九上数学复习作业1
湖北省武汉市二中广雅中学2022-2023学年九上数学课堂作业(一)9
湖北省武汉市二中广雅中学2022-2023学年九上数学课堂作业(一)9.17一、选择题(每小题3分,共30分)1.下列方程一定是一元二次方程的是()A.x2﹣2y+1=0B.x2=0C.(x﹣1)2=x2D.x=1 x2.一元二次方程x2﹣mx﹣2=0的一个根为2,则m的值是()A.1B.2C.3D.43.一组数据5、7、6、6、11中,平均数是()A.5B.7C.8D.94.已知:y=(m+1)x m2+m是二次函数,且当x>0时,y随x的增大而减小,则m的值为()A.1B.﹣2C.1或﹣2D.﹣1或25.如图选项中,能描述函数y=ax2+b与y=ax+b,(ab<0)的图象可能是()A.B.C.D.6.下列一元二次方程没有实数根的是()A.x2+2x﹣1=0B.x2﹣1=0C.x2+x=﹣2D.2x=3x27.已知一个n边形共有27条对角线,则n的值为()A.8B.9C.10D.118.关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,则k的值为()A.±2B.2C.﹣2D.不能确定9.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且BC∥x轴.直线y=x 从原点O出发沿x轴正方向平移.在平移过程中,直线被平行四边形ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么平行四边形ABCD的面积为()A.3B.3√2C.6D.6√210.若A(m+1,y1)、B(m,y2),C(m﹣2,y3)为抛物线y=ax2﹣4ax+2(a<0)上三点,且总有y2>y3>y1,则m的取值范围是()A.m>2B.2<m<52C.52<m<3D.m>3二、填空题(每小题3分,共18分)11.一元二次方程(x﹣1)2=x﹣1的根为.12.(3分)已知:二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见如表:x…﹣30123…y…010−53﹣4…则方程ax2+bx+c=1的根为.13.已知实数a、b是一个一元二次方程的两根,且a+b=﹣1,ab=﹣2,写出一个满足以上所有条件的一元二次方程.14.如图,用120米长的围网围建一个面积为560平方米的矩形养殖场.为了节省材料,养殖场的一边靠墙(墙足够长),并在如图的两个位置各开出一个1米宽的门(门不用围网做).设矩形AB边长为x米,请依题意列方程:.16.如图,正方形ABCD的边长为4,点E为边AD的中点,将三角形ABE沿BE折叠使点A与恰好落在点F处,又将点C折叠使其与BF上的点M重合,且折痕GH与BF平行交CD于点H,交BC于点G,则线段DH的长度为.三、解答题(共72分)17.(8分)用适当的方法解下列方程:(1)x2+2x=3;(2)(x+3)(2﹣x)=5.18.(8分)抛物线y=ax2+bx经过A(6,0),顶点M在直线y=2x﹣7上,求抛物线的解析式.19.(8分)关于x的方程kx2−(k−2)x+14k=0有两个不相等的实数根.(1)求实数k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于12?若存在,求k;若不存在,请说明理由.20.(8分)如图是由小正方形组成的9×13网格,每个小正方形的顶点叫做格点,△ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先在边BC上画点E,使BE=12√17,再过点E画直线EF,使EF∥AC;(2)在图2中,先在边AC上画点D,使DB⊥AC,在直线BD上画点M,使点B与点M关于AC对称.21.(8分)如图,抛物线y=﹣(x﹣2)2+m的图象与y轴交于点C,点B与点C关于该抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(3,0)及C点;(1)求二次函数与一次函数的解析式;(2)当自变量x满足时,一次函数的函数值不大于二次函数的函数值;(3)在直线AC下方的抛物线上是否存在点P,使S△ACP=S△ACB?(点P不与点B重合)若存在,请求出点P的坐标;若不存在,请说明理由.22.