最新高考数学二轮复习学案:解析几何 含解析
高三数学第二轮复习教案第5讲解析几何问题
高三数学第二轮复习教案第5讲 解析几何问题的题型与方法(二)五、注意事项1.(1) 直线的斜率是一个非常重要的概念,斜率k 反映了直线相对于x 轴的倾斜程度。
当斜率k 存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x =a (a ∈R )。
因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑。
(2) 直线的截距式是两点式的特例,a 、b 分别是直线在x 轴、y 轴上的截距,因为a ≠0,b ≠0,所以当直线平行于x 轴、平行于y 轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解。
(3)求解直线方程的最后结果,如无特别强调,都应写成一般式。
(4)当直线1l 或2l 的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直(5)在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算。
2.(1)用待定系数法求椭圆的标准方程时,要分清焦点在x 轴上还是y 轴上,还是两种都存在。
(2)注意椭圆定义、性质的运用,熟练地进行a 、b 、c 、e 间的互求,并能根据所给的方程画出椭圆。
(3)求双曲线的标准方程 应注意两个问题:(1) 正确判断焦点的位置;(2) 设出标准方程后,运用待定系数法求解。
(4)双曲线12222=-b y a x 的渐近线方程为x a b y ±=或表示为02222=-b y a x 。
若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式: k y n x m =-2222,其中k 是一个不为零的常数。
(5)双曲线的标准方程有两个12222=-b y a x 和12222=-bx a y (a >0,b >0)。
这里222a c b -=,其中|1F 2F |=2c 。
要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同。
解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2023届高考数学二轮复习含解析
专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题1.若椭圆2222:1(0)x y C a b a b+=>>的短轴长等于焦距,则椭圆的离心率为( )A.122.已知O 是坐标原点,椭圆221259x y +=上的一点M 到左焦点1F 的距离为2,N 是MF 的中点,则ON 的长为( ) A.8B.6C.5D.43.若π0,2α⎛⎫∈ ⎪⎝⎭,方程22sin cos 1x y αα+=表示焦点在y 轴上的椭圆,则α的取值范围是( )A.π0,4⎛⎫ ⎪⎝⎭B.π0,3⎛⎫⎪⎝⎭C.ππ,42⎛⎫⎪⎝⎭ D.ππ,32⎛⎫⎪⎝⎭ 4.已知双曲线2222:1(0,0)x y T a b a b-=>>,直线y b =-与T 交于A ,B 两点,直线7y b =与T交于C ,D 两点,四边形ABCD 的两条对角线交于点E ,60AEB ∠=︒,则双曲线T 的离心率为( )C.2D.45.已知双曲线22122:1(0,0)x y C a b a b-=>>1C 同渐近线的双曲线2C 过点A ,直线:40l x y +-=与x 轴、y 轴分别交于B ,C 两点,且与双曲线2C 交于D ,若CD CB λ=,则λ=( ) A.2B.58C.38D.36.双曲线E 与椭圆22:162x y C +=焦点相同且离心率是椭圆C E的标准方程为( )A.2213y x -=B.2221y x -=C.22122x y -= D.2213x y -= 7.已知F 为抛物线2:4C y x =的焦点,,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则||||AB DE +的最小值为( )A.16B.14C.12D.108.(多选)已知点P 为双曲线2222:1(0,0)x y C a b a b-=>>所在平面内一点,12(,0),(,0)F c F c -分别为C 的左、右焦点,2121,4PF F F PF c ⊥=,线段12,PF PF 分别交双曲线于,M N 两点,11PF MF λ=,22PF NF μ=.设双曲线的离心率为e ,则下列说法正确的有( )A.若1PF 平行渐近线,则2e =B.若4λ=,则2e = C.若3μ=,则eD.λμ9. (多选)已知椭圆C 的中心在原点,焦点1F ,2F 在y 轴上,且短轴长为2,离心率1F 作y 轴的垂线,交椭圆C 于P ,Q 两点,则下列说法正确的是( ) A.椭圆方程为2213y x +=B.椭圆方程为2213x y +=C.3PQ =D.2PF Q △的周长为10. (多选)已知抛物线2:2(0)C y px p =>的焦点为F ,若()01,M y 为抛物线C 上一点,直线MF的斜率为M 为圆心的圆与C 的准线相切于点Q ,则下列说法正确的是( )A.抛物线C 的准线方程为3x =-B.直线MF 与抛物线C 相交所得的弦长为15C.MFQ △外接圆的半径为4D.若抛物线C 上两点之间的距离为8,则该线段的中点到y 轴距离的最小值为111.双曲线222:1(0)4x y C b b-=>的一条渐近线方程为320x y +=,则双曲线C 的焦距为__________.12.已知1F ,2F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,且1260F PF ∠=︒,12||5||PF PF =,则C 的离心率为______.13.已知抛物线22(0)y px p =>的准线为l ,点P 在抛物线上,PQ l ⊥于点Q ,(2,0)M 与抛物线的焦点不重合,且||||PQ PM =,120MPQ ∠=︒,则p =______________.14.已知抛物线2:2(0)C x py p =>的焦点为,F O 为坐标原点,的点P 在抛物线C 上,满足||||PF PO =. (1)求抛物线C 的方程.(2)过抛物线C 上的点A 作抛物线C 的切线,l A 与O 不重合,过O 作l 的垂线,垂足为B ,直线BO 与抛物线C 交于点D .当原点到直线AD 的距离最大时,求点A 的坐标.15.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点10,2Q ⎛⎫⎪⎝⎭在线段AB 上,直线PA ,PB 分别交直线132y x =-+于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值; (Ⅱ)求||CD 的最小值.答案以及解析1.答案:C解析:由题意,得b c =,则2222b a c c =-=,a =,则椭圆的离心率c e a==. 2.答案:D解析:椭圆221259x y +=上的一点M 到左焦点1F 的距离为2,则点M 到右焦点2F 的距离为8.又N 是1MF 的中点,所以2142ON MF ==. 3.答案:C解析:方程22sin cos 1x y αα+=,即22111sin cos x y αα+=表示焦点在y 轴上的椭圆,则11cos sin αα>.又π0,2α⎛⎫∈ ⎪⎝⎭,所以cos sin αα<,所以ππ,42α⎛⎫∈ ⎪⎝⎭. 4.答案:A解析:在22221x y a b-=中,令y b =-,得x =,不妨设,),(,)A b B b --,同理可得(,7),,7)C b D b -, 由对称性可知,四边形ABCD 的两条对角线的交点E 在y 轴上. 易知直线AC的方程为)y x b =-,令0x =,得3b y =,即0,3b E ⎛⎫⎪⎝⎭. 因为60AEB ∠=︒,所以ABE △是等边三角形,|E A y y AB -=,所以22483b a b ==,因为222c a b =+,所以22358a c =,所以e =. 5.答案:C解析:由题意,双曲线1C的离心率c e a ==1ba=,∴设222:(0)C x y αα-=≠,将点A 代入得48α-=,解得4α=-,222:144y x C ∴-=,与直线l 联立得52D y =.易得0,4B C y y ==,CD CB λ=,()5,4,042D C B C x x x x λ⎛⎫∴--=-- ⎪⎝⎭,解得38λ=,故选C. 6.答案:C解析:由题知,椭圆22162x y +=的焦点坐标为(2,0)和(2,0)-设双曲线E的标准方程为22221(0,0)x y a b a b -=>>,则224a b +=且2a =,解得222a b ==,所以双曲线E 的标准方程为22122x y -=,故选C.7.答案:A解析:如图所示,设直线AB 的倾斜角为θ,过A ,B 分别作准线的垂线,垂足为1A ,1B ,则1||AF AA =,1||BF BB =,过点F 向1AA 引垂线FG ,得||||cos ||||AG AF pAF AF θ-==, 则||1cos p AF θ=-,同理,||1cos pBF θ=+,则22||||||sin p AB AF BF θ=+=,即24|si |n AB θ=, 因为1l 与2l 垂直,所以直线DE 的倾斜角为π2θ+或π2θ-, 则24||cos DE θ=,则2244||||sin cos AB DE θθ+=+22224416sin cos sin 21sin 22θθθθ===⎛⎫⎪⎝⎭, 则易知||||AB DE +的最小值为16. 