Photovoltaic module
太阳能专业术语翻译
光伏发电板(电池) (Cell-photovoltaic)太阳能发电板中最小的组件.光伏发电系统平衡(BOS or Balance of System - photovoltaic) 光伏发电系统除发电板矩阵以外的部分. 例如开关, 控制仪表, 电力温控设备, 矩阵的支撑结构, 储电组件等等.光伏矩阵或发电板阵(Array - photovoltaic) 太阳能发电板串联或并联连接在一起形成矩阵.阻流二极管(Blocking Diode)用来防止反向电流, 在发电板阵中, 阻流二极管用来防止电流流向一个或数个失效或有遮影的发电板(或一连串的太阳能发电板) 上. 在夜间或低电流出的期间, 防止电流从蓄电池流向光伏发电板矩阵."旁路二极管(Bypass Diode)是与光伏发电板并联的二极管. 用来在光电板被遮影或出故障时提供另外的电流通路.充电显示器(表) (Charge Monitor/Meter) 用以测量电流安培量的装置, 安培表.充电调节器(Charge Regulator)"用来控制蓄电池充电速度和/或充电状态的装置, 连接于光伏发电板矩阵和蓄电池组之间. 它的主要作用是防止蓄电池被光伏发电板过度充电, 同时监控光伏发电矩阵和/或蓄电池的电压."组件(Components)指用于建立太阳能电源系统所需的其他装置.交直流转换器(Converter) 将交流电转换成直流电的装置.晶体状(Crystalline)具有三维的重复的原子结构.直流电(DC)"两种电流的形态之一, 常见于使用电池的物件中, 如收音机, 汽车, 手提电脑, 手机等等."无序结构(Disordered)减小并消除晶格的局限性. 提供新的自由度, 从而可在多维空间中放置其他元素. 使它们以前所未有的方式互相作用. 这种技术应用多种元素以及复合材料它们在位置, 移动及成分上的不规则可消除结构的局限性, 因而产生新的局部规则环境. 而这些新的局部环境决定了这些材料的物理性质, 电子性质以及化学性质. 因此使得合成具有新颍机理的新型材料成为可能.电网连接- 光伏发电(Grid-Connected - photovoltaic) 是一种由光伏发电板阵向电网提供电力的光伏发电系统. 这些系统可由供电公司或个别楼宇来运作.直流交流转换器(Inverter)用来将直流电转换成交流电的装置.千瓦(Kilowatt)1000 瓦特, 一个灯泡通常使用40 至100 瓦特的电力.百万瓦特(Megawatt)1,000,000 瓦特光伏发电板(Module - photovoltaic) 光伏电池以串联方式连在一起组成发电板.奥佛电子(Ovonic)[以S. R. 奥佛辛斯基(联合太阳能公司创始人)及电子的组合命名] - 用来描述我们独有的材料, 产品和技术的术语.奥佛辛斯基效应(Ovshinsky effect) 一种特别的玻璃状薄膜在极小电压的作用下从一种非导体转变成一种半导体的效应..并联连接(Parallel Connection)一种发电板连接方法. 这种连接法使电压保持相同, 但电流成倍数增加峰值输出功能(Peak Power)持续一段时间(通常是10 到30 秒)的最大能量输出.光伏(Photovoltaic - PV)光能到电能的直接转换.光伏发电板(电池) (Photovoltaic Cell) 经过特殊处理可将太阳能辐射转换成电力的半导体材料.卷到卷工序(Roll-to-Roll Process) 将整卷的基件连续地转变成整卷的产品的工序.串联连接(Series Connection)电流不变电压倍增的连接方式.太阳能(Solar)来自太阳的能量.太阳能收集器(Solar Collectors)用以捕获来自太阳的光能或热能的装置. 太阳收集器用于太阳能热水器系统中(常见于住家), 而光伏能收集器则是用于太阳能电力系统.太阳能加热(Solar Heating) 利用来自太阳的热能发电的技术或系统. 太阳能收集器用于太阳能热水器系统中(常见于住家), 而光伏能收集器则是用于太阳能电力系统中太阳能发电模块或太阳能发电板(Solar Module or Solar Panel) 一些由太阳能发电板单元所组成的太阳能发电板板块.稳定能量转换效率(Stabilized Energy Conversion Efficiency) 长期的电力输出与光能输入比例.系统, 平衡系统(Systems; Balance of Systems)"太阳能电力系统包括了光伏发电板矩阵和其它的部件. 这些部件可使这些太阳能发电板得以应用在需要可控直流电或交流电的住家和商业设施中. 用于太阳能电力系统的其它部件包括:接线和短路装置, 充电调压器,逆变器, 仪表和接地部件."薄膜(Thin-Film)在基片上形成的很薄的材料层.瓦特(Watts)用电压乘以电流的值来衡量的电力度.MWpMWp 的具体解释:M 是兆瓦,1MW 是1000KW ,WP 是太阳能电池的瓦数,是指在1000W/ 平方光照下的太阳能电池输出功率,与实际太阳光照照强度有区别.伏特(Volts)电动势能单位•能促使一安培的电流通过一欧姆的电阻•电压(Voltage)电势的量. 电压表(Voltage Meter)用以测量电压的装置.屋顶光伏屯源系统Rt K)f-UK>untedPVpciwersystern独立家庭电源系统Off- gi idhi)int?p<>ivei systt*i TI小述太阳能发屯系统Resident L4JtlureuPVp<jw or ay stem光伏建筑一体化BIPVproducts太阳能境电在1 芒馆、学校中的应用Appl icat ionsof solarPV 1 nhote 1 sandschc ml a移动信号塔太阳能发电猥胃So larPVp< iwersystemsformobi 1 ecomiitur] i cations i gnalstat i ons移动通f方垒汨T工放汕电源PVpt用systpnisf<>rGS\fljnsesttil ioils小型并网光伏社站sjna】lon^gridPVpowerstation人平井网光伙i|l?[S liirg&i en]-^ridPVp(i'WPrstci t iori乡tft公路太阳能路灯灼应用Solarstreet 1 ightsforrura 1 roadsA L R I 能建设新农村工程Solarprojec tssfornowvil Iagos城rfl A阳能庭院灯的応ffl SolargardenL ight sforci t ies乡镇太阳能庭院灯的应用So 1 ar gar de n 1 i gh t s f or town s郊区太阳能冲坪灯工程Sol ar 1 awn 1 i gh t s f<)r suburbs太阳能交通";弓灯匸程Installationof solar trafficsigns成乡风光互补路灯丈例WindanclI^hybridstre?!! ights卜区风光互补系统WindandPVhybridpowersysteinsforresidentialareas入力发屯系统的应用Windgeneratingsysterns人阳能方血专业术语「I1英文对照诠脅[原文地址]比伏发电板(电池)(Cell-photovoltaic)太阳能发屯板屮最小的组件.光伏发电系统平衡(BOS or Balance of System 一photovoltaic)光伏发屯系统除发电板矩阵以外的部分.例如开关,控制仪丧,电力温控设备,矩P 芟撑结构,储电组件等等.此伏矩阵或发电板阵(Array - photovoltaic)太阳能发电板串联或并联连接在一起形成矩阵.目流二极管(Blocking Diode)您影的发电板(或一连小的太阳能发电板)上.在夜间或低电流出的期间,防止电流》社池流向光伏发电板矩阵・"旁路二极管(Bypass Diode)足与光伏发电板并联的二极管・用來在光电板被遮影或川故障时捉供刃外的电流通学充电显示器(表)(Charge Monitor/Meter'用以测量屯流安培量的装置,安培表.充电调节器(Charge Regulator)"川來悴制薔电池充电速度利/或充电状态的装置,连接于光伏发电板矩阵和蒂电池彳nJ.它的主要作用足防止需电池被光伏发电板过度充屯,同时监拧光伏发屯矩阵和/或他的电压・"组件(Components)指用于建立太阳能电源系统所需的戏他装置.交直流转换器(Converter)将交流电转换成直流电的装買.晶体状(Crystalline)具有三维的重复的原子结构.直流电(DC)"两种电流的形态Z- 常见于使用电池的物件中,如收音机,汽车,手提电脑,T无序结构(Disordered)减小并消除晶格的局限性.提供新的自山度,从而可在多维空间屮放置戏他兀素・{ 门以丽所未冇的力武互相作用.这种技术应用多种兀素以及复介材科.它们在位胃,I 及成分I】的不规则诃消除姑构的局限性,因而产生新的局部规则环境.而这此新的局* 竟决定了这些材料的物理性质,电了性质以及化学性质.冈此使得合成具冇新颍机理G 型材料成为可能.电网连接-光伏发电(Grid-Connected - photovoltaic)是一种由光伏发电板阵向电网捉供电力的光伏发电系统.这映系统可曲供电公司或彳 *宇来运作.I直流交流转换器(Inverter)用来将恵流电转换成交流电的装置.千瓦(Kilowatt)1000瓦特,一个灯泡通常使用40至100瓦恃的屯力.13■万瓦特(Megawatt)1, 000, 000 瓦特光伏发电板(Module - photovoltaic)光伏电池以串联方式连在一起组成发电板,奧佛电了(Ovonic)[以S. R•奥佛辛斯基(联合太阳能公司创始人)及电子的组合命名]-用來描述我们勺材料,产品和技术的术语.奥佛辛斯基效应(Ovshinsky effect)一种特别的玻璃状薄膜在极小电压的作用卜从一种非导体转变成一种半导体的效应… |并联连接(Parallel Connection)一种发电板连接力法.这种连接法使电爪保持相同,但电流成倍数增加峰值输出功能(Peak Power)持续一段时间(通常是10到30秒)的敲大能量输出.光伏(Photovoltaic PV)光能到电能的宜接转换.光伏发电板(电池)(Photovoltaic Cell)经过特殊处理可将太阳能辐射转换成电力的半导体材料.卷到卷工序(Roll-to-Roll P roe ess)将整卷的基件连续地转变成整卷的产品的工序.巾联连接(Series Connection)电流不变电压倍增的连接方式.太阳能(Solar)米自太阳的能量.太阳能收集器(Solar Collectors)用以捕快來自太阳的光能或热能的装胃.人阳收集器用于K阳能热水器系统小(常贝「家人1ft]光伏能收集器则是用于太阳能电力系统.I太阳能加热(Solar Heating)利用來自人阳的热能发电的技术或系统.太阳能收集器用丁太阳能热水器系统小(常七家),血光伏能收集器则是用于太阳能电力系统中太阳能发屯模块或太阳能发屯板(Solar Module or Solar Panel)一些山太阳能发电板单元所组成的太阳能发电板板块.稳定能量转换效率(Stabilized Energy Conversion Efficiency)长期的电力输出与光能输入比例.系统,平衡系统(Systems; Balance of Systems)"人阳能电力系统包括了光伏发电板矩阵和其它的部件.这些部件可使这些太阳能发写以应用在需喪吋控玄流电或殳流电的住家和商业设施川・用于太阳能电力系统的!代乍但括:接线和短路装置,充电调圧器•逆变器,仪表和接地部件・"薄膜(Thin-Film)在基片上形成的很鞠的材料层.瓦特(Watts)用电压乘以电流的值來衡量的电力度.MWpMWp的具体解释:M是兆瓦,1MV是1000KW , WP是太阳能电池的瓦数,是指在1000W/平!«卜的太阳能电池输出功率,与实际太阳光照照戲度冇区別•伏特(Volts)电动势能单位.能促使一安培的电流通过一欧姆的屯阻.屯压(Vol tage)电势的•量.电压表(Vo 1 tage Me ter)用以测虽电压的装置.甸立国的太阳能屯池专业英语Ampere的缩写,安培amorph silicon的缩写,含氢的,非结晶性硅.absorption,吸收.ibsorption of the photons:光吸收;为能量大于禁带宽度的光子入射时.太阳电池内r能量从价带迁到导____________________________________________________;卜产生电子——空穴对的作用.称为光吸收•\b s or p t i on scoef f i c i en t,吸收系数,吸收强度.C,交流电.k安培小时.\cceptor,接收者,在半导体中可以接收一个电了.\lternating current,交流电•简称“交流.-般扌旨人小和力向随时I可作周期性变化衣或电流.它的最基木的形式是正弦屯流.我国交流电供电的标准频率规定为50赫兹,交流电随时间变化农可以是多种多样的。
EN 50548_en_2011 Junction boxes for photovoltaic modules
EN 50548:2011
-4-
Foreword
This European Standard was prepared by the Technical Committee CENELEC TC 82, Solar photovoltaic energy systems. It was submitted to the Formal Vote and was approved by CENELEC as EN 50548 on 2011-02-14. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights. The following dates were fixed: — latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement — latest date by which the national standards conflicting with the EN have to be withdrawn
CENELEC
European Committee for Electrotechnical Standardization Comit6 Europeen de Normalisation Electrotechnique Europaisches Komitee fur Elektrotechnische Normung Management Centre: Avenue Marnix 17, B -1000 Brussels
光伏发电的知识
光伏发电是一种利用半导体材料在光照射下产生电压和电流的现象,将光能直接转换为电能的技术。
以下是一些关于光伏发电的知识点:1. 光伏效应(Photovoltaic Effect):光伏效应是某些材料在光照射下产生电压和电流的现象。
这种现象可以通过将光照射到半导体材料上来实现,从而将光能转化为电能。
2. 光伏组件(Photovoltaic Module):光伏组件是由多个太阳能电池板按一定方式组合起来形成的太阳能电池组件。
它可以产生直流电,通常被用于太阳能发电系统中。
3. 光伏系统(Photovoltaic System):光伏系统是由光伏组件、逆变器、电池组等部件组成的太阳能发电系统。
逆变器是将直流电转换为交流电的设备,电池组则储存余电,以备不时之需。
4. 光伏发电技术(Photovoltaic Technology):目前,太阳能电池板主要是采用硅片生产,而硅片又分为单晶硅、多晶硅和非晶硅三种。
近年来,随着科技的发展,一些新型太阳能电池也逐渐出现,如有机太阳能电池和钙钛矿太阳能电池等。
5. 光伏发电应用(Photovoltaic Application):光伏发电已经广泛应用于家庭、企事业单位和各种公共设施等需要电力的场所。
同时,它也是一种比较环保的能源,有利于减少对环境的污染。
6. 太阳能资源评估(Solar Energy Resource Assessment):由于太阳辐射具有很强的地域差异,在选择光伏发电站点时,需要对太阳能资源进行评估,以确定是否具备建设太阳能电站的可行性。
光伏发电不仅是一种新型能源,更是一种具有广泛应用前景的技术。
随着科技的不断进步和人们对环境保护意识的提高,光伏发电在未来将会得到更广泛的应用。
Photovoltaic module
