备考2019年高考物理一轮复习文档:第十三章 第1讲 原子结构 氢原子光谱 讲义 Word版含解析

合集下载

第十三章第1讲光的折射全反射-2025年高考物理一轮复习PPT课件

第十三章第1讲光的折射全反射-2025年高考物理一轮复习PPT课件
高考一轮总复习•物理
第1页
第十三章 光 电磁波 相对论
第1讲 光的折射 全反射
高考一轮总复习•物理
第2页
素养目标 1.了解光的折射和全反射现象.(物理观念) 2.了解折射率的概念和折射定 律.(物理观念) 3.知道光的色散的成因及各种色光的比较.(物理观念) 4.分析光的折射和 全反射问题的一般思路.(科学思维)
高考一轮总复习•物理
第30页
解析:(1)光在透明体中反射两次后垂直于 B 端面射出时,光路图如图甲所示,根据对 称性,光每次反射的入射角相同,都为 θ=45°.光传播的路程为 4Rcos θ,光在介质中的速度 v=nc,可以求出光在透明体中的运动时间 t=2 2cnR.
高考一轮总复习•物理
第31页
高考一轮总复习•物理
解析:由题意作出光路图如图所示
第19页
光线垂直于 BC 方向射入,根据几何关系可知入射角为 45°,由于棱镜折射率为 2,根 据 n=ssiinn ri,有 sin r=12,则折射角为 30°
∠BMO=60°,因为∠B=45°,所以光在 BC 面的入射角为 θ=90°-(180°-60°-45°) =15°
高考一轮总复习•物理
第26页
典例 2 (2023·湖南卷)(多选)一位潜水爱好者在水下活动时,利用激光器向岸上救援 人员发射激光信号,设激光光束与水面的夹角为 α,如图 所示.他发现只有当 α 大于 41°时,岸上救援人员才能收 到他发出的激光光束,下列说法正确的是( )
A.水的折射率为sin141° B.水的折射率为sin149° C.当他以 α=60°向水面发射激光时,岸上救援人员接收激光光束的方向与水面夹角 小于 60° D.当他以 α=60°向水面发射激光时,岸上救援人员接收激光光束的方向与水面夹角 大于 60°

高考物理一轮复习人教版原子结构氢原子光谱优质课件

高考物理一轮复习人教版原子结构氢原子光谱优质课件

【Hale Waihona Puke 析】由放出的三种不同能量的光子的能量可知,跃迁
发生前这些原子分布在两个激发态,其中最高能级(n=3)的能量 值是-13.6 eV+12.09 eV=-1.51 eV.
m.
②氢原子能级公式 1 En= n2 E1(n=1,2,3,…),其中E1为氢原子基态的能量值, 其数值为E1= -13.6eV .
③原子的最低能量状态为 基态 ,对应电子在离核最近的轨道 上运动;较高的能量状态称为 激发态 ,对应电子在离核较远的轨 道上运动.氢原子的能级图如图所示.
三、原子的跃迁与电离 原子跃迁时,不管是吸收还是辐射光子,光子的能量都必须 等于这两个能级的能量差.若想把处于某一定态上的原子的电子 电离出去,就需要给原子一定的能量,如基态原子电离(即上升到 n=∞),其电离能为13.6 eV,只要能量等于或大于13.6 eV的光子 都能使基态氢原子电离,只不过入射光子的能量越大,原子电离 后产生的自由电子具有的动能越大.
③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时 要 辐射或吸收 一定频率的光子,光子的能量等于两个能级的能 量差,即hν=Em-En(m>n).
(2)氢原子的能级和轨道半径 ①氢原子轨道半径公式 rn =
n2 r1(n=1,2,3,…),其中r1为基态半径,也称为玻尔半
-10
径,其数值为r1= 0.53×10
选修3-5 第三章 原子结构
原子核
说考纲—分析考情知考向
考纲要求 1.氢原子光谱(Ⅰ) 2.氢原子的能级结构、能级公式(Ⅰ) 3.原子核的组成、放射性、原子核的衰 变、半衰期(Ⅰ) 4.放射性同位素(Ⅰ) 5.核力、核反应方程(Ⅰ) 6.结合能、质量亏损(Ⅰ) 7.裂变反应和聚变反应、裂变反应堆(Ⅰ) 8.射线的危害和防护(Ⅰ) 命题规律 (1)氢原子光谱、能级 的考查; (2)放射性元素的衰 变、核反应的考查; (3)质能方程、核反应 方程的计算; (4)与动量守恒定律相 结合的计算 复习策略 体会微观领域的 研究方法,从实 际出发,经分析 总结、提出假 设、建立模型, 在经过实验验 证,发现新的问 题,从而对假设 进行修正

2018版高考物理一轮复习第13章原子结构原子核第1讲原子结构氢原子光谱课件

2018版高考物理一轮复习第13章原子结构原子核第1讲原子结构氢原子光谱课件

核心考点突破
•原子核式结构
• 1.探究阴极射线性质的方法 • (1)带电性质的判断方法 • ①在阴极射线所经区域加上电场,通过打 在荧光屏上的亮点的变化和电场的情况确 定射线带电的性质。 • ②在阴极射线所经区域加一磁场,根据亮 点位置的变化和左手定则确定射线带电的 性质。
(2)比荷的测定方法 ①让阴极射线垂直进入某一电场中,射线在荧光屏上的亮点位置发生偏转。 ②在电场区域加一与其垂直的大小合适的磁场,抵消阴极射线的偏转,此时 E qE-qvB=0,则 v= 。 B ③去掉电场,只保留磁场,磁场方向与射线运动方向垂直,阴极射线在有磁 场的区域将会形成一个半径为 r 的圆弧,根据磁场情况和轨迹的偏转情况,再根 mv2 q v E 据几何知识可求出其半径 r,则由 qvB= 可得 = = 2 。 r m Br B r
特征谱线 4.光谱分析:利用每种原子都有自己的____________ 可以用来鉴别物质和确
Байду номын сангаас
定物质的组成成分,且灵敏度很高。在发现和鉴别化学元素上有着重大的意义。
•玻尔理论 能级
• 1.玻尔的三条假设 不连续 • (1)定态:原子只能处于一系列________ 的能量状态中, 稳定 在这些能量状态中原子是________ 的,电子虽然绕核运 动,但并不向外辐射能量。 • (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射 或吸收一定频率的光子,光子的能量由这两个定态的能 Em-En。(h是普朗克常量,h= 量差决定,即hν=________ 6.63×10-34J·s)
• 4.氢原子的能级图
• 思维辨析: • (1)α粒子散射实验说明了原子的正电荷和绝大部分质量集 中在一个很小的核上。( ) • (2)氢原子由能量为En的定态向低能级跃迁时,氢原子辐 射的光子能量为hν=En。( ) • (3)玻尔的原子模型理论中,原子中的核外电子绕核做周 期性运动一定向外辐射能量。( ) • (4)氢原子光谱是线状的,不连续的,波长只能是分立的 值。 • (5)电子的发现证明了原子核是可再分的。( )