(10分)某店销售A产品,每千克售价为100元.(1)若连续两次降低售价后,每千克81元,求这两次降价的平均百分率?(2)若按现价销售,每千克可以盈利20元,每天可以售出120千克.调查发现,在进价不变的情况下,每千克A产品的售价每涨价2元,日销售量就减少10千克.该店希望每天A产品盈利2340元,设每千克A产品涨价x元(x>0),求x的值.23.(10分)在△ABC 中,AB =AC ,∠BAC =90°,D 为平面内的一点. (1)如图1,当点D 在边BC 上时,BD =√2,且AD =2,则AB = ;(2)如图2,当点D 在△ABC 的外部,且满足∠BDC ﹣∠ADB =45°,请你证明线段CD 与AD 的数量关系;(3)如图3,若AB =4√2,当D 、E 分别为AB 、AC 的中点,把△DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°),直线BD 与CE 的交点为P ,连接P A ,直接写出△P AB 面积的最大值 .24.(12分)已知,直线l :y =kx ﹣k +√3经过第一象限内的定点P . (1)点P 的坐标为 .(2)如图1,已知点A (x 1,p ),B (x 2,q ),且x 1,x 2是关于x 的方程12x 2﹣(m +2)x +(12m 2+2m +2)=0的两个实数根,直线AB 交直线l 于点B ;①求证:AB ∥y 轴;②若点A 的横坐标为2,连接OB ,若BP 平分∠OBA ,求k 的值;③如图2,点Q 是x 轴上的一动点,连接PQ ,以PQ 为腰作等腰△PQR (P ,Q ,R 按逆时针顺序排列),∠QPR =120°,连接OR ,请直接写出√3OR +QR 的最小值 .参考答案与试题解析一、选择题(每小题3分,共30分) 1.下列方程一定是一元二次方程的是( ) A .x 2﹣2y +1=0B .x 2=0C .(x ﹣1)2=x 2D .x =1x【解答】解:A .x 2﹣2y +1=0,含有两个未知数,不是一元二次方程,此选项符合题意; B .x 2=0是一元二次方程,此选项符合题意;C .(x ﹣1)2=x 2,整理可得2x +1=0,是一元一次方程,此选项不符合题意D .不是整式方程,此选项不符合题意; 故选:B .2.一元二次方程x 2﹣mx ﹣2=0的一个根为2,则m 的值是( ) A .1B .2C .3D .4【解答】解:把x =2代入方程得4﹣2m ﹣2=0,、 解得m =1. 故选:A .3.一组数据5、7、6、6、11中,平均数是( ) A .5B .7C .8D .9【解答】解:由题意得,平均数为:5+7+6+6+115=7,故选:B .4.已知:y =(m +1)x m2+m是二次函数,且当x >0时,y 随x 的增大而减小,则m 的值为( ) A .1B .﹣2C .1或﹣2D .﹣1或2【解答】解:∵y =(m +1)x m2+m是二次函数,∴{m 2+m =2m +1≠0, 解得m =1或m =﹣2,∵当x >0时,y 随x 的增大而减小, ∴抛物线开口向下,即m +1<0, ∴m <﹣1, ∴m =﹣2, 故选:B .5.如图选项中,能描述函数y=ax2+b与y=ax+b,(ab<0)的图象可能是()A.B.C.D.【解答】解:选项A中y=ax+b的a<0,b>0,y=ax2+b的a>0,b>0,故选项A不符合题意;选项B中y=ax+b的a>0,b<0,y=ax2+b的a>0,b<0,故选项B符合题意;选项C中y=ax+b的a<0,b>0,y=ax2+b的a<0,b<0,故选项C不符合题意;选项D中y=ax+b的a>0,b<0,y=ax2+b的a<0,b<0,故选项D不符合题意;故选:B.6.下列一元二次方程没有实数根的是()A.x2+2x﹣1=0B.x2﹣1=0C.x2+x=﹣2D.2x=3x2【解答】解:A、Δ=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根,故A不符合题意;B、Δ=02﹣4×1×(﹣1)=4>0,∴方程x2﹣1=0有两个不相等的实数根,故B不符合题意;C、∵x2+x+2=0,∴Δ=12﹣4×1×2=﹣7<0,∴方程x2+x=﹣2没有实数根,故C符合题意;D、∵3x2﹣2x=0,∴Δ=(﹣2)2+4×3×0=4>0,∴方程2x=3x2有两个不相等的实数根,故D不符合题意;故选:C.7.