故选A. 8.答案:ACD解析:本题考查双曲线的定义、离心率问题、焦半径问题.由题意12PF F △为直角三角形,点P坐标为(,)c ±,直线1PF斜率1260k PF F =∠=.不妨设点P 在第一象限,如图.选项A,若1PF 平行渐近线,则ba,得2e =,故A 正确.选项B,若4λ=,则1MF c =.连接2MF (图略),由1260PF F ∠=︒,解得221,21)MF a MF MF c =∴=-=,得1e ,故B 错误.选项C,若3μ=,则2NF =.连接1NF (图略),由2190PF F ∠=︒,解得112,2NF a NF NF ∴=-=,得e 故C 正确. 选项D,114PF c MF λ==,14cMF λ∴=,点M 的坐标为2,M M cx c y λ=-=,代入双曲线方程得()2222ac c b λ+=,22b NF a =,则22PF NF λμμ==∴==故D 正确.故选ACD.9.答案:ACD解析:由已知,得22b =,3c a =,则1b =.又222a b c =+,所以23a =,所以椭圆的方程为2213y x+=.由题意,得223b PQ a ===,2PF Q △的周长为4a =.故选ACD. 10.答案:ACD解析:过点M 作MB 垂直于x 轴,垂足为B ,MF k =-,∴直线MF 的倾斜角为120°,60MFB ∴∠=︒,在Rt MBF △中,30BMF ∠=︒,||2||212pMF BF ⎛⎫∴==- ⎪⎝⎭,又由抛物线的定义可得||12pMF =+,21122p p ⎛⎫∴-=+ ⎪⎝⎭,解得6p =,∴抛物线C 的方程为212y x =,抛物线C 的准线方程为3x =-,故A 正确;易知直线MF的方程为3)y x =-,代入抛物线C 的方程,得21090x x -+=,解得1x =或9x =,∴直线MF 与抛物线C 相交所得弦长为19616++=,选项B 不正确;易得M ,(3,0)F,(3,Q -,||QF ==120QMF ∠=︒,设MFQ △外接圆的半径为r,根据正弦定理可得||28sin QF r QMF ====∠,4r ∴=,选项C正确;设抛物线C 上的两点分别为()11,G x y ,()22,H x y ,则||||||8GF HF GH +≥=,当且仅当G ,H ,F 三点共线时,等号成立,由抛物线的定义可知,1212||||6GF FH x x p x x +=++=++,所以1268x x ++≥,即122x x +≥,所以线段GH 的中点到y 轴的距离122122x x +≥=,选项D 正确.故选ACD. 11.答案:解析:根据题意,双曲线222:1(0)4x y C b b -=>C:x 24-y 2b 2=1(b >0)的焦点在x 轴上,则其渐近线方程为2by x =±,又由该双曲线的一条渐近线方程为320x y +=,即32y =-=3=;所以2c ==15PF =122PF +=153a =,2PF =12PF F 中,由余弦定理可得:22212121212||||||2||||cos F F PF PF PF PF F PF =+-⋅∠,而1260F PF ∠=︒,即222255429933a a a c a =+-⨯⨯712=,可得离心率c e a ==13.答案:45解析:如图,设抛物线的焦点为F ,连接PF ,由拖物线的定义知||||PQ PF =,又||||PQ PM =,所以||||PF PM =,由PQ l ⊥及120MPQ ∠=︒,得60PMF ∠=︒,于是PFM △为正三角形,||22pMF =-,所以点P 的坐标为1242p p ⎛⎫⎫+- ⎪⎪ ⎪⎝⎭⎝⎭, 将其代入22(0)y px p =>,得23221424p p p ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,即2556480p p +-=,即(12)(54)0p p +⋅-=,所以45p =. 14.答案:(1)24x y =(2)(2)-或( 解析:本题考查抛物线的标准方程,直线与抛物线的位置关系.(1)依题意设点1),(0,0),(0,)2p P O F p ,由||||PF PO =,又0p >,解得2p =,所以抛物线C 的方程为24x y =.(2)设()22,(0)A t t t ≠,由214y x =求导,得12y x '=, 所以过点A 的切线l 斜率为122k t t =⨯=, 所以切线l 的方程为2(2)y t t x t -=-, 即2y tx t =-.因为直线OB 与切线l 垂直,所以1OB k t=-, 直线OB 方程为1y x t=-,即0x ty +=,由20,4,x ty x y +=⎧⎨=⎩解得24,4,x ty t ⎧=-⎪⎪⎨⎪=⎪⎩或0,0x y =⎧⎨=⎩(舍).即点244(,)D t t-.因为()22442,,(,)A t t D t t-,所以22242422ADt t t k t t t --==+, 则直线AD 的方程为222(2)2t y t x t t--=-,即()22240t x ty t --+=. 原点到直线AD 的距离d ===2≤=,当且仅当224t t=,即t =,等号成立. 所以原点到直线AD 的距离最大为2,此时点A 坐标为(2)-或(.15.解析:(Ⅰ)设,sin )([0,2))M θθθ∈π是椭圆上任意一点,由(0,1)P ,知222221441144||12cos (1sin )1311sin 2sin 11sin 111111PM θθθθθ⎛⎫=+-=--=-+≤ ⎪⎝⎭, 故||PM即点P(Ⅱ)易知直线AB 的斜率存在,设直线AB :12y kx =+,联立直线AB 与椭圆的方程,整理得22130124k x kx ⎛⎫++-= ⎪⎝⎭, 设()11,A x y ,()22,B x y ,则122112k x x k +=-+,12231412x x k =-⎛⎫+ ⎪⎝⎭.直线PA 的方程为1111y y x x -=+,代入132y x =-+, 整理得111114422(21)1C x x x x y k x ==+-+-. 同理可得,222224422(21)1D x x x x y k x ==+-+-,则||C D CD x =-224(21)1x k x =-+-=====341431kk⨯+≥+=,当且仅当3|4|4k=,即3||16k=时等号成立,所以当3||16k=时,||CD.11。
高考数学第二轮复习 解析几何教学案
2011年高考第二轮专题复习(教学案):解析几何第1课时 直线与圆考纲指要:直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,以及直线间的平行和垂直的条件、与距离有关的问题。
圆的方程,从轨迹角度讲,尤其是参数问题,在对参数的讨论中确定圆的方程。
能借助数形结合的思想处理直线与圆的位置关系,特别是弦长问题。
考点扫描:1.直线方程:(1)倾斜角;(2) 斜率;(3)直线方程的五种形式。
2.圆的方程:(1)圆的标准方程;(2)圆的一般方程。
3.两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
4. 根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。
考题先知:例1.某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α (90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ) 问学生距离镜框下缘多远看画的效果最佳?分析 欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值解 建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值由三角函数的定义知 A 、B 两点坐标分别为(a cos α,a sin α)、 (b cos α,b sin α),于是直线AC 、BC 的斜率分别为 k AC =tan XCA =x a a -ααcos sin ,.cos sin tan xb b XCB k BC -==αα 于是tan ACB =AC BC AC BC k k k k ⋅+-1ααααcos )(sin )(cos )(sin )(2⋅+-+⋅-=++-⋅-=b a x xabb a x x b a ab x b a 由于∠ACB 为锐角,且x >0,则tan ACB ≤ααcos )(2sin )(b a ab b a +-⋅-,当且仅当xab=x ,即x =ab 时,等号成立, 此时∠ACB 取最大值,对应的点为C (ab ,0),因此,学生距离镜框下缘ab cm 处时,视角最大,即看画效果最佳点评:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值 如果坐标系选择不当,或选择求sin ACB 的最大值 都将使问题变得复杂起来例2.