNNU
马尔可夫预测算法
马尔可夫预测算法马尔可夫预测算法是一种基于马尔可夫链的概率模型,用于进行状态转移预测。
它被广泛应用于自然语言处理、机器翻译、语音识别等领域。
马尔可夫预测算法通过分析过去的状态序列来预测未来的状态。
本文将介绍马尔可夫预测算法的原理、应用以及优缺点。
一、原理1.马尔可夫链马尔可夫链是指一个随机过程,在给定当前状态的情况下,未来的状态只与当前状态有关,与其他历史状态无关。
每个状态的转移概率是固定的,可以表示为一个概率矩阵。
马尔可夫链可以用有向图表示,其中每个节点代表一个状态,每个边表示状态的转移概率。
(1)收集训练数据:根据需要预测的状态序列,收集过去的状态序列作为训练数据。
(2)计算转移概率矩阵:根据训练数据,统计相邻状态之间的转移次数,然后归一化得到转移概率矩阵。
(3)预测未来状态:根据转移概率矩阵,可以计算出目标状态的概率分布。
利用这个概率分布,可以进行下一步的状态预测。
二、应用1.自然语言处理在自然语言处理中,马尔可夫预测算法被用于语言模型的建立。
通过分析文本中的单词序列,可以计算出单词之间的转移概率。
然后利用这个概率模型,可以生成新的文本,实现文本自动生成的功能。
2.机器翻译在机器翻译中,马尔可夫预测算法被用于建立语言模型,用于计算源语言和目标语言之间的转移概率。
通过分析双语平行语料库中的句子对,可以得到句子中单词之间的转移概率。
然后利用这个转移概率模型,可以进行句子的翻译。
3.语音识别在语音识别中,马尔可夫预测算法被用于建立音频信号的模型。
通过分析音频数据中的频谱特征,可以计算出特征之间的转移概率。
然后利用这个转移概率模型,可以进行音频信号的识别。
三、优缺点1.优点(1)简单易懂:马尔可夫预测算法的原理相对简单,易于理解和实现。
(2)适用范围广:马尔可夫预测算法可以应用于多个领域,例如自然语言处理、机器翻译和语音识别等。
2.缺点(1)数据需求大:马尔可夫预测算法需要大量的训练数据,才能准确计算状态之间的转移概率。
决策与预测第八章马尔可夫预测
决策与预测第八章马尔可夫预测马尔可夫预测(Markov Prediction)是一种基于马尔可夫模型的预测方法。
马尔可夫模型是一种具有状态转移特性的随机过程,即当前状态的发生只与前一个状态有关,与之前的状态无关。
马尔可夫预测依据这一性质,通过对已有的状态序列进行分析,来预测未来可能的状态。
马尔可夫预测在许多领域都有应用,比如天气预测、股市预测、自然语言处理等。
在天气预测中,我们可以将天气分为晴天、阴天、雨天等若干个状态,通过观察历史天气数据,建立马尔可夫模型,从而预测未来几天的天气情况。
在股市预测中,我们可以将股票价格分为涨、跌、平稳等若干个状态,通过分析历史股价数据,建立马尔可夫模型,从而预测未来股票价格的走势。
马尔可夫预测的关键是确定马尔可夫链的阶数。
马尔可夫链的阶数决定了当前状态只与前几个状态有关。
一般情况下,阶数越高,预测的准确性越高,但计算复杂度也越高。
选择合适的阶数需要根据具体问题进行权衡。
马尔可夫预测的关键步骤包括状态定义、状态转移矩阵的估计和预测结果生成。
首先,需要将观测序列转化为状态序列。
状态定义需要根据具体问题确定,通常是将连续的观测值离散化为若干个状态。
然后,需要估计马尔可夫链的状态转移矩阵。
状态转移矩阵描述了从一个状态转移到另一个状态的概率。
可以通过历史数据来估计状态转移矩阵,常用的方法有最大似然估计和贝叶斯估计。
最后,通过状态转移矩阵和当前的状态,可以通过马尔可夫链进行状态的预测。
马尔可夫预测有一些优点和限制。
优点是简单易用,不需要太多的领域知识,只需要一些历史数据。
同时,马尔可夫预测可以处理非线性和非平稳的数据,具有一定的适应性。
然而,马尔可夫预测也有一些限制。
首先,马尔可夫模型假设当前状态只与前一个状态相关,而与之前的状态无关,这个假设在一些情况下可能不成立。
其次,马尔可夫模型对于状态转移矩阵的估计需要大量的历史数据,否则预测的准确性可能较低。
在实际应用中,马尔可夫预测通常与其他方法结合使用,以提高预测的准确性。
马尔可夫预测
林地
旱地 水田 园地 水域 居民点
0.984 0 0 0 0 0
0.0088 0.0048 0.983 0.0058 0.0138 0.979 0 0 0 0 0 0
0.0012 0 0.0003 0.0036 0.0003 0.0064 0 0.0002 0.0049 1 0 0 0 1 0 0 0 1
2.1 相关概念 状态:某一事件在某一时刻出现的某种结果。如,农 业