Photovoltaic moduleFrom Wikipedia, the free encyclopediaJump to: navigation, searchIt has been suggested that this article or section be merged with Photovoltaic system.(Discuss)This article may require cleanup to meet Wikipedia's quality standards. Pleaseimprove this article if you can. (June 2007)A photovoltaic module is composed of individual PV cells. This crystalline-silicon module has an aluminium frame and glass on the front.In the field of photovoltaics, a photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. An installation of photovoltaic modules or panels is known as a photovoltaic array. Photovoltaic cells typically require protection from the environment. For cost and practicality reasons a number of cells are connected electrically and packaged in a photovoltaic module, while a collection of these modules that are mechanically fastened together, wired, and designed to be a field-installable unit, sometimes with a glass covering and a frame and backing made of metal, plastic or fiberglass, are known as a photovoltaic panel or simply solar panel. A photovoltaic installation typically includes an array of photovoltaic modules or panels, an inverter, batteries (for off grid) and interconnection wiring.Contents[hide]• 1 Theory and construction• 2 Thin-film moduleso 2.1 Rigid thin-film moduleso 2.2 Flexible thin-film modules• 3 Module performance and lifetime• 4 Standards• 5 References• 6 See also•7 External links[edit] Theory and constructionSee also: Photovoltaic cellSolar Panels use thermal energy from the sun to convert solar cells into sunlight. The majority of modules use wafer-based crystalline silicon cells or a thin-film cell based on cadmium telluride or silicon . Crystalline silicon, which is commonly used in the wafer form in photovoltaic (PV) modules, is derived from silicon, a commonly used semi-conductor.In order to use the cells in practical applications, they must be:•connected electrically to one another and to the rest of the system•protected from mechanical damage during manufacture, transport and installation and use (in particular against hail impact, wind and snow loads). This is especially important forwafer-based silicon cells which are brittle.•protected from moisture, which corrodes metal contacts and interconnects, (and for thin-film cells the transparent conductive oxide layer) thus decreasing performance andlifetime.•electrically insulated including under rainy conditions•mountable on a substructure or building integrated.Most modules are rigid, but there are some flexible modules available, based on thin-film cells.Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired amount of current source capability.Diodes are included to avoid overheating of cells in case of partial shading. Since cell heating reduces the operating efficiency it is desirable to minimize the heating. Very few modules incorporate any design features to decrease temperature, however installers try to provide good ventilation behind the module.New designs of module include concentrator modules in which the light is concentrated by an array of lenses or mirrors onto an array of small cells. This allows the use of cells with a very high-cost per unit area (such as gallium arsenide) in a cost-competitive way.Depending on construction the photovoltaic can cover a range of frequencies of light and can produce electricity from them, but sometimes cannot cover the entire solar spectrum (specifically, ultraviolet, infrared and low or diffused light). Hence much of incident sunlight energy is wasted when used for solar panels, although they can give far higher efficiencies if illuminated with monochromatic light. Another design concept is to split the light into different wavelength rangesand direct the beams onto different cells tuned to the appropriate wavelength ranges. [1] This is projected to raise efficiency to 50%. Also, the use of infrared photovoltaic cells can increase the efficiencies, producing power at night.Sunlight conversion rates (module efficiencies) can vary from 5-18% in commercial production (solar panels), that can be lower than cell conversion.A group of researchers at MIT has recently developed a process to improve the efficiency of luminescent solar concentrator (LSC) technology, which redirects light along a translucent material to PV-modules located along its edge. The researchers have suggested that efficiency may be improved by a factor of 10 over the old design in as little as three years (it has been estimated that this will provide a conversion rate of 30%). 3 of the researchers involved have now started their own company, called Covalent Solar, to manufacture and sell their innovation inPV-modules. [2]The current market leader in efficient solar energy modules is SunPower, whose solar panels have a conversion ratio of 19.3%[3]. However, a whole range of other companies (HoloSun, Gamma Solar, NanoHorizons) are emerging which are also offering new innovations in photovoltaic modules, with an average conversion ratio of around 18%.[citation needed] These new innovations include power generation on the front and back sides and increased outputs; however, most of these companies have not yet produced working systems from their design plans, and are mostly still actively improving the technology. As of January 14, 2009 a World Record efficiency level of 41.1% has been reached. [4].[edit] Thin-film modulesMain articles: Thin film and Third generation solar cellThird generation solar cells are advanced thin-film cells.They produce high-efficiency conversion at low cost.[edit] Rigid thin-film modulesIn rigid thin film modules, the cell and the module are manufactured in the same production line.The cell is created directly on a glass substrate or superstrate, and the electrical connections are created in situ, a so called "monolithic integration". The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass.The main cell technologies in this category are CdTe, or a-Si, or a-Si+uc-Si|Tandem , or CIGS (or variant). Amorphous silicon has a sunlight conversion rate of 6-10%.[edit] Flexible thin-film modulesFlexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate.If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used.If it is a conductor then another technique for electrical connection must be used.The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction (from Unisolar).So-called inverted metamorphic (IMM) multijunction solar cells made oncompound-semiconductor technology are just becoming commercialized in July 2008. The University of Michigan's solar car that won the North American Solar challenge in July 2008 used IMM thin-flim flexible solar cells.[edit] Module performance and lifetimeModule performance are generally rated under Standard Test Conditions (STC) : irradiance of 1,000 W/m², solar spectrum of AM 1.5 and module temperature at 25ºC.Electrical characteristics includes nominal power (Pmax, measured in W), open circuit voltage (Voc), short circuit current (Isc, measured in Amperes), maximum power voltage (Vmpp), maximum power current (Impp) and module efficiency (%).In kWp, kW is kilowatt and the p means “peak” as peak performance. The “p” however does not show the peak performance, but rather the maximum output according to STC [5].Crystalline silicon modules offer for 10 years the 90% of rated power output and 25 years at 80%.2 million were sold in 2004. 4 million were sold in 2005 and 7 million were sold in 2006. In 2007 8 million were sold.。
光伏电站知识问答
1、什么是大气质量AM(Air Mass)?太阳光通过大气层的路径长度,简称AM,外层空间为AM 0,阳光垂直照射地球时为AM1(相当春/秋分分阳光垂直照射于赤道上之光谱),太阳电池标准测试条件为AM 1.5(相当春/秋分阳光照射于南/北纬约48.2度上之光谱)。