设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线分析: 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-y x代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k 则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点点评:本题主要考查“参数法”求曲线的轨迹方程 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论复习智略:例3抛物线有光学性质 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y 2=2px (p >0) 一光源在点M (441,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l 2x -4y-17=0上的点N ,再折射后又射回点M (如下图所示)(1)设P 、Q 两点坐标分别为(x 1,y 1)、(x 2,y 2),证明 y 1·y 2=-p 2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由分析:本题考查学生对韦达定理、点关于直线对称、直线关于直线对称、直线的点斜式方程、两点式方程等知识的掌握程度解: (1)证明 由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p,0), 设直线PQ 的方程为y =k (x -2p) ①由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2当直线PQ 的斜率角为90°时,将x =2p代入抛物线方程,得y =±p ,同样得到y 1·y 2=-p 2(2)解 因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,由题设P 点的纵坐标y 1=4,且由(1)知 y 1·y 2=-p 2,则4·(-1)=-p 2,得p =2,故所求抛物线方程为y 2=4x(3)解 将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4)将y =-1代入直线l 的方程为2x -4y -17=0,得x =213, 故N 点坐标为(213,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0, 设M 点关于直线NP 的对称点M 1(x 1,y 1) ⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称 。
高考数学二轮复习指导系列-解析几何.doc
高考数学二轮复习指导系列-解析几何绪言:解析儿何的本质是用代数的方法研究儿何问题,其中蕴含丰富的数学思想:函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想等.因此,要注意数学思想方法在问题解决过程中的核心地位.近几年解析几何内容考查的题型归纳与分析如下:建议对以上儿类问题进行整理,讲关键处、讲重点、讲难点、讲思想、讲规律、讲方法,讲存在的主要问题和相应的解决方法与策略:1.重视圆锥曲线的定义,利用图形的几何特征解题;2.掌握基本量计算:如眩长,中点眩问题,梳理定点、定值问题的基本思路以及有关面积的处理思路;3.圆锥曲线问题的计算,首先是耐心演算,其次是算法、算理、算式的分析、渗透与强化,提高运算的准确性;4.读题、审题,加强数学阅读理解的指导,加强数学表达的规范训练.一、存在的问题及原因分析:(一)缺乏科学规范的作图意识,识图、用图能力待提高科学规范地画出图形是研究几何问题的基础,作图的过程也是问题条件的理解与解题思路的探究过程.【例1】(2016全国I卷理20)设圆x2+ y2+2x-\5 = 0的圆心为A,直线/过点B (1, 0)且与x轴不重合,/交圆人于两点,过B作AC的平行线交AD于点E.⑴证明|创+ |皿为定值,并写出点E的轨迹方程.评析:由于作图潦草、没有使用尺规作图、不够精确,导致难以发现关键的几何特征信息.识图、用图能力差,没有从图形中发现AC = AD t以及BE = DE・究其原因在于课堂教学作图环节缺失,教师多用手工绘制草图、缺乏刈•图形中几何特征与数量关系的细致量化分析.建议教师注意使用尺规规范作图,示范指导,并要求学生当堂作图练习.所给的练习,不给图形,要求学生通过审题自己作图,结合图形从整体角度理解题意寻找解题思路.(二)缺乏利用圆锥曲线的定义研究相关问题的意识与模式习惯定义是数学问题研究的起点.圆锥曲线的定义蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例2】(2016全国I卷理20)设圆x2 + y2+2x-\5 =0的圆心为A,直线/过点B (1, 0)且与x轴不重合,/交圆A于C,D两点,过B作4C的平行线交AD于点E.⑴证明|创+ |比为定值,并写出点E的轨迹方程.解答:圆的方程可化为(^ + 1)2 + /=16的圆心为4(70),半径为4;动点C, D落在圆上,满足|AC| = |AD| = 4;(点在圆上,根据圆的定义有\AC\ = \AD\ = 4)等腰三角形AACD 中,BE//AC=>\BE\ = \DE\;・•. AE| + |ED|=|AE| + |BE| = 4;由题设得A(-l,0) , B(l,0), | AB |=2,由椭圆定义可得点E的轨迹方程为:手+斗"(〉'工°)・(|個+岡二4根据定义知点E的轨迹是椭圆)评析:未能从动点与定点的位置关系角度理解问题,去探究目标“证明\AE\ + \EB\为定值” 的证明思路,未能结合定义预判可能的轨迹类型,从而没能联系已有的几何条件寻找突破口.究其原因在于研究求轨迹方程这类问题时,没有养成优先站在“观察发现动点运动变化 过程中不变的儿何关系”的角度探究问题的意识;没有养成“定义”的应用意识,未能从圆 锥曲线的定义审视动点满足的不变的几何关系,选择简便的方法实现几何条件代数化.建议复习教学中凡涉及轨迹问题,均需先回顾梳理各种方法,结合问题背景比较、优化 方法;强调要在大问题(圆锥曲线的定义与几何图形中的位置关系与数量关系)下研究几何 性质;加强逻辑严密的课堂推演与条理清晰试题剖析.(三)缺乏对几何条件代数化(坐标化)方法策略的深入研究解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐 标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化.点,分别为「的左、右顶点,P 为「上一点,且PF 丄x 轴,过点A 的直线/与线段"交 于点M ,与轴交于点E ,直线与『轴交于点N ,若\OE\ = 2\ON\ ,则「的离心率为()3 4A. 3B. 2C. -D.- 2 3解答:从试题中的关键条件\OE\ = 2\ON\出发,因为三点均在y 轴上,从坐标关系角度加以理解,从而引入关联参数实现几何条件代数化:设点2V (O,r )E (O,-2r ),则直线/疔+士 = 1,直线B 陀+沪,联立即可得:M (-3d,4f ), ・・・_c=-3a,答案:A【例3](唐山2017)已知O 为坐标原点, F 是双曲线r:罕-* = 1(。
高考数学二轮复习 第一篇 微型专题 专题6 解析几何知识整合学案 理-人教版高三全册数学学案
专题6解析几何一、直线和圆1.如何判断两条直线平行与垂直?(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有k1=k2⇔l1∥l2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直若两条直线l1,l2的斜率都存在,分别为k1,k2,则k1·k2=-1⇔l1⊥l2,当一条直线的斜率为零,另一条直线斜率不存在时,两条直线垂直.2.如何判断直线与圆的位置关系?设圆的半径为r,圆心到直线的距离为d.方法位置关系几何法代数法相交d<rΔ>0相切d=rΔ=0相离d>rΔ<03.如何判断圆与圆的位置关系?设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:位置关系相离外切相交内切内含几何特征d>R+r d=R+rR-r<d<R+rd=R-r d<R-r代数无实一组两组一组无实特征数解实数解实数解实数解数解公切线条数4 3 2 1 04.如何求直线与圆相交得到的弦长?(1)几何法,直线被圆截得的半弦长l2,弦心距d和圆的半径r构成直角三角形,即r2=(l2)2+d2;(2)代数法,联立直线方程和圆的方程,消元转化为关于x或y的一元二次方程,由根与系数的关系即可求得弦长|AB|=√1+l2|x1-x2|=√1+l2·√(l1+l2)2-4l1l2或|AB|=√1+1l2·|y1-y2|=√1+1l2·√(l1+l2)2-4l1l2.二、圆锥曲线1.椭圆的标准方程怎么求?几何性质有哪些?标准方程x2a2+y2b2=1(a>b>0) y2a2+x2b2=1(a>b>0)图形范围-a≤x≤a-b≤y≤b -b≤x≤b -a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 |F 1F 2|=2c 离心率e=ca ∈(0,1) a ,b ,c的关系c 2=a 2-b 22.