收成预测中有“丰收”、“平收” “欠收”等状态;人 口 构成预测中有“婴儿”、“儿童”、“少年”、“青年”、 “老年”等状态
状态转移:事件的发展,从一种状态转变为另一种状态。
如,天气从“阴天”变为“晴天”。
马尔可夫过程:在事件的发展过程中,每次状态的转
某地区1990~2000年农业收成状态概率预测值
年份 2000 E1 E2 0.5 0.15 385 28 2004 E2 0.35 09 E3 0.27 99 2008 E1 0.36 47 E3 0.30 77 E1 0.30 24 2001 E2 0.41 4 2005 E2 0.35 32 E3 0.27 99 E1 0.36 56 2009 E3 0.28 37 E1 0.38 67 2002 E2 0.33 34 2006 E2 0.35 24 E3 0.27 99 E1 0.36 53 2010 E3 0.27 99 E1 0.35 87 2003 E2 0.35 89 2007 E2 0.35 26 E3 0.27 99 E3 0.27 79
7 P21 P( E2 E1 ) P( E1 E2 ) 0.5385 13
2 P22 P( E2 E2 ) P( E2 E2 ) 0.1538 13 4 P23 P( E2 E3 ) P( E3 E2 ) 0.3077 13 4 P31 P( E3 E1 ) P( E1 E3 ) 0.3636 11
加权马尔可夫预测matlab
加权马尔可夫预测是一种利用马尔可夫模型和加权算法进行预测的方法。
它的基本思想是通过分析历史数据的转移概率和权重,来预测未来的状态。
在matlab中,我们可以通过一些特定的函数和工具来实现加权马尔可夫预测,下面将从以下几个方面来介绍该方法在matlab中的实现:1. 马尔可夫模型的基本原理:马尔可夫模型是一种描述状态转移的随机过程模型,它假设系统的未来状态仅与当前状态有关,与过去状态无关。
在马尔可夫模型中,我们可以通过转移矩阵来描述状态之间的转移概率,从而实现对未来状态的预测。
2. 加权算法的原理及在马尔可夫模型中的应用:加权算法是一种在数据分析中常用的方法,它通过赋予不同数据点不同的权重来反映其重要程度。
在马尔可夫模型中,我们可以利用加权算法来对历史数据的转移概率进行加权处理,从而更准确地预测未来状态。
3. matlab中马尔可夫模型和加权算法的实现:在matlab中,有一些内置的函数和工具可以帮助我们实现马尔可夫模型和加权算法。
可以使用markov模块来构建马尔可夫模型,使用weighting函数来实现加权算法,然后将两者结合起来进行预测。
4. 加权马尔可夫预测的实际应用及效果评估:我们可以通过一些实际的数据案例来演示加权马尔可夫预测在实际应用中的效果,并对预测结果进行评估和分析,从而验证该方法的有效性。
加权马尔可夫预测是一种有效的预测方法,它结合了马尔可夫模型和加权算法的优势,在matlab中可以得到较为便捷的实现。
通过对马尔可夫模型和加权算法的理解和运用,我们可以更准确地预测未来状态,从而为实际应用中的决策和规划提供有力支持。
为了更深入地理解加权马尔可夫预测在matlab中的实现,让我们首先来介绍马尔可夫模型的基本原理。
马尔可夫模型是一种描述离散时间状态转移的数学模型,它假设未来的状态只与当前状态有关,而与过去的状态无关。
这一特性使得马尔可夫模型在预测未来状态方面具有较好的性能和准确性。
在马尔可夫模型中,我们通常使用转移矩阵来描述状态之间的转移概率。
隐马尔可夫模型(hmm)的matlab实现
隐马尔可夫模型(HMM)是一种用于对时序数据进行建模和分析的概率模型,特别适用于具有一定的隐含结构和状态转移概率的数据。
在自然语言处理、语音识别、生物信息学等领域中,HMM都有着广泛的应用。
在本文中,我将向您介绍HMM的基本概念和原理,并共享如何使用Matlab来实现HMM模型。
1. HMM基本概念和原理隐马尔可夫模型是由隐含状态和可见观测两部分组成的,其中隐含状态是不可见的,而可见观测是可以被观测到的。
在HMM中,隐含状态和可见观测之间存在转移概率和发射概率。
通过这些概率,HMM可以描述一个系统在不同隐含状态下观测到不同可见观测的概率分布。
HMM可以用状态转移矩阵A和发射矩阵B来表示,同时也需要一个初始状态分布π来描述系统的初始状态。
2. Matlab实现HMM模型在Matlab中,我们可以使用HMM工具箱(HMM Toolbox)来实现隐马尔可夫模型。
我们需要定义系统的隐含状态数目、可见观测的数目以及状态转移概率矩阵A和发射概率矩阵B。
利用Matlab提供的函数,可以方便地计算出系统在给定观测下的概率分布,以及通过学习的方法来调整参数以适应实际数据。
