四川省南充市2015届高三二诊测试理科数学试题
2015年四川省高考数学试卷(理科)答案与解析
2015年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.4.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.46.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个7.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9D.68.(5分)(2015•四川)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()A.16 B.18 C.25 D.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考理科数学四川卷(含详细答案)
数学试卷 第1页(共27页)数学试卷 第2页(共27页)数学试卷 第3页(共27页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑.第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-= ( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A.BC .12- D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是 ( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )AB. C .6D.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN =2NC ,则AM NM =( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则c o s θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =;(4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号). 2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共27页)数学试卷 第5页(共27页)数学试卷 第6页(共27页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角.(Ⅰ)证明:1cos tan 2sin A AA-=;(Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 (Ⅰ)求椭圆E 的方程;(Ⅱ)在平面直角坐标系xOy 中是否存在与点P 不同的定点Q ,使得||||||||QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,说明理由.21.(本小题满分14分)已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >. (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共27页)数学试卷 第8页(共27页)满足3BM MC =,2DN NC =,∴根据图形可得:33AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++, 22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴221312316AM NM AB AD =-=-故选;C【提示】根据图形得出33AM AB BC AB AD =+=+,22AN AD DC AD AB =+=+,数学试卷 第10页(共27页)数学试卷 第11页(共27页) 2()AMNM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.2120x y +-≤⎩2180y x +-≤⎩8y <⎩k k数学试卷 第13页(共27页) 数学试卷 第14页(共27页)M 在线段PQ 上,设(0,,2)M y ∴(1,,2)EM y =-,(2,1,0)AF =,55EM AF y =;2445)y ++,设2445)y t +=+,整理得:5,三直线为从而可求出向量EM ,AF 的坐标,由,EM AF 得到的最大值,从而求出的最大值.1212n++=1000>.方法二:以D为坐标原点,轴建立空间坐标系如图:2AD=,则M,则(2,GE=-,(1,0,2)MG=-的法向量为(x,y,z)n= 0n GEn MG⎧=⎪⎨=⎪⎩,即,得(2,2,1)n=在正方体中,DO AEGC⊥平面,则(1,1,0)n DO==是平面2cos,3||||92m nm nm n+==⨯A EG M--的余弦值为数学试卷第16页(共27页)数学试卷第17页(共27页)222cos sinA A=180D=︒-cosAB AD A,cosBC CD C,22cos2cosAB AD A BC CD BC CD C=+-,2222222653432(AB AD BC CD)2(6534)7AD BC CD--+--==+⨯+÷.22107A=,连结AC2222(AB CD)2(6AB BC AD CDBC ADF+--=+⨯61019.2222D22sin sin3210610A B数学试卷第19页(共27页)数学试卷第20页(共27页)数学试卷第22页(共27页)数学试卷第23页(共27页)数学试卷第25页(共27页)数学试卷第26页(共27页)数学试卷第27页(共27页)。
2015年高考理科数学四川卷及答案
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-=( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A .32- B .32 C .12-D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )A .433B .23C .6D .436.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN=2NC ,则AM NM = ( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =;(4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号). 2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共24页)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角. (Ⅰ)证明:1cos tan2sin A AA-=; (Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)2015年普通高等学校招生全国统一考试(四川卷)理科数学答案解析【解析】解:∵四边形ABCD为平行四边形,点M、N满足3BM MC=,2DN NC=,∴根据图形可得:3344AM AB BC AB AD=+=+,2233AN AD DC AD AB=+=+,∴NM AM AN=-,∵2()AM NM AM AM AN AM AM AN=-=-,22239216AM AB AB AD AD=++,22233342AM AN AB AD AB AD=++,||6AB=,||4AD=,∴22131239316AM NM AB AD=-=-=故选;C【提示】根据图形得出3344AM AB BC AB AD=+=+,2233AN AD DC AD AB=+=+,2()AM NM AM AM AN AM AM AN=-=-,结合向量结合向量的数量积求解即可.数学试卷第7页(共24页)数学试卷第8页(共24页)数学试卷第9页(共24页)。
2015年高考理科数学四川卷(含答案解析)
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑.第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-= ( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A. BC .12-D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是 ( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )A.3B. C .6D.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN =2NC ,则AM NM =( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; (4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号).2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角.(Ⅰ)证明:1cos tan 2sin A AA-=;(Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b=>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 (Ⅰ)求椭圆E 的方程;(Ⅱ)在平面直角坐标系xOy 中是否存在与点P 不同的定点Q ,使得||||||||QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,说明理由.21.(本小题满分14分)已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >. (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(四川卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】∵集合{|(1)(2)0}A x x x =+-<,集合B={x|1<x <3},∴集合{|12}A x x =-<<, ∵A ∪B={x|﹣1<x <3},故选:A【提示】求解不等式得出集合{|12}A x x =-<<,根据集合的并集可求解答案 【考点】并集及其运算 2.【答案】C【解析】∵i 是虚数单位,则复数32i i -,∴4i 2121i i i i--==-=,故选:C【提示】通分得出4i 2i-,利用i 的性质运算即可【考点】复数代数形式的乘除运算 3.【答案】D【解析】解:模拟执行程序框图,可得1k =,2k = 不满足条件4k >,3k = 不满足条件4k >,4k = 不满足条件4k >,5k =满足条件4k >,5π1sin62S ==,输出S 的值为12. 故选:D .【提示】模拟执行程序框图,依次写出每次循环得到的k 的值,当5k =时满足条件4k >,计算并输出S 的值为12【考点】程序框图 4.【答案】A【解析】解:πcos 2sin 22y x x ⎛⎫=+=- ⎪⎝⎭,是奇函数,函数的周期为:π,满足题意,所以A 正确 πsin 2cos22y x x ⎛⎫=+= ⎪⎝⎭,函数是偶函数,周期为:π,不满足题意,所以B 不正确;πsin 2cos224y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为π,所以C 不正确;πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为2π,所以D 不正确;故选:A .【提示】求出函数的周期,函数的奇偶性,判断求解即可 【考点】两角和与差的正弦函数,三角函数的周期性及其求法 5.【答案】D【解析】解:双曲线2213yx -=的右焦点(2,0),渐近线方程为y =,过双曲线2213y x -=的右焦点且与x 轴垂直的直线,2x =,可得A y =,B y =-,∴||AB =故选:D .【提示】求出双曲线的渐近线方程,求出AB 的方程,得到AB 坐标,即可求解||AB . 【考点】双曲线的简单性质 6.【答案】B【解析】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个; 分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有32472⨯=个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有22448⨯=个,共有7248120+=个.故选:B【提示】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案. 【考点】排列、组合及简单计数问题 7.【答案】C【解析】解:∵四边形ABCD 为平行四边形,点M 、N 满足3BM MC =,2DN NC =,∴根据图形可得:3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++, 22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴22131239316AM NM AB AD =-=-=故选;C【提示】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+, 2()AM NM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.【考点】平面向量数量积的运算 8.【答案】B【解析】解:A 、B 都是不等于1的正数,∵333a b >>,∴1a b >>,∵l og 3l og 3a b <,∴3311log log a b <,即lg lg 0lg lg b a a b -<,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩ 求解得出:1a b >>,10a b >>>或1b >,01a <<根据充分必要条件定义得出:“333a b >>”是“log 3log 3a b <”的充分不必要条件,故选:B .【提示】求解333a b >>,得出1a b >>,log 3log 3a b <,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可. 【考点】必要条件、充分条件与充要条件的判断 9.