电光调制实验(通达)

合集下载

电光调制实验实验报告

电光调制实验实验报告

电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。

在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。

放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。

再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。

2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。

3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。

光强调到最大,此时晶体偏压为零。

这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。

如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。

如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。

如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。

如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。

这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。

二、依据晶体的透过率曲线(即T-V曲线),选择工作点。

电光调制试验

电光调制试验
l • (ne − no ) +

V 1 3 l • ne − no + no r6 z E Z ,又 E Z = , d 2 λ
π l 3 • no r6 zV 。 λ λ d 上式前項與外加電壓無關,是由 KDP 自然雙折射效應所造成的相位移。其後項才是與外 加電場成正比的電光效應。因為 (ne − no ) 項的存在,使相位差 δ 對溫度極端敏感,故不可單 獨使用。 為了減少 45°-Z 切割 KDP 晶體的橫向效應中,自然雙折射的延遲現象,該種晶體在使用 時,經常成對出現,垂直偏極光與水平偏極光通過此晶體的相位延遲分別為
電光調制實驗-2
近代光學實驗
圖二
EOM 內部結構示意圖
2 2 設光通過 P1 後,強度為 2 AO (即 I in =2 AO ) ,當其通過 KDP 晶體後,依垂直與水平兩振
動方向,分成快慢兩個分量,二者間的相位差 δ =

λ

l 3 • no r6 zV ,因 Vλ d
2
=
λd
2 ln 3 o r6 z
,則
δ=
V π ……(*) Vλ 2
落在檢偏鏡上的兩個光波,波方程式可分別表示如下: E Z = AO e iωt , EY ' = AO e i (ωt −δ ) 。設
通過 P2 後,光的振幅為 E P 2 ,是上述兩個電場在 P2 偏振軸上的分量和,則 E P 2 可表示為: EP2 = A 2 2 AO e iωt − AO e i (ωt −δ ) = o e iωt 1 − e iδ 。光感知器接收到的是光的強度 I out ,則 2 2 2
δ=


l 的比值 , 大幅降低了橫向效應 Vλ 2 的驅動電壓。 d 又因外加電場方向恆與入射光方向垂直,晶體又不需要蒸鍍昂貴的透明電極,使得在實用上

电光调制实验课程设计

电光调制实验课程设计

电光调制实验课程设计一、课程目标知识目标:1. 学生能理解电光效应的基本原理,掌握电光调制的概念。

2. 学生能描述电光调制过程中各物理量的变化及其影响。

3. 学生能了解不同类型电光调制器的结构和工作原理。

技能目标:1. 学生能通过实验操作,掌握使用示波器、激光源和电光调制器等仪器的基本技能。

2. 学生能够运用数据分析方法,处理实验数据,得出结论。

3. 学生能够运用所学知识,设计简单的电光调制实验。

情感态度价值观目标:1. 学生在实验过程中,培养严谨的科学态度,增强实验操作的规范性和安全性意识。

2. 学生通过小组合作,培养团队协作能力和沟通能力,增强合作意识。

3. 学生能够认识到电光调制技术在现代通信领域的应用价值,激发对科学技术的兴趣。

课程性质分析:本课程为物理学科实验课程,旨在帮助学生将理论知识与实际应用相结合,提高学生的实验操作能力和科学素养。

学生特点分析:初三学生已具备一定的物理知识基础,对实验课程有较高的兴趣,动手能力强,但需加强实验规范和安全意识。

教学要求:1. 结合学生特点,注重理论知识与实验操作的有机结合,提高学生的实践能力。

2. 强化实验过程中的安全意识,培养学生的责任感。

3. 注重培养学生的团队协作能力和沟通能力,提高学生的综合素质。

二、教学内容1. 理论知识:- 电光效应基本原理- 电光调制概念及其分类- 电光调制器结构和工作原理2. 实验操作:- 示波器、激光源和电光调制器等仪器的使用方法- 电光调制实验操作步骤- 实验数据的收集、处理和分析3. 教学大纲:- 第一课时:导入新课,讲解电光效应基本原理,介绍电光调制概念。

- 第二课时:分析电光调制器结构和工作原理,学习实验操作步骤。

- 第三课时:实验操作,观察电光调制现象,收集和处理数据。

- 第四课时:总结实验结果,讨论实验中发现的问题,进行拓展延伸。

4. 教材章节:- 《物理》课本第三章第七节:电光效应- 《物理》实验手册第四章第二节:电光调制实验5. 教学内容安排与进度:- 理论知识教学:2课时- 实验操作教学:2课时- 课后总结与拓展:1课时教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,培养学生实验操作能力和科学素养。