双曲线的标准方程怎么求?几何性质有哪些?标准方程x 2a 2-y 2b 2=1(a>0,b>0) y 2a 2-x 2b 2=1(a>0,b>0)图形范围x ≥a 或x ≤-a ,y ∈Rx ∈R,y ≤-a 或 y ≥a对称性对称轴:坐标轴;对称中心:原点顶点 A 1(-a ,0),A 2(a ,0) A 1(0,-a ),A 2(0,a )渐近线 y=±ll xy=±ll x离心率e=ll ,e ∈(1,+∞)实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 23.抛物线的标准方程是什么?几何性质有哪些?y 2=2px (p>0) y 2=-2px (p>0)x 2=2py(p>0)x 2=-2py(p>0)p 的几何意义:焦点F 到准线l 的距离顶点 O (0,0)对称轴直线y=0直线x=0焦点 F (p 2,0) F (-p 2,0) F (0,p2) F (0,-p2)离心率 e=1准线 方程x=-p2 x=p2 y=-p2 y=p2 范围x ≥0,y ∈Rx ≤0, y ∈Ry ≥0, x ∈Ry ≤0, x ∈R开口方向向右向左 向上 向下三、直线与圆锥曲线的位置关系1.怎样判断直线与圆锥曲线的位置关系?判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax+By+C=0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的方程,即{ll +ll +l =0,l (l ,l )=0消去y ,得ax 2+bx+c=0.(1)当a ≠0时,设一元二次方程ax 2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a=0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.如何求圆锥曲线的弦长?设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB|=√1+l 2·|x 1-x 2|=√1+l 2·√(l 1+l 2)2-4l 1l 2=√1+1l 2·|y 1-y 2|=√1+1l 2·√(l 1+l 2)2-4l 1l 2.3.直线与圆锥曲线相交时,弦中点坐标与直线的斜率是什么关系?试用点差法进行推导. 椭圆:设直线l 斜率为k ,直线l与椭圆l 2l 2+l 2l 2=1交于A (x 1,y 1),B (x 2,y 2)两点,AB 中点为P (x 0,y 0).则l 12l 2+l 12l 2=1,l 22l 2+l 22l 2=1,两式相减整理得: l 1-l 2l 1-l 2=-l 2(l 1+l 2)l 2(l 1+l 2),即k=-l 2l2ll 0.同理:双曲线中有k=l 2l2ll 0.1.直线与圆的方程问题在近几年的高考中考查强度有所下降,其中两条直线的平行与垂直,点到直线的距离,两点间的距离是命题的热点.圆与直线相结合命题,着重考查待定系数法求圆的方程,直线与圆的位置关系,特别是直线与圆相切、相交.2.圆锥曲线主要考查的问题(1)圆锥曲线的定义、标准方程与几何性质,这部分是每年必考内容,虽然大纲降低了对双曲线的要求,但在选择题中仍然会考查双曲线.圆锥曲线可单独考查,也可与向量、数列、不等式等其他知识结合起来考查,突出考查学生的运算能力和转化思想.(2)直线与圆锥曲线的位置关系:此类问题命题背景宽,涉及知识点多,综合性强,通常从圆锥曲线的概念入手,从不同角度考查,或探究平分面积的线、平分线段的点(线),或探究使其解析式成立的参数是否存在.(3)圆锥曲线的参数范围、最值问题:该考向多以直线与圆锥曲线为背景,常与函数、方程、不等式、向量等知识交汇,形成轨迹、范围、弦长、面积等问题.从近几年高考情形来看,该类专题在高考中占的比例大约为20%,一般是一个解答题和两个小题,难度比例适当.一、选择题和填空题的命题特点(一)考查直线与圆的方程,难度中等,主要考查圆的方程、直线与圆相交形成的弦长、直线与圆相切或相交的有关问题.1.(2018·全国Ⅰ卷·文T15改编)直线y=kx+1与圆x2+y2+2y-3=0交于A,B两点,当|AB|=2√2时,k= .解析▶圆的标准方程为x2+(y+1)2=4,其圆心为(0,-1),半径为2,设圆心到直线.因为|AB|=2√l2-l2=2√4-l2=2√2,所以d=√2,所以kx-y+1=0的距离为d,则d=√=√2,所以k=±1.√答案▶±12.(2018·全国Ⅲ卷·文T8改编)已知A(-2,0),B(0,-2),则圆(x-2)2+y2=2上一点P到AB所在直线距离的取值范围是().A.[2,6]B.[4,8]C.[√2,3√2]D.[2√2,3√2]解析▶根据题意得AB所在的直线方程为x+y+2=0,则圆心(2,0)到直线x+y+2=0的距离=2√2.又因为半径r=√2,所以点P到直线x+y+2=0的距离的最大值为2√2+√2=3√2, d=√2最小值为2√2-√2=√2,故选C.答案▶ C(二)考查圆锥曲线的概念与标准方程,难度中等,主要考查圆锥曲线的定义、代入法求轨迹方程以及待定系数法求标准方程.3.(2018·北京卷·文T12改编)若双曲线l2l2-l24=1(a>0)的渐近线方程为y=±12x,则a=.解析▶因为a>0,根据题意,双曲线的渐近线方程为y=±2l x=±12x,所以a=4.答案▶ 44.(2018·天津卷·文T7改编)已知双曲线l2l2-l2l2=1(a>0,b>0) 的渐近线方程为y=±√3x,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1,d2,且d1+d2=6,则双曲线的方程为().A.l23-l29=1 B.l29-l23=1C.l24-l212=1 D.l212-l24=1解析▶由题意可得图象,如图,CD是双曲线的一条渐近线y=llx,即bx-ay=0,右焦点为F(c,0),且AC⊥CD,BD⊥CD,EF⊥CD,所以四边形ABCD是梯形.又因为F是AB的中点,所以EF=l1+l22=3,得EF=√2l2=b,所以b=3.又ll=√3,所以a=√3,故双曲线的方程为l23-l29=1,故选A.答案▶ A(三)考查圆锥曲线的几何性质,属中等偏难题目,主要包含离心率、范围、对称性、渐近线、准线等性质.5.(2018·全国Ⅰ卷·文T4改编)已知椭圆C:l2l2+l2l2=1(a>b>0)的一个焦点为(2,0),离心率为√22,则C的标准方程为().A.l28+l22=1 B.l212+l24=1C.l28+l24=1 D.l28+l26=1解析▶因为椭圆焦点在x轴上,且c=2,离心率e=ll =√22,解得a=2√2,所以b=2,故C的标准方程为l28+l24=1,故选C.答案▶ C6.(2018·全国Ⅲ卷·文T10改编)已知点(4,0)到双曲线C:l2l2-l2l2=1(a>0,b>0)的渐近线的距离为2√2,则C的离心率为().A.√2B.2C.3√22D.2√2解析▶由题意可知双曲线的一条渐近线为y=llx,即bx-ay=0,故点(4,0)到C的渐近线的距离d=√2l2=2√2,整理可得a=b,故双曲线C:l2l2-l2l2=1(a>0,b>0)的离心率e=ll =√1+l2l2=√2,故选A.答案▶ A(四)考查圆锥曲线中的最值和范围问题,属偏难题目,主要考查以直线和圆锥曲线的位置关系、弦长、面积等知识为背景的求最值与取值范围问题.7.(2017·全国Ⅰ卷·文T12改编)已知椭圆C:l23+l2l=1离心率的取值范围为[√63,1),则m的取值范围为().A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)解析▶当0<m<3时,焦点在x轴上,则ll =√1-(ll)2≥√63,∴ll≤√33,即√l√3≤√33,得0<m≤1;当m>3时,焦点在y轴上,则ll =√1-(ll)2≥√63,∴ll≤√33,即√3√l≤√33,得m≥9.故m的取值范围为(0,1]∪[9,+∞),故选A.答案▶ A8.(2017·全国Ⅱ卷·文T5改编)已知双曲线C:l2l2-l2l2=1(a>0,b>0)的虚轴长为2,实轴长大于2,则双曲线C的离心率的取值范围是().A.(√2,+∞)B.(√2,2)C .(1,√2)D .(1,2)解析▶ 由题意知,b=1,a>1,则e 2=l 2l 2=l 2+1l 2=1+1l2.因为a>1,所以1<1+1l 2<2,则1<e<√2,故选C .答案▶ C二、解答题的命题特点圆锥曲线的综合试题一般为第20题,是全国卷中的压轴题,难度较大,综合性强,题型变化灵活,能考查学生的数学综合能力,是出活题、考能力的代表.由于向量、导数等内容的充实,圆锥曲线试题逐渐向多元化、交汇型发展,试题既保证突出运用坐标法研究图形几何性质,考查解析几何的基本能力的同时,又聚焦于轨迹、参数的取值范围、定值、定点和最值问题的动态变化探究,考查解析几何的核心素养.主要题型有点的轨迹与曲线的方程、直线与圆锥曲线的位置关系、圆锥曲线的最值与取值范围、定点与定值问题等.主要命题方向:(一)用坐标法判断图形的几何性质1.(2018·全国Ⅱ卷·文T20)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k>0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解析▶ (1)由题意得F (1,0),l 的方程为y=k (x-1)(k>0). 