难点31 数学归纳法解题

合集下载

(完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

数学归纳法(难点突破,教师版)

数学归纳法(难点突破,教师版)
2.(2015·江苏高考)已知集合 X={1,2,3},Yn={1,2,3,…,n}(n∈N*),设 Sn={(a,b)|a 整除
b 或 b 整除 a,a∈X,b∈Yn},令 f(n)表示集合 Sn 所含元素的个数. (1)写出 f(6)的值; (2)当 n≥6 时,写出 f(n)的表达式,并用数学归纳法证明. 解:(1)Y6={1,2,3,4,5,6},S6 中的元素(a,b)满足: 若 a=1,则 b=1,2,3,4,5,6;若 a=2,则 b=1,2,4,6;若 a=3,则 b=1,3,6. 所以 f(6)=13. (2)当 n≥6 时,
项相消等方法达到证明的目的.
【真题展示】
1.(2010 年)已知△ABC 的三边长为有理数 ⑴求证 cosA 是有理数 ⑵对任意正整数 n,求证 cosnA 也是有理数 证法(一):(1)由 AB、BC、AC 为有理数及余弦定理知 cosA=AB22+AABC·A2-CBC2 (2)用数学归纳法证明:cosnA 和 sinA·sinnA 都是有理数(辅助命题) ①当 n=1 时,由(1)知 cosA 是有理数,从而有 sinA·sinA=1-cos2A 也是有理数, ②假设当 n=k(k≥1)时,coskA 和 sinA·sinkA 是有理数, 当 n=k+1 时,由 cos(k+1)A=cosA·coskA-sinA·sinkA sinA·sin(k+1)A=sinA(sinA·coskA+cosA·sinkA)
5. 使用数学归纳法需要注意的三个问题 在使用数学归纳法时还要明确: (1)数学归纳法是一种完全归纳法,其中前两步在推理中的作用是:第一步是递推的基础, 第二步是递推的依据,二者缺一不可;
(2)在运用数学归纳法时,要注意起点 n0 ,并非一定取 1,也可能取 0,2 等值,要看清题

数学归纳法在解题中的技巧

数学归纳法在解题中的技巧

数学归纳法在解题中的技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体内容转变方法存有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段探讨法:适用于于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于于存有显著几何意义的情况。

2、因式分解根据项数挑选方法和按照通常步骤就是顺利进行因式分解的关键技巧。

因式分解的通常步骤就是:提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;3、分体式方法。

利用全然平方公式把一个式子或部分化成全然平方式就是分体式方法,它就是数学中的关键方法和技巧。

分体式方法的主要根据存有:4、换元法。

解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、未定系数法。

未定系数法就是在未知对象形式的条件下求对象的一种方法。

适用于于求点的座标、函数解析式、曲线方程等关键问题的化解。

其解题步骤就是:①设立②列于③求解④写下6、复杂代数等式。

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最了不起的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)谋值域范围的思路列于欲求范围字母的不等式或不等式组8、化简二次根式。

基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法存有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)特别注意:当表达式的代数式就是字母的“等距式”时,通常可以化成字母“和与内积”的形式,从而用“和内积代入法”表达式。

11、解含参方程。

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型解(2)根据需要讨论(3)分类写下结论12、恒相等成立的有用条件(1)ax+b=0对于任一x都设立关于x的方程ax+b=0存有无数个求解a=0且b=0。

