江苏省邳州市第二中学高三数学 数学滚动练习(1) 苏教版
高三数学一轮复习 45分钟滚动基础训练卷(1)(江苏专版)
[考查范围:第1讲~第3讲 分值:100分]一、填空题(本大题共8小题,每小题5分,共40分,把答案填在答题卡相应位置)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________.2.[2012·扬州模拟] “α=π6”是“sin α=12”的________条件.3.[2011·南通二模] 命题“若实数a 满足a ≤2,则a 2<4”的否命题是________命题(填“真”或“假”).4.[2011·南京二模] 已知全集U =R ,Z 是整数集,集合A ={x ︱x 2-x -6≥0,x ∈R },则Z ∩(∁U A )中元素的个数为________.5.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.6.[2011·镇江模拟] 已知p :|x -a |<4,q :x 2-5x +6<0,若p 是q 的必要条件,则实数a 的取值范围是________.7.[2011·南通三模] 对于定义在R 上的函数f (x ),给出下列三个命题: ①若f (-2)=f (2),则f (x )为偶函数; ②若f (-2)≠f (2),则f (x )不是偶函数; ③若f (-2)=f (2),则f (x )一定不是奇函数. 其中正确命题的序号为________.8.若a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补.记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的________条件.二、解答题(本大题共4小题,每小题15分,共60分,解答应写出文字说明,证明过程或演算步骤)9.已知p :x 2-x -6≥0,q :x ∈Z ,若“p 且q ”与“非q ”同时为假命题,求x 的值.10.[2012·杭州模拟] 已知集合A =⎪⎪ x y =6x +1-1,集合B ={x |y =lg(-x 2+2x +m )}.(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值; (3)若A ∪B ⊆B ,求m 的取值范围.11.已知关于x 的方程(1-a )x 2+(a +2)x -4=0(a ∈R ).求: (1)方程有两个正根的充要条件; (2)方程至少有一个正根的充要条件.12.[2011·扬州期末] 已知数列{a n},a n=p n+λq n(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).(1)数列{a n}中,是否存在连续的三项,这三项构成等比数列?试说明理由;(2)设B={(n,b n)|b n=3n+k n,n∈N*},其中k∈{1,2,3},C={(n,c n)|c n=5n,n∈N*},求B∩C.测评手册45分钟滚动基础训练卷(一)1.4 [解析] ∵A={0,2,a},B ={1,a 2},A∪B={0,1,2,4,16},∴⎩⎪⎨⎪⎧a 2=16,a =4,∴a=4.2.充分不必要 [解析] 由“sin α=12”得α=2k π+π6或α=2k π+5π6,k ∈Z ,所以“α=π6”是“sin α=12”的充分不必要条件.3.真 [解析] 否命题是“若实数a 满足a >2,则a 2≥4”,这是真命题.4.4 [解析] 因为∁U A ={x |x 2-x -6<0}={x |-2<x <3},所以Z ∩(∁U A )={-1,0,1,2},所以该集合的元素有4个.5.m -n [解析] 因为∁A ∩B =(∁U A )∪(∁U B ),所以A ∩B 中共有(m -n )个元素.6.[-1,6] [解析] 由p :|x -a |<4⇒-4+a <x <4+a ;q :x 2-5x +6<0⇒2<x <3.因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧-4+a ≤2,4+a ≥3,解得-1≤a ≤6.7.② [解析] 根据偶函数的定义,对于定义域内的任意实数x ,若f (-x )=f (x ),则f (x )是偶函数.从而命题①错误;命题②正确;对于使f (-2)=f (2)=0的函数,f (x )可能为奇函数,说明命题③错误.8.充要 [解析] 若φ(a ,b )=0,则a 2+b 2=a +b ,两边平方整理得ab =0,且a ≥0,b ≥0,所以a ,b 互补;若a ,b 互补,则a ≥0,b ≥0,且ab =0,所以a +b ≥0,此时有φ(a ,b )=a +b 2-2ab -(a +b )=a +b 2-(a +b )=(a +b )-(a +b )=0,所以φ(a ,b )=0是a 与b 互补的充要条件.9.[解答] 由“p 且q ”与“非q ”同时为假命题可知,非q 为假命题,则q 为真命题;p 且q 为假命题,则p 为假命题,即綈p :x 2-x -6<0为真,∴-2<x <3,又x ∈Z ,∴x =-1,0,1或2.10.[解答] (1)由6x +1-1≥0,解得-1<x ≤5,即A ={x |-1<x ≤5}.当m =3时,由-x 2+2x +3>0,解得-1<x <3,即B ={x |-1<x <3},∴∁R B ={x |x ≥3或x ≤-1},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ∩B ={x |-1<x <4},∴4是方程-x 2+2x +m =0的根,∴m =42-2×4=8.又当m =8时,B ={x |-2<x <4},此时A ∩B ={x |-1<x <4},符合题意,故m =8.(3)由-x 2+2x +m >0,得x 2-2x -m <0.令x 2-2x -m =0,解得x 1=1+1+m ,x 2=1-1+m ,所以不等式的解集为:{x |-1+m <x <1+1+m },又A ∪B ⊆B ,所以⊆B ,所以⎩⎨⎧1-1+m ≤-1,1+1+m >5.解得m >15.11.[解答] (1)方程(1-a )x 2+(a +2)x -4=0有两个实根的充要条件是⎩⎪⎨⎪⎧1-a ≠0,Δ≥0,即⎩⎪⎨⎪⎧a ≠1,a +22+161-a ≥0⇒⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,即a ≥10或a ≤2且a ≠1; 设此时方程两根为x 1,x 2,∴方程有两正根的充要条件是:⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,x 1+x 2>0,x 1x 2>0⇒⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,a +2a -1>0,4a -1>0⇒1<a ≤2或a ≥10即为所求.(2)从(1)知1<a ≤2或a ≥10时方程有两个正根;当a =1时,方程化为3x -4=0有一个正根x =43;方程有一正、一负根的充要条件是:⎩⎪⎨⎪⎧1-a ≠0,Δ>0,x 1x 2<0⇒⎩⎪⎨⎪⎧a ≠1,a <2或a >10,4a -1<0⇒a <1.综上,方程(1-a )x 2+(a +2)x -4=0至少有一正根的充要条件是a ≤2或a ≥10.12.[解答] (1)取数列{a n }的连续三项a n ,a n +1,a n +2(n ≥1,n ∈N *), ∵a 2n +1-a n a n +2=(p n +1+λq n +1)2-(p n +λq n )(p n +2+λq n +2)=-λp n q n (p -q )2,∵p >0,q >0,p ≠q ,λ≠0,∴-λp n q n (p -q )2≠0,即a 2n +1≠a n a n +2,∴数列{a n }中不存在连续三项构成等比数列.(2)当k =1时,3n +k n =3n +1<5n,此时B ∩C =∅;当k =3时,3n +k n =3n +3n =2·3n 为偶数,而5n为奇数,此时B ∩C =∅;当k =2时,由3n +2n =5n,发现n =1符合要求,下面证明惟一性(即只有n =1符合要求).由3n +2n =5n得⎝ ⎛⎭⎪⎫35n +⎝ ⎛⎭⎪⎫25n =1,设f (x )=⎝ ⎛⎭⎪⎫35x +⎝ ⎛⎭⎪⎫25x ,则f (x )=⎝ ⎛⎭⎪⎫35x +⎝ ⎛⎭⎪⎫25x是R 上的减函数,∴f (x )=1的解只有一个.从而当且仅当n =1时,⎝ ⎛⎭⎪⎫35n +⎝ ⎛⎭⎪⎫25n =1,即3n +2n =5n,此时B ∩C ={(1,5)}.综上,当k =1或k =3时,B ∩C =∅; 当k =2时,B ∩C ={(1,5)}.。
邳州市第二中学2018-2019学年高三上学期11月月考数学试卷含答案