设A (x 1,y 1),B (x 2,y 2). 由{l =l (l -1),l 2=4x,得k 2x 2-(2k 2+4)x+k 2=0. Δ=16k 2+16>0,故x 1+x 2=2l 2+4l 2.所以|AB|=|AF|+|BF|=(x 1+1)+(x 2+1)=4l 2+4l 2.由题设知4l 2+4l 2=8,解得k=-1(舍去)或k=1.因此l 的方程为y=x-1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x 0,y 0),则{l 0=-l 0+5,(l 0+1)2=(l 0-l 0+1)22+16,解得{l 0=3,l 0=2或{l 0=11,l 0=-6.因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 2.(2017·全国Ⅱ卷·T20)设O 为坐标原点,动点M 在椭圆C :l 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√2 ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ . (1)求点P 的轨迹方程;(2)设点Q 在直线x=-3上,且ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.解析▶ (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x-x 0,y ),ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,y 0). 由ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√2 ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 得x 0=x ,y 0=√22y. 因为M (x 0,y 0)在C 上,所以l 22+l 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)由题意知F (-1,0). 设Q (-3,t ),P (m ,n ),则ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-3,t ),ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1-m ,-n ),ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3+3m-tn ,ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(m ,n ),ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-3-m ,t-n ). 由ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1得-3m-m 2+tn-n 2=1. 又由(1)知m 2+n 2=2,故3+3m-tn=0. 所以ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,即ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⊥ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F. (二)已知图形的几何性质,求有关参数的值(或取值范围)3.(2018·北京卷·文T20)已知椭圆M :l 2l 2+l 2l 2=1(a>b>0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B. (1)求椭圆M 的方程;(2)若k=1,求|AB|的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q (-74,14)共线,求k.解析▶ (1)由题意得{l 2=l 2+l 2,l l=√63,2l =2√2,解得{l =√3,l =1.所以椭圆M 的方程为l 23+y 2=1.(2)设直线l 的方程为y=x+m ,A (x 1,y 1),B (x 2,y 2).由{l =l +l ,l 23+l 2=1,得4x 2+6mx+3m 2-3=0,所以x 1+x 2=-3l 2,x 1x 2=3l 2-34.所以|AB|=√(l 2-l 1)2+(l 2-l 1)2=√2(l 2-l 1)2=√2[(l 1+l 2)2-4l 1l 2] =√12-3l 22.当m=0,即直线l 过原点时,|AB|最大,最大值为√6. (3)设A (x 1,y 1),B (x 2,y 2),由题意得l 12+3l 12=3,l 22+3l 22=3.直线PA 的方程为y=l 1l 1+2(x+2).由{l =l 1l1+2(x +2),l 2+3l 2=3,得[(x 1+2)2+3l 12]x 2+12l 12x+12l 12-3(x 1+2)2=0.设C (x C ,y C ), 所以x C +x 1=-12l 12(l 1+2)2+3l 12=4l 12-124l 1+7.所以x C =4l 12-124l 1+7-x 1=-12-7l14l 1+7. 所以y C =l 1l1+2(x C +2)=l14l 1+7. 设D (x D ,y D ),同理得x D =-12-7l 24l2+7,y D =l24l 2+7. 记直线CQ ,DQ 的斜率分别为k CQ ,k DQ , 则k CQ -k DQ =l 14l 1+7-14-12-7l14l 1+7+74-l 24l 2+7-14-12-7l 24l 2+7+74=4(y 1-y 2-x 1+x 2).因为C ,D ,Q 三点共线, 所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k=l 1-l 2l 1-l 2=1. (三)求证图形的几何性质中一些几何量的相等问题 4.(2018·全国Ⅲ卷·文T20)已知斜率为k 的直线l 与椭圆C :l 24+l 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m>0).(1)证明:k<-12.(2)设F 为C 的右焦点,P 为C 上一点,且ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0.证明:2|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.解析▶ (1)设A (x 1,y 1),B (x 2,y 2),则l 124+l 123=1,l 224+l 223=1.两式相减得(l 1+l 2)(l 1-l 2)4+(l 1+l 2)(l 1-l 2)3=0,由l 1-l2l 1-l 2=k 得l 1+l 24+l 1+l 23·k=0.由题设知l 1+l 22=1,l 1+l 22=m ,于是k=-34l.由题设可知点M 在椭圆内部,所以14+l 23<1,解得0<m<32,故k<-12.(2)由题意得F (1,0),设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m<0. 又点P 在C 上,所以m=34,从而P (1,-32),|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=32.于是|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(l 1-1)2+l 12=√(l 1-1)2+3(1-l 124)=2-l 12.同理|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2-l 22.所以|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=4-12(x 1+x 2)=3, 故2|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|ll ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.5.(2018·全国Ⅰ卷·文T20)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM=∠ABN.解析▶ (1)当l 与x 轴垂直时,l 的方程为x=2,代入抛物线方程可得M 的坐标为(2,2)或(2,-2),所以直线BM 的方程为y=12x+1或y=-12x-1.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线, 所以∠ABM=∠ABN.当l 与x 轴不垂直时,设l 的方程为y=k (x-2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由{l =l (l -2),l 2=2x,得ky 2-2y-4k=0,可知y 1+y 2=2l ,y 1y 2=-4. 