2、什么是日照强度(Irradiance)?单位面积内日射功率,一般以W/㎡或mW/c㎡为单位,AM 0之日照强度超过1300W/㎡,太阳电池标准测试条件为1000W/㎡(相当于100mW/c㎡)。
3、什么是日射量(Radiation)?单位面积于单位时间内日射总能量,一般以百万焦尔/年.平方米(MJ/Y.㎡)或百万焦尔/月.平方米(MJ/M.㎡),1焦尔为1瓦特功率于1秒钟累积能量(1J=1W.s)。
4、什么是太阳能电池(Solar Cell)?具有光伏效应(Photovoltaic Effect)将光(Photo)转换成电(V oltaic)的组件,又称为光伏电池(PV Cell),太阳能电池产生的电皆为直流电。
5、什么是太阳光电(Photovoltaic)?简称PV(photo=light光线,voltaics=electricity电力),由于这种电力方式不会产生氮氧化物,以及对人体有害的气体与辐射性废弃物,被称为「清净发电技术」。
PV System,则是将太阳光能转换成电能整套系统,称为太阳光电系统或光伏系统,依分类有独立型、并联型与混合型。
6、什么是PV模板(PV Module)?将多只太阳电池串联提升电压,并以坚固外材封装以利应用,又称为模块(PV Pannel或PV Module)。
7、什么是PV组列(PV String)?将模板多片串联成一列,组列的目的在提高电压,将10片模板电压20伏特5安培串联成组列,组列电压即有200伏特、电流为5安培。
8、什么是PV数组(PV Array)?将多个组列并联即为数组。
数组目的在提高电流,将5串组列电压200伏特5安培并联成数组,数组电压为200伏特、电流为25安培。
光伏名词解释
光伏名词解释光伏(Photovoltaic)是指利用太阳能(光能)直接转化为电能的过程。
光伏效应是指通过太阳能电池板中的半导体材料,将太阳光照射在半导体材料上产生的电能进行转换和输出的过程。
以下是一些光伏相关的名词解释:1. 太阳能电池板(Solar Cell):用于光伏效应的半导体器件,它由半导体材料(如硅、硒、铜铟镓硒等)制成,可以将太阳光转化为电能。
2. 光伏电池(Photovoltaic Cell):太阳能电池板中的基本单元,用于将光能转化为电能。
3. 光伏组件(Photovoltaic Module/Panel):由多个光伏电池和其他组件(如接线盒、边框、连接器等)组成的太阳能电池板,用于将光能转化为电能。
4. 光伏系统(Photovoltaic System):由光伏组件、逆变器、储能设备、控制系统等组成的完整的光伏发电系统,用于将光能转化为电能并输送到负载。
5. 光伏电站(Photovoltaic Power Station):大规模的光伏系统,通常由数百个或数千个光伏组件组成,用于将光能转化为电能并供应给电网。
6. 并网光伏系统(Grid-connected Photovoltaic System):与电网相连的光伏系统,可以将产生的电能直接输送到电网,也可以从电网获取电能。
7. 离网光伏系统(Off-grid Photovoltaic System):不与电网相连的光伏系统,需要独立运行,通常用于偏远地区或野外设备的供电。
8. 最大功率点(Maximum Power Point,MPP):在一定的光照和温度条件下,太阳能电池板能够产生的最大功率对应的电压或电流值。
9. 逆变器(Inverter):用于将直流电转换为交流电的光伏设备,通常用于将太阳能电池板产生的直流电转换为家庭或工业使用的交流电。
10. 储能设备(Energy Storage Device):用于储存太阳能电池板产生的电能,通常包括电池、超级电容器等设备。
iec标准 光伏
国际电工委员会(IEC)是一个国际性的标准制定组织,制定了许多国际标准,包括与光伏(太阳能电池和光伏系统)相关的标准。
这些标准旨在确保光伏设备和系统的性能、安全性和互操作性。
以下是一些与光伏相关的IEC标准的例子:1. IEC 61215: "Crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approval",关于结晶硅地面光伏模块的设计合格和型式认可的标准。
2. IEC 61646: "Thin-film terrestrial photovoltaic (PV) modules - Design qualification and type approval",关于薄膜地面光伏模块的设计合格和型式认可的标准。
3. IEC 61730: "Photovoltaic (PV) module safety qualification",关于光伏模块安全性认证的标准。
4. IEC 61853: "Photovoltaic (PV) module performance testing and energy rating",关于光伏模块性能测试和能量评级的标准。
5. IEC 62446: "Grid connected photovoltaic systems - Minimumrequirements for system documentation, commissioning tests and inspection",关于并网光伏系统文件、调试测试和检验的最低要求的标准。
请注意,这里列举的只是一小部分IEC关于光伏的标准,IEC的标准体系非常庞大而且在不断更新。
光伏系统术语中英文对照表
光伏系统术语中英⽂对照表序号术语对照英⽂注释1施⼯组织设计construction organization plan以施⼯项⽬为对象编制的,⽤以指导施⼯的技术、经济和组织管理的综合性⽂件。
2光伏建筑附加-BAPV building attached photovoltaics 指将太阳能光伏电池组件附着在建筑物上,引出端经过控制器、逆变器与公⽤电⽹相连接,形成户⽤并⽹光伏系统。
亦称光伏建筑附加。
3光伏建筑⼀体化-BIPV building Integrated photovoltaics 指将太阳能光伏电池组件集成到建筑物上,同时承担建筑结构功能和光伏发电功能;引出端经过控制器、逆变器与公⽤电⽹相连接,从⽽形成户⽤并⽹光伏系统。
亦称光伏建筑⼀体化4并⽹光伏电站grid-connected PV power station指接⼊公⽤电⽹(输电⽹或配电⽹)运⾏的光伏电站。
5光伏组件PV module指具有封装及内部联接的,能单独提供直流电的输出,最⼩不可分割的光伏电池组合装置。
6光伏阵列PV array 指由若⼲个光伏电池组件或光伏电池板在机械和电⽓上按⼀定⽅式组装在⼀起并且有固定的⽀撑结构⽽构成的直流发电单元,地基、太阳跟踪器、温度控制器等类似的部件不包括在阵列中。
7汇流箱combining manifolds 指在太阳能光伏发电⼯程中,将⼀定数量规格相同的光伏组件串联起来,组成⼀个个光伏串列,然后再将若⼲个光伏串列并联汇流后接⼊的装置。
8逆变器grid-connected inverter 指将光伏阵列的直流电转化为交流电,同时⼜具备各种保护功能并在满⾜特定的条件下能够实现⾃动并⽹的装置。
9光伏⽀架PV support bracket指太阳能光伏发电系统中为了摆放、安装、固定光伏电池⾯板⽽设计的特殊⽀架。
10调试debugging 指设备在安装过程中及安装结束后、移交⽣产前,按设计和设备技术⽂件规定进⾏调整、整定和⼀系列试验⼯作的总称。
太阳能光伏发电系统名词术语
太阳光伏能源系统名词术语Term ino logy of solar photovoltaice nergy systems本标准规定了太阳光伏能源系统的名词术语。
其中包括:一般术语,光伏特性和光伏转换术语,结构和系统术语,标定和测试术语以及工艺术语等五部分。
一般术语1、1 太阳光伏能源系统solar photovoltaic energy system系指利用太阳电池的光生伏特效应,将太阳能直接转换成电能的发电系统。
1. 2 大气质量(AM Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。
当大气压力P=1.013巴,天空无云时,海平面处的大气质量为1。
在任何地点,大气质量的值可以从以下公式算出:大气质量=__P ____ x _J ______Po sin 0其中,P为当地的大气压力,以巴表示。
Po等于1.013巴0为太阳咼度角1. 3太阳电池solar cell通常是指将太阳光能直接转换成电能的一种器件。
1. 4 硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。
1. 5 单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。
1. 6 非晶硅太阳电池(a—si 太阳电池)amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a —si太阳电池。
1. 7 多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。
1. 8 聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。
光伏行业名词术语
光伏行业名词术语光伏行业名词术语大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。
当大气压力P=1.013巴,天空无云时,海平面处的大气质量为1。
在任何地点,大气质量的值可以从以下公式算出:大气质量=其中,P为当地的大气压力,以巴表示。
Po 等于1.013巴θ为太阳高度角AM1.5条件AM1.5 condition系指在大气质量为1.5时,标定地面用太阳电池所规定的测试光源的辐照度和光谱分布(其中包括大气浑浊度、沉积水蒸气含量,臭氧含量等一组条件)。
太阳高度角solar clevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。
辐照度irradiance系指照射到单位表面积上的辐射功率(W/m2)。
总辐照(总的太阳辐照)total irradiation (total insolation)在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。
直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。
散射辐照度diffuse irradiance除去直射太阳辐照的贡献外,来自整个天空,照射到单位面积上的辐射功率。
太阳常数solar constant在地球的大气层外,太阳在单位时间内投射到距太阳平均日地距离处垂直于射线方向的单位面积上的全部辐射能,称为太阳常数,常用毫瓦/厘米2或瓦/米2来表示。
环境温度ambient temperature是光伏发电器周围空气的温度。
在一个通风而能避开阳光,天空和地面辐射的箱体内测量。
电池额定工作温度nominal operating cell temperature系指在辐照度为800Wm-2、环境气温20℃,风速Lms-1,电气开路在中午时太阳光垂直照射于敞开安装的框架,这个标准参考环境中,组件内太阳电池的平均平衡温度。
太阳能光伏系统术语中英参照
太阳能路灯——太阳能光伏系统术语(中英参照)1、太阳能光伏能源系统 solar photovoltaic energy system 指利用太阳能电池的光生伏特效应,将太阳能辐射能直接转换成电能的发电系统。
2、大气质量AM(Air Mass)太阳光通过大气层的路径长度,简称AM,外层空间为AM 0,阳光垂直照射地球时为AM1(相当春/秋分分阳光垂直照射于赤道上之光谱),太阳电池标准测试条件为AM 1.5(相当春/秋分阳光照射于南/北纬约48.2度上之光谱)。
3、日照强度(Irradiance)单位面积内日射功率,一般以W/㎡或mW/c㎡为单位,AM 0之日照强度超过1300W/㎡,太阳电池标准测试条件为1000W/㎡(相当于100mW/c㎡)。
4、日射量(Radiation)单位面积于单位时间内日射总能量,一般以百万焦尔/年.平方米(MJ/Y.㎡)或百万焦尔/月.平方米(MJ/M.㎡),1焦尔为1瓦特功率于1秒钟累积能量(1J=1W.s)。
5、太阳能电池(Solar Cell)具有光伏效应(Photovoltaic Effect)将光(Photo)转换成电(Voltaic)的组件,又称为光伏电池(PV Cell),太阳能电池产生的电皆为直流电。
6、太阳光电(Photovoltaic)简称PV(photo=light光线,voltaics=electricity电力),由于这种电力方式不会产生氮氧化物,以及对人体有害的气体与辐射性废弃物,被称为「清净发电技术」。
PV System,则是将太阳光能转换成电能整套系统,称为太阳光电系统或光伏系统,依分类有独立型、并联型与混合型。
7、 PV模板(PV Module)将多只太阳电池串联提升电压,并以坚固外材封装以利应用,又称为模块(PV Pannel或PV Module)。
8、 PV组列(PV String)将模板多片串联成一列,组列的目的在提高电压,将10片模板电压20伏特5安培串联成组列,组列电压即有200伏特、电流为5安培。
IEC61730-2中文翻译
IEC61730-2 中文翻译引言IEC61730-2 是国际电工委员会(International Electrotechnical Commission,简称IEC)制定的标准,该标准规定了太阳能光伏组件的安全要求。
本文档为 IEC61730-2 标准的中文翻译。
1. 范围本标准适用于太阳能光伏组件及其组件部件的安全要求。
光伏组件的定义包括用于发电的硅晶体太阳能电池模块、非晶硅太阳能电池模块和其他类型的太阳能电池模块。
2. 规范性引用文件以下文件是本标准的规范性引用文件,对于本标准的应用至关重要:•IEC 60068-2-1:环境试验和试验程序 - 第1部分:试验A与试验B:冷试验;•IEC 60068-2-2:环境试验和试验程序 - 第2部分:试验B:热试验;•IEC 60068-2-30:环境试验和试验程序- 第2部分:试验Db:湿热试验,循环(12 h + 12 h圆顶);•IEC 60068-2-14:环境试验和试验程序- 第2部分:试验N:低温试验;•IEC 60068-2-78:环境试验和试验程序- 第2部分:试验Cf:震动(半正弦波);•IEC 60068-2-80:环境试验和试验程序- 第2部分:试验Ad:仿真气候试验;•IEC 60529:安全程度的分类:防护类型,提供给设备壳和封装的固体外壳;•IEC 60904-1:太阳能光伏器件的标准分光器;•IEC 61646:针对非晶硅光伏组件的安全要求;•IEC 62108:针对薄膜光伏组件的安全要求。
3. 术语和定义本标准定义了以下术语和定义,以便在文档中保持一致的意义:1.光伏组件(Photovoltaic module):由太阳能电池组成的装置,用于将太阳能转化为电能。
2.模块(Module):由太阳能电池板和其他部件组成的独立单元。
3.太阳能电池板(Photovoltaic panel):太阳能电池的集合体,用于产生电能。
A photovoltaic module which can be installed on a