邳州市第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.2. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3B .6C .7D .83. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( ) A .{﹣2} B .{2} C .{﹣2,2} D .∅4.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥11 5. 己知x 0=是函数f (x )=sin (2x+φ)的一个极大值点,则f (x )的一个单调递减区间是( ) A.(,) B.(,) C.(,π)D.(,π)6. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π7. 已知x >0,y >0,+=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( ) A .(﹣∞,] B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3 9. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A .0B .1C .2D .310.在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等. 11.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)-12.实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a二、填空题13.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)14.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .15.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .16.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .17.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .18.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .三、解答题19.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.20.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?21.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.22.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.23.函数。
数学高三滚动测试卷
一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -2C. 1D. 42. 下列不等式中,正确的是()A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x ≥ 2x + 1D. 3x < 2x + 13. 已知等差数列{an}的公差为d,若a1 = 2,a3 = 8,则d的值为()A. 2B. 3C. 4D. 54. 已知等比数列{bn}的公比为q,若b1 = 3,b3 = 27,则q的值为()A. 3B. 6C. 9D. 125. 若复数z满足|z - 2| = 3,则z的取值范围是()A. z = 5B. z = 1C. z = 0D. z = -16. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 47. 若等差数列{an}的前n项和为Sn,且a1 = 2,S5 = 50,则公差d为()A. 4B. 5C. 6D. 78. 已知函数f(x) = |x - 2|,则f(x)在x = 2处的导数为()A. 0B. 1C. -1D. 不存在9. 若复数z满足|z - 1| = 2,则z的取值范围是()A. z = 3B. z = 1C. z = 0D. z = -110. 已知函数f(x) = (x - 1)^2,则f(x)在x = 1处的切线斜率为()A. 0B. 1C. -1D. 不存在二、填空题(每题5分,共50分)11. 已知等差数列{an}的公差为d,若a1 = 3,a4 = 11,则d的值为______。
12. 已知等比数列{bn}的公比为q,若b1 = 4,b3 = 64,则q的值为______。
13. 已知函数f(x) = 2x - 1,则f(-3)的值为______。
14. 已知复数z满足|z - 1| = 2,则z的取值范围是______。
江苏省邳州市第二中学高三数学 巩固练习(2) 苏教版
江苏省邳州市第二中学高三数学复习:巩固练习(2) 苏教版班级________学号_________姓名__________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中) 1.已知全集I ,M 、N 是I 的非空子集,若N M ⊇,则必有(A )N N M ⊆⋂(B )N N M ⊃⋂ (C )N M ⊃(D )N M =2.若定义在区间(1,0)-内的函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是(A ))21,0( (B )]21,0( (C )),21(+∞ (D )),0(+∞ 3.任取],,[,21b a x x ∈且,21x x ≠若)]()([21)2(2121x f x f x x f +>+,称()f x 是[a ,b]上的凸函数,则下列图象中,是凸函数图象的是(A ) (B ) (C ) (D ) 4.函数)1(32-<-+=x x x y 的反函数是(A ))413(41321->++-=x x y (B ))413(41321->+--=x x y (C ))3(41321->+--=x x y (D ))3(41321->++-=x x y 5.若)(x f 、)(x g 都是R 上的单调函数,有如下命题: ①若)(x f 、)(x g 都单调递增,则)()(x g x f -单调递增 ②若)(x f 、)(x g 都单调递减,则)()(x g x f -单调递减 ③若)(x f 、)(x g 都单调递增,则)()(x g x f ⋅单调递增 ④若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增⑤若)(x f 单调递减,)(x g 单调递增,)()(x g x f -单调递减 其中正确的是(A )①② (B )②③④ (C )③④⑤ (D )④⑤6.要把函数x a y -=和函数)(log x y a -=的图象画在同一坐标系中,只可能是7.函数d cx bx ax y +++=23的图象如图所示,则(A )a >0,b >0,c >0 (B )a >0,b >0,c <0 (C )a <0,b <0,c >0(D )a <0,b <0,c <0 8.奇函数))((R x x f y ∈=有反函数),(1x f y -=则必在)(1x f y -=的图象上的点是(A ))),((a a f -(B ))),((a a f -- (C )))(,(a f a -- (D )))(,(1a f a --9.如果一个函数)(x f 满足:(1)定义域为R ;(2)任意x 1、x 2∈R ,若120x x +=,则12()()0f x f x +=;(3)任意x ∈R ,若t >0。
江苏省邳州市第二中学高三数学 数学滚动练习(1) 苏教版
江苏省邳州市第二中学高三数学复习:数学滚动练习(1)苏教版班级 学号 姓名一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中)1.集合{|,},{|,}2442k k M x x k Z N x x k Z ππππ==+∈==+∈,则 ()A N M = ()B M N ⊃≠ ()C M N ⊂≠ ()D M N φ=2.已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b<.给出下列四个复合命题:①p 且q ,②p 或q ,③p ⌝④ q ⌝,其中真命题的个数为 ()A 1 ()B 2 ()C 3 ()D 43.,,A B C 是三个集合,那么“B A =”是“A C B C =”成立的()A 充分非必要条件 ()B 必要非充分条件()C 充要条件 ()D 既非充分也非必要条件 4.已知函数2)(x x f =,集合},)1(|{R x ax x f x A ∈=+=,且++=R R A ,则实数a的取值范围是()A (0,)+∞ ()B ),2(+∞ ()C ),4[+∞ ()D ),4[)0,(+∞-∞5.已知全集{}8,7,6,5,4,3,2,1=U ,集合{}4,3,2=M ,{}6,3,1=P ,则集合{}5,7,8是 ()A P M()B P M ()C ()U M P ð ()D ()U M P ð 6.设集合},54|{},,1|{22N b b b y y B N a a x x A ∈+-==∈+==,则下列关系中正确的是 ()A A B = ()B B A ⊂≠ ()C A B ⊂≠()D φ=B A 7.下列命题中,使命题M 是命题N 成立的充要条件的一组命题是()A 22:;:bc ac N b a M >> ()B d b d a N d c b a M ->->>:;,:()C bd ac N d c b a M >>>>>:;0,0: ()D 0:|;||||:|≤+=-ab N b a b a M8.不等式()()042222<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是()A ()2,2- ()B (]2,2- ()C (],2-∞ ()D (),2-∞-9.如果,,a b c 满足c b a <<,且0ac <,那么下列选项中不一定成立的是()A ab ac > ()B ()0c b a -> ()C 22cb ab < ()D ()0ac a c -<10.二次函数)(x f 的二次项系数为正数,且对任意项R x ∈都有)4()(x f x f -=成立,若)21()21(22x x f x f -+<-,则x 的取值范围是 ()A 2>x ()B 2-<x 或20<<x ()C 02<<-x ()D 2-<x 或0>x11.在函数2()f x ax bx c =++中,若,,a b c 成等比数列且(0)4f =-,则()f x 有最 大 值(填“大”或“小”),且该值为3-.12.对任意实数)(,x f x 是x 和22-x 中的较大者,则)(x f 的最小值为1-.13.已知定义在闭区间]3,0[上的函数kx kx x f 2)(2-=的最大值为3,那么实数k 的取值集合为{}3,1-.14.已知以下四个命题:① 如果12,x x 是一元二次方程20ax bx c ++=的两个实根,且12x x <,那么不等式20ax bx c ++<的解集为{}12x x x x <<;②若102x x -≤-,则(1)(2)0x x --≤; ③“若2m >,则220x x m -+>的解集是实数集R ”的逆否命题;④若函数()f x 在(,)-∞+∞上递增,且0a b +≥,则()()()()f a f b f a f b +≥-+-. 其中为真命题的是 ② ③ ④ (填上你认为正确的序号).三、解答题(本大题共4小题,共34分,解答题应写出文字说明,证明过程或演算步骤)15.(本题7分)解关于x 的不等式2221x a a x a--≤-. 答案:①当0a <或1a >时,)2,x a a ⎡∈⎣; ②当0a =或1a =时,x ∈∅;③当01a <<时, (2,x a a ⎤∈⎦。