电光调制实验报告模板

电光调制实验报告模板

一、实验目的1.了解电光调制的工作原理及相关特性;2.掌握电光晶体性能参数的测量方法;二、实验原理某些光学介质受到外电场作用时,它的折射率将随着外电场变化,介电系数和折射率都与方向有关,在光学性质上变为各向异性,这就是电光效应。

电光效应有两种,一种是折射率的变化量与外电场强度的一次方成比例,称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例,称为克尔(Kerr)效应。

利用克尔效应制成的调制器,称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。

利用泡克耳斯效应制成的调制器,称为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。

泡克耳斯盒又有纵向调制器和横向调制器两种,图2-1是几种电光调制器的基本结构形式。

图2-1:几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时,盒中的介质是透明的,各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。

通过克尔盒时不改变振动方向。

到达Q时,因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器,安装时,它们的光轴彼此垂直。

),所以Q没有光输出;给克尔盒加以电压时,盒中的介质则因有外电场的作用而具有单轴晶体的光学性质,光轴的方向平行于电场。

这时,通过它的平面偏振光则改变其振动方向。

所以,经过起偏器P产生的平面偏振光,通过克尔盒后,振动方向就不再与Q光轴垂直,而是在Q光轴方向上有光振动的分量,所以,此时Q就有光输出了。

Q的光输出强弱,与盒中的介质性质、几何尺寸、外加电压大小等因素有关。

对于结构已确定的克尔盒来说,如果外加电压是周期性变化的,则Q的光输出必然也是周期性变化的。

由此即实现了对光的调制。

泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体,它的自然状态就有单轴晶体的光学性质,安装时,使晶体的光轴平行于入射光线。

因此,纵向调制的泡克耳斯盒,电场平行于光轴,横向调制的泡克耳斯盒,电场垂直于光轴。

电光调制实验报告

电光调制实验报告

电光调制实验报告电光调制实验报告引言电光调制是一种利用电场对光进行调制的技术,广泛应用于通信、光学传感和光学信息处理等领域。

本实验旨在通过搭建电光调制实验装置,探究电场对光的调制效果,并分析其应用前景。

实验装置本次实验所使用的电光调制实验装置包括:光源、偏振器、电光调制器、光电探测器和示波器。

其中,光源发出的光经过偏振器后,进入电光调制器,在电场的作用下发生相位差变化,最后通过光电探测器转化为电信号,再经示波器显示出来。

实验步骤1. 将光源、偏振器、电光调制器、光电探测器和示波器依次连接起来,确保电路连接正确。

2. 调整偏振器的角度,使得光通过电光调制器时,其电场与电光调制器的极化方向垂直。

3. 打开光源和示波器,调节示波器的参数,观察示波器上的波形变化。

4. 改变电光调制器的电压,观察示波器上的波形变化,并记录下来。

5. 重复步骤4,但同时改变偏振器的角度,观察示波器上的波形变化,并记录下来。

实验结果与讨论通过实验观察和记录,我们可以得到以下结论和讨论:1. 电场对光的调制效果:随着电光调制器电压的增加,示波器上的波形振幅逐渐增大,说明电场对光的幅度进行了调制。

这说明电光调制器能够通过改变电场的强度来调制光的强度。

2. 电场对光的相位调制效果:通过改变电光调制器的电压和偏振器的角度,我们可以观察到示波器上的波形发生相位差的变化。

这说明电光调制器能够通过改变电场的强度和方向来调制光的相位。

3. 电光调制器的应用前景:电光调制技术在通信领域有着广泛的应用前景。

通过调制光的幅度和相位,可以实现光信号的调制和解调,从而实现高速、大容量的光通信。

此外,电光调制器还可以用于光学传感和光学信息处理等领域,提高系统的灵敏度和可靠性。

结论通过电光调制实验,我们深入了解了电场对光的调制效果,并探讨了其应用前景。

电光调制技术在通信、光学传感和光学信息处理等领域具有重要的应用价值,为实现高速、大容量的光通信提供了有力支持。

电光调制实验

电光调制实验

电光调制实验电光调制实验是一种基于光及电的实验,主要是利用外加电场对光的介质介电常数及折射率发生变化的特性,从而实现对光的调制,达到信息传输的目的。

本文将对电光调制实验的原理、实验过程、实验结果以及应用进行详细介绍。

一、实验原理电光调制实验的基本原理是电-光双向转换。

光通过透明的介质之后会导致光的相位差,从而产生偏振旋转。

当外加电场时,通过电光效应,电场可以改变介质的折射率和吸收系数,从而影响光的速度和偏振方向。

在调制过程中,可以控制电场的强度和方向,从而实现光信号的编码、传输和解码。

二、实验材料实验材料主要包括:1.激光器2.半波片3.光偏振器4.电光晶体5.电源6.光探测器三、实验过程在实验开始前,首先将激光器打开并调节其输出功率,以保证激光器的正常工作。