高考物理一轮总复习 专题13 热学 第1讲 分子动理论、内能

高考物理一轮总复习 专题13 热学 第1讲 分子动理论、内能
• (1)被分解的水中含有水分子的总数N;
• (2)一个水分子的体积V.
解:(1)水分子数 N=mMNA=10-6×11.08-×3×106-.02×1023 个≈3×1016 个. (2)水的摩尔体积 Vmol=Mρ , 水分子体积 V0=VNmAol=ρMNA=3×10-29 m3.
2.(多选)某气体的摩尔质量为 M,摩尔体积为 V,密度为 ρ,每个
• 分子间同时存在引力和斥力,且都随分子间距离的增大 减而小 ________,随分子间距离的减小而增大,但总是斥力变化
得较快.
• 二、温度
• 1.意义
• 宏观上表示物体的冷热程度(微观上标志物体的分子平均 动能的大小).
• 2.两种温标
• (1)摄氏温标和热力学温标的关系t:+T2=73._1_5_K___________. • (2)绝对零度(0 K):是低温极限,只能接近不能达到,所 以热力学温度无负值.
国卷Ⅲ:T33(1),p 国卷Ⅲ:用油膜法估算分 意耳定律、盖·吕萨克定律
-V图像、热力学第 子大小的实验;T33(2), 鲁卷:T6,p-V图像、热力学第一
一定律;T33(2),玻 玻意耳定律、盖·吕萨克定 定律、玻意耳定律;T15,理想气
意耳定律

体状态方程、玻意耳定律
命题趋势分析 1.广东趋势:从题型上看,高考对本章命题为一道选择题和一道计算, 选择题主要考查分子动理论、气体压强的微观解释、晶体和非晶体的 特点、液体的表面张力、饱和汽与饱和汽压、内能、p-V图像、V-T 图像等、热力学第一、第二定律的理解等.计算题主要结合气体考查 内能、气体实验定律、理想气体状态方程、热力学第一定律等 2.命题热点:(1)分子动理论;(2)气体压强、晶体和非晶体的特点、液 体的表面张力;(3)内能、气体实验定律、理想气体状态方程、热力学 定律

高考物理一轮复习文档:第十三章第1讲 原子结构 氢原子光谱讲义解析含答案

高考物理一轮复习文档:第十三章第1讲 原子结构 氢原子光谱讲义解析含答案

第1讲原子结构氢原子光谱板块一主干梳理·夯实基础【知识点1】氢原子光谱Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。

(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。

(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

2.光谱(1)光谱用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。

(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。

有的光谱是连在一起的光带,这样的光谱叫做连续谱。

(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎪⎫122-1n2,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。

【知识点2】氢原子的能级结构、能级公式Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。

(h是普朗克常量,h=6.63×10-34J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道也是不连续的。

2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。

3.氢原子的能级图板块二考点细研·悟法培优考点1氢原子能级图及原子跃迁[深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。