【答案】B【解析】解:∵函数21()(2)(8)1(0,0)2f x m x n x m n =-+-+≥≥在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,∴①2m =,8n <对称轴82n x m -=--, ②20822m n m ->⎧⎪-⎨-≥⎪-⎩即22120m m n >⎧⎨+-≤⎩ ③208122m n m -<⎧⎪-⎨-≤⎪-⎩即22180m n m <⎧⎨+-≤⎩ 设22120x x y >⎧⎨+-≤⎩,22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩设k y x =,2ky x '=-,当切点为00()x y ,,k 取最大值. ①202k x -=-,202k x =,00212y x +=-,2000022x y x x ==,可得03x =,06y =,∵32x =>∴k 的最大值为3618⨯=②2012k x =,10200012x y x x ==,002180y x -+=,解得:09x =,092y =∵02x < ∴不符合题意.③2m =,8n =,16k mn ==综合得出:3m =,6n =时k 最大值18k mn ==,故选;B【提示】根据二次函数的单调性得出①2m =,8n <对称轴82n x m -=--,②20822m n m ->⎧⎪-⎨-≥⎪-⎩③208122m n m -<⎧⎪-⎨-≤⎪-⎩构造函数22120x x y >⎧⎨+-≤⎩或22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩运用导数,结合线性规划求解最大值.【考点】二次函数的性质10.【答案】D【解析】解:设11()A x y ,,22()B x y ,,00()M x y ,,则斜率存在时,设斜率为k ,则2114y x =,2224y x =,利用点差法可得02ky =,因为直线与圆相切,所以0015y x k=--,所以03x =,即M 的轨迹是直线3x =,代入抛物线方程可得y =±所以交点与圆心(50),的距离为4,所以24r <<时,直线l 有2条;斜率不存在时,直线l 有2条;所以直线l 恰有4条,24r <<,故选:D .【提示】先确定M 的轨迹是直线3x =,代入抛物线方程可得y =±(50),的距离为4,即可得出结论.【考点】抛物线的简单性质,直线与圆的位置关系第Ⅱ卷二、填空题 11.【答案】40-【解析】解:根据所给的二项式写出展开式的通项,515(2)(1)rrr r T C x -+=-;要求2x 的项的系数,∴52r -=,∴3r =,∴2x 的项的系数是2335()2140C =--. 故答案为:40-.【提示】根据所给的二项式,利用二项展开式的通项公式写出第1r +项,整理成最简形式,令x 的指数为2求得r ,再代入系数求出结果 【考点】二项式定理的应用 12.【解析】解:sin15sin 75sin15cos15cos45cos15sin 45)60︒+︒=︒+︒=︒︒+︒︒=︒=.. 【提示】利用诱导公式以及两角和的正弦函数化简求解即可. 【考点】两角和与差的正弦函数;三角函数的化简求值. 13.【答案】24【解析】解:由题意可得,0x =时,192y =;22x =时,48y =. 代入函数e kx by +=,可得e 192b =,22e 48k b +=,即有111e 2k =,e 192b =,则当33x =时,331e 192248k b y +==⨯=. 故答案为:24.【提示】由题意可得,0x =时,192y =;22x =时,48y =.代入函数e kx by +=,解方程,可得k ,b ,再由33x =,代入即可得到结论. 【考点】函数与方程的综合运用 14.【答案】25【解析】解:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立如图所示空间直接坐标系,设2AB =,则:(000)A ,,,(100)E ,,,(210)F ,,;M 在线段PQ 上,设(0,,2)M y ,02y ≤≤;∴(1,,2)EM y =-,(2,1,0)AF =;∴cos |cos ,55EMAF θ==;数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)∴22244cos =5(y 5)y y θ-++,设22445(y 5)y y t -+=+,整理得:2(51)42540t y y t -++-=①,将该式看成关于y 的方程;(1)若15t =,则14y =-,不符合02y ≤≤,即这种情况不存在;(2)若15t ≠,①便是关于y 的一元二次方程,该方程有解;∴164(51)(254)0t t =---≥△;解得4025t ≤≤;∴t 的最大值为425;∴2cos θ的最大值为425,cos θ最大值为25.故答案为:25.【提示】首先以AB ,AD ,AQ 三直线为x ,y ,z 轴,建立空间直角坐标系,并设正方形边长为2,(02)M y ,,,从而可求出向量EM ,AF 的坐标,由cos cos ,EM AF θ=得到22244cos 5(5)y y y θ-+=+,可设22445(5)y y t y -+=+,可整理成关于y 的方程,根据方程有解即可求出t 的最大值,从而求出cos θ的最大值. 【考点】异面直线及其所成的角 15.【答案】①④【解析】解:对于①,由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则①正确;对于②,由二次函数的单调性可得()g x 在,2a ⎛⎫-∞- ⎪⎝⎭递减,在2a ⎛⎫+∞ ⎪⎝⎭,递减,则0n >不恒成立,则②错误;对于③,由m n =,可得1212()()()()f x f x g x g x -=-,考查函数2()2x h x x ax =+-,()22ln 2xh x x a '=+-,当a →-∞,()h x '小于0,()h x 单调递减,则③错误;对于④,由m n =-,可得1212[()()()(])f x f x g x g x -=--,考查函数2()2xh x x ax =++,()22ln 2x h x x a '=++,对于任意的a ,()h x '不恒大于0或小于0,则④正确.故答案为:①④.【提示】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数2()2xh x x ax =+-,求出导数判断单调性,即可判断③; 通过函数2()2xh x x ax =++,求出导数判断单调性,即可判断④.【考点】命题的真假判断与应用 三、解答题16.【答案】(Ⅰ)2n na = (Ⅱ)10【解析】解:(Ⅰ)由已知12n n S a a -=,有1122(2)n n n n n a S S a a n ≥-==﹣﹣﹣,即12(2)n n a a n ≥=﹣, 从而212a a =,32124a a a ==,又∵1a ,21a +,3a 成等差数列,∴11142(21)a a a ++=,解得:12a =.∴数列{}n a 是首项为2,公比为2的等比数列.故2n na =;(Ⅱ)由(Ⅰ)得:112n n a =,∴1122212[1()]1111122212nn n n T -=+++==--. 由1|1|1000n T -<,得111121000n --<,即21000n >.∵9102512100010242=<<=,∴10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【提示】(Ⅰ)由已知数列递推式得到12(2)n n a a n ≥=﹣,再由已知1a ,21a +,3a 成等差数列求出数列首项,可得数列{}n a 是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,再由等比数列的前n 项和求得n T ,结合1|1|1000n T -<求解指数不等式得n 的最小值. 【考点】数列的求和. 17.【答案】(Ⅰ)99100(Ⅱ)2【解析】解:(Ⅰ)由题意,参加集训的男、女学生个有6人,参赛学生全从B 中抽出(等价于A 中没有学生入选代表队)的概率为:333433661100C C C C =,因此A 中学至少有1名学生入选代表队的概率为:1991100100-=; (Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数,则X 的可能取值为:1,2,3,2333461(1)5C C P X C ===,2333463(2)5C C P X C ===,3133461(3)5C C P X C ===.则数学期望11232555EX =⨯+⨯+⨯=.【提示】(Ⅰ)求出A 中学至少有1名学生入选代表队的对立事件的概率,然后求解概率即可;(Ⅱ)求出X 表示参赛的男生人数的可能值,求出概率,得到X 的分布列,然后求解数学期望.【考点】离散型随机变量的期望与方差,离散型随机变量及其分布列 18.【答案】(Ⅰ)如图 (Ⅱ)见解析 (Ⅲ)3【解析】解:(Ⅰ)F 、G 、H 的位置如图;证明:(Ⅱ)连接BD ,设O 是BD 的中点,∵BC 的中点为M 、GH 的中点为N ,∴数学试卷 第16页(共21页) 数学试卷 第17页(共21页)数学试卷 第18页(共21页)OM CD ∥,12OM CD =,HN CD ∥,12HN CD =,∴OM HN ∥,OM HN =,即四边形MNHO 是平行四边形,∴MN OH ∥,∵MN BDH ⊄平面;OH BDH ⊂面,∴MN BDH 直线∥平面;(Ⅲ)方法一:连接AC ,过M 作MH AC ⊥于P ,则正方体ABCD EFGH -中,AC EG ∥,∴MP EG ⊥,过P 作PK EG ⊥于K ,连接KM ,∴KM PKM ⊥平面则KM EG ⊥,则PKM ∠是二面角A EG M --的平面角,设2AD =,则1CM =,2PK =,在Rt CMP △中,sin 45PM CM =︒=,在R t P K M △中,KM ,∴cos 3PK PKM KM ∠==,即二面角A EG M --的余弦值为3. 方法二:以D 为坐标原点,分别为DA ,DC ,DH 方向为x ,y ,z 轴建立空间坐标系如图:设2AD =,则(120)M ,,,(0,2,2)G ,(2,0,2)E ,(1,1,0)O ,则(2,2,0)GE =-,(1,0,2)MG =-,设平面EGM 的法向量为(x,y,z)n =,则00n GE n MG ⎧=⎪⎨=⎪⎩,即22020x y x z -=⎧⎨-+=⎩,令2x =,得(2,2,1)n =,在正方体中,DO AEGC ⊥平面,则(1,1,0)n DO ==是平面AEG 的一个法向量,则cos ,3||||9m n m n m n ====⨯.二面角A EG M --.【提示】(Ⅰ)根据展开图和直观图之间的关系进行判断即可; (Ⅱ)利用线面平行的判定定理即可证明直线MN BDH ∥平面; (Ⅲ)法一:利用定义法求出二面角的平面角进行求解. 法二:建立坐标系,利用向量法进行求解即可.【考点】二面角的平面角及求法,直线与平面平行的判定. 19.【答案】(Ⅰ)见解析 【解析】证明:(Ⅰ)222222sin 2sin 1cos tan cos2sin cos sin A AA A AAA A -===.等式成立.(Ⅱ)由180A C +=︒,得180C A =︒-,180D B =︒-,由(Ⅰ)可知:tantan tan tan 2222A B C D +++ 1cos 1cos 1cos(180)1cos(180)sin sin sin(180)sin(180)A B A B A B A B ---︒--︒-=+++︒-︒-22sin sin A B =+连结BD ,在ABD △中,有2222cos BD AB AD AB AD A -=+,6AB =,3BC =,4CD =,5AD =,在BCD △中,有2222cos BD BC CD BC CD C -=+,所以22222cos 2cos AB AD AB AD A BC CD BC CD C +=-+-,则:2222222265343cos 2(AB AD BCCD)2(6534)7AB AD BC CD A +--+--===+⨯+÷. 于是sin A ==AC , 同理可得:2222222263542(AB CD)2(63541)1cos 9AB BCAD CD BC ADF B +--+--==+⨯+÷=, 于是sin B=所以tan tantan tan2222A B C D +++22sin sin A B =+=【提示】(Ⅰ)直接利用切化弦以及二倍角公式化简证明即可.(Ⅱ)通过180A C +=︒,得180C A =︒-,180D B =︒-,利用(Ⅰ)化简22tantan tan tan 2222sin sin A B C D A B+++=+,连结BD ,在ABD △中,利用余弦定理求出sin A ,连结AC ,求出sin B ,然后求解即可【考点】三角函数恒等式的证明20.【答案】(Ⅰ)22142x y +=(Ⅱ)存在与点P 不同的定点(0,2)Q,使得QA PA QBPB=恒成立【解析】解:(Ⅰ)∵直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 ∴点在椭圆E , ∴22222211c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得2a =,b =,∴椭圆E 的方程为:22142x y +=;(Ⅱ)结论:存在与点P 不同的定点(0,2)Q,使得||||||||QA PA QB PB =恒成立. 理由如下:当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点,如果存在定点Q 满足条件,数学试卷 第19页(共21页)数学试卷 第20页(共21页)数学试卷 第21页(共21页)则有||||||||QA PA QB PB =,即||||QC QD =. ∴Q 点在直线y 轴上,可设0(0,)Q y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点,则M 、N的坐标分别为、(0,,又∵||||||||QM PM QN PN ==,解得01y =或02y =. ∴若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(0,2).下面证明:对任意直线l ,均有||||||||QA PA QB PB =. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为11)(,A x y 、22)(,B x y ,联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 并整理得:22(12)420k x kx ++-=,∵22(4)8(12)0k k =++>△, ∴122412k x x k +=-+,122212x x k-=+, ∴121212112x x k x x x x ++==, 已知点B 关于y 轴对称的点B '的坐标为22(,)x y -, 又11111211AQ y kx k k x x x --===-,2222212111OB y kx k k K x x x x --===-+=---, ∴AO QB k k =,即Q 、A 、B '三点共线,∴12QAQA x PA QB QB x PB==='. 故存在与点P 不同的定点(0,2)Q ,使得QA PA QBPB=恒成立.【提示】(Ⅰ)通过直线l 平行于x 轴时被椭圆E截得的线段长为,2,计算即得结论;(Ⅱ)通过直线l 与x 轴平行、垂直时,可得若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(02),.