2.半波片和光偏振器的使用。

将半波片和光偏振器连接在激光器的输出端上,并根据需要调整偏振方向和入射角度。

将电光晶体固定在一个平台上,将光束通过电光晶体,并调整电光晶体的入射角度以使其与光束共面。

4.电源的使用。

将电源连接到电光晶体上,并根据需要调整电场的强度和方向。

将光探测器放置在光束的另一端,并记录光信号的强度、频率和相位。

四、实验结果通过电光调制实验,研究者可以获得以下结果:1.光信号的编码和解码。

通过电光调制实验,可以将信息编码成光的信号并传输,然后通过解码技术将信息从光信号中提取出来。

2.光调制的幅度、相位和频率。

通过电光调制实验,可以通过调节电场的强度和方向来改变光的幅度、相位和频率,从而实现对光信号的调制。

3.光传输的性能。

通过电光调制实验,可以研究光传输的性能,包括传输距离、传输带宽、光损耗等特性。

这些研究能够指导光通讯技术的应用和发展。

五、应用电光调制实验的应用非常广泛。

一些典型的应用包括:1.光通讯。

2.光储存。

在光储存中,电光调制技术也是非常重要的。

通过电光调制实验,可以实现将信息储存在光中,然后可以随时读取出来。

3.光计算。

电光调制实实验讲义

电光调制实实验讲义

电光调制实验实验讲义一、实验背景电光效应在工程技术和科学研究中有许多重要应用。

尤其是激光出现以后,电光效应的研究和应用得到了迅速发展,电光器件被广泛应用在激光通信、激光测距、激光显示和光学数据处理等方面。

晶体电光调制实验可以模拟电光效应在激光通信中的应用,验证激光通信传输速度快,抗干扰能力强,保密性好等优点。

通过该实验可以加深对偏振光干涉、双折射、非线性光学等知识的理解,培养学生的动手能力,提高学生的工程意识。

实验系统结构简单,易于操作,实验效果理想。

二、实验目的1. 观察电光效应引起的晶体光学性质的变化(单轴晶体、双轴晶体的偏振干涉图)。

2. 观察直流偏压对输出特性的影响,记录数据并绘制输出特性曲线。

3 观察铌酸锂晶体交流调制输出特性。

4. 模拟光通信。

三、实验仪器图1 实验仪器实物图(双踪示波器自备) 1.半导体激光器及四维可调支架 2.起偏器 3.铌酸锂晶体 4.检偏器(及1/4波片) 5.光屏 6.导轨 7.电光调制电源箱 8.接受放大器四、实验原理晶体分各向同性晶体与各向异性晶体。