高考物理一轮复习 原子结构 氢原子光谱课后练习(新题,

高考物理一轮复习 原子结构 氢原子光谱课后练习(新题,

课时训练42 原子结构氢原子光谱一、选择题1.氢原子的部分能级如图,下列关于氢原子的表述正确的是( )A.处于基态时最不稳定B.从不同能级向基态跃迁时辐射的光子频率都一样C.从基态跃迁到n=2能级需吸收10.2 eV的能量D.跃迁时辐射光子说明了原子核能的存在解析基态是最稳定的状态,所以A错误;辐射光子的频率与轨道的能级差有关,能级差不同,光子的频率就不同,所以B错误;轨道2和基态之间的能级差为13.6-3.4=10.2(eV),所以要吸收10.2 eV的能量,所以C对;电子跃迁辐射光子说明原子有能量,核反应中释放的能量才说明原子核能的存在,所以D错误.答案 C2.[2014·锦州模拟]光子的发射和吸收过程是( )A.原子从基态跃迁到激发态要放出光子,放出光子的能量等于原子在始、末两个能级的能量差B.原子不能从低能级向高能级跃迁C.原子吸收光子后从低能级跃迁到高级能,放出光子后从较高能级跃迁到较低能级D.原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差值解析由玻尔理论的跃迁假设知,原子处于激发态不稳定,可自发地向低能级发生跃迁,以光子的形式放出能量.光子的吸收是光子发射的逆过程,原子在吸收光子后,会从较低能级向较高能级跃迁,但不管是吸收光子还是发射光子,光子的能量总等于两能级之差,即hν=Em-En(m>n),故选项C、D正确.答案CD3.α粒子散射实验中,当α粒子最接近金原子核时,关于描述α粒子的有关物理量正确的是( )A.动能最小B.电势能最小C.α粒子与金原子组成的系统能量最小D.α粒子所受金原子核的斥力最大解析α粒子和金原子核都带正电,库仑力表现为斥力,两者距离减小时,库仑力做负功,故α粒子动能减小,电势能增加,当α粒子最接近金原子核时,其动能最小,电势能最大;由库仑定律可知随着距离的减小,库仑力逐渐增大,故A、D正确.答案AD4.如图所示为氢原子的能级示意图.现用能量介于10~12.9 eV范围内的光子去照射一群处于基态的氢原子,则下列说法正确的是( )A.照射光中只有1种频率的光子被吸收B.照射光中有3种频率的光子可能被吸收C.观测到氢原子发射出3种不同波长的光D.观测到氢原子发射出6种不同波长的光解析根据玻尔能级跃迁的知识可知:原子从基态跃迁到激发态时要吸收能量,而从激发态跃迁到基态时则以光子的形式向外释放能量.无论是吸收还是放出能量,这个能量值都不是任意的,而等于原子发生跃迁时这两个能级间的能量差.根据氢原子的能级示意图知E2-E1=10.2 eV,E3-E1=12.09 eV,E4-E1=12.75 eV,E5-E1=13.06 eV,说明在10~12.9 eV范围内的光子的照射下,能使基态的氢原子跃迁到第2、3、4能级,因此照射光中有3种频率的光子可能被吸收,选项A错误,B正确;观测到氢原子发射出n n-12=4×4-12=6种不同波长的光,选项C错误,D正确.答案BD5.氢原子部分能级的示意图如图所示,欲使处于基态的氢原子激发,下列措施可行的是( ) A.用10.2 eV的光子照射B.用11 eV的光子照射C.用14 eV的光子照射D.用10 eV的光子照射解析由氢原子能级图算出只有10.2 eV为第2能级与基态之间的能级差,而大于13.6 eV 的光子能使氢原子电离,选项A、C正确.答案AC6.现有1 200个氢原子被激发到量子数为4的能级上,若这些受激发的氢原子最后都回到基态,则在此过程中发出的光子总数是(假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的1n-1)( ) A.2 200 B.2 000C .1 200D .2 400解析 处在量子数n =4的激发态的1 200个氢原子分别跃迁到n =3、2、1的轨道上的数目均为400个,此时发出1 200个光子,量子数n =3的激发态的400个氢原子分别跃迁到n =2、1的轨道上的数目均为200个,发出光子数为400个,量子数n =2的激发态的600个氢原子跃迁到n =1的轨道上的数目为600个,发出光子数为600个,则发出的总光子数为1 200+400+600=2 200(个),所以选项A 正确.答案 A7.下列能揭示原子具有核式结构的实验是( )A .光电效应实验B .伦琴射线的发现C .α粒子散射实验D .氢原子光谱的发现解析 光电效应实验说明光具有粒子性,故A 错误.伦琴射线为电磁波,故B 错误.卢瑟福由α粒子散射实验建立了原子的核式结构模型,故C 正确.氢原子光谱的发现说明原子光谱是不连续的,故D 错误.答案 C8.氢原子从能量为Em 的较高激发态跃迁到能量为En 的较低激发态,设真空中的光速为c ,则( )A .吸收光子的波长为c Em -En hB .辐射光子的波长为c Em -En hC .吸收光子的波长为ch Em -EnD .辐射光子的波长为ch Em -En解析 由玻尔理论的跃迁假设,当氢原子由较高的能级向较低的能级跃迁时辐射光子,由关系式hν=Em -En 得ν=Em -En h .又有λ=c ν,故辐射光子的波长为λ=ch Em -En,选项D 正确.答案 D9.已知氢原子的基态能量为E1,激发态能量En =E1/n2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E1B .-2hc E1C .-4hc E1D .-9hc E1解析 处于第一激发态时n =2,故其能量E2=E14,电离时释放的能量ΔE=0-E2=-E14,而光子能量ΔE=hc λ,则解得λ=-4hc E1,故C 正确,A 、B 、D 均错. 答案 C10.原子从一个能级跃迁到另一个较低能级时,有可能不发射光子.例如在某种条件下,铬原子的n =2能级上的电子跃迁到n =1能级上时并不发射光子,而是将相应的能量转交给n =4能级上的电子,使之脱离原子,这一现象叫做俄歇效应.以这种方式脱离了原子的电子叫俄歇电子.已知铬原子的能级公式可简化表示为En =-A n2,式中n =1、2、3……表示不同的能级,A 是正的已知常数.上述俄歇电子的动能是( )A.316AB.716A C.1116A D.516A 解析 由En =A n2,知原子从n =2能级跃迁到n =1能级时,有E =E2-E1,又W 逸=-E4,由光电效应方程Ekm =E -W 逸=E +E4,代入数据:Ekm =1116A. 答案 C11.如图所示为氢原子的能级图,已知可见光的光子能量范围为1.62~3.11 eV ,锌板的电子逸出功为 3.34 eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是( )A .用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B .用能量为11.0 eV 的自由电子轰击,可使处于基态的氢原子跃迁到激发态C .处于n =2能级的氢原子能吸收任意频率的紫外线D .处于n =3能级的氢原子可以吸收任意频率的紫外线,并且使氢原子电离E .用波长为60 nm 的伦琴射线照射,可使处于基态的氢原子电离出自由电子解析 氢原子从高能级向基态跃迁时发射的光子能量大于锌板电子的逸出功3.34 eV ,锌板能发生光电效应,选项A 错误;n =2能级的轨道能量-3.4 eV ,紫外线的最小能量为3.11 eV ,则该氢原子只能吸收特定波段的紫外线,选项C 错误.答案 BDE二、非选择题12.根据卢瑟福的核式结构模型,画出了核外电子绕核运动时的分立轨道示意图如图所示,已知电子处于最内层轨道时原子能量的绝对值为E ,若该电子吸收波长为λ的光子,则跃迁到最外层轨道,随后又立即辐射出一个光子,从而跃迁到中层轨道,此时原子能量的绝对值为E′,求辐射光子的频率.解析根据能量的转化与守恒定律有-E′=-E+h cλ-hν,可得ν=E′-E+hcλh.13.[2014·南京模拟]氢原子的能级示意图如图所示,有一群处于n=4能级的氢原子.如果原子从n=2能级向n=1能级跃迁所发出的光正好使某种金属材料产生光电效应,则:(1)这群氢原子发出的光谱中共有几条谱线能使该金属产生光电效应?(2)从能级n=4向n=1发出的光照射该金属材料,所产生的光电子的最大初动能为多少?解析(1)共有3种频率的光能够使金属发生光电效应,分别从n=3能级向n=1能级、从n=4能级向n=1能级和从n=2能级向n=1能级跃迁释放的光子使金属产生光电效应.(2)从n=4能级跃迁到n=1能级发出光子的能量ΔE=E4-E1=12.75 eV该金属的逸出功W0=E2-E1=10.2 eV根据光电效应方程ΔE=Ek+W0可知光电子最大初动能Ek=ΔE-W0=2.55 eV.答案(1)3条(2)2.55 eV14.如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.解析(1)氢原子从n>2的某一能级跃迁到n=2的能级,辐射光子的频率应满足hν=En-E2=2.55 eV,En=hν+E2=-0.85 eV,所以,n=4,基态氢原子要跃迁到n=4的能级,应提供ΔE=E4-E1=12.75 eV.(2)辐射跃迁图如图所示.答案(1)12.75 eV (2)见解析。