已知一个n边形共有27条对角线,则n的值为()A.8B.9C.10D.11【解答】解:设这个多边形是n边形,则n(n−3)2=27,∴n2﹣3n﹣54=0,(n﹣9)(n+6)=0,解得n=9,n=﹣6(舍去).故选:B.8.关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,则k的值为()A.±2B.2C.﹣2D.不能确定【解答】解:∵方程x2+(k2﹣4)x+k﹣1=0的两个互为相反数,Δ=(k2﹣4)2﹣4×1×(k﹣1)=k4﹣8k2﹣4k+20≥0,设方程的两个是a,b,∵关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,∴a+b=−k2−41=0,解得:k=±2,当k=2时,方程为x2+1=0,Δ=02﹣4×1×1=﹣4<0,∴此方程无解(方法二、即x2=﹣1,∵不论x为何值,x2不能为﹣1,∴此方程无解)即k=2舍去;当k=﹣2时,方程为x2﹣3=0,解得:x=±√3,此时符合题意,即k=﹣2符合题意,故选:C.9.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且BC∥x轴.直线y=x 从原点O出发沿x轴正方向平移.在平移过程中,直线被平行四边形ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么平行四边形ABCD的面积为()A .3B .3√2C .6D .6√2【解答】解:如图,过B 作BM ⊥AD 于点M ,分别过B ,D 作直线y =x 的平行线,交AD 于E ,如图1所示,由图象和题意可得,AE =6﹣4=2,DE =7﹣6=1,BE =2, ∴AD =2+1=3,∵直线BE 平行直线y =x , ∴BM =EM =√2,∴平行四边形ABCD 的面积是:AD •BM =3×√2=3√2. 故选:B .10.若A (m +1,y 1)、B (m ,y 2),C (m ﹣2,y 3)为抛物线y =ax 2﹣4ax +2(a <0)上三点,且总有y 2>y 3>y 1,则m 的取值范围是( ) A .m >2B .2<m <52C .52<m <3D .m >3【解答】解:∵y =ax 2﹣4ax +2(a <0), ∴抛物线开口向下,对称轴为直线x =−−4a2a=2, ∵y 2>y 3, ∴m+m−22<2,解得m <3, ∵y 3>y 1,∴m−2+m+12>2,解得m >52, 故选:C .二、填空题(每小题3分,共18分)11.一元二次方程(x ﹣1)2=x ﹣1的根为 x 1=1,x 2=2 . 【解答】解:∵(x ﹣1)2﹣(x ﹣1)=0, ∴(x ﹣1)(x ﹣1﹣1)=0, ∴x ﹣1=0或x ﹣1﹣1=0, ∴x 1=1,x 2=2. 故答案为:x 1=1,x 2=2.12.已知:二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见如表:x … ﹣3 0 1 2 3 … y…1−53﹣4…则方程ax 2+bx +c =1的根为 x 1=0,x 2=﹣2 . 【解答】解:由表格可得抛物线经过(﹣3,0),(1,0), ∴抛物线对称轴为直线x =﹣1, ∵抛物线经过(0,1), ∴抛物线经过(﹣2,1),∴ax 2+bx +c =1的根为x 1=0,x 2=﹣2. 故答案为:x 1=0,x 2=﹣2.13.已知实数a 、b 是一个一元二次方程的两根,且a +b =﹣1,ab =﹣2,写出一个满足以上所有条件的一元二次方程 x 2+x ﹣2=0 . 【解答】解:∵a +b =﹣1,ab =﹣2, ∴一个一元二次方程为x 2+x ﹣2=0, 故答案为:x 2+x ﹣2=0.14.如图,用120米长的围网围建一个面积为560平方米的矩形养殖场.为了节省材料,养殖场的一边靠墙(墙足够长),并在如图的两个位置各开出一个1米宽的门(门不用围网做).设矩形AB 边长为x 米,请依题意列方程: x (120+2﹣2x )=560 .【解答】解:∵围网的总长为120米,且矩形AB边长为x米,∴矩形BC边长为(120+2﹣2x)米.