专利名称:A photovoltaic module which can beinstalled on a vertical and/or inclined wall发明人:Cappello, Giuseppe,Cappello,Giovanni,Cappello, Giorgio申请号:EP11425202.6申请日:20110726公开号:EP2551421A1公开日:20130130专利内容由知识产权出版社提供专利附图:摘要:The photovoltaic module (1) which can be installed on a vertical and/or inclined wall (2), comprises a photovoltaic panel (3), a peripheral support frame (4) of thephotovoltaic panel (3), and at least one fixing profile (5) of the frame (4) to the wall (2), the support frame (4) having at least one profiled cross-beam (6) joint to at least one profiled upright (7), the upright (7) comprising a box-shaped body (8), a front angular wing (9) frontally extending towards the box-shaped body (8), a rear angular wing (11) extending on the rear towards the box-shaped body (8), the front angular wing (9) having a front portion (13) facing the front wall (10) of the box-shaped body (8), and a spacing portion (14) of the front portion (13) from the front wall (10) of the box-shaped body (8), such that the front wall (10) of the box-shaped body (8) delimits with the front angular wing (9) an engagement seat (15) for one side of the photovoltaic panel (3), the rear angular wing (11) having a rear portion (16) offset from the rear wall (12) of the box-shaped body (8) and a guide portion (17) along the fixing profile (5), first engagement means being further provided of the guide portion (17) with the fixing profile (5), and second engagement means of the rear portion (16) of the rear angular wing (11) with the fixing profile (5).申请人:Cappello Alluminio S.r.l.地址:Zona Industriale IV Fase Viale 3, N. 5 97100 Ragusa IT国籍:IT代理机构:Rapisardi, Mariacristina更多信息请下载全文后查看。
SOLAR PHOTOVOLTAIC MODULE
COMPOSITE SYSTEM FOR PHOTOVOLTAIC MODULES
专利名称:COMPOSITE SYSTEM FOR PHOTOVOLTAIC MODULES发明人:REES, MARKUS,REES, Markus,WAEGLI,PETER,WAEGLI, Peter申请号:EP2010/059788申请日:20100708公开号:WO2011/003969A2公开日:20110113专利内容由知识产权出版社提供摘要:The present invention relates to a composite system for photovoltaic (PV) modules. The composite system consists of a carrier foil, a metal foil applied onto the carrier foil, and an insulating layer applied onto the metal foil. Using different connecting techniques, different photovoltaic (PV) cells can be fastened to the composite system and electrically interconnected thereby. In addition, the invention relates to a method for producing the composite system for PV modules, and to the use of the composite system for the back side contacting of wafer cells that have both contacts on the same side and that are placed, with said contacts, onto conductor structures that interconnect them into a module, and to the use of the composite system for modules of internally interconnected thin-film cells.申请人:EPPSTEINFOILS GMBH & CO KG,EPPSTEINFOILS GMBH & CO KG,REES, MARKUS,REES, Markus,WAEGLI, PETER,WAEGLI, Peter地址:DE,DE,CH国籍:DE,DE,CH代理人:MEYER-DULHEUER, Karl-Hermann 更多信息请下载全文后查看。
光伏组件温度系数的计算参照标准
光伏组件温度系数的计算参照标准1.光伏组件温度系数的计算应遵循国际电工委员会(IEC)发布的标准。
The calculation of the temperature coefficient of photovoltaic modules should follow the standards issued by the International Electrotechnical Commission (IEC).2. IEC组织的标准涵盖了光伏组件温度特性的测量和计算方法。
The standards from the IEC organization cover the measurement and calculation methods of the temperature characteristics of photovoltaic modules.3.光伏组件温度系数计算的标准化有助于确保各种产品在不同条件下的可靠性和性能一致性。
The standardization of temperature coefficient calculation for photovoltaic modules helps to ensure thereliability and consistency of performance of various products under different conditions.4.根据IEC标准,光伏组件的温度系数可以通过实验室测试和数学模型计算两种方法来确定。
According to the IEC standard, the temperaturecoefficient of photovoltaic modules can be determined through both laboratory testing and mathematical model calculation.5.实验室测试通常包括在不同温度条件下对光伏组件的电性能进行测量,以获得温度系数的数据。
光伏组件衰退率户外测试技术规范-2023最新
目 次1范围 (3)2规范性引用文件 (3)3术语和定义 (3)4设备要求 (4)5测试准备 (5)6组件抽样 (6)7衰退率测试 (6)8评价方法 (8)9测试报告 (8)附录A(资料性附录)测试记录 (9)附录B(资料性附录)测试流程图 (11)附录C(资料性附录)抽样方案 (11)光伏组件衰退率户外测试技术规范1范围本标准规定了光伏电站现场已安装并具备发电能力的光伏组件衰退率的测试方法,其它户外场景可参照执行。
本标准适用于光伏组件衰退率的户外测试及评价。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T2828.1计数检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T6495.1光伏器件第1部分:光伏电流-电压特性的测量GB/T9535地面用晶体硅光伏组件设计鉴定和定型GB26860电力安全工作规程IEC60904-9光伏器件第9部分:太阳模拟器性能要求IEC61215-2地面用光伏组件—设计鉴定和定型—第2部分:试验程序(Terrestrial photovoltaic(PV)modules-Design qualification and type approval-Part2:Test procedures) CNCA/CTS0004并网光伏发电系统工程验收基本要求CNCA/CTS0016并网光伏电站性能检测与质量评估技术规范3术语和定义下列术语和定义适用于本文件。
3.1光伏组件Photovoltaic module具有封装及内部连接的、能单独提供直流电输出的、最小不可分割的太阳能电池组合装置,又称为太阳能电池组件。
3.2光伏组件衰退率Recession rate of photovoltaic module随着光照时间的增加,光伏组件输出功率不断呈下降趋势的现象。
赛拉弗光伏模组安装手册说明书
Installation GuideforSERAPHIM photovoltaicmoduleTable of Contents1.Purpose of this guide ………………………………..….......No.11.1General safety …………………………………………………………………………………………..…No.11.2Handling safety ………………………………………………………..............No.11.3Installation safety ………………………………………...…………………….No.21.4Fire safety ……………………………………………………..………………..No.52.Product Identification …………………………… ………...…….…….No.53.Mechanical Installation ………………………………………...............No.63.1Selecting the location ……………………………………………………………..No.63. 2General installation ……………………………………………………………….No.63. 3 Installation method …………………………………………………………..…...No.73.4 Attachment guidelines ………………………………………………………………….…No.84. Electrical Installation …………………………………………………….No.84. 1General installation ……………………………………………………………….No.84.2 Grounding …………………………………………...…………………… ...…..No.95.Maintenance ………………………………………………………….…No.106. Dimensions & Parameters ……………………………………………..No.117. Diode Information ………………………………………………..….…No.24Purpose of this guide■This is guide contains information regarding the installation and safe handling of SERAPHIM solar system Co.,Ltd, photovoltaic module (hereafter referred to as “module”). SERAPHIM solar system Co.,Ltd. referred to as “SERAPHIM ”.■Installers must read and understand this guide prior to installation. For any questions, please contact our Global Quality & Customer Support department for further information. Installers should follow all safety precautions described in this guide as well as local codes when installing a module. ■ Before installing a solar photovoltaic system, installers should familiarize themselves with its mechanical and electrical requirements. Keep this guide in a safe place for future reference (care and maintenance) and in case of sale or disposal of the modules.General safety ■ Modules that fall under this application class may be used in system operating at more than 50V DC or 240W, where general contact access is anticipated. The module is considered to be in compliance with IEC61215&61730 only when the modules mounted in the manner specified by the mounting instructions below.■ A module with exposed conductive parts is considered to be in compliance with IEC61215&61730 only when it is electrically grounded in accordance with the instructions presented below and the requirements of the National Electrical Code.■ Installing solar photovoltaic systems requires specialized skills and knowledge. Installation should only be performed by qualified persons. ■ Installers should assume all risks of injury that might occur during installation, including, but not limited to, the risk of electric shock. ■ One single module may generate more than 30V DC when exposed to direct sunlight. Contact with a DC voltage of 30V or more is potentially hazardous. ■ Do not disconnect under load.■ Photovoltaic solar modules convert light energy to direct current electrical energy. They are designedfor outdoor use. Modules can be ground mounted, mounted on rooftops, vehicles or boats. The proper design of support structures lies within responsibility of the system designers and installers. ■ Do not use mirrors or other magnifiers to concentrate sunlight onto the modules. ■ When installing the system, abide to all local, regional and national statutory regulations. Obtain a building permit if necessary.■This product must be installed by a licensed electrician in accordance with the applicable electrical code (i.e. the NEC for the USA and CEC for Canada).