哈尔滨市高考数学一轮复习:27 数列的概念与简单表示法D卷
2020年高考数学一轮复习考点28数列的概念与简单表示法必刷题
考点28 数列的概念与简单表示法1、数列{a n }满足a n +a n +1=(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )12A .5 B .72C .D .92132【答案】B【解析】∵a n +a n +1=,a 2=2,12∴a n =Error!∴S 21=11×+10×2=.(-32)722、给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( )A.a n =2n 2+3n-1B.a n =n 2+5n-5C.a n =2n 3-3n 2+3n-1D.a n =2n 3-n 2+n-2【答案】C 【解析】当n=1时,a 1=1,代入四个选项,排除A 、D;当n=2时,a 2=9,代入B 、C 选项,B 、C 都正确;当n=3时,a 3=35,代入B 、C 选项,B 错误,C 正确,所以选C .3、在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则的值是( )a 3a 5A. B . 1516158C .D . 3438【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=,∴a 4=+(-1)1212124,a 4=3,∴3a 5=3+(-1)5,∴a 5=,∴=×=.23a 3a 51232344、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8, 13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-)(a 2a 4-)(a 3a 5-)…(a 2 015a 2 017-)=( )A.1B.-1C.2 017D.-2 017【答案】B 【解析】∵a 1a 3-=1×2-12=1,a 2a 4-=1×3-22=-1,a 3a 5-=2×5-32=1,…,a 2 015a 2 017-=1.∴(a 1a 3-)(a 2a 4-)(a 3a 5-)·…·(a 2 015a 2 017-)=11 008×(-1)1 007=-1.5、已知数列{a n }的前n 项和S n =2a n -1,则满足≤2的正整数n 的集合为( )an n A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.an n 6、已知数列{a n }满足a 1=2,a n +1=(n ∈N *),则a 2 018的值为( )1+an1-an A .-8 B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=(n ∈N *)得,a 2=-3,a 3=-,a 4=,a 5=2,可见数列{a n }的周期为4,1+an 1-an 1213所以a 2 018=a 504×4+2=a 2=-3.7、已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( )A.22 018-1B.32 018-6C. 2 018-D. 2 018-【答案】A 【解析】由题意可得3S n =2a n -3n ,3S n+1=2a n+1-3 (n+1),两式作差可得3a n+1=2a n+1-2a n -3,即a n+1=-2a n -3,则a n+1+1=-2(a n +1),结合3S 1=2a 1-3=3a 1可得a 1=-3,a 1+1=-2,则数列{a n +1}是首项为-2,公比为-2的等比数列,据此有a 2 018+1=(-2)×(-2)2 017=22 018,∴a 2 018=22 018-1.故选A .8、已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n =n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞) B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A 【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n =n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A.9、在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1)【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.10、若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( )A .19 B .20C .21D .22【答案】B 【解析】由(n -1)a n =(n +1)a n -1得,=,则an an -1n +1n -1a n =a 1×××…×=2×××…×=n (n +1).又a n <462,即n (n +1)<462,所以(a 2a 1)(a 3a 2)(an an -1)3142n +1n -1n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.11、数列{a n }满足a 1=,a n+1-1=a n (a n -1)(n ∈N +),且S n =+…+,则S n 的整数部分的所有可能值构成的集合是( )A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}【答案】A 【解析】对a n+1-1=a n (a n -1)两边取倒数,得-=,S n =++…+=-+-+…+-=3-,由a n+1-a n =≥0,a n+1≥a n ,a n 为递增数列,a 1=,a 2=,a 3=,其中S 1=,整数部分为0,S 2=3-=,整数部分为0,S 3=,整数部分为1,由于S n <3,故选A .12、在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18= .【答案】3 【解析】由题意得a n +a n+1=5⇒a n+2+a n+1=5⇒a n =a n+2,所以a 18=a 2=5-a 1=3.13、已知数列{a n }的通项公式a n =Error!则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.14、数列{a n }的前n 项和为S n .若S 2=4,a n+1=2S n +1,n ∈N +,则S 5= .【答案】121 【解析】由于解得a 1=1.由a n+1=S n+1-S n =2S n +1,得S n+1=3S n +1,所以S n+1+=3S n +,所以是以为首项,3为公比的等比数列,所以S n +=×3n-1,即S n =,所以S 5=121.15、已知数列{a n }的前n 项和S n =a n +,则{a n }的通项公式a n =________.1323【答案】n -1(-12)【解析】当n =1时,a 1=S 1=a 1+,1323∴a 1=1; 当n ≥2时,a n =S n -S n -1=a n -a n -1,∴=-.1313an an -112∴数列{a n }是首项a 1=1,公比q =-的等比数列,故a n =n -1.12(-12)16、在数列{a n }中,a 1=0,a n+1=,则S 2 019= .【答案】0 【解析】∵a 1=0,a n+1=,∴a 2==,a 3===-,a 4==0,即数列{a n }的取值具有周期性,周期为3,且a 1+a 2+a 3=0,则S 2 019=S 3×673=0.17、已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .【答案】2n -1 【解析】当n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1),即a n =2a n-1+1,∴a n +1=2(a n-1+1).又a 1=S 1=2a 1-1,∴a 1=1.∴数列{a n +1}是以首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n-1=2n ,∴a n =2n -1.18、已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{b n }的通项公式.【答案】(1) 2n (2) ,n ∈N *n 3-n 2+2n 2【解析】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由Error!得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *.(2)∵a 2=4b 1=4,∴b 1=1.∵nb n +1-(n +1)b n =n 3+n 2,∴-=n ,bn +1n +1bn n 故-=n -1,…,-=2,-=1,n ≥2,bn n bn -1n -1b 33b 22b 22b 11将上面各式累加得-=1+2+3+…+(n -1)=,bn n b 11n n -1 2∴b n =,n ∈N *.n 3-n 2+2n 219、设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.【答案】(1) (a -3)2n -1 (2) [-9,3)∪(3,+∞)【解析】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2,[12·(32)n -2+a -3]当n ≥2时,a n +1≥a n ⇔12·n -2+a -3≥0⇔a ≥-9.(32)又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).20、已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =.1+an an (1)求公差d 的值;(2)若a 1=-,求数列{b n }中的最大项和最小项的值;52(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围.【答案】(1) 1 (2) 3 -1 (3) (-7,-6)【解析】(1)∵S 4=2S 2+4,∴4a 1+d =2(2a 1+d )+4,解得d =1.3×42(2)∵a 1=-,∴数列{a n }的通项公式为a n =-+(n -1)=n -,525272∴b n =1+=1+.1an 1n -72∵函数f (x )=1+在和上分别是单调减函数,1x -72(-∞,72)(72,+∞)∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1.(3)由b n =1+,得b n =1+.1an 1n +a 1-1又函数f (x )=1+在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,1x +a 1-1y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8,∴7<1-a 1<8,∴-7<a 1<-6,∴a 1的取值范围是(-7,-6).。
高三数学课标一轮复习考点规范练: 27数列的概念与简单表示法
考点规范练27数列的概念与简单表示法基础巩固组1.数列1,-3,5,-7,9,…的一个通项公式为()A.a n=2n-1B.a n=(-1)n(2n-1)C.a n=(-1)n+1(2n-1)D.a n=(-1)n(2n+1)2.数列{a n}中,a1=1,对所有n∈N*都有a1a2…a n=n2,则a3+a5等于()A. B. C. D.3.(2017浙江温州测试)设S n为数列{a n}的前n项和,且S n=(a n-1)(n∈N*),则a n=()A.3(3n-2n)B.3n+2C.3nD.3·2n-14.(2017广西南宁测试)已知数列{a n}满足:,且a2=2,则a4等于()A.-B.23C.12D.115.数列{a n}满足a n+1+a n=2n-3,若a1=2,则a8-a4=()A.7B.6C.5D.46.已知数列{a n}中,首项a1=1,a n=a n-1·3n-1(n≥2,n∈N*),则数列{b n}的通项公式为.7.数列{a n}满足:a1+3a2+5a3+…+(2n-1)·a n=(n-1)·3n+1+3(n∈N*),则数列{a n}的通项公式a n=.8.若数列{a n}满足a1=2,a n+1=(n∈N*),则该数列的前2 018项的乘积a1·a2·a3·…·a2-=.018能力提升组9.(2017浙江嘉兴模拟)已知数列{a n}中的任意一项都为正实数,且对任意m,n∈N*,有a m·a n=a m+n,如果a10=32,则a1的值为()A.-2B.2C.D.-10.已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(xy)=f(x)+f(y).若数列{a n}的前n项和为S n,且满足f(S n+2)-f(a n)=f(3)(n∈N*),则a n等于()-A.2n-1B.nC.2n-1D.11.已知数列{a n}满足:a1=1,a n+1=(n∈N*).若b n+1=(n-λ)·,b1=-λ,且数列{b n}是单调递增数列,则实数λ的取值范围为()A.λ>2B.λ>3C.λ<2D.λ<312.(2017辽宁沈阳期末)若数列{a n}满足=0,则称{a n}为“梦想数列”,已知正项数列为“梦想数列”,且b1+b2+b3=2,则b6+b7+b8=()A.4B.16C.32D.6413.已知数列{a n}满足a1=,a n+1-1=-a n(n∈N*),则m=+…+的整数部分是()A.1B.2C.3D.414.古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图,他们研究过图中的1,5,12,22,…,由于这些数能够表示成五角形,将其称为五角形数.若按此规律继续下去,第n个五角形数a n=.15.(2017浙江温州瑞安模拟)已知数列{a n}中,a n=1+(n∈N*,a∈R且a≠0).-(1)若a=-7,求数列{a n}中的最大项和最小项的值;(2)若对任意的n∈N*,都有a n≤a6成立,求a的取值范围.16.