直线BM ,BN 的斜率之和为k BM +k BN =l 1l1+2+l 2l2+2=l 2l 1+l 1l 2+2(l 1+l 2)(l 1+2)(l 2+2). ①将x 1=l1l +2,x 2=l2l +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2l 1l 2+4k(l 1+l 2)l=-8+8l=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM=∠ABN. 综上,∠ABM=∠ABN.1.圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域等,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求的几何量或代数表达式表示为某些参数的函数解析式,然后利用函数方法、不等式方法等进行求解.2.圆锥曲线的几何性质主要包括离心率、范围、对称性、渐近线、准线等.这些性质问题往往与平面图形中三角形、四边形的有关几何量结合在一起,主要考查利用几何量的关系求椭圆、双曲线的离心率和双曲线的渐近线方程.对于圆锥曲线的最值问题,正确把握圆锥曲线的几何性质并灵活应用,是解题的关键.3.圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.4.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的关系式,再利用题设条件化简、变形求得定值.(3)求某条线段长度为定值.利用长度公式求得关系式,再依据条件对关系式进行化简、变形即可求得定值.5.(1)解决是否存在常数(或定点)的问题时,应首先假设存在,看是否能求出符合条件的参数值,如果推出矛盾就不存在,否则就存在.(2)解决是否存在直线的问题时,可依据条件寻找适合条件的直线方程,联立方程消元得出一元二次方程,利用判别式得出是否有解.。
高三数学第二轮复习专题之《解析几何》
高三数学第二轮复习专题之《解析几何》解题思路与方法:高考试题中的解析几何的分布特点是除在客观题中有1~2个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键。
(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解. 当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍。
(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程。
一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。
定形——指的是二次曲线的焦点位置与对称轴的位置。
定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0)。
定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小。
(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义。
高三数学第二轮复习解析几何
高三第二轮综合复习 解析几何综合题圆锥曲线知识梳理与解题方法 1.定义法(1)椭圆的定义(2)双曲线定义(3)抛物线定义2.直线与圆锥曲线的位置关系首先.设直线方程:讨论斜率是否存在,斜率存在时常用一下直线: (1)斜截式 (2)点斜式 (3)横截距式联立直线与圆锥曲线,得一元二次方程,要写出:∆及韦达定理21x x +与21x x ⋅ 然后坐标运算(设而不解)3.注意参数方程: (1)直线的参数方程(2)椭圆参数方程(3)双曲线的参数方程(2017年16)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( ) A. 2个 B. 4个 C. 8个 D. 无穷个4.求轨迹方程(1)直接法:设动点坐标),(y x (2)定义法(3)代入法:设动点坐标),(y x ,已知曲线上的点),(00y x ,用代入法消去已知点的坐标,得到0=),(y x f (4)参数法:难点是消参数5.向量知识在解析几何中的运用。
坐标法6.综合问题:直线与圆锥曲线的位置关系;弦长与面积问题;距离问题;定点定之问题;参数范围与最值问题;向量与曲线的坐标运算;探究型问题(是否存在)1.(1)抛物线x y C 42=:上的一点P 到点),(243A 与到准线的距离之和最小,则点P 的坐标为(2)抛物线x y C 42=:上一点Q 到点),(14B 与到焦点F 的距离之和最小,则Q 的坐标为2. F 是椭圆13422=+y x 的右焦点,),(11A 为椭圆内的一定点,P 为椭圆上的一动点,则||||PF PA + 的范围是3.已知双曲线1322=-y x ,F 是右焦点,M 是右支上的一个动点,点),(13A ,则||||MF MA +的最小值是4.在ABC ∆中,),(),,(0505C B -且A B C sin sin sin 53=-,求点A 的轨迹方程。
XXXX高考数学(理)二轮复习专题五解析几何(带解析)
XXXX高考数学(理)二轮复习专题五解析几何(带解析)解析几何主要包括两大知识模块——直线和圆模块以及圆锥曲线模块。
回顾这一部分内容,我们应该把握“两个基本,一个结合”:一个基本方法——坐标法,一个基本思想——方程的思想,以及一个完美的结合——数与形的结合。
这三个方面是平面解析几何核心内容的体现,也贯穿了这一部分知识综述的主线。
坐标法贯穿了这一部分的第一条主线——方程式(1)直线的点斜方程是各种形式直线方程推导的来源。
应该注意各种形式的直线方程之间的关系。
这些形式的方程都有自己的约束条件,如截距方程不能表示平行于两个坐标轴的直线,通过坐标原点的直线等。
(2)圆的标准方程直接表示圆心和半径,而圆的一般方程表示曲线和二元二次方程之间的关系。
当求解圆的方程时,中心和半径通常是通过结合圆的性质直接确定的。
(3)圆锥曲线的定义是推导方程的基础。
我们应该熟练掌握椭圆、双曲线和抛物线的定义,并灵活运用这些定义来解决运动点的轨迹问题。
椭圆和双曲线有两种形式的标准方程。
应注意这两条曲线中A、B和C的几何意义以及它们之间的区别和联系。
我们应该准确掌握抛物型标准方程的焦点坐标和准线方程。
数字和形状的结合贯穿了本节中讨论的第二条主线——圆锥曲线的几何性质(1)为了确定直线和圆之间的位置关系,圆和圆可以通过几何图形来确定,特别是求圆的弦长的问题。
要充分利用由半径、弦长和半弦长组成的直角三角形,这是考试的重点;x2y2(2)几何性质中的范围、对称性和顶点是二次曲线特征的完美体现,如椭圆+= 1 (a > b > 0)在a2b2中,|x|≤a,|y|≤b由下式定义x2y2≤1,≤1求解;圆锥曲线的范围反映了曲线a2b2上各点的水平和垂直位置。
目标值的范围,注意其在解决相关最大值问题时的局限性;准确把握偏心率的定义并求解方程是命题的重点。
方程的思想贯穿了本节中回顾的第三条主线——直线和直线、直线和圆、直线和圆锥之间的位置关系(1)两条直线之间有三种位置关系:相交、平行和重合。
高考数学二轮复习双曲线学案(含解析)
高考数学二轮复习双曲线学案(含解析)双曲线问题考向一双曲线的定义与焦点三角形1.在双曲线的定义中,要注意双曲线上的点动点具备的几何条件,即“到两定点焦点的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”若定义中的“绝对值”去掉,点的轨迹是双曲线的一支同时需注意定义的转化应用2.在焦点三角形中,注意定义.余弦定理的活用,常将||PF1||PF2||2a平方,建立与|PF1|.|PF2|间的联系1.xx全国,11已知F1.F2是双曲线E1的左.右焦点,点M在E上,MF1与x轴垂直,sinMF2F1,则E的离心率为ABCD2答案A解析解法一由MF1x 轴,可得M,|MF1|.由sinMF2F1,可得cosMF2F1,又tanMF2F1,,b2ac,c2a2b2c2a2ac0e2e10,e.解法二设MF1m,则MF23m,F1F222m2aMF2-MF12m,2cF1F222m所以e22.xx大纲卷,9已知双曲线C的离心率为2,焦点为F1,F2,点A在C上若|F1A|2|F2A|,则cosAF2F1ABCD答案A解析由题意得解得|F2A|2a,|F1A|4a,又由已知可得2,所以c2a,即|F1F2|4a,所以cosAF2F13.xx湖南卷,14设F1,F2是双曲线C1a0,b0的两个焦点,P是C上一点若|PF1||PF2|6a,且PF1F2的最小内角为30,则C的离心率为________答案解析不妨设点P在双曲线C的右支上,由双曲线定义知|PF1||PF2|2a,又因为|PF1||PF2|6a,由得|PF1|4a,|PF2|2a,因为ca,所以在PF1F2中,PF1F2为最小内角,因此PF1F230,在PF1F2中,由余弦定理可知,|PF2|2|PF1|2|F1F2|22|PF1||F1F2|cos30,即4a216a24c28ac.所以c22ac3a20,两边同除以a2得,e22e30.解得e.