■ The electrical characteristics are under standard test conditions (irradiance of 100 mW/cm2, AM 1.5 spectrum, and a cell temperature of 25°C (77°F)).■ Only use equipment, connectors, wiring and support frames suitable for solar electric systems. Handling safety ■ Do not lift the module by grasping the module’s junction box or electrical leads. ■ Do not stand or step on the module. ■ Do not drop the module or allow objects to fall on the module. ■ To avoid glass breakage, do not place any heavy objects on the module. ■ Be cautious when setting the module down on to a surface. ■ Inappropriate transport and installation may break the module. ■ Do not attempt to disassemble the modules, and do not remove any attached nameplates or components from the modules. ■ Do not apply paint or adhesive to the module top surface. ■ To avoid damage to the backsheet, do not scratch or hit the backsheet. ■ Do not drill holes in the frame. This may compromise the frame strength and cause corrosion of the frame.■ Do not scratch the anodized coating of the frame (except for grounding connection). It may cause corrosion of the frame or compromise the frame strength. ■ Be careful when setting the panel down onto a surface, particularly when placing it on a corner. ■ A panel with broken glass or torn backsheet cannot be repaired and must not be used since contact with any panel surface or the frame can cause a electric shock. ■ Work only under dry conditions, and use only dry tools. Do not handle panels when they are wet unless wearing appropriate protective equipment. ■ When storing uninstalled panels outdoors for any period of time, always cover the panels and ensurethat the glass faces down to stop water from collecting inside the panel and causing damage to exposed connectors.Installation safety ■ Any module without a frame (laminate) shall not be considered to comply with the requirements of IEC61215&61730 unless the module is mounted with hardware that has been tested and evaluated with the module under this standard or by a field Inspectioncertifying that the installed module complies with the requirements of IEC61215&61730.■ Never open electrical connections or unplug connectors while the circuit is under load. And do not disconnect during load connection for a removable connector. ■ Contact with electrically charged parts of the panels, such as terminals, can result in burns, sparks and lethal shock whether or not the panel is connected.■ Do not touch the PV module unnecessarily during installation. The glass surface and the frame may be hot; there is a risk of burns and electric shock. ■ Do not work in the rain, snow or in windy conditions. ■ Avoid exposing cables to direct sunlight in order to prevent their degradation. ■ Keep children well away from the system while transporting and installing mechanical and electrical components. ■ Do not expose the artifically sunlight to a module or panel. And completely cover the module with an opaque material during installation to prevent electricity from being generated. ■ Do not wear metallic rings, watchbands, ear, nose, lip rings or other metallic objects while installing or troubleshooting photovoltaic systems. ■ Use only insulated tools that are approved for working on electrical installations. ■ Follow the safety regulations for all other system components, including wires and cables, connectors, charging regulators, inverters, storage batteries, rechargeable batteries, etc. ■ Under normal outdoor conditions the current and voltage generated by the system will differ from those listed on the datasheet. Datasheet values are the values measured under standard test conditions.Accordingly, during system designing phase, current and short-circuit current should be multiplied by a factor of 1.25 to determine components ratings. ■ Only use connectors to connect modules to form a string, or connect to another device. Removing theconnectors will make the warranty void.Fire Safety ■ The fire rating of this module is valid only when mounted in the manner specified in the mechanical mounting instructions.■ The fire rating of the module can be referred to UL790.■ Consult your local authority for guidelines and requirements for building or structural fire safety.■ Roof constructions and installations may affect the fire safety of a building; Improper installation maycreate hazards in the event of a fire.■ Use components such as ground fault circuit breakers and fuses as required by local authority. ■ Do not use panels near equipment or in places where flammable gases may be generated.■ Do not use non-integral module and panel are installed on a roof that has fire danger. If a non-integralmodule and panel are installed on a roof that must has fire-resistant degree of class A.■ The safe distance between the module and the roof we suggest is 20~30 centimeters.Product IdentificationEach module has two labels providing the following information:1. Nameplate: describes the product type; rated power, rated current, rated voltage, open circuit voltage, short circuit current, all as measured under standard test conditions; weight, dimensions etc.; the maximum system voltage of 1500 volts DC.2. Barcode: each individual module has a unique serial number. The serial number has 17 digits. The first is type, the second is poly or mono silicon, the third is factory, the fouth and fifth is pcs of cells, the sixth to ninth is year and month, the tenth to twelfth is batch number, the thirteenth to seventeenth is number . Each module has only one barcode. It is permanently attached to the interior of the module and is visible from the front of the module. This bar code is inserted prior to laminating..Do not remove any labels. Removing a label will make the seraphim warranty void.Mechanical InstallationSelecting the location■Select a suitable location for installing the modules.■The suitable altitude for installing is below 2000 meters.■ The modules should be facing south in northern latitudes and north in southern latitudes.■ For detailed information on the best installation angle, refer to standard solar photovoltaic installation guides or consult a reputable solar installer or systems integrator. ■ The module should not be shaded at any time. ■ Do not use modules near equipment or in locations where flammable gases may be generated or collected.General Installation ■ The module mounting structure must be made of durable, corrosion-resistant and UV-resistant material. ■ In regions with heavy snowfall in winter, select the height of the mounting system so that the lowest edge of the module is not covered by snow for any length of time.■In addition, ensure that the lowest portion of the module is placed high enough so that it is not shaded by plants or trees or damaged by flying sand. ■ Modules must be securely attached to the mounting structure. ■ Provide adequate ventilation under the modules in conformity to your local regulations. A minimum distance of 10 cm between the roof plane and the frame of the module is generally recommended.