高考数学热点问题专题解析——数学归纳法

高考数学热点问题专题解析——数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N =≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立 3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ≥,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k ≤的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k ≤,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下: (1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N ≤≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++≤ 思路:根据等比数列求和公式可化简所证不等式:321n n ≥+,n k =时,不等式为321k k ≥+;当1n k =+时,所证不等式为1323k k +≥+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明 证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+≤-()()()1313131n n n n +∴-≤+- 1133331n n n n n n n ++⇔⋅-≤⋅+-- 321n n ⇔≥+,下面用数学归纳法证明: (1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =≥∈时,不等式成立,则1n k =+时,()()133332163211k k k k k +=⋅≥+=+>++ 所以1n k =+时,不等式成立n N *∴∀∈,均有131n n S n S n++≤ 小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++∈ (1)求数列{}n a 的通项公式(2)设21log 1n n b a ⎛⎫=+ ⎪⎝⎭,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+⎛⎫>∈ ⎪⎝⎭解:(1)2632n nn S a a =++ ① ()21116322,n n n S a a n n N *---=++≥∈ ②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-⇒+=-0n a > 所以两边同除以1n n a a -+可得:13n n a a --={}n a ∴是公差为3的等差数列()131n a a n ∴=+-,在2632n nn S a a =++中令1n =可得: 211116321S a a a =++⇒=(舍)或12a =31n a n ∴=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +⎛⎫⋅⋅⋅> ⎪-⎝⎭,若直接证明则需要进行放缩,难度较大。

高三数学高效课堂资料学案三十一归纳法

高三数学高效课堂资料学案三十一归纳法

高三数学高效课堂资料学案三十一 数学归纳法(数列学案五,共五个)一、考点与能力要求了解数学归纳法的原理,能熟练运用数学归纳法证明一些与正整数数n 有关的的命题。

二、知识讲解(一)预备知识1.数学归纳法的概念数学归纳法:在证明某些与自然数有关的命题时,如果先证明当n 取第一个值n 0时命题成立,然后假设当n=k 时命题成立,并证明当n=k+1时命题也成立,那么命题对于n 0n ≥的一切自然数均成立。

(其本质是一种递推关系;它与归纳法有什么区别与联系?)2.用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明当n 取第一个值n 0时结论成立;(0n 是使结论成立的最小正整数,不一定是1,如多边形的内角和为(n-2)π,其中n 最小为3)(2)假设当n=k 时结论成立,证明当n=k+1时结论也成立。

从而推出命题对所有的正整数都成立。

(二)基础知识析理数学归纳法(1)基础解读:数学归纳法是一种重要的证明与正整数有关的命题的方法,关键有两个步骤,其中第一步是递推的基础,第二步是递推的依据,二者缺一不可。

(2)应用:○1用数学归纳法证明1+)1(1213121>∈<-+++n N n n n 且 第二步证明从k 到 k+1,左端增加的项数是( )A.12-kB.k 2C.k 2-1D. k 2+1○2用数学归纳法证明当n 为正奇数时,n n y x +能被y x +整除,第二步归纳假设应写成( )A. 假设)(12*N k k n ∈+=时成立,再证32+=k n 时成立B. 假设)(12*N k k n ∈-=时成立,再证12+=k n 时成立C. 假设k n =(k 是正奇数)时成立,再证1+=k n 时成立D. 假设)(*N k k n ∈≤时成立,再证2+=k n 时成立三、典题举例与解题指导知识能力考查点:1.归纳-猜想-证明这一题型的思路方法;2.利用数学归纳法证明推理的正确性。