考向二双曲线的标准方程1.xx全国,5已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是A1,3B1,C0,3D0,答案A解析原方程表示双曲线,且焦距为4,或由得m21,n1,3无解2.xx北京卷,11设双曲线C经过点2,2,且与x21具有相同渐近线,则C的方程为________;渐近线方程为________答案1;y2x解析根据题意,可设双曲线Cx2,将2,2代入双曲线C的方程得3,C的方程为1.渐近线方程为y2x.与双曲线1有相同渐近线时,可设所求双曲线方程为0考向三与渐近线有关的双曲线问题1.【xx全国卷理16】已知双曲线C的左.右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A,B两点若,,则C的离心率为____________【答案】2分析解答本题时,通过向量关系得到和,从而可以得到,再结合双曲线的渐近线可得进而得到从而由可求离心率.解析如图,由得又得OA是三角形的中位线,即由,得,,又OA与OB都是渐近线,得又,又渐近线OB的斜率为,该双曲线的离心率为解法2如图,由得又得OA是三角形的中位线,即由,得,取Bx,bax,x2b2a2x2c2,xa,所以Ba,b因为F1Ab,所以OAa,BF12b,BF22aSBF1F2122a2b122cb,所以e22.【xx年高考全国卷理数】双曲线C1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则PFO的面积为ABCD【答案】A【解析】由,又P在C的一条渐近线上,不妨设为在上,则,3.xx全国,11已知双曲线Cy21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|AB3C2D4答案B解析由题意分析知,FON30.所以MON60,又因为OMN是直角三角形,不妨取NMO90,则ONF30,于是FNOF2,FMOF1,所以|MN|3.4.xx全国,11设F1,F2是双曲线C1a0,b0的左.右焦点,O是坐标原点过F2作C的一条渐近线的垂线,垂足为P.若|PF1||OP|,则C的离心率为A.B2C.D.答案C解析一由题可知|PF2|b,|OF2|c,|PO|a.在RtPOF2中,cosPF2O,在PF1F2中,cosPF2O,c23a2,e.解析二由题可知|PF2|b,|OF2|c,|PO|a.过F1作渐近线的垂线,垂足为Q.因为P.Q关于原点对称,|QF1|b,|QO|a,|PQ|2a.在RtPQF1中,QF12PQ2PF12b24a26a2,则b22a2,c23a2e.5.xx全国,15已知双曲线C1a0,b0的右顶点为A,以A为圆心,b为半径作圆A,圆A 与双曲线C的一条渐近线交于M,N两点若MAN60,则C的离心率为________答案解析如图,由题意知点Aa,0,双曲线的一条渐近线l的方程为yx,即bxay0,点A到l的距离d.又MAN60,MANAb,MAN为等边三角形,dMAb,即b,a23b2,e.考向四双曲线的离心率问题1.xx全国,11已知A,B为双曲线E的左.右顶点,点M在E 上,ABM为等腰三角形,且顶角为120,则E的离心率为AB2CD答案D解析设双曲线方程为1a0,b0,不妨设点M在双曲线的右支上,如图,ABBM2a,MBA120,作MHx轴于H,则MBH60,BHa,MHa,所以M2a,a将点M的坐标代入双曲线方程1,得ab,所以e.2.【xx年高考全国卷理数】设F为双曲线C的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点若,则C的离心率为ABC2D【答案】A解析设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,,,又点在圆上,,即,故选A考向五与其他知识交汇的双曲线问题1.xx全国,9若双曲线C1a0,b0的一条渐近线被圆x22y24所截得的弦长为2,则C的离心率为A2BCD答案A解析设双曲线的一条渐近线方程为yx,圆的圆心为2,0,半径为2,由弦长为2得出圆心到渐近线的距离为.根据点到直线的距离公式得,解得b23a2.所以C的离心率e2.2.xx天津卷,5已知双曲线1a0,b0的两条渐近线与抛物线y22pxp0的准线分别交于A,B两点,O为坐标原点若双曲线的离心率为2,AOB的面积为,则pA1BC2D3答案C解析由已知得双曲线离心率e2,得c24a2,b2c2a23a2,即ba.又双曲线的渐近线方程为yx,抛物线的准线方程为x,所以A,B,于是|AB|.由AOB 的面积为可得,所以p2444,解得p2或p2舍去,故选C.3.xx山东卷,11抛物线C1yx2p0的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则pABCD答案D解析设抛物线C1的焦点为F,则F.设双曲线C2的右焦点为F1,则F12,0直线FF1的方程为yx,设M,因为M 在直线FF1上,x0.yx2,yx,C1在M点处的切线斜率为x0,又y21的渐近线方程为yx,故由题意得x0,将.联立得p,故选D.8。
高三数学二轮复习直线与圆学案
高三数学二轮复习 ——直线、圆及其交汇问题一、高考定位:本问题是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择或填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.二、必备知识1. 两直线平行、垂直的判定(1)①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.②若两直线的斜率都不存在,并且两直线不重合,则两直线平行;③若两直线中一条直线的斜率为0,另一条直线斜率不存在,则两直线垂直. (2)l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0, 则有l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,通常写成111222A B C A B C =≠(分母不为0) 便于记忆。
l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.圆的方程:(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2;(3)直线被圆所截得的弦长等于三、必备方法1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.2.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.3.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题. (5)两圆相离,两圆上点的距离的最值.4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.四、典型例题解析:【例1】►待定系数法求圆的方程已知圆C与圆x2+y2-2x=0外切,并与直线x+3y=0相切于点Q(3,-3),求圆C方程.[审题] 先确定采用标准方程还是一般方程,然后求出相应的参数,即采用待定系数法.解:设圆C的圆心为(a,b),半径为r,由题设得13rrba⎧==+⎪=-⎪⎪⎩解得:42abr=⎧⎪=⎨⎪=⎩或6abr=⎧⎪=-⎨⎪=⎩.所以圆C的方程为(x-4)2+y2=4或x2+(y+43)2=36.【考题演练】(2010山东文数)已知圆C过点(1,0)且圆心在x轴的正半轴上,直线l:x-yC的标准方程为_____________________.解析:【例题2】►如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程。
专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)
专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。
新高考数学二轮复习课件:解答题精讲5 解析几何
高中数学 ZHONGSHUXUE
Δ=4m2t2-4(m2+4)(t2-4)>0 ⇒m2-t2+4>0. 设 A(x1,y1),B(x2,y2), y1+y2=m-22+m4t,y1y2=mt22-+44, x1+x2=m(y1+y2)+2t=m28+t 4.
学而优 ·教有方
高中数学 ZHONGSHUXUE
①
∴Pm24+t 4,m-2+mt4. ∵k1k2=-14,∴yx11yx22=-14, 即 4y1y2+x1x2=0, ∴(4+m2)y1y2+mt(y1+y2)+t2=0, ∴t2-4+-4+2mm22t2+t2=0,
学而优 ·教有方
高中数学 ZHONGSHUXUE
∴2t2=m2+4,则 t2≥2, 由①②可得 t2≥2 恒成立, |OP|2=16mt22++m422t2=16t22+t2m2 2t2 =164+t2m2=16+42tt22-4
学而优 ·教有方
高中数学 ZHONGSHUXUE
第 5 步:求解
故直线CD的方程为x=my+32,即直线CD过定点32,0. 10分
解等量关系得出 待求结果,注意结
←若t=0,则直线CD的方程为y=0,也过点32,0.
11分
果的完备性.
综上所述,直线CD过定点32,0.
12分
学而优 ·教有方
第(1)问得分点及说明: 1.求出 a 的值得 1 分. 2.写出 E 的方程得 1 分.
的斜率分别为 k1,k2(O 为坐标原点),且 k1k2=-14,求|OP|的取值范
围.