■ Always observe the instructions and safety precautions included with the module support frames. ■ Do not attempt to drill holes in the glass surface of the modules as this will void the warranty. ■ Do not drill additional mounting holes in the module frames of the modules as this will void the warranty. ■ Before installing modules on a roof, ensure that the roof construction is suitable. In addition, any roof penetration required to mount the module must be properly sealed to prevent leaks. ■ When installing a module on a pole, choose a pole and module mounting structure that will withstand the anticipated winds for the area. ■ Dust building up on the surface of the module can impair with module performance. SERAPHIMrecommend installing the modules with a tilt angle of at least 10 degrees, making it easier for dust to be washed off by rain. ■ Observe the linear thermal expansion of the module frames(the recommended minimum distance between two modules is 2 cm).■ Always keep the backsheet of the panel free from foreign objects or structural elements, which could come into contact with the panel, especially when the panel is under mechanical load.■ Ensure panels are not subjected to wind or snow loads exceeding the maximum permissible loads, and are not subject to excessive forces due to the thermal expansion of the support structures: See the following paragraph for more detailed information.Installation methods■ Common hardware items such as nuts, bolts, star washers, lock washers and the like have not been evaluated for electrical conductivity or for use as grounding devices and should be used only for maintaining mechanical connections and holding electrical grounding devices in the proper position for electrical conductivity. Such devices, where supplied with the module and evaluated through the requirements in UL 1703, may be used for grounding connections in accordance with the instructions provided with the module.■ We suggest each module be securely fastened at 8 points (14mm×9mm). Modules must be installed according to the following examples. Not mounting the modules according to these instructions may void the warranty. ■ For our modules, designed mechanical load of front face is 3600Pa and safety factor is 1.5; designed mechanical load of back face is 1600Pa and safety factor is 1.5.■ Module can be installed in both landscape and portrait modes.■ For best performance, separate laying of positive and negative cables wherever possible. Induced voltage surges in the DC main cable should be minimized by laying the positive and negative cables as close together as possible.■Where this is not possible or not desirable, the inverter energy system should be connected to the distribution board located physically nearest to the inverter, and the main switchboard. And main switch for the switchboard, to which the inverter is connected, shall be a lockable switch.■The modules must be properly secured to their support so that they can withstand live load conditions,including wind uplift, to the pressure they have been certified for. It is the installer's responsibility to insure that the clamps used to secure the modules are strong enough.Attachment guidelines ■Screw InstallationEach PV module has 8 mounting holes (shown as drawing 1).The downward mechanical load resistance of module would be different according to the installation holes used(shown as table 1),Please use 8 of them to secure the modules to support structure. The module frame must be attached to a mounting rail using M8 corrosion‐proof screws together with spring washers and flat washers in eight symmetrical locations on the PV module. The applied torque should be big enough to fix it steadily.The reference torque value for M8 screw is 16~20N*m.■Clamp InstallationThe modules can be fixed on both the long and the short side of the module within the constraints shown in drawing 2,using a minimum of four clamps. The modules are built to withstand a downward force of up to 5400 Pa (550 kg/m2) or 2400 Pa (244 kg/m2) according to where they are clamped. Site‐specific loads such as wind or snow which may exert forces in a different way need to be taken into consideration to ensure this limit is not exceeded for each respective mounting option.Clamping within the green zone is certified for test loads up to 5400 Pa (550 kg/m2)Clamping within the yellow zone is certified for test loads up to 2400 Pa (244 kg/m2)Clamping within the red zone is not permitted when only using four clampsClamp mounting positions (shown as drawing 2 and table 1)Electrical InstallationWARNING Electrical HazardThis module produces electricity when exposed to light. Follow all applicable electrical safety precautions. ONLY qualified personnel can install or perform maintenance work on these modules. BE AWARE of dangerous high DC voltage when connecting module. DO NOT damage or scratch the rear surface of the module. DO NOT handle or install module when they are wet.General installation■Any hardware used must be compatible with the mounting structure material to avoid galvanic corrosion ■It is not recommended to use modules with different configurations (grounding, wiring) in the same system.■The module maximum system voltage is 1500 volts DC(For –HV module) and 1000 volts DC(For other module). For applications requiring a high operating voltage several modules can be connected in series to form a string of modules; The system voltage is then equal to the sum of the voltage of each module.■For applications requiring high operating currents several strings of modules can be connected in parallel; the system current is then equal to the sum of the current of each string of modules.■Our modules are supplied with connectors to be used for system electrical connections.■The maximum number of series connected modules can calculated through this formal: 1500/ (1.25*V oc). ■The recommended maximum parallel module configuration is 16 parallels. And the number of modules have something to do with system design parameters such as current or power output.■Please refer to local regulations to determine the system wires size, type and temperature.■To prevent the cables and the connectors from overheating, the cross section of the cables and the capacity of the connectors must be selected to suit the maximum system short circuit current (The recommended cable cross section is 4mm2 for a single module and if rated current of a connector is higher than 10A). Please note that the upper limit temperature of cable is 85°C, and that of the connector is 105°C. And all the cables diameter that been used for wiring must reach at least 4 mm2. ■The DC current generated by photovoltaic systems can be converted into AC and fed into a public grid. As local utilities’ policies on connecting renewable energy systems to their grids vary from region to region. A qualified system designer or integrator should always be consulted. Building permits, inspections and approvals by the local utility are generally required.Grounding ■Where common grounding hardware (nuts, bolts, star washers, spilt-ring lock washers, flat washers and the like) is used to attach a listed grounding/bonding device, the attachment must be made in conformance with the grounding device manufacturer’s instructions.”■For grounding and bonding requirements, please refer to regional and national safety and electricity standards. If grounding is required, use a recommended connector type, or an equivalent, for the grounding wire.