3. 在Matlab中实现HMM模型需要注意的问题在实现HMM模型时,需要注意参数的初始化和调整,以及对于不同类型的数据如何选择合适的模型和算法。
在使用HMM模型对实际问题进行建模时,需要考虑到过拟合和欠拟合等问题,以及如何有效地利用HMM模型进行预测和决策。
总结通过本文的介绍,我们可以了解到隐马尔可夫模型在时序数据建模中的重要性,以及如何使用Matlab来实现HMM模型。
对于HMM的进一步学习和实践,我个人认为需要多实践、多探索,并结合具体应用场景来深入理解HMM模型的原理和方法。
在今后的学习和工作中,我相信掌握HMM模型的实现和应用将对我具有重要的帮助。
我会继续深入学习HMM模型,并将其运用到实际问题中,以提升自己的能力和水平。
以上是我对隐马尔可夫模型的个人理解和观点,希望对您有所帮助。
利用Matlab编程进行马尔可夫预测
§11. 利用Matlab编程进行马尔可夫预测 利用Matlab和SPSS学软件进行Markov分析是非常方便的,只需要进行相应的矩阵乘法即可。
1.原始数据以下我们以教材第3章第7节中的例子,进行分析计算。
例如,考虑某地区农业收成变化的三个状态,即“丰收”、“平收”和“欠收”。
记E1为“丰收”状态,E2为“平收”状态,E3为“欠收”状态。
表3.7.1给出了该地区1965~2004年期间农业收成的状态变化情况。
试计算该地区农业收成变化的状态转移概率矩阵。
表3.7.1 某地区农业收成变化的状态转移情况年份1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 序号 1 2 3 4 5 6 7 8 9 10 状态E1E1E2E3E2E1E3E2E1E2年份1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 序号11 12 13 14 15 16 17 18 19 20 状态E3E1E2E3E1E2E1E3E3E1年份1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 序号21 22 23 24 25 26 27 28 29 30 状态E3E3E2E1E1E3E2E2E1E2年份1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 序号31 32 33 34 35 36 37 38 39 40 状态E1E3E2E1E1E2E2E3E1E22. 马尔可夫预测的基本原理(1)首先计算状态转移概率矩阵假定某一个事件的发展过程有n个可能的状态,即E1,E2,…,En。
记为从状态转变为状态的状态转移概率,则矩阵ij PiE j E⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n P P P P P P P P P P L M M M M L L 212222111211从表3.7.1中可以知道,在15个从E1出发(转移出去)的状态中,有3个是从E1转移到E1的(即1→2,24→25,34→35),有7个是从E1转移到E2的(即2→3,9→10,12→13,15→16,29→30,35→36,39→40),有5个是从E1转移到E3的(即6→7,17→18,20→21,25→26,31→32)。
马尔可夫预测
1. 马尔可夫矩阵一般式
(十)均匀马尔可夫链
若
P(k) ij
Pij
k 1,2,
则称该马尔可夫链为均匀马尔可夫链。
用下式表示:
Pij
P(E j
/ Ei )
P
A(j k )
/
A( k 1) i
(十一)预测模型
前提:必须是均匀马尔可夫链。
S (0) :初始状态;
S (k 1) :经(K+1)次转移后的状态;
机变量,称为随机过程。 定义:在给定的概率空间( ,F,P)及实数集
T,其中 为样本空间,F为分布函数,P为概率, 对于
每一个 t T , 有定义在( ,F,P)上的随机变量
(t, w), w
与之对应,则称为 (t, w);t T 随机过程,一
般简化为 (t) 。
特点:
1. 随机性:确切的未来状态是不可预测;
2. 局限性:只适合于马尔可夫过程;
3. 简便性:有率、选 择服务点、设备更新等的预测。
(六)马尔可夫链
定义:设随机过程 (t)只能取可列个值 r1, r2 ,rn ,, 把 (t) rn 称为在时刻 t 系统处于状态 En (n 1,2,)
我厂牌子
0.8
0.2
别厂牌子
0.3
0.7
问:从经济效益的角度决定要否做这个广告?