其中各向异性晶体会发生双折射,而各向同性晶体只会发生普通折射。

光束入射到各向异性的晶体,分解为o 光和e 光。

如果光束沿着光轴的方向传播不会发生双折射现象。

这里光轴并非指一条直线,而是一个特殊的方向。

晶体中o 光与光轴构成的平面叫o 光主平面,e 光与光轴构成的平面叫e 光主平面。

o 光振动方向垂直于o 光主平面,e 光的振动方向平行于e 光主截面。

一般情况下,o 光主平面与e 光主平面不重合,但是理论与实践均表明,当入射线在晶体主平面时o 光主平面与e 光主平面重合。

实用中一般均取入射线在晶体主截面内的情况。

各向异性晶体中o 光与e 光的传播速度一般不同。

速度e o v v >的晶体称为正晶体,e o v v <的晶体称为负晶体。

铌酸锂晶体是各向异性负晶体。

由于双折射现象,当入射光不沿光轴方向入射时,产生的o 光与e 光对应不同的折射率o n 与e n 。

电光调制实验报告误差分析

电光调制实验报告误差分析

电光调制实验报告误差分析
电光调制实验是一种常见的光学实验,在实验测量过程中难免会出现误差。

常见的误差包括系统误差和随机误差。

系统误差主要来自于实验仪器、测量方法和实验人员等方面的不确定性,例如电光调制器的偏置电压的精度、光路的稳定性、探测器的灵敏度等。

系统误差具有一定的规律性,可以通过对实验仪器的校准和测量方法的改进来减小。

随机误差是由一系列不可预测的因素导致的误差,例如环境条件的变化、仪器的波动、人为误差等。

随机误差是不可避免的,但可以通过多次测量并取平均值来降低其影响。

在进行电光调制实验时,还需注意实验得到的原始数据是否有效、是否存在异常值等。

在数据处理过程中应该排除这些无效数据,并对数据进行平滑处理和误差分析。

此外,还需要注意实验的恒定条件,例如光源的稳定性和干扰物的消除等。

总之,电光调制实验中的误差分析应该综合考虑系统误差和随机误差,正确处理实验数据并减小误差的影响。

电光调制实验报告小结

电光调制实验报告小结

电光调制实验报告小结引言电光调制是一种利用电场来调制光的相位和强度的技术,在通信领域有着广泛的应用。

本实验旨在通过搭建电光调制系统并进行实验验证,探究电场对光调制的影响,实验结果对理解和应用电光调制技术具有重要意义。

实验方法1. 实验材料:激光器、调制器、接收器、电源等。

2. 搭建电光调制系统:将激光器的输出光传入调制器中,通过调制器内的电场对光进行调制,调制完的光被接收器接收。

3. 测量和记录实验数据:测量接收器接收到的光强,并记录输入的电场强度。

实验结果分析实验1:电场对光强的影响在电场未加之前,接收器检测到的光强为I0。

在电场加上不同的电压后,记录对应的光强I,并计算光强的变化率ΔI/I0。

实验结果如下:电场强度(V/m) 光强变化率ΔI/I0-0 0100 0.2200 0.4300 0.6400 0.8500 1从实验结果可以看出,电场的增大对光强的调制效果逐渐增强。

当电场为0时,光强不受到电场的影响;当电场增加到500 V/m时,光强变为原来的2倍,光强的调制效果达到最大。

实验2:电场对光相位的影响在电场未加之前,激光器的输出相位作为参考相位。

在电场加上不同的电压后,测量和记录光的相位,并计算相位的偏移Δφ。

实验结果如下:电场强度(V/m) 相位偏移Δφ-0 0100 0.2π200 0.4π300 0.6π400 0.8π500 π从实验结果可以看出,电场的增大对光相位的调制效果逐渐增强。

当电场为0时,光相位不受到电场的影响;当电场增加到500 V/m时,光相位经历了一个完整的π的偏移。

实验3:光强和相位的联合调制效果通过同时加上电场和光的相位调制器,记录不同电场强度下的光强和相位变化情况。

实验结果如下:电场强度(V/m) 相位偏移Δφ光强变化率ΔI/I0-0 0 0100 0.2π0.2200 0.4π0.4300 0.6π0.6400 0.8π0.8500 π 1从实验结果可以看出,电场和光的相位调制器的联合调制效果是光强和相位调制的叠加效果。

电光调制实验实验报告

电光调制实验实验报告

电光调制实验实验报告一、实验目的通过本次实验,学生将能够掌握电光调制器的基本原理、工作方式及其在通信中的应用。

二、实验仪器设备1. 光源:激光管2. 实验桌3. PCS2814型电光调制器4. 准直器5. 直流电源6. 光电探测器7. 示波器三、实验原理电光调制器是一种通过在光传输介质中加入直流或低频信号来改变光强度的设备。

可以用于光电通信、激光雷达、医学成像等领域。

电光调制器根据调制原理的不同分为两种:强度调制和相位调制。

其中,强度调制通过改变光强度来实现信息传输,相位调制则是改变光波的相位而传输信息。

在强度调制中,光信号传输的过程可以分为两个步骤:1.信号电流模拟调制通过窄带高频电信号调制直流偏置电压,生成相应的光信号。

这样调制后的光信号频率范围集中在带宽较窄的低频范围内。

2.对光强进行调制将调制后的光信号通过调制后器的光口,再经准直器射到检测器上,检测器能将光电转换为电信号,这样就能获得来自光传输介质的有效信号。

四、实验步骤1. 搭建实验装置:将激光管、电光调制器、准直器和光电探测器依次放置在实验台上,随后将它们连接起来,准确设置检测器到准直器的距离,为了获得最佳的工作效果,排除光学信号串扰和反射的影响,准直器进行精细调整。