■If grounding is required, the grounding wire must be properly fastened to the module frame to assure adequate electrical connection.Maintenance■ To ensure optimum module performance, SERAPHIM recommends the following maintenance measures: ■ Clean the glass surface of the module when required. Always use clean water and a soft sponge or cloth for cleaning. A mild, non-abrasive cleaning agent may be used to remove stubborn dirt. ■ Check the electrical, grounding and mechanical connections every six months to verify that they are clean, secure, undamaged and free of corrosion. ■ If any problem arises, consult a professional for suggestions. ■ Caution: observe the maintenance instructions for all components used in the system, such as support frames, charging regulators, inverters, batteries etc.Dimension & ParametersSRP-XXX-6MA-HV/ SRP-XXX-6MA (XXX=330-380)Electrical CharacteristicsRated Power(Pmp)330 335 340 345 350 355 360 365 370 375 380Power Tolerance0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99WPowerTolerance±3% ±3% ±3% ±3%±3%±3%±3%±3% ±3% ±3%±3%MaximumPowerVoltage (Vmp)37.3 37.5 37.7 37.9 38.1 38.338.538.738.9 39.139.4MaximumPower Current(Imp)8.85 8.94 9.02 9.11 9.19 9.279.369.449.52 9.609.65Open Circuit Voltage (Voc) 46.1±2%46.4±2%46.6±2%46.8±2%47±2%47.2±2%47.4±2%47.6±2%47.8±2%48±2%48.3±2%Short Circuit Current (Isc) 9.14±4%9.23±4%9.32±4%9.43±4%9.51±4%9.61±4%9.70±4%9.78±4%9.88±4%9.96±4%10.02±4%Working ConditionsPmax Temperature Coefficient ‐0.42 %/°CVoc Temperature Coefficient ‐0.32 %/°C Isc Temperature Coefficient +0.04 %/°COperating Temperature ‐40~+85 °C Nominal Operating Cell Temperature (NOCT)45±2 °C Maximum System Voltage for ‐HV 1500V(UL) Maximum System Voltage for others 1000V(UL) Maximum Series Fuse 20A Grounding conductivity <0.1ΩPV module classification Class II Insulation Resistance ≥100MΩ Mechanical SpecificationsExternal Dimensions 1966 (1970) x 992 x 50 mmWeight 24 kgSolar Cells Polycrystalline 156.75x156.75mm(72pcs) Front glass 3.2 mm tempered glass, low iron FrameAnodized/Electrophoretic aluminumaloyJunction Box IP68Output Cables 4.0 mm2, symmetrical lengths 900mm Hailstone Impact Test80 km/h for 25mm ice ballSRP-XXX-6MB-HV /SRP-XXX-6MB(XXX=275-315)Electrical CharacteristicsRated Power (Pmp) 275 280 285 290 295 300 305 310 315Power Tolerance 0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99WPower Tolerance ±3% ±3% ±3%±3% ±3% ±3%±3% ±3% ±3% Maximum PowerVoltage (Vmp)31.1 31.3 31.5 31.7 31.9 32.1 32.3 32.6 32.8 Maximum PowerCurrent (Imp)8.85 8.95 9.05 9.15 9.25 9.35 9.45 9.51 9.61Open Circuit Voltage(Voc) 38.7±2%38.9±2%39.1±2%39.3±2%39.5±2%39.7±2%39.9±2%40.2±2%40.4±2%Short Circuit Current(Isc) 9.12±4%9.22±4%9.33±4%9.44±4%9.56±4%9.65±4%9.76±4%9.82±4%9.92±4%Mechanical SpecificationsExternal Dimensions 1650x 992 x 50 mmWeight 19.5 kgSolar Cells Polycrystalline 156.75x156.75mm(60pcs)Front glass 3.2 mm tempered glass, low ironFrameAnodized/Electrophoretic aluminumaloyJunction Box IP68Output Cables 4.0 mm2, symmetrical lengths 900mmHailstone Impact Test80 km/h for 25mm ice ballWorking ConditionsPmax Temperature Coefficient ‐0.42 %/°C Voc Temperature Coefficient ‐0.32 %/°C Isc Temperature Coefficient +0.04 %/°COperating Temperature ‐40~+85 °C Nominal Operating Cell Temperature (NOCT)45±2 °C Maximum System Voltage for ‐HV 1500V(UL) Maximum System Voltage for others 1000V(UL) Maximum Series Fuse 20A Grounding conductivity <0.1Ω PV module classification Class II Insulation Resistance ≥100MΩSRP-XXX-6PA-HV /SRP-XXX-6PA(XXX=300-350)Electrical CharacteristicsRated Power(Pmp) 300 305 310 315320325330335340 345 350Power Tolerance 0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99WPower Tolerance ±3%±3%±3%±3%±3%±3%±3%±3%±3%±3%±3%Open Circuit Voltage (Voc) 44.7±2%45.0±2%45.2±2%45.3±2%45.5±2%45.7±2%45.9±2%46.2±2%46.4±2%46.5±2%46.7±2%Short Circuit Current (Isc) 8.68±4%8.73±4%8.80±4%8.87±4%8.96±4%9.03±4%9.12±4%9.20±4%9.30±4%9.41±4%9.50±4%MaximumPowerVoltage(Vmp)35.8 36.2 36.5 36.837.037.337.537.737.9 38.1 38.3MaximumPowerCurrent(Imp)8.38 8.43 8.50 8.568.658.728.808.898.98 9.06 9.14Working ConditionsPmax Temperature Coefficient ‐0.42 %/°C Voc Temperature Coefficient ‐0.32 %/°C Isc Temperature Coefficient +0.04 %/°COperating Temperature ‐40~+85 °C Nominal Operating Cell Temperature (NOCT)45±2 °C Maximum System Voltage for ‐HV 1500V(UL) Maximum System Voltage for others 1000V(UL) Maximum Series Fuse 15A Grounding conductivity <0.1ΩPV module classification Class II Insulation Resistance ≥100MΩ Mechanical SpecificationsExternal Dimensions 1966 (1970) x 992 x 50 mmWeight 24 kgSolar Cells Polycrystalline 156.75x156.75mm(72pcs) Front glass 3.2 mm tempered glass, low iron FrameAnodized/Electrophoretic aluminumaloyJunction Box IP68Output Cables 4.0 mm2, symmetrical lengths 900mm Hailstone Impact Test80 km/h for 25mm ice ballSRP-XXX-6PB-HV/SRP-XXX-6PB(XXX=250-290)Electrical CharacteristicsRated Power(Pmp) 250 255 260 265 270 275 280 285 290Power Tolerance 0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99WPowerTolerance±3% ±3% ±3% ±3% ±3% ±3% ±3% ±3% ±3%Open Circuit Voltage (Voc) 37.3±2%37.5±2%37.7±2%37.9±2%38.1±2%38.3±2%38.5±2%38.7±2%38.9±2%Short Circuit Current (Isc) 8.61±4%8.70±4%8.78±4%8.89±4%8.99±4%9.08±4%9.18±4%9.27±4%9.37±4%MaximumPower Voltage(Vmp)30.2 30.5 30.9 31.1 31.3 31.6 31.8 32.0 32.2MaximumPower Current(Imp)8.28 8.37 8.42 8.53 8.63 8.71 8.81 8.91 9.01Working ConditionsPmax Temperature Coefficient ‐0.42 %/°CVoc Temperature Coefficient ‐0.32 %/°CIsc Temperature Coefficient +0.04 %/°COperating Temperature ‐40~+85 °C Nominal Operating Cell Temperature (NOCT)45±2 °C Maximum System Voltage for ‐HV 1500V(UL) Maximum System Voltage for others 1000V(UL) Maximum Series Fuse 15A Grounding conductivity <0.1Ω PV module classification Class II Insulation Resistance ≥100MΩ Mechanical SpecificationsExternal Dimensions 1650 x 992 x 50 mmWeight 19.5 kgSolar Cells Polycrystalline:156.75x156.75mm(60pcs) Front glass 3.2 mm tempered glass, low iron FrameAnodized/Electrophoretic aluminumaloyJunction Box IP68Output Cables 4.0 mm2, symmetrical lengths 900mm Hailstone Impact Test80 km/h for 25mm ice ballSRP-XXX-E01A-HV/SRP-XXX-E01A(XXX=360-410)Electrical CharacteristicsRated Power(Pmp) 365 370 375 380 385 390 395 400 405 410Power Tolerance 0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99W0~+4.99WPowerTolerance±3% ±3% ±3%±3%±3%±3%±3%±3% ±3% ±3%Open Circuit Voltage (Voc) 43.9±2%44.10±2%44.20±2%44.30±2%44.50±2%44.70±2%44.9±2%45.10±2%45.30±2%45.50±2%Short Circuit Current (Isc) 10.73±4%10.82±4%10.91±4%10.99±4%11.08±4%11.17±4%11.25±4%11.34±4%11.42±4%11.51±4%MaximumPower Voltage(Vmp)35.8 36.00 36.2036.4036.6036.8037.0037.20 37.40 37.60MaximumPower Current(Imp)10.20 10.28 10.3610.4410.5210.6010.6810.76 10.83 10.91Working ConditionsPmax Temperature Coefficient ‐0.40 %/°CVoc Temperature Coefficient ‐0.32 %/°CIsc Temperature Coefficient +0.05 %/°COperating Temperature ‐40~+85 °C Nominal Operating Cell Temperature (NOCT)45±2 °C Maximum System Voltage for ‐HV 1500V(UL) Maximum System Voltage for others 1000V(UL) Maximum Series Fuse 20A Grounding conductivity <0.1Ω PV module classification Class II Insulation Resistance ≥100MΩ Mechanical SpecificationsExternal Dimensions 1941 x 1048 x50 mmWeight 23.5 kgSolar CellsMonocrystalline:156.75x156.75mm(72pcs)Front glass 3.2 mm tempered glass, low iron FrameAnodized/Electrophoretic aluminumaloyJunction Box IP67Output Cables 4.0 mm2, cable lengths 1000mm Hailstone Impact Test80 km/h for 25mm ice ball。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Photovoltaic moduleFrom Wikipedia, the free encyclopediaJump to: navigation, searchIt has been suggested that this article or section be merged with Photovoltaic system.