高考物理一轮复习:原子结构 氢原子光谱

高考物理一轮复习:原子结构 氢原子光谱

夯实基础·自主预演
考点研析·互动提升
解析 原子光谱为线状谱,是不连续的,A 正确;由于各种原子的原 子结构不同,所以各种原子都有自己的特征谱线,B 错误,C 正确;根据 各种原子的特征谱线,分析物质发光的光谱,可鉴别物质中含哪些元素, D 正确.
夯实基础·自主预演
考点研析·互动提升
4. (多选)有关氢原子光谱的说法正确的是( BC ) A. 氢原子的发射光谱是连续谱 B. 氢原子光谱说明氢原子只发出特定频率的光 C. 氢原子光谱说明氢原子能级是分立的 D. 氢原子光谱线的频率与氢原子能级的能量差无关
(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对 应.原子的定态是_不__连__续__的___,因此电子的可能轨道也是_不__连__续__的___.
夯实基础·自主预演
考点研析·互动提升
2. 几个概念 (1)能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值, 叫做能级. (2)基态:原子能量__最__低____的状态. (3)激发态:在原子能量状态中除基态之外的其他的状态. (4)量子数:原子的状态是不连续的,用于表示原子状态的__正__整__数_____.
夯实基础·自主预演
考点研析·互动提升
解析 由于氢原子的轨道是不连续的,而氢原子在不同的轨道上的能级 En =n12E1,故氢原子的能级是不连续的,即分立的,故 C 正确;当氢原子从 较高轨道第 n 能级跃迁到较低轨道第 m 能级时,发射的光子的能量为 E= En-Em=n12E1-m12E1=mn22-mn2 2E1=hν,显然 n、m 的取值不同,发射光子 的频率就不同,故氢原子光谱线的频率与氢原子能级的能量差有关,故 D 错误;由于氢原子发射的光子的能量 E=mn22-mn2 2E1,所以发射的光子的能 量值 E 是不连续的,只能是一些特殊频率的,故 A 错误,B 正确.

2023届高考物理一轮复习课件:原子结构和氢原子光谱

2023届高考物理一轮复习课件:原子结构和氢原子光谱
原子核的电荷与 原子序数接近
判断2:图中实线表示α粒子的运动轨迹.其中一个α粒子在从a运动
到b、再运动到c的过程中(α粒子在b点时距原子核最近):
①图中的α粒子反弹是因为α粒子与金原子核发生了碰撞
②绝大多数α粒子沿原方向继续前进说明了带正电的原子核占据原
子的空间很小
③根据α粒子散射实验可以估算原子大小
2)对α粒子散射实验的解释
①大部分α粒子穿过金箔时离核很远,受 到的斥力很小,它们的运动几乎不受影响.
②少数α粒子从核附近飞过,明显受到 原子核的库伦斥力而发生大角度的偏转. ③极少数α粒子撞到原子核而反弹.
3.原子核的电荷与尺度
一般用核半径表征核的大小。原子核的半径是无法直接测 量的,一般通过其他粒子与核的相互作用来确定。 α粒子散射是 估计核半径的最简单的方法。对于一般的原子核,实验确定的核 半径的数量级为10-15m,而整个原子半径的数量级是10-10m,两者 相差十万倍之多。可见原子内部是十分“空旷”的。
④卢瑟福在α粒子散射实验中发现了电子
⑤α粒子不带电或带负电
⑥α粒子的加速度先变小后变大
⑦电场力对α粒子先做正功后做负功 ⑧α粒子的动能先减小后增大
⑨图中大角度偏转的α粒子的电势能先减小后增大
⑩该α粒子出现较大角度偏转的原因是α粒子接近原子核时受到的
库仑斥力较大
⑪α粒子与金原子核组成的系统能量逐渐减小
密立根实验更重要的发现是:电荷是量子化的, 即任何带电体的电荷只能是e的整数倍。从实验测 到的比荷及e的数值,可以确定电子的质量。现在 人们普遍认为电子的质量为m= 9.10938356×1031kg
密立根油滴实验
1)电子电量:e=1.60217733(49)×10-19C

(课改地区专用)2018_2019学年高考物理总复习3.2原子结构3.2.3氢原子光谱课件新人教版

(课改地区专用)2018_2019学年高考物理总复习3.2原子结构3.2.3氢原子光谱课件新人教版
4.光谱分析 (1)优点:灵敏度高,分析物质的最低量达10-10 g。 (2)应用:a.发现新元素;b.鉴别物体的物质成分。 (3)用于光谱分析的光谱:线状光谱和吸收光谱。
[精典示例] [例1] (多选)下列关于光谱的说法正确的是( )
A.连续光谱就是由连续发光的物体产生的光谱,线状谱是线状光源产生的光谱 B.通过对连续谱的光谱分析,可鉴定物质成分 C.连续光谱包括一切波长的光,线状谱只包括某些特定波长的光 D.通过对线状谱的明线光谱分析或对吸收光谱的暗线分析,可鉴定物质成分 审题指导 解答本题应把握以下三点: (1)弄清连续谱和线状谱的产生和概念。 (2)正确区分连续谱和线状谱。 (3)知道哪些谱线可以用来光谱分析。
解析 高温物体的光谱包括了各种频率的光,与其组成成分无关,故选项A错误;某 种物质发光的线状谱中的明线是与某种原子发出的某频率的光有关,通过这些亮线与 原子的特征谱线对照,即可确定物质的组成成分,选项B正确;高温物体发出的光通 过物质后某些频率的光被吸收而形成暗线,这些暗线与所经物质有关,选项C错误; 某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线 状谱中的亮线与吸收光谱中的暗线相对应。选项D错误。 答案 B
连续分布,一切波长的光都有
Hale Waihona Puke 炽热的白光通过温度 用分光镜观察时,见到连续光谱背景上出现
吸收光谱 较白光低的气体后, 一些暗线(与特征谱线相对应),可用于光谱
再色散形成的
分析
3.太阳光谱 (1)太阳光谱的特点:在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱。 (2)对太阳光谱的解释:阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射 向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面 八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线。

备考2019年高考物理一轮复习文档:第十三章 第1讲 原子结构 氢原子光谱 讲义 含解析

备考2019年高考物理一轮复习文档:第十三章 第1讲 原子结构 氢原子光谱 讲义 含解析

第1讲原子结构氢原子光谱板块一主干梳理·夯实基础【知识点1】氢原子光谱Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。

(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。

(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

2.光谱(1)光谱用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。

(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。

有的光谱是连在一起的光带,这样的光谱叫做连续谱。

(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎫122-1n2,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。