江苏省邳州市第二中学高中数学 第一章《解三角形》测
江苏省邳州市第二中学高二数学 第一章《解三角形》测试(3)2 若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A A sin B A cosC A tanD A tan 13 在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形4 等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A 2B 23C 3D 325 在△ABC 中,若B a b sin 2=,则A 等于( )A 006030或B 006045或C 0060120或D 0015030或 6 边长为5,7,8的三角形的最大角与最小角的和是( )A 090B 0120C 0135D 0150二、填空题1 在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________2 在△ABC 中,若=++=A c bc b a 则,222_________3 在△ABC 中,若====a C B b 则,135,30,200_________4 在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________5 在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2 在△ABC 中,求证:)cos cos (a A b B c a b b a -=-3 在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++4 在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值参考答案一、选择题二、填空题 1 12 11sin sin sin cos sin 222A B A A A ==≤ 2 0120 22201cos ,12022b c a A A bc +-==-= 3 26- 00sin 6215,,4sin 4sin154sin sin sin 4a b b A A a A A B B -======⨯ 4 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13, 令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5 4 ,,sin sin sin sin sin sin AC BC AB AC BC AB B A C B A C+===+AC BC + 2(62)(sin sin )4(62)sin cos 22A B A B A B +-=-+=- max 4cos 4,()42A B AC BC -=≤+= 三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-=cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=所以△ABC 是直角三角形 2. 证明:将ac b c a B 2cos 222-+=,bca cb A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-= 22a b a b ab b a-==-=左边, ∴)cos cos (aA bB c a b b a -=- 3 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++。
江苏省邳州市第二中学高三数学 滚动练习6 苏教版
江苏省邳州市第二中学高三数学复习:滚动练习6 苏教版班级________学号_________姓名__________一、选择题:(本大题共8小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中) 1.下列各式中,值为22的是A .︒︒75cos 75sinB .18cos 22-πC .2tan151tan 15︒-︒ D .2)240cos(1︒--2.在ABC ∆中,“30A >o”是“1sin 2A >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件3.若点P )sin ,(cos αα在直线x y 2=上,则)42cos(πα+的值为A .102 B .1027-C .1027 D .102-4.首项为1,公差不为零的等差数列{}n a 中, 346,,a a a 是一个等比数列的前三项,则这等比数列的第4项为A. 8B. -8C. -6D. 不确定5.数列{}n a 中,11116,,*55n n n a a a n N ++=+=∈,则12lim()n n a a a →∞+++=LA .52B .72C .41D .2546.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是A .6π-B .6πC .12π- D .12π7.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为A . 21- B . 21C . 23-D . 238.农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于 A .4200元~4400元 B .4400元~4600元 C .4600元~4800元 D .4800元~5000元选择题题号1 2 3 4 5 6 7 8 答案二、填空题:(本大题共2小题,每小题5分,共10分,把答案填在题中横线上) 9.设()f x 的反函数为()h x ,函数()g x 的反函数为()1h x +.已知()()()25,52,28,f f f ==--= 那么()()()()2,5,8,2g g g g -中,一定能求出具体数值的是_______________________.10.已知数列{}n a ,满足11a =,123123(1)n n a a a a n a -=++++-L ,(2)n ≥则{}n a 的通项公式为1,(1)(2)n n a n =⎧=⎨≥⎩三、解答题:(本大题共4小题,共50分,解答题应写出文字说明,证明过程或演算步骤)11.已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα2cos 1cos 2sin 2+-的值.12.已知1sin(2)sin(2),(,)44442ππππααα+⋅-=∈,求()f α=22sin tan cot 1ααα+-- 的值.13.已知函数3()(0)f x ax cx d a =++≠是R 上的奇函数,当1x =时()f x 取得极值2-.(I)求()f x 的单调区间和极大值;(II)证明对任意12,(1,1)x x ∈-,不等式12|()()|4f x f x -<恒成立.14.如图,直线2121:)21,0(1:21+=±≠≠-+=x y l k k k kx y l 与相交于点P ,直线1l 与x 轴交于点1P ,过点1P 作x 轴的垂线交直线2l 于点1Q ,过点1Q 作y 轴的垂线交直线1l 于点2P ,过点2P 作x 轴的垂线交直线2l 于点2Q ,…,这样一直作下去,可得到一系列点1P 、1Q 、2P 、2Q ,…,点n P (1,2,3,)n =L 的横坐标构成数列{}.n x (Ⅰ)证明*),1(2111N n x kx n n ∈-=-+; (Ⅱ)求数列{}n x 的通项公式;(Ⅲ)(本小题12班做,其他班不做)比较5||4||22122+PP k PP n 与的大小.。
江苏省邳州市第二中学高三数学滚动练习6苏教版
14.如图,直线 l1 : y kx 1 k (k 0, k
1
11
)与l 2 : y
x
相交于点 P ,直线 l1与
2
22
x 轴交于点 P1 ,过点 P1 作 x 轴的垂线交直线 l2 于点 Q1,过点 Q1 作 y 轴的垂线交直线 l1
于点 P2 ,过点 P2作 x 轴的垂线交直线 l2 于点 Q2 ,…,这样一直作下去,可得到一系
f 2 5, f 5 2, f 2 8, 那么 g 2 , g 5 , g 8 , g 2 中,一定能求
出具体数值的是 _______________________ .