在数列{a n}中,a1=1,2a n a n+1+a n+1-a n=0(n∈N*).(1)求证:数列为等差数列,并求{a n}的通项公式;(2)若ta n+1(a n-1)+1≥0对任意n≥2的整数恒成立,求实数t的取值范围.答案:1.C由数列{a n}中1,-3,5,-7,9,…可以看出:符号正负相间,通项的绝对值为1,3,5,7,9…为等差数列{b n},其通项公式b n=2n-1.∴数列1,-3,5,-7,9,…的一个通项公式为a n=(-1)n+1(2n-1).故选C.2.A∵当n≥2时,a1a2a3…a n=n2,当n≥3时,a1a2a3…a n-1=(n-1)2,两式相除,得a n=-,∴a3=,a5=a3+a5=故选A.3.C当n≥2时,a n=S n-S n-1=(a n-1)-(a n-1-1),整理,得a n=3a n-1.由a1=(a1-1),得a1=3,-=3,∴数列{a n}是以3为首项,3为公比的等比数列,∴a n=3n,故选C.4.D由已知得=2,则{a n+1}是公比为2的等比数列,所以a4+1=(a2+1)·22=12,则a4=11.故选D.5.D依题意得(a n+2+a n+1)-(a n+1+a n)=[2(n+1)-3]-(2n-3),即a n+2-a n=2,所以a8-a4=(a8-a6)+(a6-a4)=2+2=4.6.a n=-∵a n=---…a1=3n-1·3n-2·…·3·1=-a1也满足上式,∴a n=-7.3n a1+3a2+5a3+…+(2n-3)·a n-1+(2n-1)·a n=(n-1)+3,把n替换成n-1得,a1+3a2+5a3+…+(2n-3)·a n-1=(n-2)·3n+3,两项相减得a n=3n.8.-6经计算,得a1=2,a2=-3,a3=-,a4=,a5=2,…则{a n}是以4为周期的一个周期数列.∴a1a2a3a4=1.∴a1·a2·…·a2 013·a2 014·a2 018=2×(-3)=-6.9.C令m=1,则=a1,所以数列{a n}是以a1为首项,公比为a1的等比数列,从而a n=,因为a10=512,所以a1=10.D由题意知f(S n+2)=f(a n)+f(3)=f(3a n)(n∈N*),∴S n+2=3a n,S n-1+2=3a n-1(n≥2),两式相减得,2a n=3a n-1(n≥2).又n=1时,S1+2=3a1=a1+2,∴a1=1.∴数列{a n}是首项为1,公比为的等比数列.∴a n=-11.C由已知可得+1,+1=2又+1=2≠0,则+1=2n,b n+1=2n(n-λ),b n=2n-1(n-1-λ)(n≥2).b1=-λ也适合上式,故b n=2n-1(n-1-λ)(n∈N*).由b n+1>b n,得2n(n-λ)>2n-1(n-1-λ),即λ<n+1恒成立.而n+1的最小值为2,故λ的取值范围为λ<2.12.D因为正项数列为“梦想数列”,所以=0,即b n+1=2b n,所以{b n}是以2为公比的等比数列,所以b6+b7+b8=(b1+b2+b3)×25=2×25=64,故选D.13.B∵a1=,a n+1-1=-a n(n∈N*),∴a n+1-a n=(a n-1)2>0,∴a n+1>a n,∴数列{a n}是单调递增数列,由a n+1-1=-a n=a n(a n-1), ---,--,∴m=+…+------+…+-----=3--,由a1=>1,则a n+1-a n=(a n-1)2>0,∴a2=1+,a3=1+,a4=1+>2,…,a2 018>2,∴0<-<1,∴2<m<3,∴整数部分是2,故选B.14n2-n观察图象,发现a1=1,a2=a1+4,a3=a2+7,a4=a3+10,猜测当n≥2时,a n=a n-1+3n-2,∴a n-a n-1=3n-2.∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=(3n-2)+[3(n-1)-2]+…+(3×2-2)+1=n2-n.15.解(1)∵a n=1+-(n∈N*,a∈R,且a≠0),∵a=-7,∴a n=1+-(n∈N*).结合函数f(x)=1+-的单调性,可知1>a1>a2>a3>a4, a5>a6>a7>…>a n>1(n∈N*).∴数列{a n}中的最大项为a5=2,最小项为a4=0.(2)a n=1+-=1+--,已知对任意的n∈N*,都有a n≤a6成立, 结合函数f(x)=1+--的单调性,可知5<-<6,即-10<a<-8.即a的取值范围是(-10,-8).16.解(1)由题意得2a n a n+1+a n+1-a n=0,两边同除a n a n+1得,=2,∵a1=1,∴数列是以1为首项、2为公差的等差数列,则=1+2(n-1)=2n-1,∴a n=-(2)由(1)得,ta n+1(a n-1)+1≥0可化为t--+1≥0,由n≥2化简得t--,设b n=--,则b n+1-b n=-------->0,∴当n≥2时,数列{b n}是递增数列,则--, ∴实数t的取值范围是-。
江苏专用2024年高考数学一轮复习考点27数列的概念与简单表示法必刷题含解析
考点27 数列的概念与简洁表示法1.(江苏省徐州市2024-2025学年高三考前模拟检测)已知数列{}n a 的前n 项积为n T ,若对2n ∀≥,n N *∈,都有2112n n n T T T +-⋅=成立,且11a =,22a =,则数列{}n a 的前10项和为____.【答案】1023 【解析】因为2112n n n T T T +-⋅=,故112n n n n T T T T +-=即12n n a a +=(2n ≥),而212a a =, 所以{}n a 为等比数列,故12n n a ,所以()1010112102312S ⨯-==-,填1023.2.(江苏省南通市2025届高三模拟练习卷四模)已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【答案】3【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥-, 当11311a q q a -=-,即1a =时,631S S +取得最小值, 所以919(1)1a q S q -==-9(1)1q q --故答案为:33.(江苏省镇江市2025届高三考前模拟三模)在等比数列{}n a 中,14a ,42a ,7a 成等差数列,则35119a a a a +=+_______.【答案】14【解析】14a ,42a ,7a 成等差数列 17444a a a ∴+=即:6311144a a q a q +=,解得:32q =243511108611911114a a a q a q a a a q a q q ++∴===++ 本题正确结果:144.(江苏省南通市2025届高三适应性考试)已知等差数列{}n a 满意44a =,且1a ,2a ,4a 成等比数列,则3a 的全部值为________. 【答案】3,4 【解析】设等差数列{}n a 公差为d ,因为44a =,且1a ,2a ,4a 成等比数列,所以4122141344a a d a a a a =+=⎧⎨==⎩,即121134()4a d a d a +=⎧⎨+=⎩,解得0d =或1d =. 所以434a d a =-=或3. 故答案为3,45.(江苏省苏州市2025届高三高考模拟最终一卷)已知等比数列{}n a 满意112a =,且2434(1)a a a =-,则5a =_______. 【答案】8 【解析】∵2434(1)a a a =- ∴2334(1)a a =-,则3a =2∴223512812a a a ===. 故答案为:86.(江苏省扬州中学2025届高三4月考试)各项均为正偶数的数列1234a a a a ,,,中,前三项依次成公差为(0)d d >的等差数列,后三项依次成公比为q 的等比数列.若4188a a -=,则q 的全部可能的值构成的集合为________. 【答案】5837⎧⎫⎨⎬⎩⎭, 【解析】因为前三项依次成公差为(0)d d >的等差数列,4188a a -=,所以这四项可以设为1111,,2,88a a d a d a +++,其中1a d ,为正偶数,后三项依次成公比为q 的等比数列,所以有()()()2111288a d a d a +=++,整理得14(22)0388d d a d -=>-,得(22)(388)0d d --<,88223d <<,1a d ,为正偶数,所以24,26,28d = 当24d =时,1512,3a q ==;当26d =时,12085a =,不符合题意,舍去;当28d =时,18168,7a q ==,故q 的全部可能的值构成的集合为5837⎧⎫⎨⎬⎩⎭,.7.(江苏省扬州中学2025届高三4月考试)数列{}n a 是等差数列,11a =,公差[]1,2d ∈,且4101615a a a λ++=,则实数λ的最大值为______.【答案】12- 【解析】41016111153(9)1515a a a a d a d a d λλ++=∴+++++=,15()219f d dλ==-+,因为[]1,2d ∈,所以令19,[10,19]t d t =+∈,因此15()2f t tλ==-,当[10,19]t ∈,函数()f t λ=是减函数,故当10t =时,实数λ有最大值,最大值为1(10)2f =-. 8.(江苏省南京金陵中学、海安高级中学、南京外国语学校2025届高三第四次模拟考试)设数列{}n a 为等差数列,其前n 项和为n S ,已知14760a a a ++=,25851a a a ++=,若对随意n N *∈,都有n S ≤k S 成立,则正整数k 的值为_______. 【答案】10 【解析】因为数列{}n a 为等差数列,设公差为d ,14760a a a ++=,25851a a a ++=,两式相减, 得:3d =-9,所以,d =-3, 由等差中项得14743=60a a a a ++=,即14=320a a d +=,解得:1a =29,所以,(1)29(3)2n n n S n -=+⨯-=236122n n -+ ,当n =616时,n S 取得最大值,但n 是正整数,所以,当n =10时,n S 取得最大值, 对随意n N *∈,都有n S ≤k S 成立,明显k =10. 故答案为:109.(江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2025届高三第三次调研考试)已知是等比数列,前项和为.若,,则的值为____.【答案】14 【解析】 设等比数列的首项为,公比为由题可得:,解得:所以10.(江苏省苏锡常镇四市2025届高三教学状况调查二)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S =_______.【答案】73【解析】设等比数列{}n a 的公比为q ,首项为1a 由622a a =可得:4622a q a == 所以()()()()12134121228848111118711143111a q q S q q S q a q q q-----=====----- 11.(江苏省2025届高三其次学期联合调研测试)若无穷数列{}n a 满意:10a ≥,当*n N ∈,2n ≥时.1121max{,,...,}n n n a a a a a ---=(其中121max{,,...,}n a a a -表示1a ,2a ,…,1n a -中的最大项),有以下结论:①若数列{}n a 是常数列,则*0()n a n N =∈;②若数列{}n a 是公差0d ≠的等差数列,则0d <; ③若数列{}n a 是公比为q 的等比数列,则1>q ;④若存在正整数T ,对随意*n N ∈,都有n T n a a +=,则1a 是数列{}n a 的最大项. 则其中正确的结论是_____(写出全部正确结论的序号) 【答案】①②③④ 【解析】解:①若数列{}n a 是常数列,则1n n a a --=max{1a ,2a ,…,1n a -}=0,所以0n a =(*N n ∈),①正确; ②若数列{}n a 是公差d ≠0的等差数列,则1n n a a --=max{1a ,2a ,…,1n a -}=|d |,所以n a 有最大值,因此n a 不行能递增且d ≠0,所以d <0,②正确;③若数列{}n a 是公比为q 的等比数列,则10a >,且21a a -=1a =1q 1a -,所以q 11-=,所以q 2=或q 0=,又因为q 0≠,所以q 2=,所以q >1,③正确;④若存在正整数T ,对随意*N n ∈,都有n T n a a +=,假设在12,T a a a ⋯中k a 最大,则12,n a a a ⋯中都是ka最大,则21a a -=1a ,且21T T k a a a ++-=,即21a a -=k a ,所以1k a a =,所以1a 是数列{}n a 的最大项,④正确. 故答案为:①②③④.12.(江苏省2025届高三其次学期联合调研测试)设n S 为等差数列{}n a 的前n 项和,若1357910a a a a a ++++=,228236a a -=,则10S 的值为_____.【答案】552【解析】因为135795510a a a a a a ++++== 所以52a =又因为()()()22828282582236a a a a a a a a a -=+-=-=所以8269a a d -==所以32d =,1544a a d =-=- 所以10135540109222S =-+⨯⨯⨯=故答案为:55213.(江苏省苏州市2025届高三下学期阶段测试)已知等差数列{}n a 的各项均为正数,1a =1,且34115,,2a a a +成等比数列.若10p q -=,则p q a a -=_____. 【答案】15 【解析】设等差数列公差为d ,由题意知d >0,∵34115a ,a ,a 2+成等比数列, ∴(45a 2+)2=311a a ,∴27(3d)2+=(1+2d )(1+10d ),即44d 2﹣36d ﹣45=0,解得d 32=或d 1522=-(舍去),∵p ﹣q =10,则a p ﹣a q =(p ﹣q )d =103152⨯=. 故答案为:15.14.已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】解:(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 15.(江苏省徐州市2024-2025学年高三考前模拟检测)在数列{}n a 中,10a =,且对随意k *∈N ,21221,,k k k a a a -+成等差数列,其公差为k d .