然后分直线l 的斜率不存在、存在两种情况,利用韦达定理及直线斜率计算方法,证明对任意直线l ,均有QA PAQB PB=即可. 【考点】直线与圆锥曲线的综合问题,椭圆的标准方程 21.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】解:(Ⅰ)由已知,函数()f x 的定义域为(0,)+∞,()()2()2ln 21a g x f x x a x x ⎛⎫'==---+ ⎪⎝⎭,∴21124222()2()22()2x a a g x x x x -+-'=-+=. 当104a <<时,()g x在10,2⎛ ⎝⎭,12⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在区间⎝⎭上单调递减;当14a ≥时,()g x 在(0,)+∞上单调递增. (Ⅱ)由()2()2ln 210a f x x a x x ⎛⎫'=---+= ⎪⎝⎭,解得11ln 1x x a x ---=+,令2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, 则(1)10ϕ=>,211(2)2()2011e e e e e e ϕ----⎛⎫=--< ⎪++⎝⎭. 故存在0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,由1()10u x x '=-≥知,函数()u x 在(1,)+∞上单调递增.∴0011100()(1)()20111111u x u u e e a x e x ----=<=<=<++++. 即0(0,1)a ∈,当0a a =时,有0()0f x '=,00()()0f x x ϕ==.由(Ⅰ)知,()f x '在(1,)+∞上单调递增,故当0(1,)x x ∈时,()0f x '<,从而0()()0f x f x >=; 当0(,)x x ∈+∞时,()0f x '>,从而0()()0f x f x >=. ∴当(1,)x ∈+∞时,()0f x ≥.综上所述,存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【提示】(Ⅰ)求出函数()f x 的定义域,把函数()f x 求导得到()g x 再对()g x 求导,得到其导函数的零点,然后根据导函数在各区间段内的符号得到函数()g x 的单调期间; (Ⅱ)由()f x 的导函数等于0把a 用含有x 的代数式表示,然后构造函数2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭,由函数零点存在定理得到0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,利用导数求得0(0,1)a ∈,然后进一步利用导数说明当0a a =时,若(1,)x ∈+∞,有()0f x ≥,即可得到存在(01)a ∈,,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【考点】利用导数研究函数的单调性,利用导数求闭区间上函数的最值。
2015届南充二诊文综和理综答案
南充市高2015届第二次高考适应性考试政治参考答案及评分意见第Ⅱ卷(非选择题共52分)13.(1)材料一表明我国:①GDP平稳增长的同时,万元GDP能耗下降,可持续发展能力增强。
(2分)②中西部固定资产投资增长明显高于东部,区域发展更加协调。
(2分)③农村居民收入增速高于城镇居民,城乡收入差距进一步缩小。
(2分)(2)①有利于企业转变发展方式,调整生产结构,降低环境成本。
(2分)②有利于企业增加新的投资机会,平等参与市场竞争。
(2分)③有利于企业积极承担社会责任,更加关注环境保护。
(2分)④有利于企业扩大相关环保产品市场需求和拓展发展空间。
(2分)⑤有利于企业合理利用政策优势,促进自身发展。
(2分)(如果从制定正确经营战略;自主创新能力;股份制改革等方面作答,同样作为要点给分)(3)①中国共产党要巩固领导核心地位,应依法执政、领导立法、带头守法,不断推进市场经济的法制化、规范化。
(3分)②全国人大及其常委会行使立法权,制定和完善市场经济的法律法规,为良好市场秩序的形成提供法律保障。
( 3分)③各级政府依法行政,加强监管,履行好自身职能,审慎使用权力,防止行政权力的缺失滥用。
(3分)④公民要坚持权利和义务的统一,增强法律意识,依法诚信经营,开展有序竞争。
(3分)14.(1)①实践具有主观能动性,是有目的有意识的改造客观世界的活动。
借助“一带一路”,加强区域合作,是人们有目的、有意识的交往活动,观点有其合理性。
(3分)②联系是客观的,不以人的意志为转移。
国与国之间的联系是客观的。
上述观点否定了联系的客观性。
(3分)③自在事物的联系和人为事物的联系都是客观的。
“一带一路”属于人为事物的联系,同样是客观的。
(3分)④人们可以根据事物固有的联系,改变事物的状态,建立新的具体联系。
通过“一带一路”,我国与沿线国家合作更加紧密,这种联系体现了主观能动性的发挥,但不能因此否定联系的客观性。
(3分)(2)①文化对人的影响是潜移默化的,来自于特定的文化环境和文化活动。
绵阳市2015级数学二诊考试模拟试题二答案
2015级高三“二诊”模拟试题(二)理科数学1--5.B A C BA 6--10.CDD BA 11.C12.D 12.易知函数的零点为,设函数的一个零点为,若函数和互为“零点关联函数”,根据定义,得,即,作出函数的图象,因为,要使函数的一个零点在区间上,则,即,解得;故选D .13.14-14.215.2325y x = 16.-6≤b <0 16.函数()f x 的图象关于点(-2,0)中心对称,则()()40f f -=-,由此求得2a =-,∴()()()2322456310f x x x x x x x =++-=++-,()()()()''''0f x b f x f x b f x +<⇔+-<,即b 2+2bx +4b <0对()1,2x ∈恒成立.显然0b =不合题意.当0b >时,()()''024f x b f x b x +-<⇔<--,b ≤-8(舍);当0b<时,()()''024f x b f x b x +-⇔--,b ≥-6.综上,b 的取值范围是-6≤b <0.17.解:(1)从5天中任选2天,共有10个基本事件,选出的二天种子发芽数均不小于25共有3个基本事件: (13日,14日),(13日,15日),(14日,15日). ∴事件“,c d 均不小于25”的概率为310P =.(2)11131225302612,2733x y ++++====.313=i i i x y xy =-∑5.32213ii xx =-∑=2.∴55,272ˆ123ˆ2b a ==-⨯=-. ∴y 关于x 的线性回归方程为5=32ˆy x -+.(3)当=10x 时,5=310=22,2322122ˆy -+⨯-=<.当=8x 时,5=38=17,1716122ˆy-+⨯-=<. ∴回归方程5=32ˆy x -+是可靠的.18.解:(1)当1n =时,21111112a a S a +⎛⎫=== ⎪⎝⎭. 当2n ≥时,22111122n n n n n a a a S S +-++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭化简得12n n a a --=,所以21n a n =-;(2)由(1)知,21n a n =-. 则()()()1111111122241n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭所以111111142231n T n n ⎛⎫=-+-++- ⎪+⎝⎭ ()1114141n n n ⎛⎫=-= ⎪++⎝⎭ ()()114241n n n n T T n n ++-=-++()()10412n n =>++,∴{}n T 单调递增,∴118n T T ≥=.∵()1414n n T n =<+,∴1184n T ≤<,使得245n m m T -<<恒成立,只需145 2148mm ⎧≤⎪⎪⎨-⎪<⎪⎩解之得5542m ≤<.19.解:1()2sin()cos sin 232f x x x x x π=+=+sin(2)3x π=+ ……………4分 5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈,[]π,0∈x()f x 的单调增区间为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,127,12,0 .……6分 (2)由()2Af =得233sin =⎪⎭⎫ ⎝⎛+πA 解得3π=A ,……7分由题意可知:ABC ∆的内切圆半径为1……8分则b c a +-=9分由余弦定理可知:222a b c bc =+-222(b c b c bc +-=+-………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍)……11分1[6,)2AB AC bc ⋅=∈+∞ ,当且仅当b c =时,AB AC ⋅的最小值为6.……………12分20.解:(1(),0c ,依题意知,22222(2243c b b a c c ⎧⎪=⎪⎪=+⎨⎪⎪+=⎪⎩又1b >,解得2a =,b =1c =,所以椭圆C 的方程为22143x y +=.(2)设过椭圆C 的右焦点的直线l 的方程为()1y k x =-,将其代入22143x y +=,得()22223484120k x k x k +-+-=, 设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k-=+,∴()121226234k y y k x x k k -+=+-=+, 因为P 为线段AB 的中点,故点P 的坐标为22243,3434k k k k ⎛⎫- ⎪++⎝⎭,又直线PD 的斜率为1k -, 直线PD 的方程为2223143434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,令0y =,得2234k x k =+, 由点D 的坐标为22,034k k ⎛⎫ ⎪+⎝⎭,则221347k k =+,解得1k =±. 21.解:(1)由()ln 10f x x +'==,可得1x e=, ∴①10t e<<时,函数在1,t e ⎛⎫ ⎪⎝⎭上单调递减,在1,2t e ⎛⎫+ ⎪⎝⎭上单调递增,∴函数在[],2(0)t t t +>上的最小值为11f e e⎛⎫=- ⎪⎝⎭,②当1t e≥时,f (x )在[],2t t +上单调递增,()()minln f x f t t t ∴==,()min1101,t e e f x tlnt t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; (2)()()2ln 2y f x g x x x x ax =+=-+-,则ln 21y x x a =-++' 题意即为ln 210y x x a =-++='有两个不同的实1212,()x x x x <, 即ln 21a x x =-+-有两个不同的实根1212,()x x x x <,等价于直线y a =与函数()ln 21G x x x =-+-的图像有两个不同的交点,()12G x x =-'+ ,()G x ∴在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 由图像知,当()min1ln22a G x G ⎛⎫>== ⎪⎝⎭时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln2x x -=时,由题意1122210210lnx x a lnx x a -++=⎧⎨-++=⎩,两式相减得()1122ln 22ln2xx x x =-=-214x x ∴=代入上述方程可得2144ln23x x ==,此时2ln2ln2ln 133a ⎛⎫=-- ⎪⎝⎭, 所以,实数a 的取值范围为2ln2ln2ln 133a ⎛⎫>-- ⎪⎝⎭; 23.解:(1)将1C 参数方程化为普通方程为()2213x y -+=,即22220x y x +--=,∴1C 的极坐标方程为22cos 20ρρθ--=.将2C 极坐标方程化为直角坐标方程为221x y +=.(2)将=3πθ代入1:C 22cos 20ρρθ--=整理得220ρρ--=,解得12ρ=,即12OA ρ==. ∵曲线2C 是圆心在原点,半径为1的圆,∴射线=3πθ()0ρ≥与2C 相交,即21ρ=,即21OB ρ==故12211AB ρρ=-=-=.23.解:(1)()()f x g x ≥,即24x x -++≥243x x ++, ①当4x <-时,原不等式等价于()()24x x ---+≥243x x ++,即2650x x ++≤,解得51x -≤≤-,54x ∴-≤<-;②当42x -≤≤时,原不等式等价于()()24x x --++≥243x x ++,即2430x x +-≤,解得22x -≤-42x ∴-≤≤-③当2x >时,原不等式等价于()()24x x -++≥243x x ++,即2210x x ++≤,解得1x =-,得x ∈∅.综上可知不等式()()f x g x ≥的解集是{|52x x -≤≤-.(2)因为24x x -++≥246x x ---=,且()15f x a ≥-恒成立, 所以615a ≥-,即6156a -≤-≤,所以715a -≤≤,所以a 的取值范围是71,5⎡⎤-⎢⎥⎣⎦.。
2015年普通高等学校招生全国统一考试 理科数学(四川卷)word版 含答案
2015年普通高等学校招生全国统一考试(四川)理科数学1.设集合{x/(x+1)(2)0},A x =-<集合{x/1<x<3}B =,则A B =U A.{X/-1<X<3} B.{X/-1<X<1}C.{X/1<X<2}D.{X/2<X<3} 2.设i 是虚数单位,则复数22i -=iA.-iB.-3iC.i.D.3i3.执行如图所示的程序框图,输出S 的值是 A.32-B 32C-12D 124.下列函数中,最小正周期为且图象关于原点对称的函数是A.y cos(2)2.sin(2)2.sin 2cos 2.sin cos x B Y x C Y x x DY x xp p=+=+=+=+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r.若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则AM NM ⋅=u u u u r u u u u r(A )20 (B )15 (C )9 (D )68.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 (A )()13, (B )()14, (C )()23, (D )()24, 二.填空题11.在8)12(-x 的展开式中,含的项的系数是 (用数字作答)。
2015年普通高等学校招生全国统一考试数学理试题精品解析(四川卷)