定义:设随机过程(t) ,如果在已知时间t系统
处于状态x的条件下,在时刻 ( >t)系统所处
状态和时刻t以前所处的状态无关,则称 (t)为 马尔可夫过程。 从定义可知马尔可夫过程只与t时刻有关,与t 时刻以前无关。
(五)马尔可夫预测法
马尔可夫预测方法
马尔可夫预测方法1马尔可夫预测的性质及运用对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。
这就是关于事件发生的概率预测。
马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。
它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。
马尔可夫预测法是地理预测研究中重要的预测方法之一。
2基本概念(一)状态、状态转移过程与马尔可夫过程1.状态 在马尔可夫预测中,“状态”是一个重要的术语。
所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。
一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。
譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。
2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。
事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。
3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。
在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。
(二)状态转移概率与状态转移概率矩阵1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。
根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1)2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。
Matlab统计学工具箱之(隐)马尔可夫模型:MarkovModels-Matlab
Matlab统计学工具箱之(隐)马尔可夫模型:MarkovModels-Matlab此文讲述的内容在Matlab 7.0、7.5(R2007b)中均有——马尔可夫工具箱,主要内容如下。
简介:马尔可夫处理是随机处理的一个典型例子——此种处理根据特定的概率产生随机输出或状态序列。
马尔可夫处理的特别之处在于它的无记忆性——他的下一个状态仅依赖他的当前状态,不考虑导致他们的历史。
马尔可夫处理的模型在实际应用中使用非常广泛,从每日股票价格到染色体中的基因位置都有应用。
马尔可夫链马尔可夫模型用状态图可视化描述如下。
MarkovModel.jpg在图中,矩形代表你要描述的模型在处理中可能出现的状态,箭头描述了状态之间的转换。
每个箭头上的标签表明了该转换出现的概率。
在处理的每一步,模型都可能根据当前状态产生一种output或emission,然后做一个到另一状态的转换。
马尔可夫模型的一个重要特点是:他的下个状态仅仅依赖当前状态,而与导致其成为当前状态的历史变换无关。
马尔可夫链是马尔可夫模型的一组离散状态集合的数学描述形式。
马尔可夫链特征归纳如下:1. 一个状态的集合{1, 2, ..., M}2. 一个M * M的转移矩阵T,(i, j)位置的数据是从状态i转到状态j的概率。
T的每一行值的和必然是1,因为这是从一个给定状态转移到其他所有可能状态的概率之和。
3. 一个可能的输出(output)或发布(emissions)的集合{S1, S2, ..., SN}。
默认情况下,发布的集合是{1, 2, ..., N},这里N是可能的发布的个数,当然,你也可以选择一个不同的数字或符号的集合。
4. 一个M * N的发布矩阵E,(i, k)入口给出了从状态i得到发布的标志Sk的概率。
马尔可夫链在第0步,从一个初始状态i0开始。
接着,此链按照T(1, i1)概率转移到状态i1,且按概率E(i1, k1)概率发布一个输出S(k1)。
马尔科夫预测方法
求解该方程组得: 1 =0.3653, 2 =0.3525, π π
π 3 =0.2799。
这说明,该地区农业收成的变化过程,在 无穷多次状态转移后,“丰收”和“平收”状 态出现的概率都将大于“欠收”状态出现的概 率。
在地理事件的预测中,被预测对象所 经历的过程中各个阶段(或时点)的状态 和状态之间的转移概率是最为关键的。
计算: ① 计算:
从表3.7.1中可以知道,在15个从E1出发 (转移出去)的状态中, (1)有3个是从E1转移到E1的
(即1→2,24→25,34→35)
(2)有7个是从E1转移到E2的
(即2→3,9→10,12→13,15→16,29→30, 35→36,39→40)