学而优 ·教有方
高中数学 ZHONGSHUXUE
[解] (1)由题知,△MF1F2 的周长为 2a+2c=4+2 3,且12·2c·b = 3,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾6 解析几何 [必记知识]直线方程的五种形式(1)点斜式:y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不包括y 轴和平行于y 轴的直线).(2)斜截式:y =kx +b (b 为直线l 在y 轴上的截距,且斜率为k ,不包括y 轴和平行于y 轴的直线).(3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:x a +yb =1(a ,b 分别为直线的横、纵截距,且a ≠0,b ≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax +By +C =0(其中A ,B 不同时为0). 直线的两种位置关系当不重合的两条直线l 1和l 2的斜率存在时: (1)两直线平行l 1∥l 2⇔k 1=k 2. (2)两直线垂直l 1⊥l 2⇔k 1·k 2=-1.[提醒]) 当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离 |AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离d =|Ax 0+By 0+C |A 2+B 2(其中点P (x 0,y 0),直线方程为Ax +By +C =0).(3)两平行线间的距离d =|C 2-C 1|A 2+B2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 1:Ax +By +C 2=0且C 1≠C 2).[提醒] 应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等.圆的方程的两种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.椭圆的标准方程及几何性质了椭圆的圆扁程度.因为a 2=b 2+c 2,所以 b a =1- e 2,因此,当e 越趋近于1时, ba 越趋近于0,椭圆越扁;当e 越趋近于0时, ba 越趋近于1,椭圆越接近于圆.所以e 越大椭圆越扁;e 越小椭圆越圆,当且仅当a =b ,c =0时,椭圆变为圆,方程为x 2+y 2=a 2(a >0).双曲线的标准方程及几何性质小;当e 越接近于+∞时,双曲线开口越大.(2)满足||PF 1|-|PF 2||=2a 的点P 的轨迹不一定是双曲线,当2a =0时,点P 的轨迹是线段F 1F 2的中垂线;当0<2a <|F 1F 2|时,点P 的轨迹是双曲线;当2a =|F 1F 2|时,点P 的轨迹是两条射线;当2a >|F 1F 2|时,点P 的轨迹不存在.抛物线的标准方程及几何性质与圆的切线有关的结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的切线方程为x 0x +y 0y =r 2;(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;(3)过圆x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点为A ,B ,则过A ,B 两点的直线方程为x 0x +y 0y =r 2;(4)过圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点P (x 0,y 0)引圆的切线,切点为T ,则|PT |=x 20+y 20+Dx 0+Ey 0+F ;(5)过圆C :(x -a )2+(y -b )2=r 2(r >0)外一点P (x 0,y 0)作圆C 的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;(6)若圆的方程为(x -a )2+(y -b )2=r 2(r >0),则过圆外一点P (x 0,y 0)的切线长d =(x 0-a )2+(y 0-b )2-r 2.椭圆中焦点三角形的相关结论由椭圆上一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正、余弦定理.以椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c ,0),F 2(c ,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)|PF 1|=a +ex 0,|PF 2|=a -ex 0(焦半径公式),|PF 1|+|PF 2|=2a .(e 为椭圆的离心率) (2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3) S △PF 1F 2=12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取得最大值,为bc .(4)焦点三角形的周长为2(a +c ).双曲线的方程与渐近线方程的关系(1)若双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),则渐近线的方程为x 2a 2-y 2b 2=0,即y =±ba x .(2)若渐近线的方程为y =±b a x (a >0,b >0),即x a ±y b =0,则双曲线的方程可设为x 2a 2-y 2b 2=λ.(3)若所求双曲线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共渐近线,其方程可设为x 2a 2-y 2b 2=λ(λ>0,焦点在x 轴上;λ<0,焦点在y 轴上).双曲线常用的结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ,异支的弦中最短的为实轴,其长为2a .(4)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则k P A ·k PB =b 2a 2,S △PF 1F 2=b 2tanθ2,其中θ为∠F 1PF 2.(5)P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标恒为a .抛物线焦点弦的相关结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为直线AB 的倾斜角,则(1)焦半径|AF |=x 1+p 2=p 1-cos α,|BF |=x 2+p 2=p1+cos α.(2)x 1x 2=p 24,y 1y 2=-p 2.(3)弦长|AB |=x 1+x 2+p =2psin 2α. (4)1|F A |+1|FB |=2p. (5)以弦AB 为直径的圆与准线相切. (6)S △OAB =p 22sin α(O 为抛物线的顶点).[必练习题]1.过圆x 2+y 2-x -y +14=0的圆心,且倾斜角为π4的直线方程为( )A .x -2y =0B .x -2y +3=0C .x -y =0D .x -y +1=0解析:选C.由题意知圆的圆心坐标为⎝⎛⎭⎫12,12,所以过圆的圆心,且倾斜角为π4的直线方程为y =x ,即x -y =0.2.圆心为(4,0)且与直线3x -y =0相切的圆的方程为( ) A .(x -4)2+y 2=1 B .(x -4)2+y 2=12 C .(x -4)2+y 2=6D .(x +4)2+y 2=9解析:选B.由题意,知圆的半径为圆心到直线3x -y =0的距离,即r =|3×4-0|3+1=23,结合圆心坐标可知,圆的方程为(x -4)2+y 2=12,故选B.3.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则其渐近方程为( )A .y =±2xB .y =±4xC .y =±12xD .y =±14x解析:选C.由题意得e =c a =52,又a 2+b 2=c 2,所以b a =12,所以双曲线的渐近线方程为y =±12x ,选C.4.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若|AB |=4,|BC |=2,则椭圆的两个焦点之间的距离为( )A.463B.263C.433D.233解析:选A.不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),如图,由题意知,2a =4,a =2,因为∠CBA =π4,|BC |=2,所以点C 的坐标为(-1,1),因为点C 在椭圆上,所以14+1b 2=1,所以b 2=43,所以c 2=a 2-b 2=4-43=83,c=263,则椭圆的两个焦点之间的距离为463.5.已知⊙M 经过双曲线S :x 29-y 216=1的一个顶点和一个焦点,圆心M 在双曲线S 上,则圆心M 到原点O 的距离为( )A.143或73B.154或83C.133D.163解析:选D.因为⊙M 经过双曲线S :x 29-y 216=1的一个顶点和一个焦点,圆心M 在双曲线S 上,所以⊙M 不可能过异侧的顶点和焦点,不妨设⊙M 经过双曲线的右顶点和右焦点,则圆心M 到双曲线的右焦点(5,0)与右顶点(3,0)的距离相等,所以x M =4,代入双曲线方程可得y M =±16×⎝⎛⎭⎫169-1=±473,所以|OM |=16+⎝⎛⎭⎫4732=163,故选D.6.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94解析:选D.易知直线AB 的方程为y =33⎝⎛⎭⎫x -34,与y 2=3x 联立并消去x 得4y 2-123y -9=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94,S △OAB =12|OF |·|y 1-y 2|=12×34(y 1+y 2)2-4y 1y 2=3827+9=94.故选D. 7.已知双曲线x 2a 2-y 212=1(a >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为43,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 26-y 212=1 D.x 24-y 212=1 解析:选 D.根据对称性,不妨设点A 在第一象限,A (x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=a 2,y =23a x 解得⎩⎪⎨⎪⎧x =a 212+a 2,y =23a12+a 2,因为四边形ABCD 的面积为43,所以4xy =4×23a 312+a 2=43,解得a =2,故双曲线的方程为x 24-y 212=1,选D.8.已知圆C 1:(x -1)2+y 2=2与圆C 2:x 2+(y -b )2=2(b >0)相交于A ,B 两点,且|AB |=2,则b =________.解析:由题意知C 1(1,0),C 2(0,b ),半径r 1=r 2=2,所以线段AB 和线段C 1C 2相互垂直平分,则|C 1C 2|=2,即1+b 2=4,又b >0,故b = 3.答案: 39.已知椭圆x 2a 2+y 2b 2=1(a >b >0),以原点O 为圆心,短半轴长为半径作圆O ,过椭圆的长轴的一端点P 作圆O 的两条切线,切点为A ,B ,若四边形P AOB 为正方形,则椭圆的离心率为________.解析:如图,因为四边形P AOB 为正方形,且P A ,PB 为圆O 的切线,所以△OAP 是等腰直角三角形,故a =2b ,所以e =c a =22.答案:2210.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________.解析:由题意知,经过第一象限的双曲线的渐近线方程为y =33x .抛物线的焦点为F 1⎝⎛⎭⎫0,p 2,双曲线的右焦点为F 2(2,0).又y ′=1px ,故抛物线C 1在点M ⎝⎛⎭⎫x 0,x 22p 处的切线的斜率为33,即1p x 0=33,所以x 0=33p ,又点F 1⎝⎛⎭⎫0,p 2,F 2(2,0),M ⎝⎛⎭⎫33p ,p6三点共线,所以p 2-00-2=p 6-p233p -0,即p =433.答案:433。