依题意得:x(120+2﹣2x)=560.故答案为:x(120+2﹣2x)=560.16.如图,正方形ABCD的边长为4,点E为边AD的中点,将三角形ABE沿BE折叠使点A与恰好落在点F处,又将点C折叠使其与BF上的点M重合,且折痕GH与BF平行交CD于点H,交BC于点G,则线段DH的长度为 2.5.【解答】解:延长BF交CD于点N,连接EN,∵四边形ABCD是正方形,∴∠BAD=∠D=∠BCD=90°,AB=AD=CD=4,∵点E为边AD的中点,∴AE=DE=12AD=2,由折叠得:AB=BF=4,AE=EF=2,∠BAD=∠BFE=90°,∴DE=EF=2,∠EFN=180°﹣∠BFE=90°,∵EN=EN,∴Rt△EFN≌Rt△EDN(HL),∴DN=FN,设DN=FN=x,∴BN=BF+FN=4+x,CN=DC﹣DN=4﹣x,在Rt△BCN中,BC2+CN2=BN2,∴16+(4﹣x)2=(4+x)2,∴x=1,∴DN=1,由折叠得:OC=OM,∵GH∥BM,∴CH=NH,∵CN=CD﹣DN=4﹣1=3,∴NH=1.5,∴DH=DN+NH=1+1.5=2.5.故答案为:2.5.三、解答题(共72分)17.(8分)用适当的方法解下列方程:(1)x2+2x=3;(2)(x+3)(2﹣x)=5.【解答】解:(1)x2+2x=3,x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0或x﹣1=0,解得,x1=﹣3,x2=1;(2)(x+3)(2﹣x)=5,x2+x﹣1=0,∵a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=5,∴x =−1±√52, 解得,x 1=−1+√52,x 2=−1−√52. 18.(8分)抛物线y =ax 2+bx 经过A (6,0),顶点M 在直线y =2x ﹣7上,求抛物线的解析式.【解答】解:∵y =ax 2+bx , ∴抛物线经过(0,0), ∵抛物线经过(6,0), ∴抛物线对称轴为直线x =−b2a=3, ∴b =﹣6a ,y =ax 2﹣6ax ,将x =3代入y =2x ﹣7中得y =6﹣7=﹣1, ∴抛物线顶点坐标为(3,﹣1),将(3,﹣1)代入y =ax 2﹣6ax 得﹣1=9a ﹣18a , 解得a =19, ∴y =19x 2−23x .19.(8分)关于x 的方程kx 2−(k −2)x +14k =0有两个不相等的实数根. (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于12?若存在,求k ;若不存在,请说明理由.【解答】解:(1)∵关于x 的方程kx 2−(k −2)x +14k =0有两个不相等的实数根, ∴k ≠0,Δ=[﹣(k ﹣2)]2﹣4k •14k =k 2﹣4k +4﹣k 2>0,∴k <1且k ≠0,∴实数k 的取值范围为k <1且k ≠0;(2)关于x 的一元二次方程ax 2+bx +c =0与cx 2+bx +a =0(a ≠0,Δ>0),它们对应的根是倒数关系,即若ax 2+bx +c =0的两根为x 1.x 2,则cx 2+bx +a =0的两根为1x 1,1x 2,∵方程的两个实数根的倒数和等于12, ∴关于x 的方程14kx 2﹣(k ﹣2)x +k =0,根据题意有,−−(k−2)14k =12, ∴k−2k=3,∴k =﹣1,显然k <1且k ≠0, ∴存在实数k ,k =﹣1.20.(8分)如图是由小正方形组成的9×13网格,每个小正方形的顶点叫做格点,△ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先在边BC 上画点E ,使BE =12√17,再过点E 画直线EF ,使EF ∥AC ;(2)在图2中,先在边AC 上画点D ,使DB ⊥AC ,在直线BD 上画点M ,使点B 与点M 关于AC 对称.【解答】解:(1)如图1中,直线EF 即为所求; (2)如图2中,点D ,点M 即为所求.21.