(3)有5个是从E1转移到E3的
(3.7.3)
一般地,将满足条件(3.7.3)的任 何矩阵都称为随机矩阵,或概率矩阵。
不难证明,如果P为概率矩阵,则对于任何整数 m>0,矩阵都是概率矩阵。
标准概率矩阵、平衡向量。 标准概率矩阵、平衡向量。
几 个 基 本 概 念
如果P为概率矩阵,而且存在整数m>0, 使得概率矩阵 P m 中诸元素皆非零,则称P 为标准概率矩阵。可以证明,如果P为标 准概率矩阵,则存在非零向量 α = [ x1 , x2 ,L, xn ] ,而且 x i 满足
第k个时刻时期的状态概率预测如果某一事件在第0个时刻或时期的初始状态已知即已知则利用递推公式378式就可以求得它经过k次状态转移后在第k个时刻时期处于各种可能的状态的概从而就得到该事件在第k个时刻时期的状态概率预测
马尔可夫预测方法
本节主要内容:
几个基本概念
状态; 状态转移过程; 马尔科夫过程; 状态转移概率; 状态转移概率矩阵。
马尔科夫链预测方法
二、马尔可夫预测法
从初始状态开始,经过k次状态转移后到达 状态Ej这一状态转移过程,可以看作是首先 经过(k-1)次状态转移后到达状态Ei(i=1, 2,…,n),然后再由Ei经过一次状态转移 到达状态Ej。
根据马尔可夫过程的无后效性及Bayes条件 概率公式,有
二、马尔可夫预测法
若记行向量π(k)=[π1(k),π2(k),…,πn(k)], 则由(7)式可得逐次计算状态概率的递推公式:
1231
马尔可夫预测法与EXCEL———利用EXCEL的“规划 求解”工具解决马尔可夫预测的计算
马尔科夫链预测方法 教材
谢谢
假定池中有N张荷叶,编号为1,2, 3,……,N,即蛙跳可能有N个状态(状态 确知且离散)。青蛙所属荷叶,为它目 前所处的状态;因此它未来的状态,只 与现在所处状态有关,而与以前的状态 无关(无后效性成立) 。
一、几个基本概念
(二)状态转移概率与状态转移概率矩阵
1.状态转移概率 在事件的发展变化过程中,从某一 种状态出发,下一时刻转移到其它状态的可能性,称 为状态转移概率。根据条件概率的定义,由状态Ei转 为状态Ej的状态转移概率P(Ei→Ej)就是条件概率P (Ej/Ei),即P(Ei→Ej)=P ( Ej/Ei)= Pij
马尔可夫(Markov)预测法,就是一种关于事 件发生的概率预测方法。它是根据事件的目前 状况来预测其将来各个时刻(或时期)变动状 况的一种预测方法。马尔可夫预测法是地理预 测研究中重要的预测方法之一。
一、几个基本概念
(一)状态、状态转移过程与马尔可夫过程 1.状态 在马尔可夫预测中,“状态”是一个重要的术语。
在前例中,如果将1989年的农业收成状态记为π (0)=[0,1,0](因为1989年处于“平收”状态),则 将状态转移概率矩阵(5)式及π(0)代入递推公式(8) 式,就可以求得1990—2000年可能出现的各种状态的 概率(见表2-19)。
马尔科夫链matlab程序
马尔科夫链matlab程序自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数 B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization) if Localization(i)+1>tbreak; % 范围限定 elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵 endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:); endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1); endTR % 最终得到马尔科夫转移频率/概率矩阵 % 观测序列马尔科夫性质的检验: N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和 Total=sum(Row); % 频数总和 for i=1:1:tt for j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j))./Total));uuu=uuu+1; % 计算统计量x2 endendxx=sum(xx)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33. 马尔可夫预测马尔可夫预测,是一种预测事件发生的概率的方法。
它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。
马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。
因此,必须具有足够的统计数据,才能保证预测的精度与准确性。
换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。
(一)经典马尔可夫模型 一、几个概念状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。