(1)若12d =,求23,a a 的值;(2)若2k d k =,证明22122,,k k k a a a ++成等比数列(k *∈N );(3)若对随意k *∈N ,22122,,k k k a a a ++成等比数列,其公比为k q ,设11q ≠,证明数列11k q ⎧⎫⎨⎬-⎩⎭是等差数列.【答案】(1)22a =,34a =.(2)见证明;(3)见证明; 【解析】(1)因为对随意k *∈N ,21221,,k k k a a a -+成等差数列, 所以当1k =时,123,,a a a 成等差数列且公差为2,故12132d a a a a =-=-,故2112212,4a a d a a d =+==+=. (2)证明:由题设,可得21214k k a a k +--=,k *∈N .所以()()()2211121123231k k k k k a a a a a a a a --++--=++-+--… ()()4414121k k k k =+-++⨯=+…,由10a =得,212(1)k a k k +=+,从而222122k k a a k k +=-=,所以2222(1)k a k +=+.于是21222211k k k k a a k a a k++++==, 所以当2k d k =时,对随意的k *∈N ,22122,,k k k a a a ++成等比数列. (3)由21221,,k k k a a a -+成等差数列,及22122,,k k k a a a ++成等比数列, 可得221212k k k a a a -+=+,所以212122112k k k k k k a a q a a q -+-=+=+, 当11q ≠时,可知1k q ≠,k *∈N ,从而11111111121k k k q q q --==+----,即1111(2)11k k k q q --=≥--, 所以数列11k q ⎧⎫⎨⎬-⎩⎭是公差为1的等差数列.16.(江苏省南通市2025届高三模拟练习卷四模)已知在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对随意的正整数m ,n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立,且2S 6<S 3. (1)设数列{a n }为等差数列,且公差为d ,求1a d的取值范围; (2)设数列{a n }为等比数列,且公比为q (q >0且q≠1),求a 1⋅q 的取值范围. 【答案】(1)1a d<﹣3;(2)a 1⋅q >0 【解析】在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对随意的正整数m 、n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立, (1)设{a n }为等差数列,且公差为d , 则:2ma 1+2(21)2m m -d+2na 1+2(21)2n n -d <2[(m+n )a 1+()(1)2m n m n ++-d],整理得:(m ﹣n )2d <0,则d <0,由2S 6>S 3,整理得:9a 1+27d >0, 则a 1>﹣3d ,所以d <0,1a d<﹣3; (2)设{a n }为等比数列,且公比为q (q >0且q≠1), 则()()()2m 2n m+n 111a 1q a 1q 2a 1q 1q1q1q---+<---,整理得1a 1q-(2q m+n ﹣q 2m ﹣q 2n )<0, 则:﹣1a 1q -(q m ﹣q n )2<0,所以1a 1q->0,由2S 6>S 3,则:2q 6﹣q 3﹣1<0解得:﹣12<q 3<1,由于q >0,所以:0<q <1,则:a 1>0.即有a 1⋅q >0. 17.(江苏省镇江市2025届高三考前模拟三模)对于无穷数列{}n a ,{}n b ,若{}{}1212max ,,,min ,,,k k k b a a a a a a =-,1,2,3,k =,则称{}n b 是{}n a 的“收缩数列”.其中{}12max ,,,k a a a ,{}12min ,,,k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (1)若21n a n =+,求{}n b 的前n 项和; (2)证明:{}n b 的“收缩数列”仍是{}n b ; (3)若121(1)(1)(1,2,3,)22n n n n n n S S S a b n +-+++=+=且11a =,22a =,求全部满意该条件的{}n a .【答案】(1)(1)n n -;(2)详见解析;(3)12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥.【解析】(1)由21n a n =+可得{}n a 为递增数列{}{}12121max ,,,min ,,,21322n n n n b a a a a a a a a n n ∴=⋅⋅⋅-⋅⋅⋅=-=+-=-由通项公式可知{}n b 为等差数列{}n b ∴的前n 项和为:()2212n n n n -⨯=- (2){}{}()12121max ,,,max ,,,1,2,3,n n a a a a a a n +⋅⋅⋅≤⋅⋅⋅=⋅⋅⋅{}{}()12121min ,,,min ,,,1,2,3,n n a a a a a a n +⋅⋅⋅≥⋅⋅⋅=⋅⋅⋅{}{}{}{}1211211212max ,,,min ,,,max ,,,min ,,,n n n n a a a a a a a a a a a a ++∴⋅⋅⋅-⋅⋅⋅≥⋅⋅⋅-⋅⋅⋅ ()11,2,3,n n b b n +∴≥=⋅⋅⋅,又1110b a a =-= {}{}12121max ,,,min ,,,n n n n b b b b b b b b b ∴⋅⋅⋅-⋅⋅⋅=-= {}n b ∴的“收缩数列”仍是{}n b(3)由()()()121111,2,3,22n n n n n n S S S a b n +-++⋅⋅⋅+=+=⋅⋅⋅可得:当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即()()3213132b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <冲突; 若312a a a <≤,则323b a a =-,所以由(*)可得()32133a a a a -=- 所以32a a -与13a a -同号,这与312a a a <≤冲突; 若32a a ≥,则331b a a =-,由(*)可得32a a =.猜想:满意()()()121111,2,3,22n n n n n n S S S a b n +-++⋅⋅⋅+=+=⋅⋅⋅的数列{}n a 是: 12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥阅历证,左式()()12121211212n n n S S S na n a na a -=++⋅⋅⋅+=+++⋅⋅⋅+-=+⎡⎤⎣⎦ 右式()()()()()()1121121111122222n n n n n n n n n n n a b a a a na a +-+--=+=+-=+ 下面证明其它数列都不满意(3)的题设条件 由上述3n ≤时的状况可知,3n ≤时,12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥是成立的假设k a 是首次不符合12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥的项,则1231k k a a a a a -≤==⋅⋅⋅=≠由题设条件可得()()2211112222k k k k k k k a a a b ----+=+(*)若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <冲突; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得()()2112k k k k a a a a --=- 所以2k a a -与1k a a -同号,这与12k a a a <≤冲突;所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =. 这与假设2k a a ≠冲突. 所以不存在数列不满意12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥的{}n a 符合题设条件综上所述:12,1,1n a n a a n =⎧=⎨>⎩,21a a ≥18.(江苏省南通市2025届高三适应性考试)定义:从数列{}n a 中抽取(,3)m m N m ∈≥项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列.(1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为()n a n a a Q +=+∈,证明:{}n a 存在等比子数列. 【答案】(1)①12n n a ;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,11211a =-=, 当2n ≥时,1121n n S --=-,所以()()1121212nn n n a --=---=.综上可知:12n na .②假设从数列{}n a 中抽3项,,()k l m a a a k l m <<成等差, 则2l k m a a a =+,即1112222l k m ---⨯=+, 化简得:2212l k m k --⨯=+.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以2212l k m k --⨯=+不成立. 因此,数列{}n a 不存在三项等差子数列.若从数列{}n a 中抽(,4)m m N m ∈≥项,其前三项必成等差数列,不成立. 综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比. 设0n a b +=,则b Q +∈,故可设qb p=(p 与q 是互质的正整数). 则需满意()()()2000n a k n a n a l ++=+++,即需满意2()()b k b b l +=+,则需满意2222k pk l k k b q=+=+. 取k q =,则2l k pq =+.此时222222()2q q q b q q q p p p ⎛⎫+=+=++ ⎪⎝⎭,2222()22q q q q b b l q pq q p p pp ⎛⎫+=++=++ ⎪⎝⎭.故此时2()()b k b b l +=+成立.因此数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比, 所以数列{}n a 存在等比子数列.19.(江苏省苏州市2025届高三高考模拟最终一卷)已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =.(1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q ,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满意题意。
高考数学---数列的概念与简单表示法课后作业练习(含答案解析)
高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。
数列的概念及简单表示法(高三一轮复习)
所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
吉林省高考数学一轮复习:27 数列的概念与简单表示法D卷
吉林省高考数学一轮复习:27 数列的概念与简单表示法D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知数列{an}的首项为a1=1,且满足an+1= an+ ,则此数列的第4项是()A . 1B .C .D .2. (2分) (2018高二上·湛江月考) 数列,…的一个通项公式为()A .B .C .D .3. (2分) (2018高一下·四川期中) 在等差数列中,已知,则()A . 40B . 43C . 42D . 454. (2分)已知数列{an}中,an=n2+n,则a3等于()A . 3B . 9C . 12D . 205. (2分)已知数列{an}的前n项和Sn=2n+1-2,等差数列{bn}中,b2=a2 ,且bn+3+bn-1=2bn+4,(n2,n N+),则bn=()A . 2n+2B . 2C . n-2D . 2n-26. (2分)已知等差数列的公差为2,若成等比数列,则=()A . -4B . -6C . -8D . -107. (2分)已知数列的通项公式是,那么这个数列是()A . 递增数列B . 递减数列C . 常数列D . 摆动数列8. (2分)在等差数列中,,,记数列的前n项和为,若对恒成立,则正整数m的最小值为()A . 5B . 4C . 3D . 29. (2分)已知等差数列{an}的公差为1,若a1 , a3 , a4成等比数列,则a2=()A .B . ﹣4C . ﹣6D . ﹣310. (2分)数列{an}是首项a1=1,公差为d=3的等差数列,如果an=2017,则序号n等于()A . 667B . 668C . 669D . 67311. (2分) (2016高二下·钦州期末) 已知数列{an}中,a1=1,an+1= (n=1,2,3,…)计算该数列的前几项,猜想它的通项公式是()A .B . an=nC .D .12. (2分)在等比数列中,若,,则的值为()A .B . 64C .D . 48二、填空题 (共9题;共9分)13. (1分) (2018高二上·贺州月考) 已知数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}的前9项和等于________.14. (1分)(2018高三上·湖南月考) 已知数列满足:,,,,且数列是单调递增数列,则实数λ的取值范围是________.15. (1分) (2018高三上·嘉兴期末) 各项均为实数的等比数列,若,,则 ________,公比 ________.16. (1分) (2019高三上·北京月考) 如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有个正方形,且其最大的正方形的边长为,则其最小正方形的边长为________.17. (1分) (2018高二上·宁夏月考) 记为数列的前项和,若,则 ________.18. (1分) (2018高三上·凌源期末) 已知数列满足,若,则数列的首项的取值范围为________.19. (1分) (2020高三上·青浦期末) 我国古代庄周所著的《庄子天下篇》中引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根一尺长的木棒,每天截下其一半,这样的过程可以无限地进行下去.若把“一尺之棰”的长度记为1个单位,则第天“日取其半”后,记木棒剩下部分的长度为,则________20. (1分)数列an=n2﹣3λn(n∈N*)为单调递增数列,则λ的取值范围是________.21. (1分) (2018高二上·怀化期中) 若与7的等差中项为4,则实数=________.三、解答题 (共3题;共30分)22. (10分) (2017高二下·惠来期中) 数列{an}满足(1)计算a1,a2,a3,a4(2)猜想an的表达式,并用数学归纳法证明你的结论.23. (10分) (2016高一下·蓟县期中) 已知等差数列{an}中,a1=1,a3=﹣3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=﹣35,求k的值.24. (10分) (2020高二上·榆树期末) 设等差数列满足(1)求的通项公式;(2)求的前n项和及使得最小的序号n的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共9题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、三、解答题 (共3题;共30分) 22-1、22-2、23-1、23-2、24-1、24-2、。