10.已知数列 an ,满足 a1 1 ,an a1 2a2 3a3
通项公式为 an
1, ( n 1) ( n 2)
( n 1)an 1, (n 2) 则 an 的
) 的值为 4
2
A.
10
72
B.
10
72
C.
10
2
D.
10
4.首项为 1,公差不为零的等差数列 等比数列的第 4 项为
an 中 , a3, a4, a6 是一个等比数列的前三项, 则这
A. 8
5.数列 an 中, a1 A. 2 5
B. - 8
1 , an an 1
5 B. 2 7
6 5n 1 , n
] 时, f ( x)
sin x ,则
f
5 (
) 的值为
2
3
A. 1 2
1
B.
2
C.
3
2
3
D.
2
8.农民收入由工资性收入和其它收入两部分构成. 2003 年某地区农民人均收入为
江苏省邳州市第二中学高三数学 第68课时 二项式定理(1)复习学案 苏教版
江苏省邳州市第二中学高三数学复习:第68课时 二项式定理(1)学案 苏教版一.复习目标:1.掌握二项式定理和二项展开式的性质,并能用它们讨论整除、近似计算等相关问题.2.能利用二项展开式的通项公式求二项式的指数、求满足条件的项或系数.二.知识要点:1.二项式定理: .2.二项展开式的性质:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数 .(2)若n 是偶数,则 的二项式系数最大;若n 是奇数,则 的二项式系数最大.(3)所有二项式系数的和等于 .(4)奇数项的二项式系数的和与偶数项的二项式系数的和 .三.课前预习:1.设二项式n xx )13(3+的展开式的各项系数的和为P ,所有二项式系数的和为S ,若272=+S P ,则=n ( A )()A 4 ()B 5 ()C 6 ()D 82.当+∈N n 且2≥n 时,q p n +=++++-52221142 (其中N q p ∈,,且50<≤q ),则q 的值为 ( A )()A 0 ()B 1 ()C 2 ()D 与n 有关3.在62)12(xx -的展开式中常数项是605=T ;中间项是34160x T -=. 4.在1033)3(x x -的展开式中,有理项的项数为第3,6,9项.5.求62)321(x x -+展开式里5x 的系数为-168.6.在7)1(+ax 的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,若实数1>a ,那么=a 5101+. 四.例题分析:例1.求9)23(x -展开式中系数绝对值最大的项.解:9)23(x -展开式的通项为r r r r r r r r x C x C T ⋅⋅⋅-=-⋅⋅=--+999913)2()2(3,设第1+r 项系数绝对值最大,即⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅-----++-r r r r r r r r r r r r C C C C 101919981919932323232, 所以⎩⎨⎧≥--≥+rr r r 322021833,∴43≤≤r 且N r ∈,∴3=r 或4=r ,故系数绝对值最大项为3448988x T -=或45489888x T =.例2.已知n x x )12(2lg lg ++展开式中最后三项的系数的和是方程0)7272lg(2=--y y 的正数解,它的中间项是2lg 2410+,求x 的值.解:由0)7272lg(2=--y y 得073722=--y y ,∴1-=y (舍去)或73=y , 由题意知,732412=+⋅+⋅--n n n n n n C C C ,∴6=n已知条件知,其展开式的中间项为第4项,即20001016022lg 24)2lg (lg 3)2lg (lg 3336==⋅=⋅⋅+++x x x x C ,∴012lg lg 2lg lg 2=-+⋅+x x ,∴1lg -=x 或5lg 2lg 1lg =-=x ,∴101=x 或5=x .经检验知,它们都符合题意。
江苏省邳州市第二中学高三数学 导数小结 苏教版
江苏省邳州市第二中学高三数学复习:导数小结 苏教版一.课前预习: 导 数1.设函数()f x 在0x x =处有导数,且1)()2(lim 000=∆-∆+→∆xx f x x f x ,则0()f x '=( C ) ()A 1 ()B 0 ()C 2 ()D 21 2.设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的图象()A ()B ()C ()D 3.若曲线3y x px q =++与x 轴相切,则,p q 之间的关系满足( A ) ()A 22()()032p q += ()B 23()()023p q += ()C 2230p q -= ()D 2230q p -= 4.已知函数23()2f x ax x =-的最大值不大于16,又当11[,]42x ∈时,1()8f x ≥,则a = 1 . 5.若对任意3,()4,(1)1x R f x x f '∈==-,则()f x =42x -.四.例题分析:例1.若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.解:2()1(1)[(1)]f x x ax a x x a '=-+-=---,令()0f x '=得1x =或1x a =-,∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥,∴416a ≤-≤,∴57a ≤≤.例2.已知函数3()f x ax cx d =++(0)a ≠是R 上的奇函数,当1x =时()f x 取得极值2-,(1)求()f x 的单调区间和极大值; (1)(2)证明对任意12,(1,1)x x ∈-,不等式12|()()|4f x f x -<恒成立.解:(1)由奇函数的定义,应有)()(x f x f -=-,R x ∈,即d cx ax d cx ax ---=+--33,∴ 0=d ,∴cx ax x f +=3)(,∴c ax x f +='23)(,由条件2)1(-=f 为)(x f 的极值,必有0)1(='f ,故⎩⎨⎧=+-=+032c a c a ,解得1=a ,3-=c ,∴x x x f 3)(3-=,)1)(1(333)(2-+=-='x x x x f ,∴0)1()1(='=-'f f ,当)1,(--∞∈x 时,0)(>'x f ,故)(x f 在单调区间)1,(--∞上是增函数;当)1,1(-∈x 时,0)(<'x f ,故)(x f 在单调区间)1,1(-上是减函数;当),1(∞+∈x 时,0)(>'x f ,故)(x f 在单调区间),1(∞+上是增函数,所以,)(x f 在1-=x 处取得极大值,极大值为2)1(=-f .(2)由(1)知,x x x f 3)(3-=)]1,1[(-∈x 是减函数,且)(x f 在]1,1[-上的最大值2)1(=-=f M ,最小值2)1(-==f m ,所以,对任意的1x ,)1,1(2-∈x ,恒有4)2(2)()(21=--=-<-m M x f x f .例3.设函数321()532a b f x x x x -=+++(,,0)a b R a ∈>的定义域为R ,当1x x =时,取得极大值;当2x x =时取得极小值,1||2x <且12||4x x -=.(1)求证:120x x >;(2)求证:22(1)164b a a -=+;(3)求实数b 的取值范围.(1)证明:2()(1)1f x ax b x '=+-+,由题意,2()(1)10f x ax b x '=+-+=的两根为12,x x ,∴1210x x a=>.(2)12||4x x -==,∴22(1)164b a a -=+. (3)①若102x <<,则10(2)4210b f a b ->⎧⎨'=+-<⎩,∴412(1)a b +<-,从而222(41)4(1)4(164)a b a a +<-=+, 解得112a >或14a <-(舍) ∴42(1)3b ->,得13b <. ②若120x -<<,则10(2)4230b f a b -<⎧⎨'-=-+<⎩, ∴412(1)a b +<-,从而222(41)4(1)4(164)a b a a +<-=+, 解得112a >或14a <-(舍) ∴42(1)3b ->,∴53b >, 综上可得,b 的取值范围是15(,)(,)33-∞+∞. 小结:本题主要考查导数、函数、不等式等基础知识,综合分析问题和解决问题的能力.五.课后作业: 班级 学号 姓名1.函数3223125y x x x =--+在[0,3]上的最大值与最小值分别是( )()A 5、15-()B 5、4 ()C 4-、15- ()D 5、16- 2.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( )()A 在区间(,0)-∞内,)(x f 为增函数 ()B 在区间(0,2)内,)(x f 为减函数()C 在区间(2,)+∞内,)(x f 为增函数 ()D 在区间(,0)(2,)-∞+∞内,)(x f 为增函数3.设)(x f 在0x x =处可导,且000(3)()lim 1x f x x f x x∆→-∆-=∆,则)(0x f '等于 ( ) ()A 1 ()B 13- ()C 3- ()D 31 4.设对于任意的x ,都有0)(),()(0≠-=-'-=-k x f x f x f ,则0()f x '= ( )()A k ()B k - ()C k 1 ()D k 1- 5.一物体运动方程是)/8.9(3120022s m g gt s =+=,则3=t 时物体的瞬时速度为 . 6.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.7.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨的价格P (元/吨)之间的关系为21242005P x =-,且生产x 吨的成本为50000200R x =+元,问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)8.已知1,0b c >->,函数()f x x b =+的图象与函数2()g x x bx c =++的图象相切,(1)求,b c 的关系式(用c 表示b );(2)设函数()()()F x f x g x =在(,)-∞+∞内有极值点,求c 的取值范围.。
高中数学滚动练习2(无答案)苏教版必修1(2021学年)
江苏省徐州市高中数学滚动练习2(无答案)苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省徐州市高中数学滚动练习2(无答案)苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省徐州市高中数学滚动练习2(无答案)苏教版必修1的全部内容。
滚动练习二姓名 得分 一、填空题(每小题8分,共64分)1。
已知集合A=(){}02,=+y x y x ,集合B=(){}073,=+-y x y x ,则A∩B =2、已知函数()x f 满足()121+=-x x f ,若()a a f 3=,则=a3.函数x x y 21--=值域为 .4. 高一(12)班共有40人,其中文艺爱好者20人,体育爱好者16人,文艺体育均不爱好的有15人,则文艺体育均爱好的人数是 5.{}73)1(2+<-=x x x A ,则集合A Z 中有 个元素 6。
集合2={60},{10}x x x x mx A +-=B =+=,且A ⋂B =B ,求m=7.已知函数(1)f x +的定义域为[-2,3],求函数(21)f x -的定义域 8.函数2()23f x x x =+-,[1,2]x ∈的值域为二、解答题(第9题16分,第10题20分,共36分)9. 已知集合2{3100},{223}x x x x m x m A =--≤B =+≤≤-,且满足=A ⋂B B ,求实数m的取值范围10. (1)若()f x 为一次函数,满足(())98f f x x =+,求()f x 的解析式。