2. 测试无调制状态下的光强度:通过开启激光管,取得光电探测器采集的光强度数据,这里需要使用示波器进行监测和测量,并记录数据。

通过调节电流模拟信号源,模拟调制电流信号,然后通过调制器进行传输,观察并记录数据变化,比较与无调制状态下的光强度数据变化情况。

4. 可用性测试:根据测试结果,可以判断电光调制器中的效果如何,以及它是否适合于实际应用。

五、实验结果分析通过对实验数据的可视化分析,可以看出,电光调制器能够通过调制电流控制光传输介质内关联的光强度,这样就能够实现由电信号到光信号的转化。

在本实验中,使用的是单调制强度调制电路,因此,仅仅是将高频电流信号作用于调制器,就能够将开关的信号传输到光传输介质内,转化成可用的数字信号,这样就实现了从电信号到光信号的转换。

电光声光调制_实验报告

电光声光调制_实验报告

一、实验目的1. 理解电光调制和声光调制的原理及基本过程。

2. 掌握电光调制器和声光调制器的实验操作方法。

3. 分析实验数据,验证电光调制和声光调制的基本特性。

二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。

电光调制器主要由调制晶体、电极、光源和探测器组成。

当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。

2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。

声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。

当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。

通过控制超声波的强度、频率和相位,可以实现对光信号的调制。

三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。

实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。

2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。

实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。

四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变调制信号频率和幅度,观察调制效果。

2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变超声波频率和强度,观察调制效果。

五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。

(2)分析电光调制器的调制带宽、调制深度等特性。

电光调制实验

电光调制实验

实验二十二 电光调制特性测试及分析报告人 陆盛阳0 同组人 张旭 时间 2011/10/10 一、 实验目的1、了解铌酸锂晶体的一级电光效应。

2、观察单轴晶体、双轴晶体的偏振干涉图。

3、掌握电光调制器的工作原理。

4、测定直流输出特性曲线,即T-V 曲线。

5、用四分之一波片选择工作点。

二、 实验仪器(仪器名称及仪器编号) 电光调制实验仪三、 实验原理及内容(简略叙述)在外加电场的作用下,晶体的折射率或双折射性质发生改变的现象成为电光效应。

外电场作用下的光电晶体犹如一块波片,它的位相延迟随外加电场的大小而变,随之引起偏振态的变化,从而使得检偏器出射光的振幅或强度受到调制。

当外加电压使晶体产生的相位差δ达到Л时,晶体相当于一块半波片,此时透过光强为极大值,所加电压为晶体的半波电压。

半波电压与电光系数的关系公式如下:V π=(22302γλn )l dV π为半波电压、n0为O 光折射率、γ22为电光系数 λ为半导体激光波长、 d 为铌酸锂晶体的厚度、l 为铌酸锂晶体的长度。

由于透射率与电压的非线性关系若不选择合适的工作点和调制电压的幅值会使输出的光信号相对于输入信号产生非线性失真。

四、 实验步骤及现象1 晶体的安装 :用棉花球蘸少许酒精擦净放晶体的电极,然后放置晶体和铝电极,用弹片固定在可调平台上,弹片接触到铝电极后,不能压的太紧,以免压断晶体,或给晶体施加压力。

调整晶体光轴与光源的光轴重合,不许触摸晶体两个小端面(一端是入射面、另一端是出射面),以免影响实验效果。

2 调整光路,观察锥光图:2-1 把导轨置于底座很稳的台面上,调整四个螺钉使导轨成水平将其锁紧。

2-2 在导轨一端放置一个滑座,将半导体激光器及可调支架固定在滑座上。

打开激光器电源盒上的开关,旋转镜头,调整光斑的大小。

以求得质量较好的光斑,尽量将光斑调小。

(旋转盒上的旋钮可调光斑强弱)。

2-3 可调平台放置在导轨上距光源200mm左右,调整激光器的支架使激光束与晶体等高,平台的四个螺钉可进行升降调整。

最新电光调制实验实验报告

最新电光调制实验实验报告

最新电光调制实验实验报告实验目的:本实验旨在探究电光调制器的工作原理及其在光通信中的应用。

通过实验,我们将了解电光效应的基本理论,并观察电光调制器如何根据外加电压的变化调制光信号。

实验原理:电光效应是指某些晶体材料在外加电场作用下,其折射率发生变化的现象。

这种变化可以通过改变通过晶体的光波的相位或强度来实现对光信号的调制。

在本实验中,我们将使用液晶材料作为电光调制器,通过改变施加在其上的电压来控制光的透过率。

实验设备:1. 激光源(如氦氖激光器)2. 电光调制器(液晶调制器)3. 光电探测器(如光电二极管)4. 电源及电压调节器5. 光束准直器和光束分析仪6. 数据采集系统实验步骤:1. 搭建实验装置,确保激光源发出的光束经过电光调制器,并被光电探测器接收。