2015年高考四川卷理数试题解析(精编版)(解析版)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB =( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<【答案】A【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答. 2.设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i 【答案】C【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.执行如图所示的程序框图,输出S 的值是( )(A )2-(B )2(C )-12 (D )12【答案】D【考点定位】程序框图.【名师点睛】程序框图也是高考的热点,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来.4.下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(B)(D )【答案】D【考点定位】双曲线.【名师点睛】双曲线22221x y a b-=的渐近线方程为22220x y a b -=,将直线2x =代入这个渐近线方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个 【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB =,4AD =故可选,AB AD 作为基底.8.设a ,b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的 ( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考. 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【考点定位】函数与不等式的综合应用.【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24, 【答案】D【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x 轴垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线3x =上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解. 12.=+ 75sin 15sin .【考点定位】三角恒等变换及特殊角的三角函数值.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C)满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
南充市2015届二诊数学答案
…………12 分
{ }
…………4 分
高三数学二诊( 理科) 第摇2 页( 共 4 页)
2(1-2 n ) 1 -1-( n - ) ·2 n+1 1-2 2 = -3-(2 n -3) ·2 n 亦 S n = 3+(2 n -3) ·2 n( n沂N * ) 2 ( 芋) 由( 域) 知 b n = (2 n -3) ( ) n( n沂N * ) 3 b n+1 2 2 n -1 而 = · b n 3 2 n -3 b n+1 设 >1 解得 1臆n臆3 bn b n+1 b n+1 设 <1 解得 n逸4摇 又 屹1 bn bn 亦 数列{ b n } 中,b1 <b2 <b3 <b4 >b5 >n6 …… 80 故数列{ b n } 中的最大项为 b4 = 81 4 2 + =1 a2 = 8 20 . 解:( 玉) 由题疫 a2 b2 摇 解得 2 b =4 a2 - b2 = 4 x2 y2 亦 椭圆 T 的方程为 + = 1 8 4 x2 y2 ( 域) 将 y = kx +m 代入 + = 1 整理得 8 4 (1+2 k2 ) x2 +4 kmx +2 m2 -8 = 0 当吟 = 16 k2 m2 -4(1+2 k2 ) (2 m2 -8) >0 即 8 k2 +4>m2 时 设 A ( x 1 ,y 1 ) ,B ( x 2 ,y 2 ) 4 km 2 m2 -8 亦 x1 + x2 = , x x = 1 2 1+2 k2 1+2 k2 则 y1 y2 = ( kx1 +m) ( kx2 +m) = k2 x1 x2 +km( x1 +x2 ) +m2 m2 -8 k2 = 1+2 k2 2 疫 椭圆 T 的离心率 e = 2 y1 y2 y1 y2 1 亦 k OA k OB = · = =x1 x2 x1 x2 2 m2 -8 k2 1 即 2 = - 得 m2 = 4 k2 +2 2 2 m -8 寅 寅 3 m2 -8 k2 -8 淤OA·OB = x1 x2 +y1 y2 = 1+2 k2 2 4 k -2 4 = = 2- 2 1+2 k2 2 k +1 寅 寅 亦 k2 逸0摇 亦 OA·OB 的取值范围为[ -2,2) 1 |m| 于证明:吟AOB 的面积 S = | x1 y2 -x2 y1 | = | x1 - x2 | 2 2 |m| 8(8 k2 +4-m2 ) 2(8 k2 +4-m2 ) m2 = · = 2 1+2 k2 1+2 k2 =
2015年高考理科数学四川卷-答案
2015年普通高等学校招生全国统一考试(四川卷)满足3BM MC =,2DN NC =,∴根据图形可得:3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++,22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴221312316AM NM AB AD =-=-【提示】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,2()AM NM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.k kM 在线段PQ 上,设(0,,2)M y ∴(1,EM =-,(2,1,0)AF =,55y EM AF y =;2445)y ++,设25)t =+,整理得:5EM AF得到从而可求出向量EM,AF的坐标,,【考点】异面直线及其所成的角112++=2n>.1000方法二:以D 为坐标原点,轴建立空间坐标系如图:则(2,2,0)GE =-,(1,0,2)MG =-的法向量为(x,y,z)n =0n GE n MG ⎧=⎪⎨=⎪⎩,即,得(2,2,1)n =,AEGC ,则(1,1,0)n DO ==224,3||||92m n m n m n +==⨯M -的余弦值为2222sin 1cos sin A A-=cos AB AD A ,cos BC CD C ,22cos 2cos AB AD A BC CD BC CD C =+-,226532(AB AD BC CD)2(6534)7AD BC CD --+--=+⨯+÷7A =,连结AC 632(AB CD)2(6BC AD CD BC ADF +--+=+⨯。
2015年四川省南充市高中阶段学校招生考试数学试卷
南充市二O 一五年高中阶段学校招生考试数 学 试 卷(满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项代号在答题卡对应位置填涂.填涂正确记3分,不涂、错涂或多涂记0分. (2015)1.计算3+(-3)的结果是( )(A )6 (B )-6 (C )1 (D )0 (2015)2.下列运算正确的是( )(A )3x -2x =x (B )x x x 632=⋅ (C )()x x 422= (D )x x x 326=÷(2015)3.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是( )(A ) (B ) (C ) (D )(2015)4.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )(A )25台 (B )50台 (C )75台 (D )100台(2015)5.如图,一艘海轮位于灯塔P 的北偏东方向55°,距离灯塔为2 海里的点A 处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长是( )(A )2 海里 (B )55sin 2海里 (C )55cos 2海里(D )55tan 2海里(2015)6.若m >n ,下列不等式不一定成立的是( ) (A )m +2>n +2 (B )2m >2n (C )22nm > (D )22n m > (2015)7.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a ;如果投掷一枚硬币,正面向上的概率为b .关于a ,b 大小的正确判断是( )(A )a >b (B )a =b (C )a <b (D )不能判断(2015)8.如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O的直径,已知∠P =40°,则∠ACB 的大小是( )(A )60° (B )65° (C )70° (D )75°第8题图 第9题图(2015)9.如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )(A )1:2 (B )1:3 (C )1:2 (D )1:3(2015)10.关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y 的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是( )(A )0个 (B )1个 (C )2个 (D )3个二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填写在对应横线上. (2015)11.计算45sin 28-的结果是_____. (2015)12.不等式121>-x 的解集是______. (2015)13.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,D E则∠ACE 的大小是_____度.(2015)14.从分别标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是______. (2015)15.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是____.(2015)16.如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②23=BQ PQ ;③S △PDQ =81;④cos ∠ADQ =53.其中正确结论是_________.(填写序号)三、解答题(本大题共9个小题,共72分) (2015)17.(6分) 计算:aa a a --⋅--+342)252(.(2015)18.(6分)某学校为了了解学生上学交通情况,选取九年级全体学生进行调查。
绵阳市高中2015级第二次诊断性考试(数学理)
数学(理工类)答案第1页(共6页)一、选择题:本大题共12小题,每小题5分,共60分.DBBCA CDDCA BD二、填空题:本大题共4小题,每小题5分,共20分.13.93 14.-5 15.116.①③④ 16题提示:③设|BM |=|BO |=m ,|CN |=|CO |=n ,由①得|PM |=|PN |=9.由题知圆E 与x 轴相切,于是圆E :x 2+(y -2)2=4是△PBC 的内切圆, 根据公式S △PBC =)(21c b a r ++(其中r 为内切圆半径,a ,b ,c 为△PBC 的边长)得:21|BC |•y 0=21×2×2(|PM |+|BO |+|CO |),即21(m +n )×9=2(9+m +n ),解得536=+n m ,故S △PBC 5162953621=⨯⨯=. ④同③可得21(m +n )•y 0=2(y 0+m +n ), 解得4400-=+y y n m , 故S △PBC ]8)4(16)4[(24421)(21000200+-+-⋅=-⋅=+=y y y y y n m ≥32. 三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)已知C B A t an 31t an 21t an ==, ∴ tan B =2tan A ,tan C =3tan A ,在△ABC 中,tan A =-tan(B +C )=AA A CBC B 2t an 61t an 3t an 2t an t an 1t an t an -+-=-+-,………3分 解得tan 2A =1,即tan A =-1,或tan A =1.……………………………………4分 若tan A =-1,可得tan B =-2,则A ,B 均为钝角,不合题意. ……………5分 故tan A =1,得A =4π.…………………………………………………………6分 (Ⅱ)由tan A =1,得tan B =2,tan C =3,数学(理工类)答案第2页(共6页)在△ABC 中,由B b A a sin sin =,得b =a a a A B 51022252sin sin ==, …………11分 于是S △ABC =21ab sin C =253103510221a a a =⨯⨯, ∴253a =15,解得a =5.………………………………………………………12分 18.解:(Ⅰ)根据题意得:a =40,b =15,c =20,d =25, ∴ 879.7249.845554060)20152540(10022>≈⨯⨯⨯⨯-⨯⨯=K , ……………………………4分 ∴ 在犯错误的概率不超过0.005的前提下可以认为网购与年龄有关.……5分 (Ⅱ)根据题意,抽取的9人中,年轻人有=⨯960406,中老年人=⨯960203人. 于是X =0,1,2,3,∴ 8420)0(3936===C C X P ,8445)1(391326===C C C X P , 8418)2(392316===C C C X P ,841)3(3933===C C X P , ∴ X 的分布列为:………………………………………………………10分 ∴ X 的数学期望18413841828445184200)(=⨯+⨯+⨯+⨯=X E .…………………12分 19.解:(Ⅰ)∵ b n+1)1(log 1))1(4[log )1(log 4414-+=-=-=+n n n a a a =1+b n , ∴ b n+1-b n =1(常数), …………………………………………………………3分数学(理工类)答案第3页(共6页)于是(-1)n kb n <2S n +n +4等价于(-1)n kn <n 2+2n +4,即等价于(-1)n 24++<nn k .