【知识点2】氢原子的能级结构、能级公式Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。

(h是普朗克常量,h=6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道也是不连续的。

2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。

3.氢原子的能级图板块二考点细研·悟法培优考点1氢原子能级图及原子跃迁[深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。

备考2019年高考物理一轮复习文档:第十三章 第1讲 原子结构 氢原子光谱 练习 Word版含解析

备考2019年高考物理一轮复习文档:第十三章 第1讲 原子结构 氢原子光谱 练习 Word版含解析

板块三限时规范特训时间:45分钟100分一、选择题(本题共10小题,每小题8分,共80分。

其中1~6为单选,7~10为多选)1.根据经典电磁理论,从卢瑟福原子模型可以得到的结论是()A.原子十分稳定,原子光谱是连续谱B.原子十分稳定,原子光谱是线状谱C.原子很不稳定,原子光谱是连续谱D.原子很不稳定,原子光谱是线状谱答案 C解析按照经典电磁理论,加速运动的电子,要不断地向周围发射电磁波,发射的应该是连续谱,电子的能量不断减少,最后电子要落到原子核上,即原子不稳定,C正确。

2.对原子光谱,下列说法不正确的是()A.原子光谱是不连续的B.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的C.由于各种原子的原子结构不同,所以各种原子的原子光谱也不相同D.分析物质发光的光谱,可以鉴别物质中含哪些元素答案 B解析原子光谱为线状谱,是不连续的,A正确;由于各种原子的原子结构不同,各种原子都有自己的特征谱线,B错误,C正确;根据各种原子的特征谱线,分析物质发光的光谱,可鉴别物质中含哪些元素,D正确。

3.氢原子从能量为E1的较高激发态跃迁到能量为E2的较低激发态,设真空中的光速为c ,则 ( )A .吸收光子的波长为c (E 1-E 2)hB .辐射光子的波长为c (E 1-E 2)hC .吸收光子的波长为ch E 1-E 2D .辐射光子的波长为chE 1-E 2答案 D解析 由玻尔理论的跃迁假设知,当氢原子由较高的能级向较低的能级跃迁时辐射光子,由关系式hν=E 1-E 2得ν=E 1-E 2h 。

又有λ=c ν,故辐射光子的波长为λ=ch E 1-E 2,D 选项正确。

4.[2017·湖南永州二模]如图所示,图甲为氢原子的能级图,图乙为氢原子的光谱。

已知谱线a 是氢原子从n =4的能级跃迁到n =2能级时的辐射光,谱线b 可能是氢原子在下列哪种跃迁情形时的辐射光()A .从n =3的能级跃迁到n =2的能级B .从n =5的能级跃迁到n =2的能级C.从n=4的能级跃迁到n=3的能级D.从n=5的能级跃迁到n=3的能级答案 B解析由题图乙可知,谱线a的波长大于谱线b的波长,所以a 光的光子频率小于b光的光子频率,则b光的光子能量大于n=4和n=2间的能级差,分析可知A、C、D错误,B正确。

备战2019年高考物理 考点一遍过 考点57 原子结构 氢原子光谱(含解析)

备战2019年高考物理 考点一遍过 考点57 原子结构 氢原子光谱(含解析)

原子结构氢原子光谱一、原子的核式结构1.电子的发现:英国物理学家汤姆孙发现了电子.2.α粒子散射实验:1 909~1 911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞"了回来。

3.原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

二、光谱1.光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。

2.光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。

有的光谱是连在一起的光带,这样的光谱叫做连续谱.3.氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R2211()2n-,(n=3,4,5,···),R是里德伯常量,R=1.10×107 m–1,n为量子数。

三、玻尔理论1.定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

2.跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m–E n。

(h是普朗克常量,h=6.63×10–34J·s)3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道也是不连续的。

四、氢原子的能级、能级公式1.氢原子的能级能级图如图所示2.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=错误!E1(n=1,2,3,···),其中E1为基态能量,其数值为E1=–13。

6 eV。

(2)氢原子的半径公式:r n=n2r1(n=1,2,3,···),其中r1为基态半径,又称玻尔半径,其数值为r1=0。

高考一轮物理能力提升(考点 重点 方法)19-1氢原子光谱氢原子的能级结构和公式

高考一轮物理能力提升(考点 重点 方法)19-1氢原子光谱氢原子的能级结构和公式

第十九章 原子结构和原子核 1.本章内容可分为两部分,即原子结构和原子核。

重点内容是:氢原子的能级结构和公式;原子核的衰变和半衰期;核反应方程的书写;结合能和质量亏损。

从考试大纲可以看到全部是I 级要求。

2.高考对本专题考查特点是命题热点分散,偏重于知识的了解和记忆,多以每部分内容单独命题,多为定性分析,“考课本”,“不回避陈题”是本专题考查的最大特点,题型多以选择题形式出现,几乎在每年高考中占一个小题。

3.本单元内容与现代科技相联系的题目较多,复习时应引起高度重视。

第一课时 氢原子光谱氢原子的能级结构和公式选修3-5本章概览【教学要求】1.了解人们对原子结构的认识过程2.掌握α粒子散射实验和原子核式结构的3.理解玻尔模型的三条假设【知识再现】一、人们认识原子结构的思维线索气体放电的研究→阴极射线→发现电子(1897 年,汤姆生)→汤姆生的“枣糕模型”−−−−→−粒子散射实验α卢瑟福的核式结构模型−−−−→−氢光谱的研究玻尔模型(轨道量子化模型)。

二、卢瑟福的核式结构模型1.α粒子散射实验做法:用质量是电子7300倍的a 粒子轰击薄金箔。

结果:绝大多数 ,少数 ,极少数 ,有的甚至 。

2.原子的核式结构在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.原子核所带的正电荷数等于核外的电子数,所以整个原子是中性的。

3.实验数据估算:原子核大小的数量级为10-15-10-14m ,原子大小的数量级为10-10 m三、玻尔的原子理论——三条假设1.“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。

