数字图像处理(频域增强)

合集下载

图像增强——频域增强法课程设计

图像增强——频域增强法课程设计

《 MATLAB 实践》课程设计题目:图像增强——频域增强法指导教师:王秋云姓名学号刘利刚200981010118二○○六年 6 月29 日目录1、设计目的 (2)2、题目分析 (2)3、总体设计 (3)4、具体设计 (4)4.1图像的读取和保存 (4)4.1.1利用“读入图像”按钮实现图片的读取 (4)4.1.2图像保存 (6)4.2 程序的还原与撤销 (7)4.3 图像的截取 (7)4.4 加入各种噪声,并通过几种滤波算法实现去噪。

(8)4.4.1 加入噪声 (8)4.5 滤除噪声 (11)4.6.1图像翻转 (15)4.6.2 图像旋转 (16)5、结果分析 (17)6、心得体会 (18)参考书目 (19)摘要:图像增强是指按特定的需要突出一幅图像中的某些信息,同时消弱或去除某些不需要的信息。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强的方法分为空域法和频域法两类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如傅立叶变换,DCT变换等的系数,然后再进行反变换得到处理后的图像。

关键字:高斯噪声,巴特沃斯滤波,理想低通滤波,梯形低通滤波1、设计目的综合运用MATLAB工具箱实现图像处理的GUI程序设计,利用MATLAB图像处理工具箱,实现图像增强—频域增强。

2、题目分析利用matlab的GUI程序设计一个简单实用的图像处理程序,该程序应具备图像处理的常用功能,以满足用户的使用。

现设计程序有以下基本功能:1)图像的读取和保存。

2)设计图形用户界面,让用户能够对图像进行任意角度的翻转。

3)设计图形用户界面,让用户能够用鼠标截取图像感兴趣区域,并显示和保存该选择区域。

4)设计图形用户界面,让用户能够对图像添加任意参数的各种噪声,如椒盐噪声、高斯噪声、乘性噪声等。

5)设计图形用户界面,让用户能够对图像实现中值滤波、线性滤波、自适应滤波等操作。

数字图像处理课设图像频域增强正文

数字图像处理课设图像频域增强正文

第1章绪论MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB 成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++,JA V A 的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

第2章数字图像处理的相关知识2.1图像频域增强原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强的方法分为空域法和频域法两类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如傅立叶变换、DCT变换等的系数,然后再进行反变换得到处理后的图像。

数字图像处理(冈萨雷斯)课件5-频域增强

数字图像处理(冈萨雷斯)课件5-频域增强

滤波在频率域中更为直观,但在空间域一般使用更小 的滤波器模板

可以在频率域指定滤波器,做反变换,然后在空间域 使用结果滤波器作为在空间域构建小滤波器模板的指导

频率域滤波

高斯频率域低通滤波器函数
H u Ae
u 2 / 2 2
对应空间域高斯低通滤波器为 h x 2 Ae 2 x
理想低通滤波器举例——具有振铃现象
结论:半径D0越小,模糊越大;半径D0越大,模糊越小
半径是5的理想低通滤 原图 波,滤除8%的总功率, 模糊说明多数尖锐细 节在这8%的功率之内
半径是15的理想低通 滤波,滤除5.4%的总 功率
半径是30的理想低通滤 波,滤除3.6%的总功率
半径是230的理想低通 滤波,滤除0.5%的总功 半径是80的理想低通 滤波,滤除2%的总功率 率,与原图接近说明 边缘信息在0.5%以上 的功率中
2 2

1 2
频率域图像增强

理想低通滤波器
说明:在半径为D0的圆内,所有频率没有衰减地通过滤 波器,而在此半径的圆之外的所有频率完全被衰减掉
频率域图像增强

理想低通滤波器

总图像功率值PT
P T Pu, v
u0 v0
M 1 N 1
Pu, v F u, v Ru, v I u, v

说明空间域乘法可以通过频率域的卷积获得 上述两个公式主要为两个函数逐元素相乘的 乘法
频率域滤波

定义:在(x0,y0),强度为A的冲激函数表示为
Axx0, y y0 ,定义为
M 1 N 1 x0 y 0
sx, yA x x , y y Asx , y

数字图像处理第04章图像增强ppt课件

数字图像处理第04章图像增强ppt课件

归一化的直方图(histogram)定义为灰度级出 现的相对频率。即
Pr(k)nk /N
(4.13)
式中,N表示像素的总数;nk表示灰度级为k的
像素的数目。
Slide 25
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.线性变换
灰度g与灰度f之间的关系为
gaba[f a] ba
(1)变换使得图像灰度范围增 大,即对比度增大,图像会变得 清晰;
(2)变换使得图像灰度范围缩 图4.4 线性变换 小,即对比度减小。
Slide 16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
图4.7 三段线性变换实例
(a)原始图像
(b)增强效果
Slide 21
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.非线性灰度变换
当用某些非线性函数如对数、指数函数等作为 映射函数时,可实现灰度的非线性变换。
J = imadjust(I,[0.3 0.7],[]); %使用imadjust函数进行灰度的线性变换
figure,imshow(J); figure,imhist(J)
%显示变换后图像的直方图
Slide 17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【例4.1】采用线性变换进行图像增强。