状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。
由状态i E 转为状态j E 的状态转移概率()(|)i j j i ij P E E P E E p →==状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状态,即1,,n E E ,则矩阵1111n n nn p p P p p ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。
状态转移矩阵满足:(i)01, ,1,,ij p i j n ≤≤=(ii)11nijj p==∑二、状态转移矩阵的计算即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。
例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。
下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。
计算该地区农业收成变化的状态转移概率矩阵。
datas=xlsread('Agriculture.xlsx');E=datas(:,2)'; for i=1:3 for j=1:3f(i,j)=length(findstr([i j],E)); end endf %输出状态转移矩阵 fs=sum(f,2); for i=1:3p(i,:)=f(i,:)/fs(i); endp %输出状态转移概率矩阵 运行结果:f = 3 7 5 %3个E1到E1, 7个E1到E2, 5个E1到E37 2 4 4 5 2p = 0.2000 0.4667 0.3333 0.5385 0.1538 0.3077 0.3636 0.4545 0.1818三、状态概率用()j k π表示事件在第k 个时刻(时期)处于状态j E 的概率。
显然,1()1nj j k π==∑。
根据马尔可夫过程的无后效性及Bayes 条件概率公式,有1()(1) ,1,,nj j ij i k k p i j n ππ==-=∑记1()[(),,()]n k k k πππ=为第k 个时刻(时期)的状态概率向量。
由上式可得到计算状态概率向量的递推公式:()(1)(0)k k k P P πππ=-==其中,(0)π为初始状态概率向量。
于是,若事件在某个时刻(时期)的状态0()s π已知,则利用状态转移概率矩阵P 和递推公式,就可以求得它经过k 次状态转移后,在第0s k +个时刻(时期)处于各种可能的状态的概率0()s k π+,从而就得到该事件在第0s k +个时刻(时期)的状态概率预测。
将例1中1999年的农业收成状态记为0()[0,1,0]s π=,利用状态转移概率矩阵及递推公式,预测2000—2009年可能出现的各种状态的概率。
S{1}=[0 1 0]; for i=1:10S{i+1}=S{i}*P; end S{2:end}运行结果:ans = 0.5385 0.1538 0.3077 ans = 0.3024 0.4148 0.2828 ans = 0.3867 0.3335 0.2799 ans = 0.3587 0.3590 0.2824 ans = 0.3677 0.3510 0.2813 ans = 0.3648 0.3535 0.2817 ans = 0.3657 0.3527 0.2816 ans = 0.3654 0.3529 0.2816 ans = 0.3655 0.3528 0.2816 ans = 0.3655 0.3529 0.2816四、终极状态概率预测经过无穷多次状态转移后所得到的状态概率称为终极状态概率。
11lim ()=[lim (),,lim ()][,,]n n k k k k k k ππππππ→∞→∞→∞==终极状态概率应满足:P ππ=,即T T T P ππ=,即()T T P E πθ-=111212112122221122(1)0(1)0 (1)0n n n nn n nn n p p p p p p p p p πππππππππ-+++=⎧⎪+-++=⎪⎨⎪⎪+++-=⎩ 该齐次方程组的系数行列式为0,有无穷多个解,为得到唯一的正确解,需要另一个限制条件:1 =1ni i π=∑此时是n 个未知数,n+1个方程,去掉前n 个中的任意一个,求解即可得到正确解,即终极状态概率向量。
求例1的终极状态概率向量。
n=3; %状态数目 A=P'-eye(n);A(end,:)=ones(1,n);%将最后一个方程替换为限制条件sum(pi)=1 b=[zeros(n-1,1);1];S=inv(A)*b %解方程组Ax=b 得到终极状态概率向量运行结果:S = 0.3655 0.3529 0.2816结果说明,该地区农业收成的变化过程,在无穷多次状态转移后,“丰收”和“平收”状态出现的概率基本相当,都大于“欠收”状态出现的概率。