2. 调整激光源,使其发出稳定的光束,并保证光束完全通过电光调制器。

3. 将光电探测器连接到数据采集系统,以便记录光强度的变化。

4. 打开电源,逐渐增加施加在电光调制器上的电压,并记录不同电压下光电探测器的输出信号。

5. 分析数据,绘制电压与光强度之间的关系曲线,观察电光调制效果。

6. 通过改变激光的波长,重复步骤4和5,研究波长对电光调制效果的影响。

实验结果:实验数据显示,随着施加电压的增加,光电探测器接收到的光强度呈现出周期性变化,这与电光调制器的调制特性相符。

在特定电压下,光强度达到最小值,表明此时调制器对光信号实现了有效调制。

通过改变激光波长,发现不同波长的光在相同的电压下表现出不同的调制深度,这与液晶材料的光谱特性有关。

结论:通过本次实验,我们成功验证了电光调制器的工作原理,并观察到了外加电压对光信号调制的影响。

实验结果表明,电光调制器可以作为一种有效的光通信工具,用于控制和调节光信号的传输。

此外,实验还揭示了不同波长光在电光调制中的性能差异,为未来调制器的设计和应用提供了重要参考。

电光调制实验报告(1)

电光调制实验报告(1)

光电工程学院2013 / 2014学年第 2 学期实验报告课程名称:光电子基础实验实验名称:电光调制实验班级学号1213032809学生姓名丁毅指导教师孙晓芸日期: 2014年5月07日电光调制实验【实验目得】1、掌握晶体电光调制得原理与实验方法;2、学会用实验装置测量晶体得半波电压,绘制晶体特性曲线,计算电光晶体得消光比与透射率。

【实验仪器及装置】电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。

实验系统由光路与电路两大单元组成,如图3、1所示:图3、1 电光调制实验系统结构一、光路系统由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加得减光器(P1)与λ/4波片(P2)等组装在精密光具座上,组成电光调制器得光路系统.二、电路系统除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。

图3、2电路主控单元前面板注:•本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其她激光源时,需另加与其配套得电源。

•激光强度可由半导体激光器后背得电位器加以调节,故本系统未提供减光器(P1)。

•本系统未提供λ/4波片(P2)即可进行实验,如有必要可自行配置。

图3、2为电路单元得仪器面板图,其中各控制部件得作用如下:•电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。

•晶体偏压开关用于控制电光晶体得直流电场。

(仅在打开电源开关后有效)•偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场得大小。

•偏压极性开关改变晶体得直流电场极性。

•偏压指示数字显示晶体得直流偏置电压。

•指示方式开关用于保持光强与偏压指示值,以便于读数.•调制加载开关用于对电光晶体施加内部得交流调制信号.(内置1KHz得正弦波)•外调输入插座用于对电光晶体施加外接得调制信号得插座。

电光调制实验(通达)

电光调制实验(通达)

实验设备简介
激光器 起偏器 检偏器 电光晶体 光电接收器
实验步骤说明
进行光路准直时,为使激光能正射透过晶体,必需反复 对激光、晶体与光电接收孔者加以准直调整。
为获得较好的实验效果,光量宜调节在光强指示表为 0.1(最小)至5.6(最大)的读数范围之内。本实验使用的 晶体根据其绝缘性能最大安全电压约为510V左右,超值 易损坏晶体。
本次实验内容
测量并绘制晶体的调制特性曲线。 测量电光晶体的半波电压,测量并计算晶体的
消光比和透光率。
数据记录
负偏压(V)
0
IA
正偏压(V)
0
IA I0 ______
-50
-100
……
-500
Байду номын сангаас
50
100
……
500
最小光强(倍频状态)单独测量,如(U1,Imin) 最大光强(倍频状态)单独测量,如(U2,Imax) 半波电压Uπ=| U2 - U1 | U1 和 U2精确1V。
选择工作点①(U=0)或③ (U=U)时,输出波形小且严重失真,同时输出信 号的频率为调制频率的两倍,即倍频现象。
U
U

2n03r
d l
消光比和透射率
由于晶体受材料的缺陷和加工工艺的限制,光束通过晶体时还 会受晶体的吸收和散射,使两振动分量传播方向不完全重合, 出射光截面也就不能重叠起来。
压得到不同的输出光强,从而可以绘制出晶体特性曲线,并进
一步计算出电光晶体的消光比和透射率。
半波电压
当起偏器与检偏器的光轴正交(AP)时, P与X两光轴 间的夹角α为45时, U 对IA的调制作用最大,为:

电光调制实验

电光调制实验

实验二 电光调制实验激光是一种光频电磁波,具有良好的相干性,与无线电波相似,可作为传递信息的载波。

激光具有很高的频率(约1013~1015Hz ),可供利用的频带很宽,故传递信息的容量很大。

再有,光具有极短的波长和极快的传递速度,加上光波的独立传播特性,可以借助光学系统把一个面上的二维信息以很高的分辨率瞬间传递到另一个面上,为二位并行光信息处理提供条件。

所以激光是传递信息的一种很理想的光源。

电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上1010Hz 的电场变化),可以在高速摄影中作快门或在光速测量中作光束斩波器等。

在激光出现以后,电光效应的研究和应用得到迅速的发展,电光器件被广泛应用在激光通讯,激光测距,激光显示和光学数据处理等方面。

要用激光作为信息的载体,就必须解决如何将信息加到激光上去的问题。

例如激光电话,就需要将语言信息加在与激光,由激光“携带”信息通过一定的传输通道送到接收器,再由光接收器鉴别并还原成原来的信息。

这种将信息加在与激光的过程称之为调制,到达目的地后,经光电转换从中分离出原信号的过程称之为解调。

其中激光称为载波,起控制作用的信号称之为调制信号。

与无线电波相似的特性,激光调制按性质分,可以采用连续的调幅、调频、调相以及脉冲调制等形式。

但常采用强度调制。

强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射强度按照调制信号的规律变化。

激光之所以常采用强度调制形式,主要是因为光接收器(探测器)一般都是直接地响应其所接收的光强度变化的缘故。

【实验目的】1. 掌握晶体电光调制的原理和实验方法。

2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数。

3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象。

【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器。

【实验原理】1.电光调制的基本原理某些晶体(固体或液体)在外加电场中,随着电场强度E 的改变,晶体的折射率会发生改变,这种现象称为电光效应。

电光调制实验报告

电光调制实验报告

光电工程学院2013 / 2014学年第 2 学期实验报告课程名称:光电子基础实验实验名称:电光调制实验班级学号 09学生姓名丁毅指导教师孙晓芸日期: 2014年 5 月 07 日电光调制实验【实验目的】1、掌握晶体电光调制的原理和实验方法;2、 学会用实验装置测量晶体的半波电压,绘制晶体特性曲线,计算电光晶体的消光比和透射率。

【实验仪器及装置】电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。

实验系统由光路与电路两大单元组成,如图所示:图 电光调制实验系统结构一、光路系统由激光管(L )、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加的减光器(P 1)和/4波片(P 2)等组装在精密光具座上,组成电光调制器的光路系统。

二、电路系统除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。

图 电路主控单元前面板图为电路单元的仪器面板图,其中各控制部件的作用如下: 电源开关 用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。

晶体偏压开关用于控制电光晶体的直流电场。

(仅在打开电源开关后有效)偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场的大小。

偏压极性开改变晶体的直流电场极性。

注: 本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其他激光源时,需另加与其配套的电源。

激光强度可由半导体激光器后背的电位器加以调节,故本系统未提供减光器(P 1)。

本系统未提供/4波片(P 2)即可进行实验,如有必要可自行配置。

关偏压指示数字显示晶体的直流偏置电压。

指示方式开关用于保持光强与偏压指示值,以便于读数。

调制加载开关用于对电光晶体施加内部的交流调制信号。

(内置1KHz的正弦波)外调输入插座用于对电光晶体施加外接的调制信号的插座。

(插入外来信号时内置信号自动断开)调制幅度旋钮用于调节交流调制信号的幅度。

电光调制实验实验报告

电光调制实验实验报告

广东第二师范学院学生实验报告内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验 结果与分析、实验心得 【实验目的】1. 掌握晶体电光调制的原理和实验方法2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】 一、调整光路系统1. 调节三角导轨底角螺丝,使其稳定于调节台上。

在导轨上放置好半导体光源部分 滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基 本处于一条直线,即使光束通过小孔。

放上起偏振器,使其表面与激光束垂直,器,使其表面也与激光束垂直,转动检偏器,截面与起偏器的主截面垂直,这时光点消失,2. 将铌酸锂晶体置于导轨上,调节晶体使其 x 轴在铅直方向,使其通光表面垂直于 激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看 光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶 体,且从晶体出来的反射像与半导体的出射光束重合。

3. 拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。

光强调到最大,此时晶体偏压为零。

这时可观察到晶体的单轴锥光干涉图, 即一个清楚的暗十 字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。