2.“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。

2019教育第1讲 光电效应 原子结构 氢原子光谱 课件数学

2019教育第1讲 光电效应 原子结构 氢原子光谱   课件数学
5.跃迁时电子动能、原子势能与原子能量的变化 当轨道半径减小时,库仑引力做正功,原子的电势能 Ep 减小,电子 动能增大,原子能量减小。反之,轨道半径增大时,原子电势能增大,电 子动能减小,原子能量增大。
2019高考一轮总复习 • 物理
(2)实验结果显示,绝大多数 α 粒子穿过金箔后仍 沿原来的方向前进 , 少数 α 粒子发生了 较大的偏转 ,只有极少数 α 粒子偏转角超过 90°甚至 被 弹回 。
(3)原子的核式结构模型:在原子中心有个很小的核,叫做 原子核 ,原 子的全部正电荷和几乎全部 质量 都集中在核里,带负电的电子在核外空间 绕核转动。
答案 C
2019高考一轮总复习 • 物理
2.已知钙和钾的截止频率分别为 7.73×1014 Hz 和 5.44×1014 Hz,在某 种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大
初动能的光电子,则钙逸出的光电子具有较大的( )
A.波长
B.频率
C.能量
D.动量
解析 金属的逸出功 W0=hν0,根据爱因斯坦光电效应方程 Ek=hν-W 可知,从金属钾表面飞出的光电子的最大初动能比金属钙的大,金属钙表面
飞出的光电子能量 E 小,因 λ=
h ,所以从钙表面逸出的光电子具有较 2mE
大的波长,选项 A 正确。

答案 A
2019高考一轮总复习 • 物理
微考点 2 能级跃迁和光谱线 核|心|微|讲
1.原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子 的能量满足 hν=E 末-E 初时,才能被某一个原子吸收,使原子从低能级 E 初向高能级 E 末跃迁,而当光子能量 hν 大于或小于 E 末-E 初时都不能被 原子吸收。
2019高考一轮总复习 • 物理