数字图像处理_第四章_频域图像增强

数字图像处理_第四章_频域图像增强

2
u 0.1.2. M 1 v 0.1.2. N 1 f ( x, y ) F (u , v)e j 2 (ux / M vy / N )
u 0 v 0 M 1 N 1
可以证明:
x y f ( x , y )( 1) F (u
4.2 傅立叶变换和频率域的介绍
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.2.3 频率域滤波 频率域滤波基本步骤: 1、(1) x y 原图像 2、F (u, v) 3、 H (u, v) F (u, v) 4、反DEF 5、实部 x y 6、用 (1) (5) 结果。 1 被滤波图像 G(u, v)
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.3 平滑的频率域滤波器
4.3.1 理想低通滤波器
c ~ e均有“振铃”特征 为什么会有“振铃”现象呢? 其根本原因是空域滤波器有负 值,具体具体解释右图(b)
右图用5个脉冲图像来说明“振 铃”的产生,可看作5个冲激, 只是简单地复制 h( x, y ) → “振铃”。
F (u ) F (u ) e j (u ) F (u ) R (u ) I (u )
2 2
1 2
(u ) arct g
2(u ) R(u )
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
1 M x 1 v N y u
4.2 傅立叶变换和频率域的介绍

数字图像处理—基于Python 第9讲 频域图像增强-傅里叶性质

数字图像处理—基于Python 第9讲 频域图像增强-傅里叶性质

j 2
y]e N
N (xy) 2
WNuxvy
N 1 N 1
f
[
x,
y]e
j
(
x
y)
W uxvy N
u0 v0
N 1 N 1
F[u N / 2,v N / 2]
f [x, y](1)(x y) WNuxvy
u0 v0
38
4 平移特性(Translation of DFT)
• In two dimensions: F(u M / 2,v N / 2) f [x, y](1)xy and F(0,0) is now located at (M/2, N/2). 推论: 在空域乘以一个复指数(-1)x*y,相当于在 低频移中,反之亦然。
C. Nikou – Digital Image Processing (E12)
39
本课内容
二维离散Fourier变换 Fourier变换编程实现 Fourier变换性质
− 卷积定理(Convolution theorem) − 共轭对称性(conjugate symmetric) − 周期性(Periodicity of the DFT) − 平移特性(Translation of DFT) − 方向性(Directionality)
g[n] f [n]*h[n] f [m]h[n m]
m
g[n]的长度为N=3+2-1=4
10
一维离散卷积:线性卷积
f [n] {1,2,2}, h[n] {1, 1}, N1 3, N2 2
g[n] f [n]*h[n] {1,1,0, 2}
11
Fourier变换的卷积定理
1

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

数字图像处理 第7章频域图像增强处理.ppt

数字图像处理 第7章频域图像增强处理.ppt

理想高通滤波器的定义 一个二维的理想高通过滤器(ILPF)的转换函数 满足(是一个分段函数)
0 H (u, v) 1
D(u, v) D0 D(u, v) D0
其中:D0 为截止频率
D(u,v)为距离函数 D(u,v)=(u2+v2)1/2
第七章 频域处理
理想高通滤波器的示意图
– 被钝化的图像被一种非常严重的振铃现象—— 理想低通滤波器的一种特性所影响。
第七章 频域处理
振铃(ring)现象
由传递函数H(u,v)的性质所决定。
) G(x, y) H (u,v)F(u,v) g(x, y) h(x, y) f (x, y)
H(u,v)
H (u,v) h(x, y)
前处理
DFT
滤波函数
DFT-1
f(x,y)
F(u,v) H(u,v) F(u,v) H(u,v)
后处理 g(x,y)
第七章 频域处理
举例:
0 (u,v) (M / 2, N / 2)
H (u,v) 1
其它
第七章 频域处理
7.6.2 平滑的频域滤波器(低通滤波) (1)频域低通滤波的基本思想
第七章 频域处理
BLPF中的振铃效应,阶数分别为1,2,5,20
第七章 频域处理
(4)高斯低通滤波器 (Gauss Lowpass Filter) Gauss低通滤波器(GLPF)的定义
Gauss低通滤波器的变换函数如下:
H (u, v) eD2 (u,v)/ 2D02
第七章 频域处理
h(x,y)
1 0 D0 D(u,v)
0 1/(2D0)
第七章 频域处理