数学归纳法要点讲解

数学归纳法要点讲解

《数学归纳法》要点讲解数学归纳法是用于证明与正整数有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位.1.数学归纳法的基本形式(1)第一数学归纳法设是一个与正整数有关的命题,如果①当0n n =(N n ∈0)时,成立;②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,也成立,那么,根据①②对一切正整数0n n ≥时,成立.(2)第二数学归纳法设是一个与正整数有关的命题,如果①当0n n =(N n ∈0)时,成立;②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,也成立,那么,根据①②对一切正整数0n n ≥时,成立.2.数学归纳法的其他形式(1)跳跃数学归纳法①当l n ,,3,2,1 =时,)(,),3(),2(),1(l P P P P 成立,②假设k n =时成立,由此推得l k n +=时,也成立,那么,根据①②对一切正整数时,成立.(2)反向数学归纳法设是一个与正整数有关的命题,如果①对无限多个正整数成立;②假设k n =时,命题成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数时,成立.3.应用数学归纳法的技巧(1)起点前移或后移:有些命题对一切大于等于1的正整数都成立,但命题本身对也成立,而且验证起来比验证时容易,因此用验证成立代替验证,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以.因而为了便于起步,有意前移起点.而有些命题在第一步证明中,不仅要证明时原不等式成立,还要证明当时,原不等式也成立.例1 已知n *∈N ,求证:2111(123)123n n n ⎛⎫++++++++ ⎪⎝⎭≥. 分析:可结合不等式关系:111111(1)232n n +++++>≥来证明,但注意要将奠基的起点后移,即在第一步证明中,不仅要证明时原不等式成立,还要证明当时,原不等式也成立. 证明:(1)当时,原不等式显然成立,当时,不等式左边191(12)14222⎛⎫=+⨯+== ⎪⎝⎭, 右边224==,则左边>右边,∴当时,原不等式成立.(2)假设当()n k k *=∈N 时,2111(123)123k k k ⎛⎫++++++++ ⎪⎝⎭≥成立, 则1n k =+时,1111[123(1)]1231k k k k ⎡⎤⎛⎫+++++++++++ ⎪⎢⎥+⎝⎭⎣⎦ 111123111(123)11(1)123123k k k k k k ++++⎛⎫⎛⎫=++++++++++++++++ ⎪ ⎪+⎝⎭⎝⎭2(1)11(1)12(1)2k k k k k +⎛⎫+++++ ⎪+⎝⎭≥ 2231(1)22k k k k >+++=+. 所以当1n k =+时原不等式也成立.由(1)和(2),可知原不等式对任何n *∈N 都成立.(2)起点增多:有些命题在由k n =向1+=k n 跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点.(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多.例2 试证:任何一个正方形都可以分割成5个以上的任意多个正方形. 分析:一个正方形分割成4个正方形是很容易的.由此猜想:若能把一个正方形分割成k 个正方形,则必能分割成(4)13k k +-=+个正方形.故第一步应对678n =,,的情形加以验证.第二步,则只需从k 递推到k +3.证明:(1)当678n =,,时,由以下各图所示的分割方法知,命题成立.(2)假设当(6)n k k k *=∈N ,且≥时命题成立,即一个正方形必能分割成k 个正方形.那么,只要把其中任意一个正方形两组对边的中点分别连结起来,即把该正方形再分割成4个小正方形,则正方形的个数就增加了3个.因而原正方形就分割成了个正方形,即当3n k =+时命题也成立.因为任何一个大于5的自然数n 都可以表示成637383()p p p p +++∈N ,,中的一种形式,所以根据(1)和(2),可知命题对任何大于5的自然数n 都成立.(4)选择合适的假设方式:归纳假设为一定要拘泥于“假设k n =时命题成立”不可,需要根据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用.(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明.例3 已知01p <<,定义11a p =+,且11n na p a +=+.试证明:对一切n *∈N ,都有1n a >.分析:显然有11a >,但若假设1k a >,则很难由递推公式11k ka p a +=+推得11k a +>.为此,必须知道小于什么数值才行. 其实,要使111k k a p a +=+>,即11k p a >-,只须11k a p<-.所以本题可转化为证明如下更强的不等式:111n a p<<-.① 证明:(1)当时,显然有11a >. 又因为211111p a p p-=<--, 所以1111a p<<-. (2)假设当()n k k *=∈N 时,111k a p <<-成立,则有 11(1)1k k a p p p a +=+>-+=, 21111111k k p a p p a p p+-=+<+=<--, 所以1111k a p+<<-,即当1n k =+时不等式①也成立. 由(1)和(2),可知对任何n *∈N ,不等式①都成立,从而原命题获证.4.归纳、猜想和证明在数学中经常通过特例或根据一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理方法称为不完全归纳法.不完全归纳法得出的结论,只能是一种猜想,其正确与否,必须进一步检验或证明,经常采用数学归纳法证明.不完全归纳法是发现规律、解决问题极好的方法.。

高中数学专题复习数学归纳法的解题应用知识点例题精讲

高中数学专题复习数学归纳法的解题应用知识点例题精讲

数学归纳法的解题运用【高考能力要求】数学归纳法是证明与自然数有关的问题,在近年的高考题中,一般不作单独的考题,而是以应用为主,且常与数列、函数、不等式、导数等结合起来进行考查,主要考查归纳、猜想、证明的数学思想方法,若出现在押轴题中则往往难度较大,分值为7分左右。