(8分)如图,抛物线y =﹣(x ﹣2)2+m 的图象与y 轴交于点C ,点B 与点C 关于该抛物线的对称轴对称,已知一次函数y =kx +b 的图象经过该二次函数图象上的点A (3,0)及C 点;(1)求二次函数与一次函数的解析式;(2)当自变量x 满足 0≤x ≤3 时,一次函数的函数值不大于二次函数的函数值; (3)在直线AC 下方的抛物线上是否存在点P ,使S △ACP =S △ACB ?(点P 不与点B 重合)若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)将(3,0)代入y =﹣(x ﹣2)2+m 得0=﹣1+m , 解得m =1,∴y =﹣(x ﹣2)2+1,将x =0代入y =﹣(x ﹣2)2+1得y =﹣3, ∴点C 坐标为(0,﹣3),将(3,0),(0,﹣3)代入y =kx +b 得{0=3k +b −3=b ,解得{k =1b =−3,∴一次函数解析式为y =x ﹣3.(2)由图象可得图象在A ,C 之间的部分抛物线在直线上方, ∴0≤x ≤3时,一次函数的函数值不大于二次函数的函数值 故答案为:0≤x ≤3. (3)存在,理由如下,∵点B 与点C 关于该抛物线的对称轴对称, ∴点B 坐标为(4,﹣3),过点B 作BP ∥AC 交抛物线与点P ,连接AP ,CP ,设直线BP解析式为y=x+b,将(4,﹣3)代入y=x+b得﹣3=4+b,解得b=﹣7,∴直线BP解析式为y=x﹣7,令﹣(x﹣2)2+1=x﹣7,解得x1=4,x2=﹣1,将x=﹣1代入y=x﹣7得y=﹣8,∴点P坐标为(﹣1,﹣8).22.(10分)某店销售A产品,每千克售价为100元.(1)若连续两次降低售价后,每千克81元,求这两次降价的平均百分率?(2)若按现价销售,每千克可以盈利20元,每天可以售出120千克.调查发现,在进价不变的情况下,每千克A产品的售价每涨价2元,日销售量就减少10千克.该店希望每天A产品盈利2340元,设每千克A产品涨价x元(x>0),求x的值.【解答】解:(1)设这两次降价的平均百分率为a,依题意得:100(1﹣a)2=81,解得:a1=0.1=10%,a2=1.9(不符合题意,舍去).答:这两次降价的平均百分率为10%.(2)∵每千克A产品涨价x元(x>0),∴每千克可以盈利(20+x)元,每天可以售出120−x2×10=(120﹣5x)千克.依题意得:(20+x)(120﹣5x)=2340,依题意得:x2﹣4x﹣12=0,解得:x1=6,x2=﹣2(不符合题意,舍去).答:x的值为6.23.(10分)在△ABC中,AB=AC,∠BAC=90°,D为平面内的一点.(1)如图1,当点D在边BC上时,BD=√2,且AD=2,则AB=√3+1;(2)如图2,当点D在△ABC的外部,且满足∠BDC﹣∠ADB=45°,请你证明线段CD与AD的数量关系;(3)如图3,若AB=4√2,当D、E分别为AB、AC的中点,把△DAE绕A点顺时针旋转,设旋转角为α(0<α≤180°),直线BD与CE的交点为P,连接P A,直接写出△P AB 面积的最大值8√2−8.【解答】解:(1)如图1,将△ABD沿AB折叠,得到△ABE,连接DE交AB于F,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵将△ABD沿AB折叠,得到△ABE,∴△ABD≌△ABE,AB垂直平分DE,∴AE=AD=2,BE=BD,∠ABE=∠ABD=45°,∠BAD=∠BAE,∴∠DBE=90°,∴△BDE是等腰直角三角形,∴DE=√2BD=2,BF=12DE=1,∴AE=DE=AD,∴△ADE是等边三角形,DF=EF=12DE=1,∴AF=√AD2−DF2=√22−12=√3,∴AB=AF+BF=√3+1,故答案为:√3+1;(2)CD=√2AD,理由如下:如图2,过点A作AE⊥AD,且AE=AD,连接DE、CE,CE交BD于O,AC与BD交于点H,∵AE⊥AD,∴∠DAE=∠BAC=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵AD=AE,AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠AHB=90°,∠CHO=∠AHB,∴∠ACE+∠CHO=90°,∴∠BOC=90°,∵AE=AD,∠DAE=90°,∴△ADE是等腰直角三角形,∴∠ADE=45°,ED=√2AD,∵∠BDC﹣∠ADB=45°,∴∠BDC=∠ADC+45°=∠EDB,∵DO=DO,∠DOC=∠DOE=90°,∴△DOC≌△DOE(ASA),∴CD=DE,∴CD=√2AD;(3)解:由(2)可知:∠BPC=90°,∴点P在以BC为直径的圆上运动,且在BC的上方,如图4,设BC的中点O,过点O作直线OP'交⊙O于点P',交AB于N,连接BP',AP',∵△P