高三数学第一轮复习课时作业(27)数列的概念与简单表示法
课时作业(二十七) 第27讲 数列的概念与简单表示法时间:45分钟 分值:100分基础热身1.2011·阜阳质检 数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n +n (n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n +12n -1n 2+2n (n ∈N +) D .a n =(-1)n -12n +1n 2+2n(n ∈N +) 2.2010·安徽卷 设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .643.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n(n ≥2,n ∈N *),则a 3a 5的值是( ) A.1516 B.158 C.34 D.384.2011·沈阳模拟 已知数列{a n }中,a 1=12,a n +1=1-1a n(n ∈N *),则a 16=________.能力提升5.2011·福州质检 把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图K27-1).则第7个三角形数是( )图K27-1A .27B .28C .29D .306.2011·太原模拟 已知S n 是非零数列{a n }的前n 项和,且S n =2a n -1,则S 2011等于( )A .1-22010B .22011-1C .22010-1D .1-220117.已知数列{a n },a 1=2,a n +1=a n +2n (n ∈N *),则a 100的值是( ) A .9900 B .9902 C .9904 D .110008.已知数列{a n }中,a 1=1,1a n +1=1a n+3(n ∈N *),则a 10=( )A .28B .33 C.133 D.1289.2011·黄冈中学模拟 已知数列{a n }的通项a n =nanb +c(a ,b ,c ∈(0,+∞)),则a n 与a n +1的大小关系是( )A .a n >a n +1B .a n <a n +1C .a n =a n +1D .不能确定10.2011·朝阳二模 已知数列{a n }满足a 1=2,且a n +1a n +a n +1-2a n =0(n ∈N *),则a 2=________;并归纳出数列{a n }的通项公式a n =________.11.2011·淮南一模 已知数列{a n }的前n 项和S n =n 2+2n -1,则a 1+a 3+a 5+…+a 25=________.12.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则数列{a n }的通项公式为________________________________________________________________________;数列{na n }中数值最小的项是第________项.13.2011·厦门质检 若f (n )为n 2+1(n ∈N *)的各位数字之和,如62+1=37,f (6)=3+7=10.f 1(n )=f (n ),f 2(n )=f (f 1(n )),…,f k +1(n )=f (f k (n )),k ∈N *,则f 2013(4)=________.14.(10分)在2011年10月1日的国庆阅兵式上,有n (n ≥2)行、n +1列的步兵方阵. (1)写出一个数列,用它表示当n 分别为2,3,4,5,6,…时方阵中的步兵人数; (2)说出(1)题中数列的第5、6项,并用a 5,a 6表示;(3)把(1)中的数列记为{a n },求该数列的通项公式a n =f (n );(4)已知a n =9900,问a n 是第几项?此时步兵方阵有多少行、多少列?(5)画出a n =f (n )的图像,并利用图像说明方阵中步兵人数有可能是56,28吗?15.(13分)2011·蚌埠调研 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的单调性;(3)当n ≥2时,T 2n +1-T n <15-712log a (a -1)恒成立,求a 的取值范围.难点突破16.(1)(6分)2011·浙江卷 若数列⎩⎨⎧⎭⎬⎫n (n +4)23n 中的最大项是第k 项,则k =________.(2)(6分)2010·湖南卷 若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.课时作业(二十七)【基础热身】1.D 解析 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6. 2.A 解析 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,则a 8=2×8-1=15.3.C 解析 由已知得a 2=1+(-1)2=2,由a 3·a 2=a 2+(-1)3,得a 3=12,又由12a 4=12+(-1)4,得a 4=3,由3a 5=3+(-1)5,得a 5=23,则a 3a 5=1223=34.4.12 解析 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,…,则此数列为周期数列,周期为3,故a 16=a 1=12.【能力提升】5.B 解析 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28. 6.B 解析 当n =1时,S 1=2a 1-1,得S 1=a 1=1; 当n ≥2时,a n =S n -S n -1,代入S n =2a n -1,得 S n =2S n -1+1,即S n +1=2(S n -1+1),∴S n +1=(S 1+1)·2n -1=2n ,∴S 2011=22011-1.7.B 解析 a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1 =2(99+98+…+2+1)+2=2·99·(99+1)2+2=9902.8.D 解析 对递推式叠加得1a 10-1a 1=27,故a 10=128.9.B 解析 把数列{a n }的通项化为a n =na nb +c =ab +cn, ∵c >0,∴y =c n是单调递减函数,又∵a >0,b >0,∴a n =a b +c n为递增数列,因此a n <a n +1.10.43 2n2-1 解析 当n =1时,由递推公式,有a 2a 1+a 2-2a 1=0,得a 2=2a 1a 1+1=43;同理a 3=2a 2a 2+1=87,a 4=2a 3a 3+1=1615,由此可归纳得出数列{a n }的通项公式为a n =2n2n -1.11.350 解析 当n =1时,a 1=S 1=12+2-1=2, 当n ≥2时,a n =S n -S n -1=(n 2+2n -1)-(n -1)2+2(n -1)-1=2n +1,又a 1=2不适合上式,则数列{a n }的通项公式为a n =⎩⎨⎧2,n =1,2n +1,n ≥2.所以a 1+a 3+a 5+…+a 25=(a 1+1)+a 3+a 5+…+a 25-1=(3+51)2×13-1=350.12.a n =2n -11 3 解析 n ≥2时,a n =S n -S n -1=n 2-10n -(n -1)2-10(n -1)=2n -11; n =1时,a 1=S 1=-9符合上式.∴数列{a n }的通项公式为a n =2n -11.∴na n =2n 2-11n ,∴数列{na n }中数值最小的项是第3项.13.5 解析 因为42+1=17,f (4)=1+7=8,则f 1(4)=f (4)=8,f 2(4)=f (f 1(4))=f (8)=11, f 3(4)=f (f 2(4))=f (11)=5,f 4(4)=f (f 3(4))=f (5)=8,…,而2013=3×671, 故f 2013(4)=5.14.解答 (1)该数列为6,12,20,30,42,…; (2)a 5=42,a 6=56;(3)a n =(n +1)(n +2)(n ∈N *);(4)由9900=(n +1)(n +2),解得n =98,a n 是第98项,此时步兵方阵有99行,100列;(5)f (n )=n 2+3n +2,如图,图像是分布在函数f (x )=x 2+3x +2上的孤立的点,由图可知,人数可能是56,不可能是28.15.解答 (1)当n =1时,a 1=2,当n ≥2时,a n =S n -S n -1=2n -1(n ≥2). ∴数列{b n}的通项公式为b n=⎩⎨⎧23,n =1,1n ,n ≥2.(2)∵c n =T 2n +1-T n ,∴c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1<0,∴数列{c n }是递减数列.(3)由(2)知,当n ≥2时c 2=13+14+15为最大,∴13+14+15<15-712log a (a -1)恒成立, ∴1<a <5+12. 【难点突破】 16.(1)4 (2)2 n 2解析 (1)设最大项为第k 项,则有⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k ≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴⎩⎨⎧k 2≥10,k 2-2k -9≤0 ⇒⎩⎨⎧k ≥10或k ≤-10,1-10≤k ≤1+10⇒k =4.(2)本题以数列为背景,通过新定义考查学生自学能力、创新能力、探究能力,属于难题.因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a10)*=3,(a11)*=3,(a12)*=3,(a13)*=3,(a14)*=3,(a15)*=3,(a16)*=3,所以((a1)*)*=1,((a2)*)*=4,((a3)*)*=9,((a4)*)*=16,猜想((a n)*)*=n2.。
一轮复习-数列的概念与简单表示法
(1)
(2)
(3)
(4)
例2 写出数列的一个通项公式, 使它的前4项分别是下列各数:
(1)1,3,5,7;
解:此数列的前四项1,3,5,7都 是序号的2倍减去1,所以通项公式 是:
an 2n 1
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
(1)1,3,5,7; (2)4,9, 16,25;
这说明:数列的项是序号的函数,序号从1 开始依次增加时,对应的函数值按次序排出就 是数列,这就是数列的实质。
所以:数列可以看成以正整数集N*(或它的有 限子集{1,2,3,4,…,n})为定义域的函数 an=f(n),当自变量按照从小到大的顺序依次取值时, 所对应的一列函数值。反过来,对于函数y=f(x),如 果f(i) (i=1,2,3,…)有意义,那可得到一个数列 f(1),f(2),f(3),…f(n),… 即数列是一种特殊的函数。
数列的一般形式可以写成: a1, a2, a3,an ,,
其中an是数列的第n项,上面的数列又可简记为 an
根据数列的前若干项写出的通项 公式的形式唯一吗?请举例说明。
注意:①一些数列的通项公式不是唯一的
②不是每一个数列都能写出它的通项公式 ③ {an }表示以an为通项的数列,即{an }表示
无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6,…是无穷数列
2)根据数列项的大小分:
递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,
有些项小于它的前一项的数列
(3)1, 1 ,1 , 1 ; 23 4
适用于新教材2024版高考数学一轮总复习:数列的概念与简单表示法课件北师大版
解 当n≥2时,an=Sn-Sn-1=-2n2-[-2(n-1)2]=-4n+2.
当n=1时,a1=S1=-2,适合上式,
故数列{an}的通项公式为an=-4n+2.
6.已知数列{an}满足 a1=2,an=2-
1
-1
3.若各项均不为0的数列{an}满足an+1=kan+b(k≠0,1),则数若各项均不为0的数列{an}的前n项和Sn=kan+p(k≠0,1),则数列{an}为公比
等于
的等比数列.
-1
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