涉及的主要解题方法是先求出它的前几项,找出其规律、归纳出其共有形式(如问题的一般规律、结构特征等),才能作出正确的猜想,然后用数学归纳法加以证明.其解题模式是:归纳⇒猜想⇒证明。

在用数学归纳法证明时,要注意正确掌握数学归纳法原理和证明步骤,特别在证明不等式时要注意结合不等式证明的放缩法、分析法等方法。

【例题精讲】【例1】已知函数)(x f 满足1)1(),0,,()()(=≠∈+=f b R b a b x af x xf ,且使x x f =)(成立的实数x 是唯一的。

(1) 求函数)(x f 的解析式、定义域、值域; (2) 如果数列{}n a 的前n 项和为n S ,且12)(++=n a f nS n n ,试求此数列的通项公式。

分析:(1)由1)1(=f 及x x f =)(有唯一解建立关于b a ,的方程组,解出b a ,即可;(2)利用n n n S S a -=++11将已知条件转化为1+n a 与n a 的递推关系式,从而猜想出n a 的表达式并用数学归纳法加以证明。

解:(1)ax bx f -=)(,∵ b a f =-⇒=11)1( ① 由x x f =)(得 02=--b ax x 有唯一解,∴ 042=+=∆b b ② 由①②得 1,2-==b a ,∴xx f -=21)(,其定义域为{}2|≠x x ,值域为{}0|≠y y(2)∵ 12)(++=n a f n S n n ,xx f -=21)(,∴n n n na n n a n S -+=++-=)14(12)2(,当1=n 时,255111=⇒-=a a S 。

数学归纳法的一般解题技巧

数学归纳法的一般解题技巧

数学归纳法的一般解题技巧
作者:朱凌云
来源:《试题与研究·教学论坛》2017年第12期
数学归纳法是证明数列不等式和与正自然数相关的不等式的最有效方法,从近几年的高考理科数学试卷分析可以看出,用数学归纳法证明的题目,基本上都是高考理科数学的压轴题,而且题目综合性很强、难度很大,学生容易失分。

本文通过分析近几年高考数学试题中利用数学归纳法解题的题目,总结了以下四种用数学归纳法解题的技巧和策略,仅供大家参考。

解题技巧一:紧扣假设,合理放缩
评注:通过对上述两种证明方法进行比较,可见“借助单调性、化险为夷”,这种方法比利用“数学归纳法的一般步骤”解题要容易得多,也容易接受,使
原来复杂的问题简单化。

但这种方法具有一定的局限性:①一般常见于数列型的不等式证明;②需要学生有一定的综合分析问题的能力。

解题技巧三:遇水架桥,平稳过渡
如果“假设不等式”直接向“目标不等式”证明过程中有困难时,可以先寻求一个介于“假设不等式”和“目标不等式”之间的“桥梁不等式”,通过对“桥梁不等式”的证明,实现由“假设不等式”到“目标不等式”的平稳过渡,而这个“桥梁不等式”应该比较简单,且容易证明,仅起到桥梁的作用。

评注:本题的关键是通过第(Ⅱ)问知道当a≥时,有f(x)≥lnx(x≥1)。

如果没有发现这一点,还可以通过分析找到以后的不等关系,但这会增加难度,同时也浪费了考场上宝贵的时间。

因此在平时的训练过程中,要加强对同一题设下,各小题之间关系的分析,你将会发现处处是宝。

(作者单位:安徽省南陵县家发中学)。

如何利用高一数学中的数学归纳法解题

如何利用高一数学中的数学归纳法解题

如何利用高一数学中的数学归纳法解题在高一数学的学习中,数学归纳法是一种非常重要的解题方法。

它不仅在数学领域有着广泛的应用,对于培养我们的逻辑思维和推理能力也具有重要意义。

那么,究竟如何利用数学归纳法来解题呢?下面就让我们一起来探讨一下。

首先,我们来了解一下数学归纳法的基本概念。

数学归纳法是一种用于证明与自然数有关的命题的方法。

它的基本步骤分为两步:第一步是基础步骤,也就是证明当 n 取第一个值(通常是 1)时命题成立;第二步是归纳步骤,假设当 n = k(k 是自然数,且k ≥ 第一个值)时命题成立,然后证明当 n = k + 1 时命题也成立。