高三物理一轮复习 选考部分 第13章 动量 光电效应 核能 第2节 光电效应 氢原子光谱教师用书

高三物理一轮复习 选考部分 第13章 动量 光电效应 核能 第2节 光电效应 氢原子光谱教师用书

第2节 光电效应 氢原子光谱知识点1 光电效应现象 1.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应.(2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大. (3)大于极限频率的光照射金属时,光电流强度(反映单位时间内发射出的光电子数的多少)与入射光强度成正比.2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34J·s.3.光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12mv 2.知识点2 α粒子散射实验与核式结构模型 1.实验现象绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图13­2­1所示.α粒子散射实验的分析图图13­2­12.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.知识点3 氢原子光谱和玻尔理论 1.光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类:有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律:巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数. 2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n .(h 是普朗克常量,h =6.63×10-34J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.3.几个概念(1)能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫作能级. (2)基态:原子能量最低的状态.(3)激发态:在原子能量状态中除基态之外的其他的状态. (4)量子数:原子的状态是不连续的,用于表示原子状态的正整数. 4.氢原子的能级公式E n =1n2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6_eV.5.氢原子的半径公式r n =n 2r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径,其数值为r 1=0.53×10-10m.[核心精讲]1.与光电效应有关的五组概念对比(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.光子是光电效应的因,光电子是果.(2)光电子的动能与光电子的最大初动能:光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.光电子的初动能小于等于光电子的最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.(5)光的强度与饱和光电流:饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的,对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间没有简单的正比关系.2.光电效应的研究思路(1)两条线索:(2)两条对应关系:光强大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→光电子的最大初动能大.[题组通关]1.(2014·上海高考)在光电效应的实验结果中,与光的波动理论不矛盾的是( ) A.光电效应是瞬时发生的B.所有金属都存在极限频率C.光电流随着入射光增强而变大D.入射光频率越大,光电子最大初动能越大C 光具有波粒二象性,既具有波动性又具有粒子性,光电效应证实了光的粒子性. 因为光子的能量是一份一份的,不能积累,所以光电效应具有瞬时性,这与光的波动性矛盾,A项错误;同理,因为光子的能量不能积累,所以只有当光子的频率大于金属的极限频率时,才会发生光电效应,B项错误;光强增大时,光子数量和能量都增大,所以光电流会增大,这与波动性无关,C项正确;一个光电子只能吸收一个光子,所以入射光的频率增大,光电子吸收的能量变大,所以最大初动能变大,D项错误.2.(多选)(2014·广东高考)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( ) 【导学号:96622223】A .增大入射光的强度,光电流增大B .减小入射光的强度,光电效应现象消失C .改用频率小于ν的光照射,一定不发生光电效应D .改用频率大于ν的光照射,光电子的最大初动能变大AD 增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A 正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B 错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C 错误;根据h ν-W 逸=12mv 2可知,增加照射光频率,光电子的最大初动能也增大,故选项D 正确.[名师微博] 两点提醒:1.能否发生光电效应取决于入射光的频率而不是入射光的强度.2.光电子的最大初动能随入射光子频率的增大而增大,但二者不是正比关系.[核心精讲] 1.三个关系(1)爱因斯坦光电效应方程E k =hν-W 0.(2)光电子的最大初动能E k 可以利用光电管用实验的方法测得,即E k =eU c ,其中U c 是遏止电压.(3)光电效应方程中的W 0为逸出功,它与极限频率νc 的关系是W 0=hνc . 2.四类图象图象名称图线形状由图线直接(间接) 得到的物理量最大初动能E k 与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E③普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c :图线与横轴的交点 ②饱和光电流I m :电流的最大值③最大初动能:E km =eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2 ②饱和光电流③最大初动能E k1=eU c1,E k2=eU c2续表图象名称图线形状由图线直接(间接) 得到的物理量遏止电压U c 与入射光频率ν的关系图线①截止频率νc :图线与横轴的交点 ②遏止电压U c :随入射光频率的增大而增大③普朗克常量h :等于图线的斜率与电子电量的乘积,即h =ke .(注:此时两极之间接反向电压)[师生共研]●考向1 光电效应方程的应用(2014·江苏高考)已知钙和钾的截止频率分别为7.73×1014Hz 和5.44×1014Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )A .波长B .频率C .能量D .动量A 根据爱因斯坦光电效应方程12mv 2m =hν-W .由题知W 钙>W 钾,所以钙逸出的光电子的最大初动能较小.根据p =2mE k 及p =hλ和c =λν知,钙逸出的光电子的特点是:动量较小、波长较长、频率较小.选项A 正确,选项B 、C 、D 错误.光电效应问题中的五个决定关系1.逸出功W 0一定时,入射光的频率决定着能否产生光电效应以及光电子的最大初动能. 2.入射光的频率一定时,入射光的强度决定着单位时间内发射出来的光电子数. 3.爱因斯坦光电效应方程E k =hν-W 0.4.光电子的最大初动能E k 可以利用光电管用实验的方法测得,即E k =eU c ,其中U c 是遏止电压.5.光电效应方程中的W 0为逸出功.它与极限频率νc 的关系是W 0=hνc .●考向2 四类图象问题分析在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图13­2­2所示.则可判断出( )图13­2­2A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光对应的截止频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能B 由图象知甲光、乙光对应的遏止电压相等,且小于丙光对应的遏止电压,所以甲光和乙光对应的光电子最大初动能相等且小于丙光的光电子最大初动能,故D 项错误;根据爱因斯坦光电效应方程E k =hν-W 0知甲光和乙光的频率相等,且小于丙光的频率,故A 错误、B 正确;截止频率是由金属决定的,与入射光无关,故C 错误.[题组通关]3.(2015·全国卷Ⅰ)在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图13­2­3所示.若该直线的斜率和截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________.图13­2­3【解析】 根据光电效应方程E km =hν-W 0及E km =eU c 得U c =hνe -W 0e ,故h e =k ,b =-W 0e,得h =ek ,W 0=-eb .【答案】 ek -eb4.人眼对绿光最为敏感,正常人眼睛接收到波长为5.3×10-7m 的绿光时,每秒内只要有6个绿光光子射入瞳孔即可引起视觉.已知普朗克常量h =6.63×10-34J·s,真空中光速c =3.0×108m/s ,则:【导学号:96622224】(1)绿光光子的能量为多少? (2)若用此绿光照射逸出功为3.6×10-19J 的某金属,则产生的光电子的最大初动能为多少.(取两位有效数字)【解析】 (1)绿光光子的能量为E =hν=hcλ=3.8×10-19 J.(2)根据爱因斯坦光电效应方程E k =hν-W 0=2.0×10-20 J.【答案】 (1)3.8×10-19J (2)2.0×10-20J[核心精讲]1.对氢原子的能级图的理解 (1)能级图如图13­2­4所示.图13­2­4(2)能级图中相关量意义的说明:相关量 意 义能级图中的横线表示氢原子可能的能量状态——定态横线左端的数字“1,2,3,…”表示量子数横线右端的数字 “-13.6,-3.4,…” 表示氢原子的能量相邻横线间的距离表示相邻的能量差,量子数越大相邻的能量差越小,距离越小带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hν=E m -E n2.关于能级跃迁的三点说明(1)原子跃迁条件hν=E m -E n 只适用于光子和原子作用而使原子在各定态之间跃迁的情况.(2)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.3.跃迁中两个易混问题(1)一群原子和一个原子:氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了,光谱线的可能条数:N =C 2n =n n -12.(2)直接跃迁与间接跃迁,原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况下辐射(或吸收)光子的能量是不同的.直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和.[题组通关]5.原子从一个高能级跃迁到一个较低的能级时,有可能不发射光子.例如在某种条件下,铬原子的n =2能级上的电子跃迁到n =1能级上时并不发射光子,而是将相应的能量转交给n =4能级上的电子,使之能脱离原子,这一现象叫做俄歇效应,以这种方式脱离了原子的电子叫做俄歇电子.已知铬原子的能级公式可简化表示为E n =-A n2,式中n =1,2,3,…表示不同能级,A 是正的已知常数,上述俄歇电子的动能是( )A.316A B.716A C.1116A D.1316A C 先计算铬原子的n =2能级上的电子跃迁到n =1能级上时应释放的能量:ΔE =E 2-E 1=-A 4+A =34A .n =4能级上的电子要电离所需的能量E 4=116A ,则n =4能级上的电子得到ΔE 的能量后,首先需要能量使之电离,然后多余的能量以动能的形式存在,所以E k =ΔE -E 4=1116A ,选项C 正确.6.按照玻尔理论,一个氢原子中的电子从一半径为r a 的圆轨道自发地直接跃迁到一半径为r b的圆轨道上,已知r a>r b,则在此过程中( ) 【导学号:96622225】A.原子要发出某一频率的光子,电子的动能增大,原子的电势能减小,原子的能量也减小B.原子要吸收某一频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小C.原子要发出一系列频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小D.原子要吸收一系列频率的光子,电子的动能增大,原子的电势能增大,原子的能量也增大A 一个氢原子中的电子从高能级态自发地直接跃迁到低能级态,只能发出某一频率的光子,原子的能量减小,库仑力对电子做正功,原子的电势能减小,电子的动能增大,故A 正确.7.(多选)氢原子的能级如图13­2­5所示.氢原子从n=4能级直接向n=1能级跃迁所放出的光子,恰能使某金属产生光电效应,下列判断正确的是( )图13­2­5A.氢原子辐射出光子后,氢原子能量变大B.该金属的逸出功W0=12.75 eVC.用一群处于n=3能级的氢原子向低能级跃迁时所发出的光照射该金属,该金属仍有光电子逸出D.氢原子处于n=1能级时,其核外电子在最靠近原子核的轨道上运动BD 氢原子发生跃迁,辐射出光子后,氢原子能量变小,故A错误;恰能使某金属产生光电效应,由n=4直接跃迁到n=1,辐射的光子能量为ΔE=13.6 eV-0.85 eV=12.75 eV.则逸出功W0=12.75 eV,故B正确;一群处于n=3的氢原子向低能级跃迁时,辐射的能量小于从n=4能级直接向n=1能级跃迁所放出的光子能量,则不会发生光电效应,故C错误;根据玻尔原子模型可知,处于n=1能级时,其核外电子在最靠近原子核的轨道上运动,故D正确.[名师微博]1.一个区别:一个氢原子和一群氢原子能级跃迁可能性.2.两点提醒:(1)原子能级之间跃迁时吸收或放出的光子能量一定等于两能级之间的差值.(2)要使氢原子发生电离,原子吸收的能量可以是大于原子该能级值的任意值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲原子结构氢原子光谱板块一主干梳理·夯实基础【知识点1】氢原子光谱Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。

(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。

(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

2.光谱(1)光谱用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。

(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。

有的光谱是连在一起的光带,这样的光谱叫做连续谱。

(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎫122-1n2,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。

【知识点2】氢原子的能级结构、能级公式Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。

(h是普朗克常量,h=6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道也是不连续的。

2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。

3.氢原子的能级图板块二考点细研·悟法培优考点1氢原子能级图及原子跃迁[深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。