(2)已知2(21)(1)1062f x f x x x +++=++,求二次函数()f x 的解析式。
苏教版高中数学选修2-2高二第二学期滚动练习(1)
高中数学学习材料 (灿若寒星 精心整理制作)姓名:________ 班级:_______ 得分:______1.函数2sin x y e x =-的导数y '=________.2.曲线323y x x =-+在点(1,2)处的切线方程为________. 3.若sin ()sin cos x f x x x =+,则()4f π'=________.4.函数32()31f x x x =-+在x =________处取得极小值.5.若函数326y x x m =-++的极大值为13,则实数m 等于________.6.函数2()ln 3f x a x bx x =++的极值点为121,2x x ==,则a b +=________.7.函数2cos y x x =+在区间[0,]2π上的最大值是________.8.如图1-4-2所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形(其中一边长为x ),再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为________时,其容积最大.9.若关于x 的不等式2x x m +≥对任意1(,]2x ∈-∞-恒成立,则m 的取值范围是_______.10.设函数()ln ln(2)(0)f x x x ax a =+-+>. (1)当1a =时,求()f x 的单调区间; (2)若()f x 在(0,1]上的最大值为12,求a 的值.(1-4-2)11.某地建一座桥,两端的桥墩已建好,这两墩相距m米.余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2)x x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?姓名:________ 班级:_______ 得分:______1.函数y =-2e x sin x 的导数y′=________. -2e x (sin x +cos x) 2.曲线y =-x 3+3x 2在点(1,2)处的切线方程为________. y =3x -1 3.若f(x)=sin x sin x +cos x,则f′(π4)等于________.124.函数f(x)=x 3-3x 2+1在x =________处取得极小值. 25.若函数y =-x 3+6x 2+m 的极大值为13,则实数m 等于________.-196.函数f(x)=aln x +bx 2+3x 的极值点为x 1=1,x 2=2,则a +b =________.-52 7.函数y =x +2cos x 在区间[0,π2]上的最大值是________. π6+ 38.如图1-4-2所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形(其中一边长为x),再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为________时,其容积最大.239.若关于x 的不等式x 2+1x ≥m 对任意x ∈(-∞,-12]恒成立,则m 的取值范围是________.(-∞,-74]10.设函数f(x)=ln x +ln(2-x)+ax(a >0). (1)当a =1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为12,求a 的值.10.【解】 函数f(x)的定义域为(0,2),f ′(x)=1x -12-x+a ,(1)当a =1时,f ′(x)=-x 2+2x (2-x ),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2).(2)当x ∈(0,1]时,f ′(x)=2-2xx (2-x )+a >0.即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a ,因此a =12.11.某地建一座桥,两端的桥墩已建好,这两墩相距m 米.余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x)x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 11.【解】 (1)设需新建n 个桥墩,则(n +1)x =m ,∴n =mx -1,所以y =f(x)=256n +(n +1)(2+x)x =256(m x -1)+mx (2+x)x =256mx +m x +2m -256.(2)由(1)知,f ′(x)=-256m x 2+12mx -12 =m 2x 2(x 32-512).令f′(x)=0,得x 32=512,所以x =64.当0<x<64时,f ′(x)<0,f(x)在区间(0,64)内为减函数;当64<x<640时,f ′(x)>0,f(x)在区间(64,640)内为增函数,所以f(x)在x =64处取得最小值,此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.。
邳州二中高三数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且对称轴为x = -1,则a、b、c之间的关系是()A. a > 0,b = -2a,c = aB. a > 0,b = -2a,c = 0C. a < 0,b = -2a,c = aD. a < 0,b = -2a,c = 02. 已知等差数列{an}的公差为d,若a1 + a3 + a5 = 12,则a2 + a4 + a6的值为()A. 12B. 18C. 24D. 303. 若复数z满足|z - 3i| = 5,则复数z的实部可能的取值范围是()A. [-2, 2]B. [-5, 5]C. [-2, 2] ∪ [2, 5]D. [-5, -2] ∪ [2, 5]4. 下列函数中,在定义域内单调递增的是()A. y = 2x - 1B. y = x^2C. y = 1/xD. y = -x^35. 若函数f(x) = x^3 - 3x + 1在区间[0, 2]上的最大值为2,则f'(x) = 0的解的个数是()A. 1B. 2C. 3D. 46. 在直角坐标系中,点A(2, 3)关于直线y = x的对称点为B,则点B的坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)7. 若等比数列{an}的首项为a1,公比为q,且a1 + a2 + a3 = 9,a2 + a3 + a4 = 27,则q的值为()A. 1B. 3C. 9D. 278. 若函数y = x^3 - 3x^2 + 4x - 1在x = 1处取得极值,则该极值是()A. 极大值1B. 极小值1C. 极大值-1D. 极小值-19. 在平面直角坐标系中,直线y = kx + b与圆x^2 + y^2 = 4相切,则k和b的关系是()A. k^2 + b^2 = 4B. k^2 + b^2 = 1C. k^2 + b^2 = 16D. k^2 + b^2 = 010. 若复数z满足|z - 1| = |z + 1|,则复数z的几何意义是()A. z位于实轴上B. z位于虚轴上C. z位于原点D. z位于直线y = x上11. 若函数f(x) = (x - 1)(x - 3)在区间[0, 4]上的最大值为2,则f(x) = 0的解的个数是()A. 1B. 2C. 3D. 412. 已知函数y = ax^2 + bx + c在区间[-1, 2]上的最大值为3,最小值为-3,则a、b、c的关系是()A. a > 0,b = 0,c = 0B. a > 0,b = 0,c = 3C. a < 0,b = 0,c = -3D. a < 0,b = 0,c = 3二、填空题(本大题共6小题,每小题10分,共60分)13. 已知等差数列{an}的首项为2,公差为3,则第10项an = ________。
邳州市第二中学2018-2019学年上学期高三数学10月月考试题
邳州市第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 2. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .3. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=4. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣65.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:16. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .37. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .8. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30° 9. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x10.如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=11.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm12.已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个二、填空题13.已知直线l的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx ex x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.15.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________. 16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .三、解答题17.已知椭圆E:=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.18.若已知,求sinx 的值.19.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.20.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B 两班中各随机抽5名学生进行抽查,其成绩记录如下: x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率; (Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望.21.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .22.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形ABEFMN ,其设计创意如下:在长4cm 、宽1c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;(2)经观察测量,发现当2NF MF -最小时,LOGO 最美观,试求此时LOGO 图案的面积.邳州市第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性. 2. 【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值. 【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8, 底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C . 3. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C 的方程为22(3)(1)4x y +-=,直线l 的普通方程为3tan (1)y x α=-,直线l 过定点3)M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .4. 【答案】C【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4sinx+2mx 是奇函数,由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.5. 【答案】D【解析】解:设球的半径为R ,圆锥底面的半径为r ,则πr 2=×4πR 2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为: =1:3.故选:D .6. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 7. 【答案】B【解析】解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.8.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.9.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.10.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.11.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.12.【答案】C【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系.二、填空题13.【答案】 2【解析】解:由,消去t 得:2x ﹣y+5=0,由ρ=8cos θ+6sin θ,得ρ2=8ρcos θ+6ρsin θ,即x 2+y 2=8x+6y ,化为标准式得(x ﹣4)2+(y ﹣3)2=25,即C 是以(4,3)为圆心,5为半径的圆.又圆心到直线l 的距离是,故曲线C 上到直线l 的距离为4的点有2个, 故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.14.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 15.【答案】2a ≥ 【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 16.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.三、解答题17.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.18.【答案】【解析】解:∵,∴<<2π,∴sin()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.19.【答案】(1)1nan,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分20.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x ﹣8)2+(y ﹣8)2=1,②由①②解得或,∵x <y ,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C ,则事件C 包含个基本事件,共有个基本事件,∴P (C )=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X 所有可能的取值为0,1,2,3,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.21.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.22.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值,此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =4BE =,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯⨯= ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.。
邳州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
邳州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.一空间几何体的三视图如图所示,则该几何体的体积为(A.12B.6C.4D.22.以过椭圆+=1(a>b>0A.相交B.相切C.相离3.已知点A(0,1),B(3,2),C(2,0),若AD→=2DB→,则|A.1 B.43C.53D.24.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法5.函数的最小正周期不大于2,则正整数k的最小值应该是()A.10 B.11 C.12 D.136.在△ABC中,若2cosCsinA=sinB,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形7.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()A.48 B.±48 C.96 D.±968.在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2﹣c2=3bc,则A等于()A.30°B.60°C.120°D.150°9.已知直线l:2y kx=+过椭圆)0(12222>>=+babyax的上顶点B和左焦点F,且被圆224x y+=截得的弦长为L,若5L≥e的取值范围是()(A)⎥⎦⎤⎝⎛550,(B )0⎛⎝⎦(C)⎥⎦⎤⎝⎛5530,(D)⎥⎦⎤⎝⎛5540,10.若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,则此双曲线的离心率等于()A.B.C.D.211.在△ABC中,a2=b2+c2+bc,则A等于()A.120°B.60°C.45°D.30°班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________12.函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .14.已知x ,y满足条件,则函数z=﹣2x+y 的最大值是 .15.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 16.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .17.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .18.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.20.平面直角坐标系xOy 中,圆C 1的参数方程为(φ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4sin θ.(1)写出圆C 1的普通方程及圆C 2的直角坐标方程;(2)圆C 1与圆C 2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.21.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.22.(本小题满分12分) 已知函数2()x f x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.23.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.24.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.邳州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】11=2(2+1)2232V ⨯⨯⨯⨯=正四棱锥. 2. 【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N根据圆锥曲线的统一定义,可得==e ,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.3. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.4. 【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.5.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.6.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.7.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.8.【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,可得a2=7c2,所以cosA===﹣,∵0<A<180°,∴A=120°.故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.9. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =解得2165d ≤。
邳州市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
邳州市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4C5 D62. 已知实数x ,y满足约束条件,若y ≥kx ﹣3恒成立,则实数k 的数值范围是( )A .[﹣,0]B .[0,] C .(﹣∞,0]∪[,+∞)D .(﹣∞,﹣]∪[0,+∞)3. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A. B. C. D.4. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .35. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312 6. α是第四象限角,,则sin α=( )A.B.C.D.7. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .308. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .9. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .210.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D . 11.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .12.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)二、填空题13.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.17()23k x -+有两个不等实根,则的取值范围是 .18.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .三、解答题19.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)20.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.21.关于x 的不等式a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2(1)当a=1,b=0时解不等式; (2)a ,b ∈R ,a ≠b 解不等式.22.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.23.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.24.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.邳州市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 2.【答案】A【解析】解:由约束条件作可行域如图,联立,解得B(3,﹣3).联立,解得A().由题意得:,解得:.∴实数k的数值范围是.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.3.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.4.【答案】C【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.5.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.6.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.7.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.8.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B9.【答案】A【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2;故选A.【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题10.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.11.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B12.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.二、填空题13.【答案】【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:14.【答案】 (4)【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .16.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB17.【答案】53,124⎛⎤⎥⎝⎦ 【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.18.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2=2k ,③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.三、解答题19.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.20.【答案】【解析】解:(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,则“这2名抗战老兵参加纪念活动的环节数相同”为事件,根据题意可知P()==,由对立事件的概率计算公式可得,故这2名抗战老兵参加纪念活动的环节数不同的概率为.(Ⅱ)根据题意可知随机变量ξ的可能取值为0,1,2,3,,P(ξ=1)==,P(ξ=2)==,P (ξ=4)=()3=,ξ则数学期望.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.21.【答案】【解析】解:(1)当a=1、b=0时,原不等式化为x ≥x 2,(2分)即x (x ﹣1)≤0;…(4分) 解得0≤x ≤1,∴原不等式的解集为{x|0≤x ≤1};…(6分)(2)∵a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2, ∴(a ﹣b )2x ≥(a ﹣b )2x 2,(10分)又∵a ≠b ,∴(a ﹣b )2>0, ∴x ≥x 2;即x (x ﹣1)≤0,…(12分) 解得0≤x ≤1;∴不等式的解集为{x|0≤x ≤1}.…(14分)【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.22.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()310212800g a g <⎧⎪⇒<<⎨<⎪⎩ ,进而求得:()3211128a ⎛⎫∈ ⎪ ⎪⎝⎭,,. 23.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根, 由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.24.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;。
邳州市二中2018-2019学年高三上学期11月月考数学试卷含答案
邳州市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种2. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=AC B .A+C=2B C .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )3. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣94. 已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.5. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.6. 函数y=2|x|的图象是( )A. B. C. D.7. 已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅C .M ∪N=UD .M ⊆(∁U N )8. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .10.已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点 11.设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣112.已知函数1()1x f x ae x a -=+--有两个零点,则实数a 的取值范围是( ) A .[1,1]- B .[0,1] C .{1}(0,1]- D .{1}[0,1)-二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 . 14.命题“若1x ≥,则2421x x -+≥-”的否命题为.15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等于__________.16.已知函数f (x )=,若f (f (0))=4a ,则实数a= .17.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .18.当时,4x<log a x ,则a 的取值范围 .三、解答题19.(本题10分)解关于的不等式2(1)10ax a x -++>.20.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.∆面积;(1)当点N与点A重合时,求NMF-最小时,LOGO最美观,试求此时LOGO图案的面积.(2)经观察测量,发现当2NF MF21.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.22.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.23.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?24.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r(],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t aa ì=+ïí=+ïî(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C的参数方程;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.邳州市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 2. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.3. 【答案】D【解析】解:由题意, =(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D .【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.4. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a , 解得a=.故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.6. 【答案】B【解析】解:∵f (﹣x )=2|﹣x|=2|x|=f (x )∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C 错误.且当x=0时,y=1;x=1时,y=2,故A ,D 错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.7. 【答案】A【解析】解:由1﹣x >0,解得:x <1, 故函数y=ln (1﹣x )的定义域为M=(﹣∞,1), 由x 2﹣x <0,解得:0<x <1,故集合N={x|x 2﹣x <0}=(0,1),∴M ∩N=N , 故选:A .【点评】本题考察了集合的包含关系,考察不等式问题,是一道基础题.8. 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线, 故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.9. 【答案】B【解析】解: ===;又,,,∴. 故选B .【点评】本题考查了向量加法的几何意义,是基础题.10.【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论.11.【答案】B【解析】解:∵(a ﹣i )•2i=2ai+2为正实数, ∴2a=0, 解得a=0. 故选:B .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.12.【答案】D【解析】当1a =时,1()11x f x e x -=+--.当1x ≥时,1()2x f x ex -=+-为增函数,∴()(1)0f x f ≥=,有唯一零点1.