接下来,我们通过一些具体的例子来看看如何运用这两步来解题。

例 1:证明 1 + 3 + 5 +… +(2n 1) = n²第一步(基础步骤):当 n = 1 时,左边= 1,右边= 1²= 1,左边等于右边,命题成立。

第二步(归纳步骤):假设当 n = k 时命题成立,即 1 + 3 + 5 +… +(2k 1) = k²。

那么当 n = k + 1 时,左边= 1 + 3 + 5 +… +(2k 1) +(2(k + 1) 1)= k²+(2k + 1)=(k + 1)²右边=(k + 1)²左边等于右边,所以当 n = k + 1 时命题也成立。

通过以上两步,就证明了这个命题对于所有的自然数 n 都成立。

再来看一个例子:例 2:证明 1²+ 2²+ 3²+… + n²= n(n + 1)(2n + 1)/6基础步骤:当 n = 1 时,左边= 1²= 1,右边= 1×(1 + 1)×(2×1 + 1)/6 = 1,左边等于右边,命题成立。

归纳步骤:假设当 n = k 时命题成立,即 1²+ 2²+ 3²+… + k²= k(k + 1)(2k + 1)/6当 n = k + 1 时,左边= 1²+ 2²+ 3²+… + k²+(k + 1)²= k(k + 1)(2k + 1)/6 +(k + 1)²=(k + 1)k(2k + 1)/6 +(k + 1)=(k + 1)(2k²+ k + 6k + 6)/6=(k + 1)(2k²+ 7k + 6)/6=(k + 1)(k + 2)(2k + 3)/6右边=(k + 1)(k + 2)(2k + 3)/6左边等于右边,所以当 n = k + 1 时命题也成立。

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
二、数学归纳法的证明步骤
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】

高考数学难点突破-难点31--数学归纳法解题Word版

高考数学难点突破-难点31--数学归纳法解题Word版

难点31 数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ). ●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(a k -c k)(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1)∴a n+c n=n n q b +b n q n =b n (n q1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n (n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+②设n =k 时成立,即,)2(2kk k c a c a +>+则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1)>41(a k +1+c k +1+a k ·c +c k·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列.(1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视.技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式.解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1 B.n =2 C.n =3 D.n =4 二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论. 8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=10113 3970)24(2122)(614c b a c b a c b a c b a于是,对n =1,2,3下面等式成立1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立. 歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k=(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2(k ≥2) ⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2) ∵42k +1·13能被13整除,42k +1+3k +2能被13整除 ∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2(2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n )=log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>>推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立.于是,当a >1时,S n >31log a b n +1,当 0<a <1时,S n <31log a b n +18.解:∵a 1·a 2=-q ,a 1=2,a 2≠0,∴q ≠0,a 2=-29,∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n…猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立(2)设n =2k -1时,a 2k -1=2·q k -1则n =2k +1时,由于a 2k +1=q ·a 2k -1∴a 2k +1=2·q k即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k ,所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1)-21 (q +q 2+…+q n))24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52(注:可编辑下载,若有不当之处,请指正,谢谢!)。