……………………………………………………7分 ①当n 为偶数时,原式变为24++<nn k , ∵ 24++n n ≥242+⋅n n =6(当且仅当n =n4,即n =2时“=”成立) ∴ n =2时,24++nn 取最小值6, 故k <6. …………………………………………………………………………9分②当n 为奇数时,原式变为2)4(-+->nn k , 令函数f (x )=2)4(-+-x x ,x >0,则222)2)(2(4)(xx x x x x f +--=-=', 当x ∈(0,2)时,0)(>'x f ,当x ∈(2,+∞)时,0)(<'x f ,即f (x )在(0,2)上单调递增,在(2,+∞)上单调递减,由f (1)=-7<f (3)=319-,即f (n )≥319-(n 为奇数), ∴ k >319-. ……………………………………………………………………11分 综上所述,k 的取值范围为(319-,6). ……………………………………12分 20.解:(Ⅰ)设M (x ,y ),P (x 0,y 0), 则D (x 0,0),∴ =(0,y 0),DM =(x -x 0,y ),由=,得0=2(x -x 0),y 0=y 2,即y y x x 200==,, ………2分 又点P 在圆x 2+y 2=8上,代入得x 2+2y 2=8,∴ 曲线C 的方程为:14822=+y x . …………………………………………4分数学(理工类)答案第4页(共6页)②当直线AB 斜率存在时,假设存在满足题意的点Q (x Q ,0) .可设方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2).联立方程组得:⎩⎨⎧=-+-=,,082)2(22y x x k y 整理得(2k 2+1)x 2-8k 2x +8k 2-8=0, ∴ x 1+x 2=12822+k k ,x 1x 2=128822+-k k , …………………………………………8分 ∵ ∠AQO=∠BQO ,∴ k QA +k Q B =0,即02211=-+-QQ x x y x x y , …………………………………10分 将y 1=k (x 1-2),y 2=k (x 2-2)代入整理得:2 x 1x 2-(x Q +2)(x 1+x 2)+x Q =0, 即12161622+-k k -(x Q +2)×12822+k k +4x Q =0, 化简得x Q =4,故此时存在点Q (4,0),使得∠AQO=∠BQO .……………………………12分21.解:(Ⅰ)由已知可得a e x f x -=')(.当a <0时,)(x f '>0,∴ )(x f 在R 上单调递增,且当+∞→-∞→)(x f x ,,不合题意.当a =0时,11)(->-=x e x f ,而-1<1-2ln2,不合题意.…………………3分 当a >0时,由0)(>'x f 解得a x ln >,由0)(<'x f 解得a x ln <,∴ )(x f 在(∞-,a ln )上单调递减,在(a ln ,+∞)上单调递增,∴ )(x f min =)(ln a f =1ln --a a a .要使)(x f ≥2ln 21-恒成立,则须使1ln --a a a ≥2ln 21-恒成立,令1ln )(--=a a a a g ,则a a g ln )(-=',显然当0<a <1时,)(a g '>0,当a >1时,)(a g '<0,于是函数)(a g 在(0,1)上单调递增,在(1,+∞)单调递减,∵ )1(g =0,)2(g =2ln 21-,∴ a 的最大值是2.……………………………………………………………6分 (Ⅱ)由(Ⅰ)知a =2,2)(-='x e x f ,数学(理工类)答案第5页(共6页) 存在x 0>1,使得h (x 0)<0成立,即h (x )min <0.………………………………8分 又x e k x x h )21(21)(-+=', 当k =1时,)(x h '>0,h (x )在(1,+∞)上单调递增, 而h (1)= 521+-e >0不合题意. 当k ≥2时,由)(x h '>0解得x >2k -1,由)(x h '<0解得1<x <2k -1,即h (x )在(2k -1,+∞)上单调递增,在(1,2k -1)上单调递减,∴ h (x )min =h (2k -1)=322112++--k e k . ……………………………………10分 令=)(k ϕ322112++--k e k , 则02)(12<+-='-k e k ϕ, ∴ )(k ϕ在)2[∞+,上单调递减,∵ )(k ϕ≤0721)2(3<+-=e ϕ, ∴ 正整数k 的最小值为2.……………………………………………………12分22.解:(Ⅰ)将直线l 的参数方程消去参数得31=+xy , 即l 的普通方程为013=--y x .将曲线C 的极坐标方程化为直角坐标方程为x 2+y 2-2x -2y +1=0. …………5分 (Ⅱ)将⎪⎪⎩⎪⎪⎨⎧+-==,,t y t x 23121代入C :x 2+y 2-2x -2y +1=0中, 整理得04)132(2=++-t t , 由韦达定理:41322121=⋅+=+t t t t ,, ……………………………………8分 16534)(2)(11112212122122212221222122+=-+=⋅+=+=+t t t t t t t t t t t t PB PA故165341122+=+PB PA . …………………………………………………10分数学(理工类)答案第6页(共6页) 当x >21时,f (x )=3x +1,由f (x )<6解得x <35,综合得21<x <35, 所以f (x )<6的解集是)353(,-. ………………………………………………5分 (Ⅱ)当x >21时,f (x )=(2+m )x +1. 当x ≤21时,f (x )=(m -2)x +3,要使得f (x )有最小值,则⎩⎨⎧≤-≥+,,0202m m 解得-2≤m ≤2,且由图像可得,f (x )在x =21时取得最小值21m +2. y =-x 2+x +1在x =21时取得最大值45,方程f (x )=-x 2+x +1有两个不等实根, 则21m +2<45,解得m <-23.综上所述,m 的取值范围为-2≤m <-23.……………………………………10分。
2015年四川省高考数学试卷(理科)答案与解析
2015年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()通分得出,∴==i3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()﹣的值为=,的值为.)2x+)sin)sin x+5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的B=1=1,6.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比400007.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()=+=,=,()2满足根据图形可得:+==∴=,∵•=﹣,22=22||=4∴22a b或∴<9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()([[[,)([[,[,)=[],②③即或,==k=2x=2x =.,=10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围,=,所以2二、填空题:本大题共5小题,每小题5分,共25分。
11.(5分)(2015•四川)在(2x﹣1)5的展开式中,含x2的项的系数是﹣40(用数字填写答案).12.(5分)(2015•四川)sin15°+sin75°的值是.(sin60.故答案为:13.(5分)(2015•四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.14.(5分)(2015•四川)如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为.,从而可求出向量=,对函数求导,根据导数符号即可判断该函数∴=;=;.故答案为:.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).,﹣)递减,在(,三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
2015年四川省南充市高考数学二模试卷(理科)(解析版)
2015年四川省南充市高考数学二模试卷(理科)一、选择题:本大题共10小题,每题5分,共50分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|2x≤4},集合B={x|y=ln(x﹣1)},则A∩B等于()A.(1,2)B.[1,2]C.[1,2)D.(1,2]2.(5分)已知复数z=,i是虚数单位,则复数虚部是()A.i B.C.D.i3.(5分)设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定4.(5分)设函数f(x)=x sin x+cos x的图象在点(t,f(t))处切线的斜率为k,则函数k =g(t)的部分图象为()A.B.C.D.5.(5分)执行如图所示的程序框图,若输出的S是127,则条件①可以为()A.n≤5B.n≤6C.n≤7D.n≤86.(5分)下列命题中是假命题的是()A.∀a,b∈R*,lg(a+b)≠lga+lgbB.∃φ∈R,使得函数f(x)=sin(2x+φ)是偶函数C.∃α,β∈R,使得cos(α+β)=cosα+cosβD.∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递减7.(5分)已知(ax﹣1)5=a0+a1x+a2x2+a3x3+a4x4+32x5,则二项式(ax﹣1)5展开后的各项系数之和为()A.1B.﹣1C.2D.328.(5分)已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时,有xf′(x)﹣f(x)>0成立,则不等式f(x)>0的解集是()A.(1,+∞)B.(﹣1,0)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)9.(5分)已知抛物线C:y2=4x,直线l过点T(t,0)且与抛物线相交于A、B两点,O 为坐标原点,若∠AOB为锐角,则t的取值范围是()A.0<t<4B.0<t<2C.t≥2D.t>4或t<0 10.(5分)已知函数f(x)=,则关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)在区间[﹣2,2]上随机取一个数x,则事件“|x+1|<1“发生的概率为.12.(5分)已知变量x,y满足,则z=2x+y的最大值.13.(5分)如图是一个四棱锥的三视图,则该四棱锥的体积是.14.(5分)在平面直角坐标系xOy中,已知圆C:x2+y2﹣6x+5=0,点A,B在圆C上,且AB=2,则|+|的最大值是.15.(5分)S={直线l|x+y=1,m,n为正常数,θ∈[0,2π)},给出下列结论:①当θ=时,S中直线的斜率为;②S中所有直线均经过同一个定点;③当m=n时,存在某个定点,该定点到S中的所有直线的距离相等;④当m>n时,S中的两条平行线间的距离的最小值为2n;⑤S中的所有直线可覆盖整个直角坐标平面.其中错误的结论是.(写出所有错误结论的编号).三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知=(sin x,sin x),=(sin x,﹣cos x,)函数f(x)=﹣•.(Ⅰ)求函数f(x)在区间[0,]上的值域;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若sin(2A﹣)﹣f (A)=,b+c=7,△ABC的面积为2,求a的值.17.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E,F分别为BB1,AC的中点.(Ⅰ)求证:BF∥平面A1EC;(Ⅱ)若AB=AA1,求二面角C﹣A1E﹣A的余弦值.18.(12分)某高校经济管理学院在2014年11月11日“双11购物节”期间,对[25,55]岁的人群随机抽取了1000人进行调查,得到各年龄段人数频率分布直方图,同时对这1000人是否参加“商品抢购”进行统计,结果如下表.(Ⅰ)求统计表中a和p的值;(Ⅱ)从年龄落在(40,50]内的参加“抢购商品”的人群中,采用分层抽样法抽取9人参加满意度调查,①设从年龄落在(40,45]和(45,50]中抽取的人数分别为m、n,求m 和n的值;②在抽取的9人中,有3人感到“满意”的3人中年龄在(40,45]内的人数为X,求X的分布列和数学期望E(X).19.(13分)已知数列{a n}满足a1=1,且a n=2a n﹣1+2n(n≥2且n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项和为S n,求S n;(Ⅲ)设b n=,试求数列{b n}的最大项.20.(13分)已知椭圆T:+=1(a>b>0)经过点P(2,),一个焦点F的坐标是(2,0).(Ⅰ)求椭圆T的方程;(Ⅱ)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若k OA•k OB=e2﹣1.①求•的取值范围;②求证:△AOB的面积为定值.21.(13分)设函数f(x)=x2﹣(a﹣2)x﹣alnx.(1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.2015年四川省南充市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每题5分,共50分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|2x≤4},集合B={x|y=ln(x﹣1)},则A∩B等于()A.(1,2)B.[1,2]C.[1,2)D.(1,2]【解答】解:由A中不等式变形得:2x≤4=22,即x≤2,∴A=(﹣∞,2],由B中y=ln(x﹣1),得到x﹣1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2],故选:D.2.(5分)已知复数z=,i是虚数单位,则复数虚部是()A.i B.C.D.i【解答】解:z==,∴复数虚部是.故选:C.3.(5分)设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【解答】解析:∵f(1.5)•f(1.25)<0,由零点存在定理,得,∴方程的根落在区间(1.25,1.5).故选:B.4.(5分)设函数f(x)=x sin x+cos x的图象在点(t,f(t))处切线的斜率为k,则函数k =g(t)的部分图象为()A.B.C.D.【解答】解:∵f(x)=x sin x+cos x∴f′(x)=(x sin x)′+(cos x)′=x(sin x)′+(x)′sin x+(cos x)′=x cos x+sin x﹣sin x=x cos x∴k=g(t)=t cos t根据y=cos x的图象可知g(t)应该为奇函数,且当x>0时g(t)>0故选:B.5.