当1x <时,1()x f x e x -=-,1()1x f x e -'=-. ∵1x <,∴()0f x '<,()f x 单调减,∴()(1)0f x f <=,没有零点, 综上: 1a =时,原函数只有一个零点,故不成立,从而排除,,A B C .二、填空题13.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.14.【答案】若1x <,则2421x x -+<- 【解析】试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题. 15.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 16.【答案】 2 .【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2故答案为:2.17.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.18.【答案】 .【解析】解:当时,函数y=4x的图象如下图所示若不等式4x <log a x 恒成立,则y=log a x 的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x 的图象与y=4x 的图象交于(,2)点时,a=故虚线所示的y=log a x 的图象对应的底数a 应满足<a <1故答案为:(,1)三、解答题19.【答案】当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想. 20.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =,43BE =-,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛+⨯-⨯=- ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 21.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a ≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a ﹣2),(,0).∵直线l 在两坐标轴上的截距相等,∴a ﹣2=,解得a=2或a=0;(2)∵A (﹣2,4),B (4,0), ∴线段AB 的中点C 坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB 为直径的圆C 的标准方程为(x ﹣1)2+(y ﹣2)2=13.22.【答案】【解析】解:设包装盒的高为h (cm ),底面边长为a (cm ),则a=x ,h=(30﹣x ),0<x <30.(1)S=4ah=8x (30﹣x )=﹣8(x ﹣15)2+1800,∴当x=15时,S 取最大值.(2)V=a 2h=2(﹣x 3+30x 2),V ′=6x (20﹣x ),由V ′=0得x=20,当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0;∴当x=20时,包装盒容积V (cm 3)最大,此时,.即此时包装盒的高与底面边长的比值是.23.【答案】(1)cos ,0,3CD πθθθ⎛⎫=∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO==∠∠∠2cos 333CD πθθθ⎛⎫∴=-=+ ⎪⎝⎭,3OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=∈ ⎪⎝⎭(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长= 1cos θθθθ++= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+' 由()0L θ'=得:sin 6πθ⎛⎫+= ⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴= 列表:∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
邳州试卷答案高三数学上册
一、选择题1. 下列函数中,单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = -x答案:C解析:选项A的函数是二次函数,开口向上,单调递增区间为[0, +∞);选项B的函数是指数函数,底数大于1,单调递增;选项C的函数是对数函数,底数大于1,单调递增;选项D的函数是线性函数,斜率为负,单调递减。
故选C。
2. 若复数z满足z + 1/z = 2,则z的值为()A. 1B. -1C. iD. -i答案:A解析:由题意得,z + 1/z = 2,两边同时乘以z,得z^2 + 1 = 2z,即z^2 - 2z + 1 = 0,解得z = 1。
故选A。
3. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. (-∞, -1) ∪ (1, +∞)B. (-1, 1)C. (-∞, -1) ∪ (1, +∞)D. (-∞, +∞)答案:A解析:由f(x) = x^3 - 3x = 0,得x(x^2 - 3) = 0,解得x = 0或x = ±√3。
又因为f'(x) = 3x^2 - 3,令f'(x) = 0,得x = ±1。
因此,a的取值范围是(-∞, -1) ∪ (1, +∞)。
故选A。
4. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则该等差数列的公差d为()A. 2B. 3C. 4D. 5答案:A解析:由等差数列的前n项和公式得,S10 = 5(2a1 + 9d) = 100,S20 = 10(2a1 + 19d) = 300。
联立两式,解得d = 2。
故选A。
5. 已知函数f(x) = x^2 - 2ax + b,若f(x)在区间[0, a]上单调递减,则a的取值范围是()A. (0, +∞)B. (-∞, 0]C. [0, +∞)D. (-∞, 0) ∪ (0, +∞)答案:D解析:函数f(x)的对称轴为x = a,若f(x)在区间[0, a]上单调递减,则a ≤ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省邳州市第二中学高三数学复习:数学滚动练习(1)
苏教版
班级 学号 姓名
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中)
1.集合{|,},{|,}2442
k k M x x k Z N x x k Z ππππ==
+∈==+∈,则 ()A N M = ()B M N ⊃≠ ()C M N ⊂≠ ()D M N φ=I
2.已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11
a b
<.给出下
列四个复合命题:①p 且q ,②p 或q ,③p ⌝④ q ⌝,其中真命题的个数为
()A 1 ()B 2 ()C 3 ()D 4
3.,,A B C 是三个集合,那么“B A =”是“A C B C =I I ”成立的
()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件 ()D 既非充分也非必要条件
4.已知函数2
)(x x f =,集合},)1(|{R x ax x f x A ∈=+=,且+
+=R R A Y ,则实数a
的取值范围是
()A (0,)+∞ ()B ),2(+∞ ()C ),4[+∞ ()D ),4[)0,(+∞-∞Y
5.已知全集{
}8,7,6,5,4,3,2,1=U ,集合{}4,3,2=M ,{}6,3,1=P ,则集合{}5,7,8是 ()A P M Y ()B P M I ()C ()U M P I ð ()D ()U M P U ð
6.设集合},54|{},,1|{2
2
N b b b y y B N a a x x A ∈+-==∈+==,则下列关系中正确的是
()A A B =
()B B A ⊂≠ ()C A B ⊂≠
()D φ=B A I 7.下列命题中,使命题M 是命题N 成立的充要条件的一组命题是
()A 22:;:bc ac N b a M >> ()B d b d a N d c b a M ->->>:;,: ()C bd ac N d c b a M >>>>>:;0,0: ()D 0:|;||||:|≤+=-ab N b a b a M
8.不等式()()042222
<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是 ()A ()2,2-
()B (]2,2-
()C (],2-∞ ()D (),2-∞-
9.如果,,a b c 满足c b a <<,且0ac <,那么下列选项中不一定成立的是
()A ab ac > ()B ()0c b a -> ()C 22cb ab < ()D ()0ac a c -< 10.二次函数)(x f 的二次项系数为正数,且对任意项R x ∈都有)4()(x f x f -=成立,
若)21()21(2
2x x f x f -+<-,则x 的取值范围是
()A 2>x ()B 2-<x 或20<<x ()C 02<<-x ()D 2-<x 或0>x
请将选择题的答案填在下面的表格中:
题号 1 2 3 4 5 6 7 8 9 10 答案
C
B
A
A
D
A
D
B
C
C
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 11.在函数2
()f x ax bx c =++中,若,,a b c 成等比数列且(0)4f =-,则()f x 有最 大 值(填“大”或“小”),且该值为3-.
12.对任意实数)(,x f x 是x 和22
-x 中的较大者,则)(x f 的最小值为1-.
13.已知定义在闭区间]3,0[上的函数kx kx x f 2)(2
-=的最大值为3,那么实数k 的取值集合为{}3,1-. 14.已知以下四个命题:
① 如果12,x x 是一元二次方程20ax bx c ++=的两个实根,且12x x <,那么不等式
20ax bx c ++<的解集为{}12x x x x <<;
②若102
x x -≤-,则(1)(2)0x x --≤;
③“若2m >,则220x x m -+>的解集是实数集R ”的逆否命题;
④若函数()f x 在(,)-∞+∞上递增,且0a b +≥,则()()()()f a f b f a f b +≥-+-. 其中为真命题的是 ② ③ ④ (填上你认为正确的序号).
三、解答题(本大题共4小题,共34分,解答题应写出文字说明,证明过程或演算步骤)
15.(本题7分)解关于x 的不等式
2221x a a
x a --≤-. 答案:①当0a <或1a >时,)2
,x a a ⎡∈⎣;
②当0a =或1a =时,x ∈∅; ③当01a <<时, (
2,x a a ⎤∈⎦。
16.(本题7分)设S 是实数集R 的真子集,且满足下列两个条件: ①1S ∉; ②若a S ∈,则
1
1S a
∈-, 问:(Ⅰ)若2S ∈,则S 中一定还有哪两个数? (Ⅱ)集合S 中能否只有一个元素?说明理由. 答案:(Ⅰ)1
1,
2
-;
(Ⅱ)不可能.
17.(本题10分)函数)(x f 对一切实数y x ,均有x y x y f y x f )12()()(++=-+成立,且0)1(=f , (1)求)0(f 的值; (2)当1
02
x ≤≤
时,()32f x x a +<+恒成立,求实数a 的取值范围. 答案:(Ⅰ)2-; (Ⅱ)()1,+∞.
18.(本题10分)已知集合2
{||2|}A x x x x =≥-,2
{|20}B x x ax a =-+≤,若
A B B =I ,求实数a 的取值范围.
答案:[]0,1a ∈,易错点:[]{}1,30A =U 的表示不规范。