数学归纳法证题的难点及教学探究

数学归纳法证题的难点及教学探究
●▲ 。 ● ,

具 体 问 题 的 图形 特 征 , 特 殊 到 一 般 , 具 体 到 抽 象 , 学 从 从 让 生 弄 清 所 增 加 的第 k+1 几 何 元 素 与 前 k 几 何 元 素 的 交 个 个
割 关 系 , 而 找 出 所 增 加 的几 何 量 . 如 : r个 圆 , 中 每 从 例 有 / , 其 个 圆 都 相 交 于两 点 , 且 每 三 个 圆都 不 相 交 于 同一 点 , 证 并 求 这 n个 圆将 平 面 分 成 一n+ 2个 部 分. r=1时 , 个 圆 当 / , 一 将 平 面 分 成 两 部 分 ( )=2显 然 成 立 . 设 n= 厂1 假 k时 命 题 成 立, 即平 面 内 k个 圆将 平 面 分 成 k k+ 一 2个 部 分 , n=k 当 + 1时 , 原 来 k个 圆 的 基 础 上 增 加 一 个 圆 , 个 圆 与 前 k个 在 这
五、 用数 学 归 纳 法 证 明 几 何 命 题 关 键 是 “找 项 ”
其 原 因主 要 是 学 生 对 自然 数 的有 关 的 一 些 数 学 命 题 的 具 体 内容 理 解 不 清 , 乏 应 有 的对 症 下 药 之 良策 , 面 谈 谈 我 对 缺 下 这 方 面 的教 学 体 会 :
纳 法 证 等 式 时 先 看 “ ” 良好 习 惯 , 首 先 弄 清 等 式 两 边 项 的 即 项 的构 成 规 律 , 式 两 边 各 有 多 少 项 ? 项 的 多 少 与 t的 取 等 / ,
值 是 否 有 关 ? 当 n= + 1时 等 式 两 边 也会 在 n= k的 基 础 上 增 加 多少 项 ? 增 加 的 是 怎 么 样 的项 ?
项 后 多 余 的项 该 怎 么 办 ? 突 破 此 难 点 的关 键 在 于 让 学 生 懂