例2设某药品共有1000家购买对象,买A、B、C三药厂的各有400家、300家、300家,即A、B、C三药厂目前的市场占有份额分别为:40%、30%、30%,故初始市场占有状态向量为[0.4, 0.3, 0.3].为预测A、B、C三个药厂生产的该药品在未来的市场占有情况,收集顾客订货情况如下表:表顾客订货情况表下季度订货情况合计来自A B CA 160 120 120 400B 180 90 30 300C 180 30 90 300合计520 240 240 1000假设在未来的时期内,订货流向如上表保持不变,即状态转移概率稳定。
预测未来3年,A、B、C厂的该药品市场占有率;计算经过若干时期形成稳定之后,A、B、C厂的该药品市场占有率。
f=[160 120 120; 180 90 30; 180 30 90]; %状态转移矩阵fs=sum(f,2);for i=1:3P(i,:)=f(i,:)/fs(i);endP %输出状态转移概率矩阵S0=[0.4 0.3 0.3];S1=S0*PS2=S1*PS3=S2*Pn=3; %状态数目: 3个药厂A=P'-eye(n);A(end,:)=ones(1,n); %将最后一个方程替换为限制条件sum(pi)=1 b=[zeros(n-1,1);1];S=inv(A)*b %解方程组Ax=b得到终极状态概率向量运行结果:P = 0.4000 0.3000 0.30000.6000 0.3000 0.10000.6000 0.1000 0.3000S1 = 0.5200 0.2400 0.2400S2 = 0.4960 0.2520 0.2520S3 = 0.5008 0.2496 0.2496S = 0.5000 0.2500 0.2500(二)带利润的马尔可夫模型经典马尔可夫模型可以应用到,某商品的销售状态的预测。
例如,销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本。
假定连续畅销时盈利r11元,连续滞销时盈利r22元,由畅销转为滞销盈利r12元,由滞销转为畅销盈利r21元,其中,r22和r12为负数,即亏本。
这种随着系统的状态转移,赋予一定利润的马尔可夫模型,称为带利润的马尔可夫模型。
设状态转移概率矩阵为111212122212n n n n nn p p p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦当系统从状态E i 转到E j 时,赋以利润r ij ,则系统利润矩阵为:111212122212n n n n nn r r r r r r r r r ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦r ij >0表示盈利,r ij <0表示亏本,r ij = 0表示不亏不盈。
随着时间的变化,系统的状态不断地转移,从而可得到一系列利润。
由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马尔可夫链的转移概率决定。
第1期的各利润随机变量记为(1)(1)1,,nx x ,其概率分布为:1,,i n =, 注意到11nij j p ==∑. 从而第1期的各期望利润(1)i v 为:(1)(1)1(), 1,,2niiij ij j vE x r p i ====∑第2期的各利润随机变量记为(2)(2)1,,nx x ,其概率分布为:1,,i n =. 从而第2期的各期望利润(2)i v 为:(2)(2)(1)1()() 1,,2niiij j ij j vE x r v p i ===+=∑依次做下去……,得到第k 期的各利润随机变量记为()()1,,k k nx x ,其概率分布为:1,,i n =. 从而第k 期的各期望利润()k i v 为:()()(1)1(1)(1)(1)111()() nk k k iiij j ijj nnnk k ij ij j ij i j ijj j j vE x r v p r p v p v v p -=--=====+=+=+∑∑∑∑当k=1时,规定边界条件(0)0i x =。
例3 设0.50.593, 0.40.637P R ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,求第1至5期的期望利润。
P=[0.5 0.5; 0.4 0.6]; %状态转移矩阵 R=[9 3; 3 -7]; %利润矩阵 T=5; %预测5期的期望利润 n=length(P);v=zeros(n,T); %初始化期望利润矩阵 for i=1:nv(i,1)=R(i,:)*P(i,:)'; %第1期的n 个期望利润 endfor k=2:T %计算第2至第T 期的各期望利润 for i=1:nv(i,k)=v(i,k-1)+P(i,:)*v(:,k-1);endendv运行结果:v = 6.0000 7.5000 10.0500 14.6550 23.3205 -3.0000 -2.4000 -0.8400 2.6760 10.1436。