数字图像处理 图像增强 第一讲 概述及灰度变换

数字图像处理 图像增强 第一讲 概述及灰度变换
对灰度区间 [ a , b ] 进行了线性拉伸 ,而灰度区间[0, a]和[b, fmax]则被 压缩。


三段线性变换

常用的是三段线性变换。
Slide 20
实际上,S1、S2、t1、t2可取不同的值进行组合,从而得 到不同的效果。

1、如果S1=t1,S2=t2,则T为1条斜率为1的直线,增强图 像和原图像相同。 2、如果S1=S2,t1=L-1,则增强图像只剩2个灰度级,此时 对比度最大但细节全丢失。 3、如果S1>t1,S2<t2,则原图像中灰度值在0到S1和S2到 L-1间的动态范围减少了,而原图中灰度值在S1和S2间的动 态范围增加了,从而增强了中间范围内的对比度。 4、如果S1<t1,S2>t2,则原图像中灰度值在0到S1和S2到 L-1间的动态范围增加了,而原图中灰度值在S1和S2间的动 态范围减少了。


环境光源太暗,使灰度值偏小,就会使图像太暗看不清。
如果环境光源太亮,又使图像泛白。 通过灰度变换,就可以将灰度值调整到合适的程度。

灰度变换可分为线性变换、分段线性变换和非线性变换几 种方法。
直接灰度变换
1、图像求反
假设对灰度级范围是[0,L-1]的图像求反,就是通过变 换将[0,L-1]变换到[L-1,0],变换公式如下:

设变量 r 代表图像中像素灰度级。在图像中, 像素的灰度级可作归一化处理,这样,r 的值将 限定在下述范围之内:
0 r 1
在灰度级中, r = 0
(4—4)
代表黑, r = 1 代表白。
对于一幅给定的图像来说,每一个像素取 得[0,1]区间内的灰度级是随机的,也就是说
r 是一个随机变量。假定对每一瞬间它们是连

实验报告

实验报告

《数字图像处理》课程设计报告课题名称图像频域增强系统设计学院自动控制与机械工程学院专业通信技术班级2010级通信(1)班姓名学号胡绍磊201004090109陈思琪201004090135杨春雪201004090142于燕妮201004090144时间2012年6月18日—29日目录一、引言 (1)1、课程设计目的 (1)2、课程设计总体要求 (2)3、任务及要求 (3)二、系统总体设计 (4)1、实现方法 (4)2、MATLAB简介 (4)3、实现步骤 (6)4、系统框图 (6)三、系统设计与实现 (7)1、图像频域增强原理 (7)2、频谱计算与显示 (8)3、低通滤波的实现 (9)4、高通滤波的实现 (15)5、提高部分 (20)四、系统仿真与调试 (24)1、频谱计算与显示分析 (24)2、低通滤波分析 (25)3、高通滤波分析 (28)4、提高部分分析 (32)五、心得体会 (35)参考文献一、引言1、课程设计目的数字图像处理课程设计作为独立的教学环节,是通信技术及相关专业的集中实践环节之一,是学习完《数字图像处理》课程后,进行的一次综合练习。

数字图像处理课程设计过程中,学生通过查阅资料、总体设计、模块设计、集成调试等环节,完成一个基于MATLAB编程语言,涉及多种典型应用,并具有综合功能的数字图像处理系统设计。

使学生能够将课堂上学到的理论知识与实际应用结合起来,对数字图像处理基础理论、程序逻辑分析、算法设计等方面的知识进一步加深认识,同时在软件编程、调试、工程合作开发等方面得到全面的锻炼和提高。

使学生增进对数字图像处理技术的感性认识,加深对相关理论的理解,牢固掌握数字图像处理的重要作用,如对比度扩展、直方图处理、二维傅里叶变换、滤波增强、图像分割、压缩编码等等。

通过实际设计和开发促进学生了解和掌握数字图像处理应用系统的设计过程、方法及实现,提高学生在数字图像处理应用方面的实践技能和科学作风,培育学生综合运用理论知识和解决实际问题的能力。