an=
-1
, ≥ 2.
4.数列的分类
分类标准
类型
有穷数列
项数
无穷数列
递增数列
递减数列
项与项间的
常数列
大小关系
摆动数列
满足条件
项数有限
项数无限
an+1>an
an+1<an
n∈N*
an+1=an
从第二项起,有些项大于它前一项,有些项小于它
前一项
微思考 数列的单调性与对应函数的单调性相同吗?
(n≥2),写出它的前 5 项,并猜想它的通项
公式.
解 由已知得
+1
an= .
3
4
5
6
a1=2,a2=2,a3=3,a4=4,a5=5,可猜测数列{an}的通项公式为
研考点 精准突破
考点一
利用an与Sn的关系求通项公式(多考向探究预测)
【2022高考数学一轮复习(步步高)】第1节 数列的概念与简单表示法
第1节数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n =f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[常用结论与微点提醒]1.数列的最大(小)项,可以用⎩⎨⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *)⎝ ⎛⎭⎪⎫⎩⎨⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.(老教材必修5P33T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( ) A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D3.(老教材必修5P33T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.…解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2020·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D5.(2019·济南一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 由题意,得a 4=S 4-S 3=32. 即255a 13-63a 13=32,解得a 1=12. 答案 126.(2020·成都诊断)数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________.解析 a n =-n 2+11n =-⎝ ⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 答案 30考点一 由a n 与S n 的关系求通项【例1】 (1)(2019·广州质检)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________.(2)(2020·德州模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =13a n +1-1,则数列{a n }的通项公式为________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)由a 1=1,S n =13a n +1-1可得a 1=13a 2-1=1,解得a 2=6,当n ≥2时,S n -1=13a n -1,又S n =13a n +1-1,两式相减可得a n =S n -S n -1=13a n +1-13a n ,即a n +1=4a n (n ≥2),则a n =6·4n -2,又a 1=1不符合上式, 所以a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2.答案 (1)4n -5 (2)a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练1】 (1)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. (2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1(n ∈N *).(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列. ∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)22n -1(n ∈N *) (2)-63 考点二 由数列的递推关系求通项多维探究角度1 累加法——形如a n +1-a n =f (n ),求a n【例2-1】 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 答案 A角度2 累乘法——形如a n +1a n=f (n ),求a n【例2-2】 若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________.解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1(n ≥2),又a 1也满足上式,所以a n =2n +1.答案2n +1角度3 构造法——形如a n +1=Aa n +B (A ≠0且A ≠1,B ≠0),求a n【例2-3】 (2020·青岛模拟)已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *),则数列{a n }的通项公式为________.解析 由a n +1=3a n +2,得a n +1+1=3(a n +1), ∴数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,∴a n =2·3n -1-1. 答案 a n =2·3n -1-1角度4 取倒数法——形如a n +1=Aa n Ba n +C(A ,B ,C 为常数),求a n【例2-4】 已知数列{a n }中,a 1=1,a n +1=2a na n +2(n ∈N *),则数列{a n }的通项公式为________.解析 因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n-1)×12=n 2+12.所以a n =2n +1.答案 a n =2n +1规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,将其变形为1a n +1=C A ·1a n +BA ,①若A =C ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为BA ,②若A ≠C ,则采用待定系数法构造新数列求解.【训练2】 (1)(角度1)在数列{a n }中,若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)(角度2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. (3)(角度3)已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式a n =________.(4)(多填题)(角度4)已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),且1a n +1+1=A ⎝ ⎛⎭⎪⎫1a n +1,则A =________,数列{a n }的通项公式为________. 解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+1-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,累计相加得,a n =a 1+1-1n ,又n =1时也适合,故a n =4-1n .(2)∵a n +1=2na n ,∴a n +1a n=2n ,当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·2=2n 2-n +22.又a 1=2也符合上式,∴a n =2n 2-n +22.(3)因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上, 所以4a n -a n +1+1=0.所以a n +1+13=4⎝ ⎛⎭⎪⎫a n +13.因为a 1=3,所以a 1+13=103.故数列⎩⎨⎧⎭⎬⎫a n +13是首项为103,公比为4的等比数列.所以a n +13=103×4n -1,故数列{a n }的通项公式为a n =103×4n -1-13.(4)由a n +1=a n a n +2,得1a n +1=1+2a n ,所以1a n +1+1=2⎝ ⎛⎭⎪⎫1+1a n ,故A =2,且⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,则1a n+1=2n ,则a n =12n -1.答案 (1)4-1n (2)2n 2-n +22(3)103×4n -1-13(4)2 a n =12n -1考点三 数列的性质【例3】 (1)(2019·宜春期末)已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n}满足a 1=73,a n +1=f (a n )(n ∈N *),则a 2 019=( ) A.73B.43C.56D.13(2)(2020·衡水中学一调)已知数列{a n }的前n 项和S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5.若a 5是{a n }中的最大值,则实数m 的取值范围是________.解析 (1)由题意,知a 2=f ⎝ ⎛⎭⎪⎫73=43,a 3=f ⎝ ⎛⎭⎪⎫43=13,a 4=f ⎝ ⎛⎭⎪⎫13=56,a 5=f ⎝ ⎛⎭⎪⎫56=23,a 6=f ⎝ ⎛⎭⎪⎫23=13,a 7=f ⎝ ⎛⎭⎪⎫13=56,……,故数列{a n }从第三项起构成周期数列,且周期为3,故a 2 019=a 3=13.故选D.(2)因为S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5, 所以当2≤n ≤4时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=1也满足上式; 当n ≥6时,a n =S n -S n -1=-2n +m , 当n =5时,a 5=S 5-S 4=5m -45,综上,a n =⎩⎨⎧2n -1,n ≤4,5m -45,n =5,-2n +m ,n ≥6,因为a 5是{a n }中的最大值,所以有5m -45≥8且5m -45≥-12+m ,解得m ≥535. 答案 (1)D (2)⎣⎢⎡⎭⎪⎫535,+∞规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断.【训练3】 (1)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 021=( )A.-1B.12C.1D.2(2)已知等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 项取得最大值时,项数n 的值为( ) A.5B.6C.5或6D.6或7解析 (1)由a 1=12,a n +1=11-a n 得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的数列,因此a 2 021=a 3×673+2=a 2=2.(2)由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 答案 (1)D (2)CA 级 基础巩固一、选择题1.(多选题)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项可能是( ) A.a n =(-1)n -1+1 B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意,其他都可能. 答案 ABD2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2020·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( ) A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2019=a 673×3=a 3=45.答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2020·山东重点高中联考)已知数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),则a nn 的最小值为( ) A.234B.595C.353D.12解析 数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=34+(1+3+5+…+2n -1)=34+ 12n (1+2n -1)=34+n 2(n ≥2),当n =1时,a 1=35符合上式,故a n =34+n 2(n ∈N *),则a n n =n +34n ≥234,等号成立时n =34n ,解得n =34,n 不为正整数,由于n 为正整数,所以n =5时,5+345=595;n =6时,6+346=353<595.则a n n的最小值为353,故选C. 答案 C 二、填空题6.已知S n =3n +2n +1,则a n =________________. 解析 因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式, 所以a n =⎩⎨⎧6,n =1,2·3n -1+2,n ≥2.答案 ⎩⎨⎧6,n =1,2·3n -1+2,n ≥27.(2019·汕头一模)已知数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3(n ∈N *),则S 10=________________. 