(Discuss)This article may require cleanup to meet Wikipedia's quality standards. Pleaseimprove this article if you can. (June 2007)A photovoltaic module is composed of individual PV cells. This crystalline-silicon module has an aluminium frame and glass on the front.In the field of photovoltaics, a photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. An installation of photovoltaic modules or panels is known as a photovoltaic array. Photovoltaic cells typically require protection from the environment. For cost and practicality reasons a number of cells are connected electrically and packaged in a photovoltaic module, while a collection of these modules that are mechanically fastened together, wired, and designed to be a field-installable unit, sometimes with a glass covering and a frame and backing made of metal, plastic or fiberglass, are known as a photovoltaic panel or simply solar panel. A photovoltaic installation typically includes an array of photovoltaic modules or panels, an inverter, batteries (for off grid) and interconnection wiring.Contents[hide]• 1 Theory and construction• 2 Thin-film moduleso 2.1 Rigid thin-film moduleso 2.2 Flexible thin-film modules• 3 Module performance and lifetime• 4 Standards• 5 References• 6 See also•7 External links[edit] Theory and constructionSee also: Photovoltaic cellSolar Panels use thermal energy from the sun to convert solar cells into sunlight. The majority of modules use wafer-based crystalline silicon cells or a thin-film cell based on cadmium telluride or silicon . Crystalline silicon, which is commonly used in the wafer form in photovoltaic (PV) modules, is derived from silicon, a commonly used semi-conductor.In order to use the cells in practical applications, they must be:•connected electrically to one another and to the rest of the system•protected from mechanical damage during manufacture, transport and installation and use (in particular against hail impact, wind and snow loads). This is especially important forwafer-based silicon cells which are brittle.•protected from moisture, which corrodes metal contacts and interconnects, (and for thin-film cells the transparent conductive oxide layer) thus decreasing performance andlifetime.•electrically insulated including under rainy conditions•mountable on a substructure or building integrated.Most modules are rigid, but there are some flexible modules available, based on thin-film cells.Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired amount of current source capability.Diodes are included to avoid overheating of cells in case of partial shading. Since cell heating reduces the operating efficiency it is desirable to minimize the heating. Very few modules incorporate any design features to decrease temperature, however installers try to provide good ventilation behind the module.New designs of module include concentrator modules in which the light is concentrated by an array of lenses or mirrors onto an array of small cells. This allows the use of cells with a very high-cost per unit area (such as gallium arsenide) in a cost-competitive way.Depending on construction the photovoltaic can cover a range of frequencies of light and can produce electricity from them, but sometimes cannot cover the entire solar spectrum (specifically, ultraviolet, infrared and low or diffused light). Hence much of incident sunlight energy is wasted when used for solar panels, although they can give far higher efficiencies if illuminated with monochromatic light. Another design concept is to split the light into different wavelength rangesand direct the beams onto different cells tuned to the appropriate wavelength ranges. [1] This is projected to raise efficiency to 50%. Also, the use of infrared photovoltaic cells can increase the efficiencies, producing power at night.Sunlight conversion rates (module efficiencies) can vary from 5-18% in commercial production (solar panels), that can be lower than cell conversion.A group of researchers at MIT has recently developed a process to improve the efficiency of luminescent solar concentrator (LSC) technology, which redirects light along a translucent material to PV-modules located along its edge. The researchers have suggested that efficiency may be improved by a factor of 10 over the old design in as little as three years (it has been estimated that this will provide a conversion rate of 30%). 3 of the researchers involved have now started their own company, called Covalent Solar, to manufacture and sell their innovation inPV-modules. [2]The current market leader in efficient solar energy modules is SunPower, whose solar panels have a conversion ratio of 19.3%[3]. However, a whole range of other companies (HoloSun, Gamma Solar, NanoHorizons) are emerging which are also offering new innovations in photovoltaic modules, with an average conversion ratio of around 18%.[citation needed] These new innovations include power generation on the front and back sides and increased outputs; however, most of these companies have not yet produced working systems from their design plans, and are mostly still actively improving the technology. As of January 14, 2009 a World Record efficiency level of 41.1% has been reached. [4].[edit] Thin-film modulesMain articles: Thin film and Third generation solar cellThird generation solar cells are advanced thin-film cells.They produce high-efficiency conversion at low cost.[edit] Rigid thin-film modulesIn rigid thin film modules, the cell and the module are manufactured in the same production line.The cell is created directly on a glass substrate or superstrate, and the electrical connections are created in situ, a so called "monolithic integration". The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass.The main cell technologies in this category are CdTe, or a-Si, or a-Si+uc-Si|Tandem , or CIGS (or variant). Amorphous silicon has a sunlight conversion rate of 6-10%.[edit] Flexible thin-film modulesFlexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate.If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used.If it is a conductor then another technique for electrical connection must be used.The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction (from Unisolar).So-called inverted metamorphic (IMM) multijunction solar cells made oncompound-semiconductor technology are just becoming commercialized in July 2008. The University of Michigan's solar car that won the North American Solar challenge in July 2008 used IMM thin-flim flexible solar cells.[edit] Module performance and lifetimeModule performance are generally rated under Standard Test Conditions (STC) : irradiance of 1,000 W/m², solar spectrum of AM 1.5 and module temperature at 25ºC.Electrical characteristics includes nominal power (Pmax, measured in W), open circuit voltage (Voc), short circuit current (Isc, measured in Amperes), maximum power voltage (Vmpp), maximum power current (Impp) and module efficiency (%).In kWp, kW is kilowatt and the p means “peak” as peak performance. The “p” however does not show the peak performance, but rather the maximum output according to STC [5].Crystalline silicon modules offer for 10 years the 90% of rated power output and 25 years at 80%.2 million were sold in 2004. 4 million were sold in 2005 and 7 million were sold in 2006. In 2007 8 million were sold.。