图像处理中的图像增强与特征提取算法

图像处理中的图像增强与特征提取算法

图像处理中的图像增强与特征提取算法图像处理是数字图像处理的一个重要分支,广泛应用于医学图像、工业检测、视频分析、图像识别等领域。

其中,图像增强和特征提取是两个基本且关键的步骤。

本文将重点介绍图像增强与特征提取算法,并探讨它们在图像处理中的应用。

首先,图像增强是指通过改善图像的视觉效果和质量来提高图像的可视化和识别性能。

图像增强方法可以分为空域增强和频域增强两大类。

空域增强方法直接对原始图像进行像素级别的操作,常见的包括直方图均衡化、灰度拉伸、滤波等。

直方图均衡化通过对图像的像素值进行重新分布,来增强图像的对比度和明暗度。

灰度拉伸通过将图像的像素值映射到更大的范围,使得图像的亮度范围更广,从而增强图像的细节。

滤波方法则通过选择合适的滤波器对图像进行平滑或锐化,以去除噪音或增强边缘特征。

频域增强方法则是将图像从空间域转换到频率域进行处理,常用的方法有傅里叶变换和小波变换。

傅里叶变换将图像转化为频谱图像,可以通过滤波频谱图像来进行去噪或增强。

小波变换则可以将图像分解为不同尺度的频域系数,从而对不同频率部分进行独立处理。

图像增强算法的选择主要根据具体应用和需求来进行,不同的算法适用于不同类型的图像和不同的需求。

图像特征提取是指从图像中提取出能够表征图像内容的特征,以用于图像分类、目标检测等任务。

常见的特征提取方法包括颜色特征、纹理特征和形状特征等。

颜色特征是指从图像中提取出描述颜色信息的特征,常用的方法有颜色直方图和颜色矩。

颜色直方图统计了图像中每个颜色在图像中的分布情况,可以用于颜色分类和图像检索等任务。

颜色矩则是用于描述颜色分布的累积特征,可以描述颜色的亮度、对比度和饱和度等。

纹理特征是指从图像中提取出描述纹理信息的特征,常用的方法有灰度共生矩阵和小波纹理。

灰度共生矩阵统计了图像的灰度级别之间的相对位置关系,可以用于纹理分类和图像分割等任务。

小波纹理则是通过对图像进行小波分解和纹理特征的提取,可以获得图像的多尺度纹理特征。

第六章频域图像增强

第六章频域图像增强

频域增强
频域增强的原理
– 频率平面与图象空域特性的关系
»图象变化平缓的部分靠近频率平面的圆心, 这个区域为低频区域
»图象中的边、噪音、变化陡峻的部分,以放 射方向离开频率平面的圆心,这个区域为高 频区域
频域增强
频域增强的原理
边缘、噪音、 变化陡峭部分
u
变化平缓部分
v
频域增强
频域增强的处理方法
对于给定的图象f(x,y)和目标 – 用(-1)x+y * f(x,y)进行中心变换 – 计算出它的傅立叶变换F(u,v) – 选择一个变换函数H(u,v),计算H(u,v) F(u,v) /*并非
0
(a)
D0
D(u, v)
(b)
0
D0
D(u, v)
(c)
ILPF、 BLPF、 ELPF特征曲线 (a) ILPF特征曲线; (b) BLPF特征曲线; (c) ELPF特征曲线
高斯低通过滤器—没振铃
高斯低通过滤结果
图像增强:频域过滤
BLPF 特性曲线(不同阶数)
ELPF 特性曲线(不同半径)
2
3
D(u,v)/D0
Butterworth高通过滤器截止频率设计
– 变换函数中不存在一个不连续点作为一个 通过的和被过滤掉的截止频率的明显划分
转移函数以图像方式显示对应的空间滤波器通过滤波器中心的灰度级剖面图理想低通过滤器的截止频率的设计如果将变换作中心平移则一个以频域中心为原点r为半径的圆就包含了百分之的能量理想低通过滤器的截止频率的设计理想低通过滤器的截止频率的设计1530802309294696498995理想低通过滤器的分析整个能量的90被一个半径为8的小圆周包含大部分尖锐的细节信息都存在于被去掉的10的能量中小的边界和其它尖锐细节信息被包含在频谱的至多05的能量中被钝化的图像被一种非常严重的振铃效果理想低通滤波器的一种特性所影响理想低通滤波结果半径分别为153080滤去的能量为54362理想低通过滤器的分析振铃效果理想低通滤波器的一种特性振铃效应a半径为5的脉冲图像ilpfb相应的空间滤波器c空域的5个脉冲d滤波结果空域卷积63761实用低通滤波器巴特沃斯低通滤波器阶为n截断频率为d0505在高低频率间的过渡比较光滑取使h最大值降到某个百分比的频率为截断频率butterworth低通过滤器的定义butterworth低通过滤器blpf的变换函数如下