解析 因为a n +2=3S n -S n +1+3, 所以S n +2-S n +1=3S n -S n +1+3,整理得S n +2=3S n +3,即S n +2+32=3⎝ ⎛⎭⎪⎫S n +32,又S 2=a 1+a 2=3,所以S 10+32=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32,即S 10=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32-32=363.答案 3638.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________. 解析 因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,……, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加 得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=820.答案 820 三、解答题9.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n ,又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).B 级 能力提升11.(2019·晋中高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 020得1≤n ≤97321,又n ∈N *,故此数列共有97项. 答案 B12.(2020·邵阳月考)已知数列{a n }的通项为a n =2n +3(n ∈N *),数列{b n }的前n 项和为S n =3n 2+7n2(n ∈N *),若这两个数列的公共项顺次构成一个新数列{c n },则满足c n <2 020的n 的最大整数值为( ) A.338B.337C.336D.335解析 对于{b n },当n =1时,b 1=S 1=5,当n ≥2时,b n =S n -S n -1=3n 2+7n2-3(n -1)2+7(n -1)2=3n +2,它和数列{a n }的公共项构成的新数列{c n }是首项为5,公差为6的等差数列,则c n =6n -1,令c n <2 020,可得n <33656,因为n ∈N *,所以n 的最大值为336. 答案 C13.(2020·青岛调研)已知数列{a n },a 1=2,S n 为数列{a n }的前n 项和,且对任意n ≥2,都有2a na n S n -S 2n=1,则{a n }的通项公式为________________.解析 n ≥2时,由2a n a n S n -S 2n =1⇒2(S n -S n -1)(S n -S n -1)S n -S 2n=2(S n -S n -1)-S n -1S n =1⇒1S n -1S n -1=12.又1S 1=1a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,12为公差的等差数列. ∴1S n=n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=2n -2n -1=-2n (n -1),当n =1时,a 1=2,所以a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 答案 a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).C 级 创新猜想15.(多选题)已知数列{a n }的通项为a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1,则下列表述正确的是( )A.最大项为0B.最大项不存在C.最小项为-14D.最小项为-2081 解析 由题意得a 1=⎝ ⎛⎭⎪⎫231-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231-1-1=1×(1-1)=0,当n >1时,0<⎝ ⎛⎭⎪⎫23n -1<1,⎝ ⎛⎭⎪⎫23n -1-1<0,∴a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1<0,∴{a n }的最大项为a 1=0.a 2=⎝ ⎛⎭⎪⎫232-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232-1-1=23×⎝ ⎛⎭⎪⎫23-1=-29,a 3=⎝ ⎛⎭⎪⎫233-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233-1-1=49×⎝ ⎛⎭⎪⎫49-1=-2081,a 4=⎝ ⎛⎭⎪⎫234-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-1-1=827×⎝⎛⎭⎪⎫827-1=-152729,a n +1-a n =⎝ ⎛⎭⎪⎫23n +1-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n +1-1-1-⎝ ⎛⎭⎪⎫23n -1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1=⎝ ⎛⎭⎪⎫23n -1×3n -1-56×2n3n=⎝ ⎛⎭⎪⎫23n -1⎣⎢⎡⎦⎥⎤13-56⎝ ⎛⎭⎪⎫23n,∴当n ≥3时,a n +1-a n >0;当n <3时,a n +1-a n <0.∴{a n }的最小项为a 3=-2081,故选AD. 答案 AD16.(新背景题)(2019·福州二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析 法一 由题设a =3m +2=5n +3,m ,n ∈N , 则3m =5n +1,m ,n ∈N ,当m =5k 时,n 不存在;当m =5k +1时,n 不存在; 当m =5k +2时,n =3k +1,满足题意; 当m =5k +3时,n 不存在; 当m =5k +4时,n 不存在.其中k ∈N .故2≤a =15k +8≤2 019,解得-615≤k ≤2 01115, 则k =0,1,2,…,134,共135个. 即符合条件的a 共有135个,故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135 1 15,因为n∈N*,所以n=1,2,3,…,135,共有135个. 答案135。
高考一轮复习 数列概念 知识点+例题+练习
自主梳理1.数列的定义按____________着的一列数叫数列,数列中的________都叫这个数列的项;在函数意义下,数列是______________________的函数,数列的一般形式为:________________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的________与____之间的关系可以______________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:____________________、________、________.4.数列的分类:数列按项数来分,分为____________、____________;按项的增减规律分为____________、____________、____________和________.递增数列⇔a n +1____a n ;递减数列⇔a n +1____a n ;常数列⇔a n +1____a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2,.自我检测1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =______.2.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________.3.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是______________________________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容数列的概念与简单表示法 教学目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 重点数学归纳方法、递推法 难点 同上4.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是________.5.设a n =-n 2+10n +11,则数列{a n }从首项到第________项的和最大.探究点一 由数列前几项求数列通项例1 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099,… (2)12,-2,92,-8,252,…变式迁移1 写出下列数列的一个通项公式:(1)3,5,9,17,33,… (2)2,5,22,11,…(3)1,0,1,0,…探究点二 由递推公式求数列的通项例2 根据下列条件,写出该数列的通项公式.(1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =a n -1 (n ≥2).变式迁移2 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n +1=(n +1)a n ;(3)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n .探究点三 由a n 与S n 的关系求a n例3 已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.变式迁移3 (1)已知{a n }的前n 项和S n =3n +b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .1.数列的递推公式是研究的项与项之间的关系,而通项公式则是研究的项a n 与项数n 的关系.2.求数列的通项公式是本节的重点,主要掌握三种方法:(1)由数列的前几项归纳出一个通项公式,关键是善于观察;(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中;(3)由递推公式求通项公式,常用方法有累加、累乘.3.本节易错点是利用S n 求a n 时,忘记讨论n =1的情况.一、填空题1.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.2.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2 014=________.3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2=________.4.数列{a n }中,若a n +1=a n 2a n +1,a 1=1,则a 6=________.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________.6.数列{a n }满足a n +1=⎩⎨⎧2a n (0≤a n <12),2a n -1 (12≤a n <1),若a 1=67,则a 2 010的值为________.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________________.8.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15… … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是____________.二、解答题9.写出下列各数列的一个通项公式.(1)112,223,334,445,…(2)-1,32,-13,34,-15,36…10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2); (3)a 1=1,a n =2a n -1+1 (n ≥2).11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .。
高考数学一轮复习课时作业(二十七)第27讲数列的概念与简单表示法文(2021年整理)
2019年高考数学一轮复习课时作业(二十七)第27讲数列的概念与简单表示法文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习课时作业(二十七)第27讲数列的概念与简单表示法文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习课时作业(二十七)第27讲数列的概念与简单表示法文的全部内容。
课时作业(二十七)第27讲数列的概念与简单表示法时间/ 45分钟分值/ 100分基础热身1。
已知数列{a n}的通项公式为a n=,则0.96是该数列的()A. 第20项B. 第22项C. 第24项D。
第26项2.已知n∈N*,给出下列各式:①a n=②a n=;③a n=;④a n=。
其中能作为数列0,1,0,1,0,1,…的通项公式的是()A。
①②③B。
①②④C。
②③④D. ①③④3。
已知数列{a n}满足a1=1,a n+1a n=2n(n∈N*),则a10=()A。
64 B。
32C。
16 D。
84。
[2017·佛山二模]若数列{a n}的前n项和S n=n2-n,则数列{a n}的通项公式为a n= 。
5.已知数列{a n}的前n项和为S n,且S n=2a n-n,则{a n}的通项公式为a n= .能力提升6.数列{a n}满足a1=2,a n+1=,则a2018=()A. B. —C。
2 D. -37.[2017·黄冈质检]已知数列{x n}满足x n+2=|x n+1—x n|(n∈N*),若x 1=1,x2=a(a≤1,a≠0),且x n+3=x n对于任意正整数均成立,则数列{x n}的前2017项和S2017=()A。
数列的概念及简单表示法(一轮复习)
题型分类·深度剖析
题型一
由数列的前几项求数列的通项
【例 1】 写出下面各数列的一个
通项公式:
(1)3,5,7,9,…; (2)12,34,78,1156,3312,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….