AB的面积=12AB×点P到AB的距离,∴点P与点P'重合时,点P到AB的距离最大,最大距离为P'N的长,∵AB=AC=4√2,∠BAC=90°,∴BC=8,∵点O是BC的中点,∴BO=CO=OP'=4,∵ON⊥AB,∴BN=AN,又∵BO=CO,∴ON=12AC=2√2,∴P'N=4﹣2√2,∴△P AB的面积的最大值=12×4√2×(4﹣2√2)=8√2−8,故答案为:8√2−8.24.(12分)已知,直线l :y =kx ﹣k +√3经过第一象限内的定点P .(1)点P 的坐标为 (1,√3) .(2)如图1,已知点A (x 1,p ),B (x 2,q ),且x 1,x 2是关于x 的方程12x 2﹣(m +2)x +(12m 2+2m +2)=0的两个实数根,直线AB 交直线l 于点B ; ①求证:AB ∥y 轴;②若点A 的横坐标为2,连接OB ,若BP 平分∠OBA ,求k 的值;③如图2,点Q 是x 轴上的一动点,连接PQ ,以PQ 为腰作等腰△PQR (P ,Q ,R 按逆时针顺序排列),∠QPR =120°,连接OR ,请直接写出√3OR +QR 的最小值 2√21 .【解答】(1)解:∵y =kx ﹣k +√3=k (x ﹣1)+√3,∴函数经过定点(1,√3),故答案为:(1,√3);(2)①证明:∵12x 2﹣(m +2)x +(12m 2+2m +2)=0, ∴Δ=(m +2)2﹣2(12m 2+2m +2)=m 2+4m +4﹣m 2﹣4m ﹣4=0, ∴方程有两个相等的实数根,∴A 、B 两点的横坐标相等,∴AB∥y轴;②解:∵AB∥y轴,点A的横坐标为2,∴B点横坐标为2,∴B(2,k+√3),∵BP平分∠OBA,∴∠OBP=∠ABP,设直线l与y轴交于点C,∴∠ABP=∠OCB,∴∠OCB=∠BOP,∴BO=CO,∵C(0,√3−k),∴CO=√3−k,∴BO=√4+(k+√3)2=(√3−k)2,解得k=−√3 3;③解:连接PO,∵∠QPR=120°,PQ=PR,∴将△OPQ绕点P逆时针旋转120°,得到△PRM,在△PQR中,QR=√3PR,∴√3OR+QR=√3OR+√3PR=√3(OR+PR),作P点作RM的对称点P',连接P'R,P'Q,∴P'R=PR,∴OR+PR=OR+P'R≥P'O,∴√3OR+QR≥√3P'O,∵P(1,√3),过P点作PH⊥x轴交于点H,∴OH=1,PH=√3,∴∠POH=60°,∵∠OPM=120°,∴PM∥x轴,∵OP=2=OM,∴M(3,√3),∵∠RMP =∠POQ ,∴∠RMP =60°,∴直线RM 与x 轴的夹角为60°, 设直线RM 的解析式为y =−√3x +t ,将M 点代入,可得t =4√3,∴直线RM 的解析式为y =−√3x +4√3,设P '(m ,n ),∴PP '的中点为(m+12,n+√32), ∴−√3×m+12+4√3=n+√32①, ∵PP '⊥RM , ∴∠P 'PM =30°,∴直线PP '与x 轴的夹角为30°,设直线PP '的解析式为y =√33x +b , 将P 点代入可得,b =2√33,∴y =√33x +2√33,∴√33×m+12+2√33=n+√32②, 联立①②可得,m =4,n =2√3,∴P '(4,2√3),∴OP '=2√7,∴√3OR +QR 的最小值为2√21,故答案为:2√21.。
《第1章特殊平行四边形》期中复习解答题专题训练 北师大版九年级数学上册