(5分)执行如图所示的程序框图,若输出的S是127,则条件①可以为()A.n≤5B.n≤6C.n≤7D.n≤8【解答】解:循环前,S=1,n=1第一次循环:S=1+2=3,n=1+1=2,继续循环;第二次循环:S=3+22=7,n=2+1=3,继续循环;第三次循环:S=7+23=15,n=3+1=4,继续循环;第四次循环:S=15+24=31,n=4+1=5,继续循环;第五次循环:S=31+25=63,n=5+1=6,继续循环;第六次循环:S=63+26=127,n=6+1=7,停止循环,输出S=127.故选:B.6.(5分)下列命题中是假命题的是()A.∀a,b∈R*,lg(a+b)≠lga+lgbB.∃φ∈R,使得函数f(x)=sin(2x+φ)是偶函数C.∃α,β∈R,使得cos(α+β)=cosα+cosβD.∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递减【解答】解:∀a,b∈R+,lg(a+b)≠lga+lgb,如果a=b=2,两个数值相等,所以A不正确.∃φ∈R,函数f(x)=sin(2x+φ)是偶函数,当φ=时,函数是偶函数,所以B正确.∃α,β∈R,使得cos(α+β)=cosα+cosβ,例如α=,β=,等式成立,所以C正确;∃m∈R,使f(x)=(m﹣1)•xm2﹣4m+3是幂函数,且在(0,+∞)上递减,m=2时函数是幂函数,f(x)=x﹣1.满足题意,正确.故选:A.7.(5分)已知(ax﹣1)5=a0+a1x+a2x2+a3x3+a4x4+32x5,则二项式(ax﹣1)5展开后的各项系数之和为()A.1B.﹣1C.2D.32【解答】解:∵(ax﹣1)5=a0+a1x+a2x2+a3x3+a4x4+32x5 ,∴x5的系数为•a5=32,解得a=2.在(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+32x5 中,令x=1可得二项式(2x﹣1)5展开后的各项系数之和为1,故选:A.8.(5分)已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时,有xf′(x)﹣f(x)>0成立,则不等式f(x)>0的解集是()A.(1,+∞)B.(﹣1,0)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:若f(x)在(﹣∞,﹣1)上为减函数,则f(x)>0,f'(x)<0则xf′(x)﹣f(x)>0不成立若f(x)在(﹣∞,﹣1)上为增函数,则f(x)<0,f'(x)>0则xf′(x)﹣f(x)>0成立故:f(x)在(﹣∞,﹣1)上时,则f(x)<0若f(x)在(﹣1,0)上为增函数,则f(x)<0,f'(x)>0则xf′(x)﹣f(x)>0不成立若f(x)在(﹣∞,﹣1)上为减函数,则f(x)>0,f'(x)<0则xf′(x)﹣f(x)>0成立故:f(x)在(﹣1,0)上时,则f(x)>0又∵奇函数的图象关于原点对称,则f(x)在(0,1)上时,则f(x)<0,f(x)在(1,+∞)上时,则f(x)>0综合所述,不等式f(x)>0的解集是(﹣1,0)∪(1,+∞)故选:C.9.(5分)已知抛物线C:y2=4x,直线l过点T(t,0)且与抛物线相交于A、B两点,O 为坐标原点,若∠AOB为锐角,则t的取值范围是()A.0<t<4B.0<t<2C.t≥2D.t>4或t<0【解答】解:由题意设直线l的方程为x=my+t,与y2=4x联立,得y2﹣4my﹣4t=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4t,x1x2=﹣4tm2+4tm2+t2=t2.由=x1x2+y1y2=t2﹣4t>0,解得:t>4或t<0.故选:D.10.(5分)已知函数f(x)=,则关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个【解答】解:因为f(x)=1时,x=1或3或或﹣4,则当a=1时,x+﹣2=1或3或或﹣4,又因为,x+﹣2≥0或≤﹣4,所以当,x+﹣2=﹣4时只有一个x=﹣2与之对应.其它情况都有2个x值与之对应,故此时所求的方程有7个根.当1<a<2时,y=f(x)与y=a有4个交点,故有8个根;当a=2时,y=f(x)与y=a有3个交点,故有6个根;综上:方程不可能有5个根,故选A.其图象如图所示:故选:A.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)在区间[﹣2,2]上随机取一个数x,则事件“|x+1|<1“发生的概率为.【解答】解:利用几何概型,其测度为线段的长度.∵|x+1|≤1得﹣1≤x+1≤1,即﹣2≤x≤0∴|x+1|≤1的概率为:P(|x+1|≤1)=.故答案为:12.(5分)已知变量x,y满足,则z=2x+y的最大值16.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设m=x+y得y=﹣x+zm,平移直线y=﹣x+m,由图象可知当直线y=﹣x+m经过点B时,直线y=﹣x+m的截距最大,此时m最大.由,解得,即B(1,3),代入目标函数m=x+y得m=1+3=4.即目标函数z的最大值为z=2x+y=24=16.故答案为:16.13.(5分)如图是一个四棱锥的三视图,则该四棱锥的体积是18.【解答】解:由已知的三视图可得:该几何体是一个以主视图为底面的四棱锥,其底面面积S=3×6=18,高h=3,故体积V=Sh=×18×3=18,故答案为:1814.(5分)在平面直角坐标系xOy中,已知圆C:x2+y2﹣6x+5=0,点A,B在圆C上,且AB=2,则|+|的最大值是8.【解答】解:设A(x1,y1),B(x2,y2),AB中点M(x′,y′).∵∴=,∵圆C:x2+y2﹣6x+5=0,∴(x﹣3)2+y2=4,圆心C(3,0),半径CA=2.∵点A,B在圆C上,AB=2,∴,即CM=1.点M在以C为圆心,半径r=1的圆上.∴OM≤OC+r=3+1=4.∴,.故答案为:8.15.(5分)S={直线l|x+y=1,m,n为正常数,θ∈[0,2π)},给出下列结论:①当θ=时,S中直线的斜率为;②S中所有直线均经过同一个定点;③当m=n时,存在某个定点,该定点到S中的所有直线的距离相等;④当m>n时,S中的两条平行线间的距离的最小值为2n;⑤S中的所有直线可覆盖整个直角坐标平面.其中错误的结论是①②⑤.(写出所有错误结论的编号).【解答】解:①当θ=时,sinθ=cosθ,S中直线的斜率为﹣,故①不正确;②根据x+y=1,可知S中所有直线不可能经过一个定点,②不正确;③当m=n时,方程为x sinθ+y cosθ=m,存在定点(0,0),该定点到S中的所有直线的距离均相等,③正确;④当m>n时,S中的两条平行直线间的距离为d=≥2n,即最小值为2n,④正确;⑤(0,0)不满足方程,∴S中的所有直线不可覆盖整个平面.故答案为:①②⑤.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知=(sin x,sin x),=(sin x,﹣cos x,)函数f(x)=﹣•.(Ⅰ)求函数f(x)在区间[0,]上的值域;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若sin(2A﹣)﹣f (A)=,b+c=7,△ABC的面积为2,求a的值.【解答】解:(1)∵=(sin x,sin x),=(sin x,﹣cos x),∴函数f(x)=﹣•=﹣(sin2x﹣sin x cos x)=﹣(﹣sin2x)=cos2x+sin2x=sin(2x+),∵0≤x≤,∴≤2x+≤,∴﹣≤sin(2x+)≤1,则函数f(x)在区间[0,]上的值域为[﹣,1];(2)由(1)得到f(x)=sin(2x+),代入已知等式得:sin(2A﹣)﹣sin(2A+)=,即﹣2cos2A sin=﹣cos2A=,整理得:cos2A=﹣,∴2A=,即A=,∵△ABC面积S=bc sin A=2,∴bc=8,由余弦定理得:a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc=49﹣24=25,则a=5.17.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E,F分别为BB1,AC的中点.(Ⅰ)求证:BF∥平面A1EC;(Ⅱ)若AB=AA1,求二面角C﹣A1E﹣A的余弦值.【解答】(Ⅰ)证明:连接A1C与AC1交于点O,连接OF,∵F为AC的中点,∴OF∥C1C且OF=C1C,∵E为BB1的中点,∴BE∥C1C且BE=C1C,∴BE∥OF且BE=OF,∴四边形BEOF是平行四边形,∴BF∥OE,∵BF⊄平面A1EC,OE⊂平面A1EC,∴BF∥平面A1EC.(Ⅱ)解:以A为原点,AB为y轴,AA1为z轴,建立空间直角坐标系A﹣xyz,设AB=AA1=2,A(0,0,0),C(,1,0),A1(0,0,2),E(0,2,1),=(),=(0,2,﹣1),=(0,0,﹣2),设平面CA1E的法向量=(x,y,z),则,取y=1,得=(,1,2),设平面A1EA的法向量=(a,b,c),则,∴平面A1EA的法向量=(1,0,0),设二面角C﹣A1E﹣A的平面角为θ,cosθ=|cos<>|=||=.∴二面角C﹣A1E﹣A的余弦值为.18.(12分)某高校经济管理学院在2014年11月11日“双11购物节”期间,对[25,55]岁的人群随机抽取了1000人进行调查,得到各年龄段人数频率分布直方图,同时对这1000人是否参加“商品抢购”进行统计,结果如下表.(Ⅰ)求统计表中a和p的值;(Ⅱ)从年龄落在(40,50]内的参加“抢购商品”的人群中,采用分层抽样法抽取9人参加满意度调查,①设从年龄落在(40,45]和(45,50]中抽取的人数分别为m、n,求m 和n的值;②在抽取的9人中,有3人感到“满意”的3人中年龄在(40,45]内的人数为X,求X的分布列和数学期望E(X).【解答】解:(Ⅰ)解:(Ⅰ)因为总人数为1000人,所以年龄在[40,45)的人数为1000×5×0.03=150人,所以a=150×0.4=60,因为年龄在[30,35)的人数的频率为1﹣5×(0.04+0.04+0.03+0.02+0.01)=0.3,所以年龄在[30,35)的人数为1000×0.3=300人,所以p==0.65.…(6分)(Ⅱ)①依题抽取年龄在[40,45)之间的人数m==6人,抽取年龄在[45,50)之间的人数n=9×=3人,由题设知X=0,1,2,3,P(X=0),P(X=1),P(X=2),P(X=3),由此能求出X的分布列和E(X).依题利用分层抽样法能求出m,n.②由题意X=0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为所以E(X)=0×+1×+2×+3×=2.…(12分)19.(13分)已知数列{a n}满足a1=1,且a n=2a n﹣1+2n(n≥2且n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项和为S n,求S n;(Ⅲ)设b n=,试求数列{b n}的最大项.【解答】解:(Ⅰ)由a n=2a n﹣1+2n(n≥2且n∈N*).得,即{}是首项为,公差d=1的等差数列,则=,数列{a n}的通项公式a n=(2n﹣1)•2n﹣1;(Ⅱ)设数列{a n}的前n项和为S n,求S n;∵a n=(2n﹣1)•2n﹣1;∴S n=1•20+3•21+5•22+…+(2n﹣1)•2n﹣1;2S n=1•21+3•22+…+(2n﹣1)•2n;两式相减得﹣S n=1+2(21+22+…+2n﹣1)﹣(2n﹣1)•2n=1+2×﹣(2n﹣1)•2n =﹣3+(3﹣2n)•2n;∴S n=(2n﹣3)•2n+3(Ⅲ)∵b n=,∴b n═(2n﹣3)•()n,由,即,解得,即n=4,即数列{b n}的最大项为.20.(13分)已知椭圆T:+=1(a>b>0)经过点P(2,),一个焦点F的坐标是(2,0).(Ⅰ)求椭圆T的方程;(Ⅱ)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若k OA•k OB=e2﹣1.①求•的取值范围;②求证:△AOB的面积为定值.【解答】解:(Ⅰ)∵焦点F的坐标是(2,0),即c2=4,∴a2=b2+4,∴+=1,将(2,)代入椭圆的方程得:+=1,解得:b2=4,∴a2=8,∴椭圆的方程是:+=1;(Ⅱ)证明:将y=kx+m代入+=1整理得:(1+2k2)x2+4kmx+2m2﹣8=0,当△=16k2m2﹣4(1+2k2)(2m2﹣8)>0,即8k2+4>m2时,设A(x1,y1),B(x2,y2),∴x1+x2=﹣,x1•x2=,则y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,∵椭圆T的离心率e=,K OA•K OB=•==﹣,即=﹣,得:m2=4k2+2,∴•==,当k=0时,•=﹣2,当k→∞时,•→2,∴﹣2≤•<2,而△AOB的面积S=|x1y2﹣x2y1|=•|x1﹣x2|==2.21.(13分)设函数f(x)=x2﹣(a﹣2)x﹣alnx.(1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.【解答】解:(1)x∈(0,+∞).==.当a≤0时,f′(x)>0,函数f(x)在(0,+∞0上单调递增,即f(x)的单调递增区间为(0,+∞).当a>0时,由f′(x)>0得;由f′(x)<0,解得.所以函数f(x)的单调递增区间为,单调递减区间为.(2)由(1)可得,若函数f(x)有两个零点,则a>0,且f(x)的最小值,即.∵a>0,∴.令h(a)=a+﹣4,可知h(a)在(0,+∞)上为增函数,且h(2)=﹣2,h(3)==,所以存在零点h(a0)=0,a0∈(2,3),当a>a0时,h(a)>0;当0<a<a0时,h(a)<0.所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2﹣ln3)>0,f(1)=0,∴a=3时,f(x)由两个零点.综上所述,满足条件的最小正整数a的值为3.(3)∵x1,x2是方程f(x)=c得两个不等实数根,由(1)可知:a>0.不妨设0<x1<x2.则,.两式相减得+alnx2=0,化为a=.∵,当时,f′(x)<0,当时,f′(x)>0.故只要证明即可,即证明x1+x2>,即证明,设,令g(t)=lnt ﹣,则=.∵1>t>0,∴g′(t)>0.∴g(t)在(0,1)上是增函数,又在t=1处连续且g(1)=0,∴当t∈(0,1)时,g(t)<0总成立.故命题得证.第21页(共21页)。
四川省南充市高考数学二诊试卷(理科)