思维启迪
解析
探究提高
偶数项为 2+1,所以 an= (-1)n·2+n-1n.也可写为 an=
§5.1 数列的概念及简单表示法
基础知识·自主学习
知识梳理
1.数列的定义
1.对数列概念的理解
按 一定次序 排列的一列数叫作数列, (1) 数 列 是 按 一 定 “ 次
序”排列的一列数,一
数列中的每一个数叫作这个数列的项 . 个数列不仅与构成它的
2.数列的分类
“数”有关,而且还与
分类 原则 按项 数分 类
(4)3,33,333,3 333,….
题型分类·深度剖析
题型一
由数列的前几项求数列的通项
【例 1】 写出下面各数列的一个
通项公式:
(1)3,5,7,9,…; (2)12,34,78,1156,3312,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….
通项公式:
(1)3,5,7,9,…; (2)12,34,78,1156,3312,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….
思维启迪
解析
探究提高
(1)据所给数列的前几项求其通 项公式时,需仔细观察分析,抓 住以下几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征; ④各项符号特征等,并对此进行 归纳、联想.
2020届高考数学(理)一轮必刷题 专题28 数列的概念与简单表示法(解析版)
考点28 数列的概念与简单表示法1、数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132【答案】B【解析】∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2、给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( ) A.a n =2n 2+3n-1 B.a n =n 2+5n-5 C.a n =2n 3-3n 2+3n-1 D.a n =2n 3-n 2+n-2【答案】C【解析】当n=1时,a 1=1,代入四个选项,排除A 、D;当n=2时,a 2=9,代入B 、C 选项,B 、C 都正确;当n=3时,a 3=35,代入B 、C 选项,B 错误,C 正确,所以选C .3、在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B .158C .34D .38【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.4、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8, 13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-)(a 2a 4-)(a 3a 5-)…(a 2 015a 2 017-)=( ) A.1 B.-1 C.2 017 D.-2 017【答案】B【解析】∵a 1a 3-=1×2-12=1,a 2a 4-=1×3-22=-1,a 3a 5-=2×5-32=1,…,a 2 015a 2 017-=1.∴(a 1a 3-)(a 2a 4-)(a 3a 5-)·…·(a 2 015a 2 017-)=11 008×(-1)1 007=-1. 5、已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又a n n ≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.6、已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则a 2 018的值为( )A .-8B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=1+a n 1-a n (n ∈N *)得,a 2=-3,a 3=-12,a 4=13,a 5=2,可见数列{a n }的周期为4,所以a 2 018=a 504×4+2=a 2=-3.7、已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018= ( )A.22 018-1B.32 018-6C. 2 018-D. 2 018-【答案】A【解析】由题意可得3S n =2a n -3n ,3S n+1=2a n+1-3 (n+1), 两式作差可得3a n+1=2a n+1-2a n -3, 即a n+1=-2a n -3,则a n+1+1=-2(a n +1), 结合3S 1=2a 1-3=3a 1可得a 1=-3,a 1+1=-2, 则数列{a n +1}是首项为-2,公比为-2的等比数列, 据此有a 2 018+1=(-2)×(-2)2 017=22 018,∴a 2 018=22 018-1.故选A .8、已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n =n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞)B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n =n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A. 9、在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A .2n -1 B .2n -1+1C .2n -1D .2(n -1)【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.10、若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( ) A .19 B .20 C .21 D .22【答案】B【解析】由(n -1)a n =(n +1)a n -1得,a n a n -1=n +1n -1,则a n =a 1×⎝⎛⎭⎫a 2a 1×⎝⎛⎭⎫a 3a 2×…×⎝⎛⎭⎫a n a n -1=2×31×42×…×n +1n -1=n (n +1).又a n <462,即n (n +1)<462,所以n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.11、数列{a n }满足a 1=,a n+1-1=a n (a n -1)(n ∈N +),且S n =+…+,则S n 的整数部分的所有可能值构成的集合是( ) A.{0,1,2} B.{0,1,2,3} C.{1,2} D.{0,2}【答案】A【解析】对a n+1-1=a n (a n -1)两边取倒数,得-=, S n =++…+=-+-+…+-=3-,由a n+1-a n =≥0,a n+1≥a n ,a n 为递增数列,a 1=,a 2=,a 3=,其中S 1=,整数部分为0,S 2=3-=,整数部分为0,S 3=,整数部分为1,由于S n <3,故选A .12、在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18= . 【答案】3【解析】由题意得a n +a n+1=5⇒a n+2+a n+1=5⇒a n =a n+2,所以a 18=a 2=5-a 1=3.13、已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1n 为偶数,2n -n 为奇数,则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.14、数列{a n }的前n 项和为S n .若S 2=4,a n+1=2S n +1,n ∈N +,则S 5= . 【答案】121【解析】由于解得a 1=1.由a n+1=S n+1-S n =2S n +1,得S n+1=3S n +1, 所以S n+1+=3S n +,所以是以为首项,3为公比的等比数列,所以S n +=×3n-1,即S n =,所以S 5=121.15、已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.【答案】⎝⎛⎭⎫-12n -1 【解析】当n =1时,a 1=S 1=13a 1+23,∴a 1=1; 当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }是首项a 1=1,公比q =-12的等比数列,故a n =⎝⎛⎭⎫-12n -1. 16、在数列{a n }中,a 1=0,a n+1=,则S 2 019= . 【答案】0【解析】∵a 1=0,a n+1=,∴a 2==,a 3===-, a 4==0,即数列{a n }的取值具有周期性,周期为3,且a 1+a 2+a 3=0,则S 2 019=S 3×673=0. 17、已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .【答案】2n-1【解析】当n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1), 即a n =2a n-1+1,∴a n +1=2(a n-1+1).又a 1=S 1=2a 1-1,∴a 1=1.∴数列{a n +1}是以首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n-1=2n , ∴a n =2n -1.18、已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式.【答案】(1) 2n (2) n 3-n 2+2n 2,n ∈N *【解析】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *. (2)∵a 2=4b 1=4,∴b 1=1.∵nb n +1-(n +1)b n =n 3+n 2,∴b n +1n +1-b nn =n ,故b n n -b n -1n -1=n -1,…,b 33-b 22=2,b 22-b 11=1,n ≥2, 将上面各式累加得b n n -b 11=1+2+3+…+(n -1)=n n -2,∴b n =n 3-n 2+2n2,n ∈N *.19、设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【答案】(1) (a -3)2n -1 (2) [-9,3)∪(3,+∞)【解析】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝⎛⎭⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).20、已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n .(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 【答案】(1) 1 (2) 3 -1 (3) (-7,-6)【解析】(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1.(2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)=n -72,∴b n =1+1a n =1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n ,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).。
高考数学一轮复习 27数列的概念与简单表示法课件 新人教
【典例3】已知数列{an}的通项an=(n+1)( 1 0 )n(n∈N+).试问 该数列{an}有没有最大项?若有,求出最大1 1 项和最大项的项 数;若没有,说明理由.
[分析]因an是n的函数,难点在于an是一个一次函数(n+1)与一 个指数函数( 1 0 )n的积.所以从一次函数或指数函数增减性
解析:解法一:由已知a1•a2•a3•…•an=n2得
an=
n2 ,n≥2,n∈N*,
a1 a2
a n 1
将a1·a2·…·an-1=(n-1)2,n≥3,n∈N*,
代入an得an=
n 2 (n≥3). (n 1)2
当n=2时适合此式,当n=1时不适合此式.