数字图像处理教学大纲

数字图像处理教学大纲

数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。

具体包括:1、理解数字图像的获取、表示和存储方式。

2、掌握数字图像增强、复原、压缩、分割等基本处理技术。

3、能够运用编程工具实现简单的数字图像处理算法。

4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。

三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。

2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。

3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。

4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理(频域增强)
数字图像处理图像频域增强方法的研究
姓名:
班级:
学号:
目录一.频域增强的原理
二.频域增强的定义及步骤三.高通滤波
四. MATLAB程序实现
五.程序代码
六.小结
一.频域增强定义和步骤
图像增强技术基本上可分成两大类:频域处理法和空域处理法。

频域处理法[1]的基础是卷积定理,它采用修改图像傅立叶变换的方法实现对图像的增强处理。

在频域空间,图像的信息表现为不同频率分量的组合。

如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。

频域增强是利用图像变换方法将原来的图像空间中的图像以某种形式转换到其它空间中,然后利用该空间的特有性质方便地进行图像处理,最后再转换回原来的图像空间中,从而得到处理后的图像。

频域增强的主要步骤是:
(1) 选择变换方法,将输入图像变换到频域空间;
(2) 在频域空间中,根据处理目的设计一个转移函数并进行处理;
(3) 将所得结果用反变换得到图像增强。

卷积理论是频域技术的基础。

设函数f(x,y)与线性位不变算子h(x,y)的卷积结果是g (x,y),即g(x,y)=h(x,y)*f(x,y)
那么根据卷积定理在频域有:
G(x,y)=H(u,v)F(u,v)
其中G(x,y)、 H(u,v)、F(u,v)分别是
g(x,y)、h(x,y)、f(x,y)的傅立叶变换。

(4)技术所需增强图的傅立叶变换。

(5)将其与一个(根据需要设计的)转移函数相乘。

(6)再将结果进行傅立叶反变换以得到增强的图。

(7)将图像从空域转换到频域所需的变换及将图像从频域空间转换回空域
所需的变换。

(8)在频域空间对图像进行增强加工操作。

常用的频域增强方法有低通滤波和高通滤波。

以下分别介绍在MATLAB中如何实现。

二.高通滤波
图像中的细节部分与其频率的高频分量相对应,所以高通滤波可以对图像进行锐化处理。

高通滤波器与低通滤波器的作用相反,它使高频分量顺利通过,而消弱低频。

图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。

采用高通滤波器可以对图像进行锐化处理,是为了消除模糊,突出边缘。

因此采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边缘锐化的图像。

常用的高通滤波器有:(1) 理想高通滤波器 (2) 巴特沃斯高通滤波器 (3) 指数滤波器
(4) 梯形滤波器
这里我们采用理想高通滤波器。

二维理想高通滤波器的传递函数为:
四.MATLAB程序实现
五.程序代码
I1=imread('D:\miley.jpg');
I=rgb2gray(I1);
subplot(2,3,1),imshow(I); title('原图像');
s=fftshift(fft2(I));
subplot(2,3,2),imshow(abs(s),[]);title('图像傅里叶变换所的频谱');
subplot(2,3,3),imshow(log(abs(s)),[]); title('图像傅里叶变换对数所得频'); [a,b]=size(s);
a0=round(a/2);
b0=round(b/2);
d=10;
p=0.2;q=0.5;
for i=1:a
for j=1:b
distance=sqrt((i-a0)^2+(j-b0)^2);
if distance<=d h=0
else h=1;
end;
s(i,j)=(p+q*h)*s(i,j);
end;
end;
s=uint8(real(ifft2(ifftshift(s)))); subplot(2,3,4),imshow(s);title('高通滤波所得图像');
subplot(2,3,5),imshow(s+I);title('高通滤波所得高频增强图像');
六.小结
增强图像中的有用信息,它可以是一个是失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局域特性,将原来不清晰地图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体之间的差别,一直不感兴趣的特征,使之改善图像质量,丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

图像增强可以分为二大类:频率域法和空间域法。

前者吧图像看成一种二维信号,对其进行基于二位傅里叶变换的信号增强。

采用低通滤波可以去掉图像中的噪声:采用高通滤波可以增强边缘高频信号,是模糊的图片变得清
晰。

数字图像处理经过初创期,发展期,普及器及广泛应用的几个人阶段,如今已是各个学科竞相研究的并在各个领域广泛应用的一门学科。

随着科学技术的进步以及人类需求的不断增长,图像处理学科无论在理论还是实践上,均会取得更大的发展。

相关文档
最新文档