四川省南充市高考数学二诊试卷(理科)(解析版)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.当<m<1时,复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.满足条件{1,3}∪A={1,3,5}所有集合A的个数是()A.4 B.3 C.2 D.13.秦九韶是我国古代数学家的杰出代表之一,他的《数学九章》概括了宋元时期中国传统数学的主要成就.由他提出的一种多项式简化算法称为秦九韶算法:它是一种将n次多项式的求值问题转化为n个一次式的算法.即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.用秦九韶算法求多项式f(x)=4x5﹣x2+2,当x=3时的值时,需要进行的乘法运算和加法运算的次数分别为()A.4,2 B.5,2 C.5,3 D.6,24.如图所示的程序框图中,输出的B是()A .B .0C .﹣D .﹣5.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价()%;方案(Ⅳ)一次性提价(m +n )%,已知m >n >0,那么四种提价方案中,提价最多的是( )A .ⅠB .ⅡC .ⅢD .Ⅳ6.函数y=sin (2x +)﹣sinxcosx 的单调减区间是( )A .[kπ﹣,kπ+](k ∈Z )B .[kπ﹣,kπ﹣](k ∈Z )C .[kπ﹣,kπ+](k ∈Z ) D .[kπ+,kπ+](k ∈Z )7.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有( ) A .330种 B .420种 C .510种 D .600种8.一个多面体的三视图和直观图如图所示,M 是AB 的中点,一只蜻蜓在几何体ADF ﹣BCE 内自由飞翔,则它飞入几何体F ﹣AMCD 内的概率为( )A .B .C .D .9.已知函数f (x )是定义在R 上的偶函数,且f (2﹣x )=f (x )当x ∈[0,1]时,f (x )=e ﹣x ,若函数y=[f (x )]2+(m +l )f (x )+n 在区间[﹣k ,k ](k >0)内有奇数个零点,则m +n=( ) A .﹣2 B .0C .1D .210.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若=,则这个三角形必含有( )A .90°的内角B .60°的内角C .45°的内角D .30°的内角11.锥体中,平行于底面的两个平面把锥体的体积三等分,这时高被分成三段的长自上而下的比为( )A .1::B .1:2:3C .1:(﹣1):(﹣)D .1:(﹣1):(﹣)12.F 是抛物线C :y 2=4x 的焦点,过F 作两条斜率都存在且互相垂直的直线l 1,l 2,l 1交抛物线C 于点A ,B ,l 2交抛物线C 于点G ,H ,则•的最小值是( )A .8B .8C .16D .16二、填空题:本大题共4小题,每小题5分,共20分).13.满足不等式组的点(x ,y )组成的图形的面积为 .14.渔场中鱼群的最大养殖量为m ,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须流出适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k (k >0),则鱼群年增长量的最大值是 .15.若直线2ax ﹣by +2=0(a ,b ∈R )始终平分圆x 2+y 2+2x ﹣4y +1=0的周长,则ab 的取值范围是 .16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,C=2A ,cosA=, •=,则b= .三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)设各项均为正数的数列{a n }和{b n }满足:对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,b 1=2,a 2=3.(Ⅰ)证明数列{}是等差数列;(Ⅱ)求数列{}前n 项的和.18.(12分)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(Ⅰ)若DE∥平面A1MC1,求;(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.20.(12分)已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等.(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.21.(12分)已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系中,已知直线l的极坐标方程为ρsin(θ+)=1,圆C 的圆心是C(1,),半径为1,求:(1)圆C的极坐标方程;(2)直线l被圆C所截得的弦长.[选修4-5:不等式选讲]23.若关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.四川省南充市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.当<m<1时,复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】当<m<1时,复数z的实部3m﹣2∈(0,1),虚部m﹣1∈.即可得出.【解答】解:当<m<1时,复数z的实部3m﹣2∈(0,1),虚部m﹣1∈.复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点(3m﹣2,m﹣1)位于第四象限.故选:D.【点评】本题考查了复数的运算法则、不等式的性质、复数的几何意义,考查了推理能力与计算能力,属于基础题.2.满足条件{1,3}∪A={1,3,5}所有集合A的个数是()A.4 B.3 C.2 D.1【考点】并集及其运算.【分析】由题意知满足条件的集合A中必有元素{5},元素1,3可以没有,或有1个,或有2个,由此能求出满足条件{1,3}∪A={1,3,5}所有集合A的个数.【解答】解:∵满足条件{1,3}∪A={1,3,5},∴满足条件的集合A有:{5},{1,5},{3,5},{1,3,5},∴满足条件{1,3}∪A={1,3,5}所有集合A的个数是4.故选:A.【点评】本题考查满足条件的集合A的个数的求法,是基础题,注意并集性质的合理运用.3.秦九韶是我国古代数学家的杰出代表之一,他的《数学九章》概括了宋元时期中国传统数学的主要成就.由他提出的一种多项式简化算法称为秦九韶算法:它是一种将n次多项式的求值问题转化为n个一次式的算法.即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.用秦九韶算法求多项式f(x)=4x5﹣x2+2,当x=3时的值时,需要进行的乘法运算和加法运算的次数分别为()A.4,2 B.5,2 C.5,3 D.6,2【考点】秦九韶算法.【分析】由秦九韶算法的原理,可以把多项式f(x)=4x5﹣x2+2变形计算出乘法与加法的运算次数.【解答】解:∵f(x)=((((4x)x)x﹣1)x)x+2,∴乘法要运算5次,加减法要运算2次.故选B.【点评】本题考查秦九韶算法,考查在用秦九韶算法解题时一共会进行多少次加法和乘法运算,是一个基础题.4.如图所示的程序框图中,输出的B是()A.B.0 C.﹣D.﹣【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的i,A,B的值,当i=2018时不满足条件i≤2017,退出循环,输出B的值为﹣,即可得解.【解答】解:模拟程序的运行,可得A=,i=1,A=,B=﹣,i=2,满足条件i≤2017,执行循环体,A=π,B=0,i=3,满足条件i≤2017,执行循环体,A=,B=,i=4,满足条件i≤2017,执行循环体,A=,B=﹣,…观察规律可知,可得:i=2017,满足条件i≤2017,执行循环体,A=,B=sin=sin=﹣,i=2018,不满足条件i≤2017,退出循环,输出B的值为﹣.故选:D.【点评】本题考查了求程序框图运行结果的问题,解题时应模拟程序框图运行过程,总结规律,得出结论,属于基础题.5.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价()%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是()A.ⅠB.ⅡC.ⅢD.Ⅳ【考点】等比数列的性质;等差数列的性质.【分析】设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));(Ⅲ)提价方案提价后的价格是:(1+%)2;方案(Ⅳ)提价后的价格是1+(m+n)%显然甲、乙两种方案最终价格是一致的,因而只需比较(1+m%)(1+n%)与(1+%)2的大小.【解答】解:依题意得:设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));(1+m%)(1+n%)=1+m%+n%+m%•n%=1+(m+n)%+m%•n%;(Ⅲ)提价后的价格是(1+%)2=1+(m+n)%+(%)2;方案(Ⅳ)提价后的价格是1+(m+n)%所以只要比较m%•n%与(%)2的大小即可∵(%)2﹣m%•n%=(%)2≥0∴(%)2≥m%•n%即(1+%)2>(1+m%)(1+n%)因此,方案(Ⅲ)提价最多.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.需用到的知识点为:(a﹣b)2≥0.6.函数y=sin (2x +)﹣sinxcosx 的单调减区间是( )A .[kπ﹣,kπ+](k ∈Z )B .[kπ﹣,kπ﹣](k ∈Z )C .[kπ﹣,kπ+](k ∈Z ) D .[kπ+,kπ+](k ∈Z )【考点】正弦函数的单调性.【分析】y=sin2x +cos2x ﹣sin2x=﹣sin (2x ﹣),利用正弦函数的单调增区间,求出函数y=sin (2x +)﹣sinxcosx 的单调减区间.【解答】解:y=sin2x +cos2x ﹣sin2x=﹣sin (2x ﹣),由﹣+2kπ≤2x ﹣≤+2kπ,则x ∈[kπ﹣,kπ+](k ∈Z ),即函数y=sin (2x +)﹣sinxcosx 的单调减区间是[kπ﹣,kπ+](k ∈Z ),故选:A .【点评】本题考查三角函数的化简,考查三角函数的图象与性质,正确化简函数是关键.7.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有( ) A .330种 B .420种 C .510种 D .600种 【考点】排列、组合及简单计数问题.【分析】分类讨论,利用排列组合知识,即可得出结论.【解答】解:由题意,若都选1门,有=60种;若有1人选2门,则有=180种,若有2人选2门,则有=90种,故共有60+180+90=330种, 故选:A .【点评】本题考查利用数学知识解决实际问题,考查排列组合知识的运用,属于中档题.8.一个多面体的三视图和直观图如图所示,M 是AB 的中点,一只蜻蜓在几何体ADF ﹣BCE 内自由飞翔,则它飞入几何体F ﹣AMCD 内的概率为( )A .B .C .D . 【考点】几何概型.【分析】先根据三棱锥的体积公式求出F ﹣AMCD 的体积与三棱锥的体积公式求出ADF ﹣BCE 的体积,最后根据几何概型的概率公式解之即可.【解答】解:因为V F ﹣AMCD ==,V ADF ﹣BCE =,所以它飞入几何体F ﹣AMCD 内的概率为=,故选:D .【点评】本题主要考查空间几何体的体积公式,以及几何概型的应用,同时考查了空间想象能力和计算能力,属于中档题.9.已知函数f (x )是定义在R 上的偶函数,且f (2﹣x )=f (x )当x ∈[0,1]时,f (x )=e ﹣x ,若函数y=[f (x )]2+(m +l )f (x )+n 在区间[﹣k ,k ](k >0)内有奇数个零点,则m +n=( ) A .﹣2 B .0C .1D .2【考点】函数奇偶性的性质;函数零点的判定定理.【分析】根据已知条件,f (x )为偶函数,再结合零点的定义可知,函数y=[f (x )]2+(m +1)f (x )+n 在区间[﹣k ,0)和区间(0,k ]上的零点个数相同,所以便知k=0是该函数的一个零点,所以可得到0=1+m+1+n,所以m+n=﹣2.【解答】解:∵y=f(x)是偶函数;又∵函数y=[f(x)]2+(m+1)f(x)+n在区间[﹣k,k]内有奇数个零点;∴若该函数在[﹣k,0)有零点,则对应在(0,k]有相同的零点;∵零点个数为奇数,∴x=0时该函数有零点;∴0=1+m+1+n;∴m+n=﹣2.故选:A.【点评】考查偶函数的定义:f(﹣x)=f(x),零点的定义,以及对于零点定义的运用.10.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则这个三角形必含有()A.90°的内角B.60°的内角C.45°的内角D.30°的内角【考点】正弦定理.【分析】先把已知条件等号左边的分子分母利用同角三角函数间的基本关系切化弦后,分子分母都乘以cosAcosB后,利用两角和与差的正弦函数公式化简,右边利用正弦定理化简后,根据三角形的内角和定理及诱导公式,得到2cosA=1,然后在等号两边都乘以sinA后,利用二倍角的正弦函数公式及诱导公式化简后,即可得到2A=B+C,由A+B+C=180°,即可解得:A=60°.【解答】解:=====,因为sin(A+B)=sin(π﹣C)=sinC,得到sin(A﹣B)=sinC﹣sinB,即sinB=sin(A+B)﹣sin(A﹣B)=2cosAsinB,得到2cosA=1,即2sinAcosA=sinA,即sin2A=sinA=sin(B+C),由2A+B+C≠π,得到2A=B+C,因为A+B+C=180°所以可解得:A=60°故选:B.【点评】此题考查学生灵活运用同角三角函数间的基本关系、两角和与差的正弦函数公式以及诱导公式化简求值,属于中档题.11.锥体中,平行于底面的两个平面把锥体的体积三等分,这时高被分成三段的长自上而下的比为()A.1::B.1:2:3 C.1:(﹣1):(﹣)D.1:(﹣1):(﹣)【考点】棱柱、棱锥、棱台的体积.【分析】锥体被平行于底面的两平面截得三部分的体积的比自上至下依次是1:2:3,则以分别以原来底面和两个截面为底面的锥体,是相似几何体,根据相似的性质三个锥体的体积比,从而求出相似比为1::,得到这三部分的相应的高的比.【解答】解:由题意,以分别以原来底面和两个截面为底面的锥体,是相似几何体,根据相似的性质三个锥体的体积比为1:2:3,相似比为1::,则h1:h2:h3=1:(﹣1):(﹣),故选D.【点评】本题考查的知识点是棱锥的体积,其中利用相似的性质,线之比等于相似比,面积之比等于相似比的平方,体积之比等于相似比的立方,求出三个锥体的体积之比是解答本题的关键.12.F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1,l2,l1交抛物线C于点A,B,l2交抛物线C于点G,H,则•的最小值是()A.8 B.8 C.16 D.16【考点】直线与抛物线的位置关系;平面向量数量积的运算.【分析】设l1的方程:y=k(x﹣1),l2的方程y=﹣(x﹣1),与抛物线方程联立,利用韦达定理,结合向量的数量积公式,利用基本不等式,即可求•的最小值.