学习解决数学难题的3个思维方法

学习解决数学难题的3个思维方法

学习解决数学难题的3个思维方法解决数学难题是许多学生最头疼的问题之一。

有时候,看似简单的问题也可能让人束手无策。

然而,只要运用一些正确的思维方法,解决数学难题并不是一件难事。

本文将为你介绍三种常用的思维方法,帮助你更好地解决数学难题。

首先,我们来谈谈“归纳法”。

归纳法是一种从具体到一般的推理方法。

当你遇到一个数学难题时,可以先从已知的具体例子入手,观察这些例子之间是否存在某种规律。

通过观察这些规律,我们可以得到一般性的结论,从而解决整个问题。

例如,当你遇到一个涉及数列的问题时,可以先从数列中的几个具体项开始分析,看是否能够找到它们之间的规律,并由此得出数列的通项公式。

这种方法有助于将抽象的问题转化为具体的问题,从而更好地理解和解决它们。

其次,我们来讲解一下“逆向思维”。

逆向思维是一种从结果到原因的推理方法。

当你遇到一个数学难题时,有时候从正向思维(从已知条件出发推导结论)可能会陷入困境。

这时,可以尝试从问题所给出的结果出发,反向思考问题的解决办法。

通过逆向思维,我们可以找到与所给结果相符的条件,从而得出解题的思路。

例如,当你遇到一个求解方程的问题时,可以先将方程的解代入方程,然后逆向考虑如何通过已知结果得到这个解,从而找出解方程的方法。

逆向思维可以跳脱定势思维,打破思维的局限,帮助我们更好地理解问题并找出解决办法。

最后,我们来介绍一种常用的思维方法,即“模型建立法”。

模型建立法是一种将实际问题转化为数学模型,并通过对该模型进行分析解决问题的方法。

当你遇到一个复杂的数学问题时,可以尝试通过建立一个适当的数学模型来简化问题。

通过适当抽象和定义,我们可以将复杂的问题转化为数学上的简单问题。

例如,在一道几何问题中,你可以通过将图形转化为几何图形的形式来更好地理解问题,并通过几何知识解决问题。

使用模型建立法,我们可以更加清晰地分析问题,准确地定义问题和建立数学模型,从而更好地解决问题。

通过归纳法、逆向思维和模型建立法这三种思维方法,我们可以更好地解决数学难题。

用数学归纳法解决实际问题

用数学归纳法解决实际问题

用数学归纳法解决实际问题一、数学归纳法的基本概念1.数学归纳法的定义:数学归纳法是一种证明数学命题的方法,它分为两个步骤:基础步骤和归纳步骤。

2.基础步骤:验证当输入的初始值时,命题是否成立。

3.归纳步骤:假设当输入的值时,命题成立,证明当输入的值时,命题也成立。

二、数学归纳法的步骤1.确定归纳变量:找出影响问题解决的关键变量。

2.验证基础情况:当归纳变量取最小值时,问题是否成立。

3.归纳假设:假设当归纳变量取某个值时,问题成立。

4.归纳步骤:证明当归纳变量取下一个值时,问题也成立。

5.得出结论:根据基础步骤和归纳步骤的证明,得出问题对所有归纳变量成立的结论。

6.问题简化:将实际问题转化为可以用数学归纳法证明的命题形式。

7.确定归纳变量:找出影响问题解决的关键变量,作为归纳变量。

8.编写归纳命题:根据实际问题,编写基础步骤和归纳步骤的命题。

9.证明命题:分别对基础步骤和归纳步骤进行证明。

10.得出结论:根据数学归纳法的证明,解决实际问题。

四、数学归纳法在实际问题中的应用实例1.求解等差数列的前n项和:设等差数列的首项为a1,公差为d,求前n项和Sn。

2.求解多项式的值:给定一个多项式f(x),求在x取某个值时,f(x)的值。

3.求解递推数列的通项公式:设递推数列的第一个项为a1,递推公式为an+1=an+d,求通项公式an。

4.求解函数的导数:给定一个函数f(x),求其导数f’(x)。

5.求解几何问题:如求解多边形的面积、体积等。

五、注意事项1.确保归纳变量的合理性:归纳变量的选择应尽量简单,能有效地解决问题。

2.注意归纳假设的合理性:归纳假设应能涵盖所有可能的情况,避免遗漏。

3.证明过程的严谨性:在证明过程中,要注重逻辑的严密性,避免出现漏洞。

4.灵活运用数学归纳法:根据实际问题的特点,选择合适的数学归纳法进行解决。

知识点:__________习题及方法:习题1:用数学归纳法证明:对于所有自然数n,n^2 + n + 41是一个质数。

掌握数学归纳法解决高中数学排列数题

掌握数学归纳法解决高中数学排列数题

掌握数学归纳法解决高中数学排列数题数学归纳法是一种重要的数学推理方法,在解决高中数学排列数题时,掌握数学归纳法可以事半功倍。

本文将介绍数学归纳法的基本原理和应用,以及如何运用它来解决高中数学中的排列数题。

一、数学归纳法的基本原理数学归纳法是一种证明方法,通过证明当某个命题在某个条件下成立时它对于更大范围条件也成立,从而得出结论。

它分为三个步骤:第一步:基础步骤。

证明当命题针对最小的情况时成立,通常是当$n=1$时的情况。

第二步:归纳假设。

假设当$n=k$时命题成立,即假设$k$情况下命题成立。

第三步:归纳步骤。

证明当$n=k+1$时命题也成立。

这一步通常使用归纳假设去证明。

二、数学归纳法的应用数学归纳法广泛应用于数学证明、递归定义等领域。

在解决高中数学中的排列数题时,数学归纳法也是一种常用的方法。

以排列数题为例,假设我们需要证明某个关于排列数的命题对于任意正整数$n$成立。

我们可以使用数学归纳法来证明:首先,在$n=1$时,根据命题,我们可以计算出排列数的值,并验证命题成立。

然后,假设命题对于$n=k$时成立,即命题在情况$k$下成立。

接下来,我们需要证明当$n=k+1$时命题也成立。

我们可以利用排列数的定义,将排列数分解为数个排列数的和或差。

通过归纳假设,我们可以得出$k+1$情况下命题成立。

因此,根据数学归纳法的原理,我们可以得出该命题对于任意正整数$n$成立。

三、示例分析为了更好地理解数学归纳法在解决高中数学排列数题时的应用,我们以一个具体的例子进行分析。

假设我们需要证明以下命题:对于任意正整数$n$,$2^n>n^2$。

首先,在$n=1$时,$2^1=2>1^2=1$,命题成立。

然后,假设命题对于$n=k$时成立,即$2^k>k^2$。

接下来,我们需要证明当$n=k+1$时命题也成立。

根据假设,$2^{k+1}=2*2^k>2k^2$。

同时,我们知道$(k+1)^2=k^2+2k+1$。

数学难题如何总结知识点

数学难题如何总结知识点

数学难题如何总结知识点数学难题通常需要我们运用多种知识点和技巧来解答,因此对于学生来说,解决难题不仅可以加深对知识点的理解,还可以提高解决问题的能力。

我将以一道数学难题为例,总结其中涉及的知识点和解题方法,希望能够对学生们有所启发。

题目:有一个数列,第一个数为3,之后每个数都是前面所有数的和与积的差。

求第10个数。

解题方法:1. 分析题目题目要求求出一个数列的第10个数。

从题目中我们可以知道,数列的第一个数为3,后面的每个数都是前面所有数的和与积的差。

这种数列的特点,首先让我们联想到了数列的递推关系,接下来我们需要按部就班地求解。

2. 求解思路首先我们需要了解数列的递推关系,然后按照递推关系求出数列的第10个数。

数列的递推关系可以使用数学归纳法进行证明,然后我们可以根据递推关系逐项求解数列的每个数值,最终得到第10个数。

3. 使用数学归纳法证明数列的递推关系我们首先需要用数学归纳法证明数列的递推关系。

数学归纳法是一种证明方法,用于证明递推关系在数列中成立。

我们需要证明数列的第一个数满足递推关系,然后假设前n个数满足递推关系,推导出第n+1个数也满足递推关系。

这样就能够证明递推关系在数列中成立。