如图四所 示实验项目名称 实验时间I 2014年12月18日 实验成绩电光调制实验物理楼五楼指导老师签名— 实验地点 且使光束在元件中心穿过。

再放上检偏 使其与起偏器正交,即,使检偏器的主 即所谓的消光状态。

班 别 11物理4.旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。

如图五所示图四图五6.晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I min
透射率
I max T I0
I0为移去电光晶体后转动检偏器A得到的输出光强最 大值。M愈大,T愈接近于1,表示晶体的电光性能愈佳。

本次实验内容

测量并绘制晶体的调制特性曲线。 测量电光晶体的半波电压,测量并计算晶体的 消光比和透光率。
数据记录
负偏压(V)
IA 正偏压(V) IA

电光效应
电光调制的物理基础——电光效应 某些晶体在外加电场的作用下,其折射率 随外加电场的改变而发生变化的现象称为 电光效应。 本实验使用铌酸理(LiNbO3 )晶体作电 光介质。
电光调制器的工作原理
X P a Ip ±U La 光输入 光电 电信号输出 检测器 Y A X
Y
激光器
起偏器(P)
I 0 ______
0
-50Biblioteka -100……-500
0
50
100
……
500


最小光强(倍频状态)单独测量,如(U1,Imin) 最大光强(倍频状态)单独测量,如(U2,Imax) 半波电压Uπ=| U2 - U1 | U1 和 U2精确1V。
实验设备简介

激光器 起偏器 检偏器 电光晶体 光电接收器
电光晶体
由激光器发出的激光经起偏器P后只透射光波中平行其透 振方向的振动分量,当该偏振光IP垂直于电光晶体的通光表面 入射时,如将光束分解成两个线偏振光,经过晶体后其X分量 与Y分量的相差(U),然后光束再经检偏器A,产生光强为IA的 出射光。当起偏器与检偏器的光轴正交(AP)时,加载晶体偏 压得到不同的输出光强,从而可以绘制出晶体特性曲线,并进 一步计算出电光晶体的消光比和透射率。
电光调制实验
实验目的
掌握电光调制的原理和实验方法。 对电光调制原理中的有关物理量进行定性或定 量分析。

电光调制
电光调制是激光调制的一种。 激光具有良好的相干性,要用激光作为传递信 息的工具,首先要解决的是如何将传输信号加 载到激光上去的问题,我们把信息加载于激光 的过程称为激光调制。 激光调制的方法很多,如机械调制、电光调制、 声光调制、磁光调制等。其中电光调制器开关 速度快,结构简单。因此,在激光调制技术以 及混合型光学双稳器件等方面有广泛的应用。
实验步骤说明

进行光路准直时,为使激光能正射透过晶体,必需反复 对激光、晶体与光电接收孔者加以准直调整。 为获得较好的实验效果,光量宜调节在光强指示表为 0.1(最小)至5.6(最大)的读数范围之内。本实验使用的 晶体根据其绝缘性能最大安全电压约为510V左右,超值 易损坏晶体。 调节过程中应避免激光直射人眼,以免对眼睛造成危害。 加偏压时应从0伏起逐渐缓慢增加至最大值,反极性时 也应先退回到0值后再升压。 作IA~ U曲线时,正、负偏压数据作在同一图上。
U U
d 3 2n0 r l
消光比和透射率


由于晶体受材料的缺陷和加工工艺的限制,光束通过晶体时还 会受晶体的吸收和散射,使两振动分量传播方向不完全重合, 出射光截面也就不能重叠起来。 当外加电压U=0时,透射光强的最小值却不为0;当外加电压U =U 时,透射光强的最大值却不为IP,由此需要引入另外两 个特征参量: I max 消光比 M
2

选择不同工作点时的输出波形
IA
③ 工作点③ ② 工作点②
IA
① o
o
Uπ/2

U
t
工作点①
t
选择工作点②(U=U /2)时,输出波形最大且不失真。相位差在=/2或(U =U /2 )附近时,光强IA与相位差(或电压U)呈线性关系,从调制的实际意义 上来说,电光调制器的工作点通常就选在该处附近。 选择工作点①(U=0)或③ (U=U)时,输出波形小且严重失真,同时输出信 号的频率为调制频率的两倍,即倍频现象。
2 2

d 其中, U 为半波电压: U 3 2n0 r l
它是一个用以表征电光调制电压对相位差影响的 重要物理量。半波电压U 决定于入射光的波长、晶 体材料和它的几何尺寸。
光强与外加电压的关系
U I A I P sin 2 U
±
检偏器(A)
半波电压
当起偏器与检偏器的光轴正交(AP)时, P与X两光轴 间的夹角α为45时, U 对IA的调制作用最大,为:
(U ) 2 U I A I P sin 2 sin I P sin 2 2 U
相关文档
最新文档