【解答】解:抛物线C:y2=4x的焦点F(1,0),设l1的方程:y=k(x﹣1),l2的方程y=﹣(x﹣1),A(x1,y1),B(x2,y2),G(x3,y3),H(x4,y4),由,消去y得:k2x2﹣(2k2+4)x+k2=0,∴x1+x2=2+,x1x2=1.由,消去y得:x2﹣(4k2+2)x+1=0,∴x3+x4=4k2+2,x3x4=1,…(9分)∴•=(+)(+)=||•||+||•||,=|x1+1|•|x2+1|+|x3+1|•|x4+1|=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)=8++4k2≥8+2=16.当且仅当=4k2,即k=±1时,•有最小值16,…(12分)故选C.【点评】本题考查椭圆和抛物线的标准方程,考查直线与抛物线的位置关系,考查向量的数量积,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分).13.满足不等式组的点(x,y)组成的图形的面积为1.【考点】简单线性规划.【分析】由约束条件作出可行域,求出三角形的顶点坐标,代入三角形面积公式得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(2,3),∴|BC|=2,A到BC所在直线的距离为1.∴可行域面积为S=.故答案为:1.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.14.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须流出适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是.【考点】函数模型的选择与应用.【分析】由鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0).我们根据题意求出空闲率,即可得到y关于x的函数关系式,并指出这个函数的定义域,使用配方法,易分析出鱼群年增长量的最大值.【解答】解:由题意,空闲率为1﹣,∴y=kx(1﹣),定义域为(0,m),y=kx(1﹣)=﹣,因为x∈(0,m),k>0;所以当x=时,y max=.故答案为.【点评】函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.15.若直线2ax﹣by+2=0(a,b∈R)始终平分圆x2+y2+2x﹣4y+1=0的周长,则ab的取值范围是(﹣∞,] .【考点】直线与圆相交的性质.【分析】根据圆的性质,得圆心在直线2ax﹣by+2=0上,解得b=1﹣a,代入式子a•b并利用二次函数的图象与性质,即可算出a•b的取值范围.【解答】解:∵直线2ax﹣by+2=0(a、b∈R)始终平分x2+y2+2x﹣4y+1=0的周长,∴圆心(﹣1,2)在直线2ax﹣by+2=0上,可得﹣2a﹣2b+2=0解得b=1﹣a∴a•b=a(1﹣a)=﹣(a﹣)2+≤,当且仅当a=时等号成立因此a•b的取值范围为(﹣∞,].故答案为(﹣∞,].【点评】本题给出直线始终平分圆,求ab的取值范围.着重考查了直线的方程、圆的性质和二次函数的图象与性质等知识,属于基础题.16.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=,•=,则b=5.【考点】向量在几何中的应用.【分析】由C=2A,得到cosC=cos2A,cos2A利用二倍角的余弦函数公式化简,将cosA的值代入求出cosC的值,发现cosC的值大于0,由A和B为三角形的内角,得到A和B都为锐角,进而利用同角三角函数间的基本关系求出sinA和sinC的值,最后利用三角形的内角和定理及诱导公式化简cosB,再利用两角和与差的余弦函数公式化简,将各自的值代入即可求出cosB的值;利用平面向量的数量积运算法则化简已知的等式•=,由cosB的值,求出ac的值,由a,c,sinA和sinC,利用正弦定理列出关系式,将C=2A代入并利用二倍角的正弦函数公式化简,用c 表示出a,代入ac=24中,求出c的值,进而得到a的值,最后由a,c及cosB的值,利用余弦定理即可求出b的值.【解答】解:∵C=2A,cosA=>0,∴cosC=cos2A=2cos2A﹣1=2×()2﹣1=>0,∵0<A<π,0<C<π,∴0<A<,0<C<,∴sinA==,sinC==,∴cosB=cos[π﹣(A+C)]=﹣cos(A+C)=﹣(cosAcosC﹣sinAsinC)=;∵•=,∴accosB=,∴ac=24,∵===,∴a==c,由解得,∴b2=a2+c2﹣2accosB=42+62﹣2×24×=25,∴b=5.故答案为:5.【点评】此题考查了正弦、余弦定理,二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及平面向量的数量积运算法则,熟练掌握定理及公式是解本题的关键.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)(2017•南充模拟)设各项均为正数的数列{a n }和{b n }满足:对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,b 1=2,a 2=3.(Ⅰ)证明数列{}是等差数列;(Ⅱ)求数列{}前n 项的和.【考点】数列的求和.【分析】(I )对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,可得2b n =a n +a n +1,=b n •b n +1,a n >0,a n +1=,代入即可证明.(II )a 1=1,b 1=2,a 2=3.由(I )可得:32=2b 2,解得:b 2.公差=.可得=×.b n 代入=b n •b n +1,a n +1>0.可得a n +1=,可得=.即可得出.【解答】(I )证明:∵对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,∴2b n =a n +a n +1, =b n •b n +1,a n >0,∴a n +1=,∴2b n =+,∴=+.∴数列{}是等差数列.(II )解:a 1=1,b 1=2,a 2=3.由(I )可得:32=2b 2,解得:b 2=.∴公差d===.=+(n ﹣1)=×.∴b n =.∴=b n •b n +1=,a n +1>0.∴a n +1=,∴n≥2时,a n=.n=1时也成立.∴a n=.n∈N*.∴=.∴数列{}前n项的和=+…+=2=.【点评】本题考查了数列递推关系、等差数列与等比数列的定义通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•南充模拟)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)要求被选出的4人中理科组、文科组的学生都有共有:.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.根据互斥事件的概率计算公式与古典概型的概率计算公式即可得出.(II)由题意可得ξ=0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=4)==,即可得出分布列与数学期望.【解答】解:(I)要求被选出的4人中理科组、文科组的学生都有共有:=424.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.∴P==.(II)由题意可得ξ=0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=4)==,由题意可得ξ=0,1,2,3.其分布列为:ξ的数学期望Eξ=++=.【点评】本题考查了互斥事件的概率计算公式与古典概型的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.19.(12分)(2017•南充模拟)如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(Ⅰ)若DE∥平面A1MC1,求;(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面,由已知条件推导出DE∥C1N,从而求出.(Ⅱ)连结B1M,由已知条件得四边形ABB1A1为矩形,B1C1与平面A1MC1所成的角为∠B1C1M,由此能求出直线BC和平面A1MC1所成的角的余弦值.【解答】解:(Ⅰ)取BC中点N,连结MN,C1N,…(1分)∵M,N分别为AB,CB中点∴MN∥AC∥A1C1,∴A1,M,N,C1四点共面,…(3分)且平面BCC1B1∩平面A1MNC1=C1N,又DE∩平面BCC1B1,且DE∥平面A1MC1,∴DE∥C1N,∵D为CC1的中点,∴E是CN的中点,…∴=.…(6分)(Ⅱ)连结B1M,…(7分)因为三棱柱ABC﹣A1B1C1为直三棱柱,∴AA1⊥平面ABC,∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,∵M是AB的中点,∴B1M⊥A1M,又A1C1⊥平面ABB1A1,∴A1C1⊥B1M,从而B1M⊥平面A1MC1,…(9分)∴MC1是B1C1在平面A1MC1内的射影,∴B1C1与平面A1MC1所成的角为∠B1C1M,又B1C1∥BC,∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角…(10分)设AB=2AA1=2,且三角形A1MC1是等腰三角形∴A1M=A1C1=,则MC1=2,B1C1=,∴cos∠B1C1M=,∴直线BC和平面A1MC1所成的角的余弦值为.…(12分)【点评】本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•南充模拟)已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等.(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;直线与圆相交的性质;椭圆的标准方程.【分析】(Ⅰ)计算圆心O到直线l:x+y+8=0的距离,可得直线l被圆O截得的弦长,利用直线l被圆O截得的弦长与椭圆的长轴长相等,可求a的值,利用椭圆的离心率为e=,即可求得椭圆C的方程;(Ⅱ)由,可得四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有,设直线方程代入椭圆方程,利用向量的数量积公式,即可求得结论.【解答】解:(Ⅰ)∵圆心O到直线l:x+y+8=0的距离为,∴直线l被圆O截得的弦长为,∵直线l被圆O截得的弦长与椭圆的长轴长相等,∴2a=4,∴a=2,∵椭圆的离心率为e=,∴c=∴b2=a2﹣c2=1∴椭圆C的方程为:;…(4分)(Ⅱ)∵,∴四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有,设A(x1,y2),B(x2,y2),则x1x2+y1y2=0.…(7分)直线l的斜率显然存在,设过点(3,0)的直线l方程为:y=k(x﹣3),由,得(1+4k2)x2﹣24k2x+36k2﹣4=0,由△=(﹣24k2)2﹣4(1+4k2)(36k2﹣4)>0,可得﹣5k2+1>0,即.…(9分)∴=,由x1x2+y1y2=0得:,满足△>0.…(12分)故存在这样的直线l,其方程为.…(13分)【点评】本题考查椭圆的标准方程,考查直线与圆、直线与椭圆的位置关系,考查向量知识的运用,联立方程,利用向量的数量积公式、韦达定理是关键.21.(12分)(2017•南充模拟)已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(Ⅱ)利用(Ⅰ)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(Ⅲ)利用导数求函数的最小值,让最小值等于3,解参数a.【解答】解:(Ⅰ)因为f(x)=x﹣lnx,f′(x)=1﹣=,所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减,当1<x≤e时,f'(x)>0,此时函数f(x)单调递增,所以函数f(x)的极小值为f(1)=1.(Ⅱ)证明:因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=<,所以f(x)min﹣g(x)max>,所以在(Ⅰ)的条件下,f(x)>g(x)+.(Ⅲ)假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,则f′(x)=a﹣=,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=,(舍去),此时函数f(x)的最小值不是3.②当0<<e时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f(x)min=f()=1+lna=3,a=e2,满足条件.③当≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=,(舍去),此时函数f(x)的最小值是不是3,综上可知存在实数a=e2,使f(x)的最小值是3.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,运算量较大,综合性较强.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•南充模拟)在极坐标系中,已知直线l的极坐标方程为ρsin(θ+)=1,圆C的圆心是C(1,),半径为1,求:(1)圆C的极坐标方程;(2)直线l被圆C所截得的弦长.【考点】简单曲线的极坐标方程;直线与圆相交的性质.【分析】(1)直接利用x2+y2=ρ2,ρcosθ=xρsinθ=y的关系式把直线的极坐标方程转化成直角坐标方程,及把圆的直角坐标方程转化成极坐标方程.(2)利用圆心和直线的关系求出直线被圆所截得的弦长.【解答】解:(1)已知直线l的极坐标方程为ρsin(θ+)=1,所以:即:x+y﹣=0.因为:圆C的圆心是C(1,),半径为1,所以转化成直角坐标为:C,半径为1,所以圆的方程为:转化成极坐标方程为:(2)直线l的方程为:x+y﹣=0,圆心C满足直线的方程,所以直线经过圆心,所以:直线所截得弦长为圆的直径.由于圆的半径为1,所以所截得弦长为2.【点评】本题考查的知识要点:直角坐标方程与极坐标方程的互化,直线与曲线的位置关系.属于基础题型.[选修4-5:不等式选讲]23.(2017•南充模拟)若关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.【考点】绝对值不等式.【分析】首先分析题目已知关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.即可先分类讨论x与1的大小关系,去绝对值号.然后根据恒成立分析a的范围,即可得到答案.【解答】解:关于x的不等式x+|x﹣1|≤a有解,先分类讨论x与1的大小关系,去绝对值号.当x≥1时,不等式化为x+x﹣1≤a,即x≤.此时不等式有解当且仅当1≤,即a≥1.≥1.。