4. 按递推关系求解数列的第10个数在证明了数列的递推关系后,我们可以按照递推关系求解数列的第10个数。

首先求出数列的第2个数、第3个数……直到第10个数。

经过多次迭代计算后,可以得到数列的第10个数。

5. 总结知识点解决这道数学难题涉及了数列的递推关系、数学归纳法以及数学计算的技巧。

在解答这道难题的过程中,我们需要对这些知识点有深刻的理解和掌握,才能够顺利地解答题目。

通过以上分析和总结,我们可以看出,解答数学难题需要我们对知识点有较深的理解和掌握,同时需要我们具备良好的解题思路和分析能力。

希望大家在解答数学难题的过程中能够加深对数学知识的理解,提高解决问题的能力。

(完整版)数学归纳法典型例题

(完整版)数学归纳法典型例题

数学归纳法典型例题一. 教学内容:高三复习专题:数学归纳法二. 教学目的掌握数学归纳法的原理及应用三. 教学重点、难点数学归纳法的原理及应用四. 知识分析【知识梳理】数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。

近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n = n0时命题成立;(2)(归纳递推)假设n = k()时命题成立,证明当时命题也成立。

只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。

上述证明方法叫做数学归纳法。

数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。

【要点解析】1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。

用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

2、运用数学归纳法时易犯的错误(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点31 数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ). ●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1)∴a n+c n=n n qb +b n q n =b n (n q 1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n(n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+ ②设n =k 时成立,即,)2(2kk k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列.(1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式. 解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152 同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立. (2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等. ●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.6 2.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1 B.n =2 C.n =3 D.n =4 二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+nn a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145.(1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a (1+n b 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n ,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=101133970)24(2122)(614c b a cb ac b a c b a 于是,对n =1,2,3下面等式成立 1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n 记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立. 歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1 -(2k +7)·3k =(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2 (k ≥2) ⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n 三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2 )∵42k +1·13能被13整除,42k +1+3k +2能被13整除 ∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2 (2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1 的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>> 推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k 31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立. 于是,当a >1时,S n >31log a b n +1 ,当 0<a <1时,S n <31log a b n +1 8.解:∵a 1·a 2=-q ,a 1=2,a 2≠0, ∴q ≠0,a 2=-29, ∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1 两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n …猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立(2)设n =2k -1时,a 2k -1=2·q k -1则n =2k +1时,由于a 2k +1=q ·a 2k -1 ∴a 2k +1=2·q k 即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k , 所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(221)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n ) =2(1+q +q 2+…+q n -1 )-21(q +q 2+…+q n ) )24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52。

相关文档
最新文档