∴an=
1(n 1),
(n
n2 1)2
【典例1】根据数列的前几项,写出数列的一个通项公式. (1)1,0,1,0,…; (2)1,1,2,2,3,3,…; (3) 2 , 4 , 8 , 16 ,….
1335 57 79
[解 ]1数 列 1,0,1,0, 变 形 为 11,11,11,11,
2222
1(1)n1
an
.
2
2将 1,1,2,2,3,3, 变 形 为 11,20,31,40,51,
an
g(n)的递推公式求通项公式,只要g(n)可求积,便可利用累积
的方法或迭代的方法;对于形如an+1=Aan+B(A≠0且A≠1)型
递推关系求通项公式时,可用迭代法或构造等比数列法.
【典例2】根据下列条件,写出数列的通项公式: (1)a1=2,an+1=an+n;(2)a1=1,2n-1an=an-1. [分析](1)将递推关系写成n-1个等式累加. (2)将递推关系写成n-1个等式累乘,或逐项迭代也可.
数列的概念与简单表示法课件-2024届高考数学一轮复习
处理.
返回目录
[对点训练]
1. 给出下列说法:① 数列1,3,5,7与数列7,3,5,1是同一个数
列;② 数列0,1,2,3…的一个通项公式为 an = n -1;③ 数列0,1,
0,1…没有通项公式;④ 数列
(
点,…,则第 n 个图形共有
( n 2+5 n +6)
个顶点.
解:由题意,得第 n 个图形含有正 n +2边形的( n +2)个顶点以及每
条边多出来的( n +2)个顶点,所以第 n 个图形共有 n +2+( n +2)2
=( n 2+5 n +6)个顶点.
返回目录
考点三
数列的函数属性
考向1 数列的周期性
1,3,6,10,…叫做三角形数;把1,4,9,16,…叫做正方形数.下
列各数中,既是三角形数又是正方形数的为( A )
A. 36
B. 49
C. 64
D. 81
解:设三角形数所构成的数列为{ an },正方形数所构成的数列为{ bn }.由
(+)
题意,得 an =
, bn = n 2.因为 an =49, an =64, an =81均无
−
+ −
+
+(−)
+
=
=- , a 5=
=
−
−
−(−)
−
= = a 1,所以数列{ an }满足
an +4= an .所以 a 2022= a 505×4+2= a 2=3.
返回目录
黑龙江省高考数学一轮复习:27 数列的概念与简单表示法
黑龙江省高考数学一轮复习:27 数列的概念与简单表示法姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高二下·揭东期中) 已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2 ,a3 , a4后,猜想an的表达式是()A . an=3n-1B . an=4n-3C . an=n2D . an=3n-12. (2分)在数列1,1,2,3,5,8,x,21,34,55,…中,x等于()A . 11B . 12C . 13D . 143. (2分) (2019高二下·宁波期中) 等差数列中,已知,则n为()A . 48B . 49C . 50D . 514. (2分)函数f(x)是定义在R上恒不为0的函数,对任意都有,若,则数列的前n项和Sn的取值范围是()A .B .C .D .5. (2分) (2020高一下·元氏期中) 数列前项和为,若,则的值为()A . 2B . 1C . 0D . -16. (2分)在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于()A . 45B . 75C . 180D . 3007. (2分)已知数列{an}中,a1=3,a2=6,an+2=an+1-an ,则a2009()A . 6B . -6C . 3D . -38. (2分) (2019高二下·沭阳月考) 若点都在函数图象上,则数列的前n项和最小时的n等于()A . 7或8B . 7C . 8D . 8或99. (2分) (2020高一下·宁波期中) 如果数列满足,,且,则此数列的第10项为()A .B .C .D .10. (2分)若数列满足且,则使的的值为()A .B .C .D .11. (2分) (2019高一下·黄山期中) 已知数列的首项,,则()A .B .C .D .12. (2分)等比数列{an}的各项均为正数,且a52+a3a7=8,则log2a1+log2a2+…+log2a9=()A . 6B . 7C . 8D . 9二、填空题 (共9题;共9分)13. (1分) (2020高三上·长春开学考) 等差数列中,,且,则公差 ________.14. (1分) (2019高一下·上海月考) 若数列满足,,,则该数列的通项公式 ________.15. (1分) (2017高三下·平谷模拟) 已知数列是递增的等比数列,,,则数列的前项和等于________.16. (1分) (2020高三上·厦门期中) 记为数列的前项和,若,则等于________.17. (1分)数列0,1,0,﹣1,0,1,0,﹣1,…的一个通项公式是________.18. (1分) (2019高一下·广州期中) 已知数列满足,则数列的最大值为________.19. (1分) (2016高二下·昌平期中) 已知数列{an}的每一项均为正数,a1=1,a2n+1=an2+1(n=1,2…),试归纳成数列{an}的一个通项公式为________.20. (1分)若单调递增数列{an}满足an+an+1+an+2=3n﹣6,且a2=a1 ,则a1的取值范围是________21. (1分) (2018高一下·苏州期末) 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为________尺.(1匹=4丈,1丈=10尺)三、解答题 (共3题;共30分)22. (10分) (2018高二上·南宁期中) 已知数列的前项和(1)求的通项公式;(2)设,的前项和为,求 .23. (10分)(2020·嘉兴模拟) 已知数列的前项和为,且.公比大于的等比数列的首项为,且.(1)求和的通项公式;(2)若,求证:,.24. (10分)(2020·济宁模拟) 在① 成等差数列;② 成等比数列;③三个条件中任选一个,补充在下面的问题中,并加以解答.已知的内角所对的边分别是,面积为S.若_________,且,试判断的形状.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共9题;共9分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:三、解答题 (共3题;共30分)答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨市高考数学一轮复习:27 数列的概念与简单表示法D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2016高二上·济南期中) 数列{an}:1,﹣,,﹣,…的一个通项公式是()
A . an=(﹣1)n+1 (n∈N+)
B . an=(﹣1)n﹣1 (n∈N+)
C . an=(﹣1)n+1 (n∈N+)
D . an=(﹣1)n﹣1 (n∈N+)
2. (2分)已知数列的通项公式为,那么是这个数列的()
A . 第3项
B . 第4项
C . 第5项
D . 第6项
3. (2分) (2017高二上·阳朔月考) 已知为等差数列,若,,则的值为()
A .
B .
C .
D .
4. (2分) (2016高二上·西安期中) 设an=﹣n2+9n+10,则数列{an}前n项和最大值n的值为()
A . 4
B . 5
C . 9或10
D . 4或5
5. (2分) (2017高二下·蕲春期中) 定义“规范03数列”{an}如下:{an}共有2m项,其中m项为0,m项为3,且对任意k≤2m,a1 , a2 ,…,ak中0的个数不少于3的个数,若m=4,则不同的“规范03数列”共有()
A . 18个
B . 16个
C . 14个
D . 12个
6. (2分)在等差数列中,若,,则公差d等于()
A . 1
B . 2
C . 3
D . 4
7. (2分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()
A . =n2−n+1
B .
C .
D .
8. (2分)已知数列中,,,则的值为()
A . 5
B . 8
C . 12
D . 17
9. (2分) (2015高二上·怀仁期末) 设函数为定义在R上的奇函数,对任意都有
成立,则的值为()
A . 1006
B . 1007
C . 1006.5
D . 无法确定
10. (2分) (2016高一下·重庆期中) 已知{an}为等差数列,Sn为数列{an}的前n项和,平面内三个不共线向量、、,满足 =(a17﹣2) +a2000 ,若点A,B,C在一条直线上,则S2016=()
A . 3024
B . 2016
C . 1008
D . 504
11. (2分)数列2,5,11,20,x,47......中的x等于()
A . 28
B . 32
C . 33
D . 27
12. (2分)数列{an}是正项等比数列,{bn}是等差数列,且a5=b4 ,则有()
A . a3+a7≥b2+b6
B . a3+a7≤b2+b6
C . a3+a7≠b2+b6
D . a3+a7与b2+b6 大小不确定
二、填空题 (共9题;共9分)
13. (1分) (2018高一下·苏州期末) 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为________尺.(1匹=4丈,1丈=10尺)
14. (1分)已知数列{an}满足a1=1,an+1=2an+1,求{an}的通项公式________
15. (1分) (2020高三上·泸县期末) 已知为数列的前项和,且,,,则 ________.
16. (1分) (2018高二上·石嘴山月考) 已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 ________.
17. (1分)数列0,1,0,﹣1,0,1,0,﹣1,…的一个通项公式是________.
18. (1分) (2018高三上·凌源期末) 已知数列满足,若,则数列的首项的取值范围为________.
19. (1分)数列的一个通项公式为an=________
20. (1分)已知数列an}的前n项和为Sn ,若对任意的n∈N* ,都有Sn=2n+n2+n﹣1,则a6=________.
21. (1分) (2020高二上·吴起期末) 一个凸n边形,各内角的度数成等差数列,公差为10°,最小内角为100°,则边数n=________
三、解答题 (共3题;共30分)
22. (10分)对于数列{an},若
(1)求a2,a2,a4,并猜想{an}的表达式;
(2)用数学归纳法证明你的猜想.
23. (10分) (2016高一下·辽源期中) 已知等差数列{an}满足a2=0,a6+a8=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Sn.
24. (10分) (2016高一下·高淳期末) 数列{an}中,an=32,sn=63,
(1)若数列{an}为公差为11的等差数列,求a1;
(2)若数列{an}为以a1=1为首项的等比数列,求数列{am2}的前m项和sm′.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共9题;共9分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
三、解答题 (共3题;共30分) 22-1、
22-2、
23-1、
23-2、24-1、24-2、。