2.对原子跃迁条件hν=E m -E n 的说明(1)原子跃迁条件hν=E m -E n 只适用于原子在各定态之间跃迁的情况。

(2)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能。

(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发。

由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁。

3.跃迁中两个易混问题 (1)一群原子和一个原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。

一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为N =n (n -1)2=C 2n 。

(2)直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁。

两种情况下辐射(或吸收)光子的能量是不同的。

直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和。

例1 (多选)如图为氢原子的能级示意图,锌的逸出功是3.34 eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是( )A.用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B.一群处于n=3能级的氢原子向基态跃迁时,能放出3种不同频率的光C.一群处于n=3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75 eVD.用能量为14.0 eV的光子照射,可使处于基态的氢原子电离(1)如何求出辐射的光谱线条数?提示:①一群氢原子辐射光谱线条数C2n;②一个氢原子最多辐射光谱线条数n-1。

(2)如何判定处于基态的氢原子能否跃迁?提示:①若光子的能量大于或等于电离能,一定能电离;②若光子的能量小于电离能,那该光子的能量必须等于能级差,才能跃迁;③若实物粒子的动能大于或等于能级差也能使氢原子跃迁。

尝试解答选BCD。

当氢原子从高能级向低能级跃迁时,辐射出光子的能量有可能大于3.34 eV,锌板有可能产生光电效应,选项A错误;由跃迁关系可知,选项B正确;从n=3能级向基态跃迁时发出的光子最大能量为12.09 eV,由光电效应方程可知,发出光电子的最大初动能为8.75 eV,选项C正确;氢原子在吸收光子能量时需满足两能级间的能量差,14.0 eV>13.6 eV,因此可以使处于基态的氢原子电离,选项D正确。

总结升华解答氢原子能级图与原子跃迁问题的注意事项(1)能级之间跃迁时放出的光子频率是不连续的。

(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=E m-E n求得。

若求波长可由公式c=λν求得,若光子的能量大于13.6 eV,则可使处于基态的氢原子电离,如例题中D选项。

(3)一个氢原子跃迁发出可能的光谱线条数最多为(n-1)。

(4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法。

①用数学中的组合知识求解:N=C2n=n(n-1)2。

②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。

[跟踪训练]如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,并用这些光照射逸出功为2.49 eV的金属钠。

(1)这群氢原子能发出________种不同频率的光,其中有________种频率的光能使金属钠发生光电效应。

(2)金属钠发出的光电子的最大初动能为________eV。

答案(1)32(2)9.60解析(1)有3种跃迁方式,如图所示第3激发态→第1激发态,放出光子的能量为ΔE=E3-E1=(-1.51 eV)-(-13.6 eV)=12.09 eV>2.49 eV第3激发态→第2激发态,放出光子的能量为ΔE=E3-E2=(-1.51 eV)-(-3.4 eV)=1.89 eV<2.49 eV第2激发态→第1激发态,放出光子的能量为ΔE=E2-E1=(-3.4 eV)-(-13.6 eV)=10.2 eV>2.49 eV光子能量大于逸出功的能发生光电效应,故有2种频率的光能使金属钠发生光电效应。

(2)根据爱因斯坦光电效应方程,有E k=hν-W0=12.09 eV-2.49 eV=9.60 eV。

考点2与能级有关的能量问题[拓展延伸]1.原子从低能级向高能级跃迁的能量情况吸收一定能量的光子,当一个光子的能量满足hν=E末-E初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收。

2.原子从高能级向低能级跃迁的能量情况以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。

3.电离时的能量当光子能量大于或等于原子所处的能级绝对值时,可以被氢原子吸收,使氢原子电离,多余的能量作为电子的初动能。

4.氢原子跃迁时电子动能、电势能与原子能量的变化规律 (1)电子动能变化规律①从公式上判断电子绕氢原子核运动时静电力提供向心力,即k e 2r 2=m v 2r ,所以E k n =ke 22r n ,随r 增大而减小。

②从库仑力做功上判断,当轨道半径增大时,库仑引力做负功,故电子动能减小。

反之,当轨道半径减小时,库仑引力做正功,故电子的动能增大。

(2)原子的电势能的变化规律①通过库仑力做功判断,当轨道半径增大时,库仑引力做负功,原子的电势能增大。

反之,当轨道半径减小时,库仑引力做正功,原子的电势能减小。

②利用原子能量公式E n =E k n +E p n 判断,当轨道半径增大时,原子能量增大,电子动能减小,原子的电势能增大。

反之,当轨道半径减小时,原子能量减小,电子动能增大,原子的电势能减小。

例2 已知氢原子基态的电子轨道半径为r 1=0.528×10-10m ,量子数为n 的能级值为E n =-13.6n 2eV 。

(1)求电子在基态轨道上运动的动能;(2)有一群氢原子处于量子数n =3的激发态,画一张能级图,在图上用箭头标明这些氢原子能发出哪几种光谱线?(3)计算这几种光谱线中波长最短的波长。

(静力电常量k =9×109 N·m 2/C 2,电子电荷量e =1.6×10-19C ,普朗克常量h =6.63×10-34J·s ,真空中光速c =3.00×108 m/s)(1)如何计算电子的动能?提示:库仑力提供向心力。

(2)如何计算光谱线的波长? 提示:E n -E m =h c λ。

尝试解答 (1)13.6_eV__(2)图见解析__(3)1.03×10-7_m 。

(1)核外电子绕核做匀速圆周运动,静电力提供向心力,则ke 2r 21=m v 2r 1,又知E k =12m v 2,故电子在基态轨道的动能为:E k =ke 22r 1=9×109×(1.6×10-19)22×0.528×10-10J≈2.18×10-18 J ≈13.6 eV 。

(2)当n =1时,能级值为E 1=-13.612eV =-13.6 eV 。

当n =2时,能级值为E 2=-13.622 eV =-3.4 eV 。

当n =3时,能级值为E 3=-13.632 eV =-1.51 eV 。

能发出的光谱的线分别为3→2,2→1,3→1共3种,能级图如图所示。

(3)由E 3向E 1跃迁时发出的光子频率最大,波长最短。

hν=E 3-E 1,又知ν=cλ则有λ=hcE 3-E 1=6.63×10-34×3×10812.09×1.6×10-19 m ≈1.03×10-7 m 。

总结升华氢原子与人造卫星能量变化比较[跟踪训练] 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 B .原子要放出光子,电子的动能减小,原子的电势能减小 C .原子要吸收光子,电子的动能增大,原子的电势能减小 D .原子要吸收光子,电子的动能减小,原子的电势能增大 答案 D解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r ,又E k =12m v 2,所以E k =ke 22r 。

相关文档
最新文档