2021-2022学年北师大版九年级数学上册《第1章特殊平行四边形》期中复习解答题专题训练(附答案)1.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.2.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC 交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.3.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=5,求四边形ABCD的面积.4.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)过点A作AG⊥BC,垂足为点G,若AC=6,BD=8,请直接写出AG的长.5.四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△EGF ≌△AGD.6.如图,▱ABCD的对角线AC,BD交于点O,AE∥BD,BE∥AC,OE⊥CD.(1)求证:四边形ABCD是矩形;(2)连接DE,若AE=,BC=2,求DE的长.7.如图,在▱ABCD中,对角线AC、BD交于点O,E是AD上一点,连接EO并延长交BC 于点F,连接AF、CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形.(2)若∠DAC=60°,EF=4,求四边形AFCE的面积.8.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ =DP,连接AP,BQ,PQ.(1)求证:AP=BQ;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.9.已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.10.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,AD是BC边上的中线,过A点作AE∥BC,过点D作DE∥AB与AC、AE交于点O、E,连结EC.(1)求证:四边形ADCE为菱形;(2)设OD=a,求菱形ADCE的周长.11.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.12.如图,点A,F,C,D在同一条直线上,点B,E分别在直线AD两侧,且AB=DE,∠A=∠D,AC=DF.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,EF=3,AB=4,当CD为何值时,四边形BCEF是菱形.13.如图,四边形ABCD是平行四边形,且对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.求证:四边形ABOE是菱形.14.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.15.如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作▱ABDE,连接AD、EC,AC和DE相交于点O.(1)求证:OD=OC;(2)若BD=CD,求证:四边形ADCE是矩形.16.如图,在平行四边形ABCD中,两条对角线相交于O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=,且∠D=45°,求菱形AECF的周长.17.如图,在△ABC中,点D是BC边的中点,点F,E分别是AD及其延长线上的点,CF ∥BE,连接BF,CE.(1)求证:四边形BECF是平行四边形.(2)若△ABC满足什么条件时,四边形BECF为菱形,并说明理由.18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,求HR长度.19.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H.请直接写出线段AE与BF的数量关系和位置关系.(2)如图2,在正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论.20.如图,M为正方形ABCD的对角线BD上一点,过M作BD的垂线交AD于E,连接BE,取BE中点O.(1)如图①,连接AO,MO,试证明∠AOM=90°;(2)如图②,连接AM,AO,并延长AO交对角线BD于点N,∠MAN=45°,试探究线段DM,MN,NB之间的数量关系并证明.参考答案1.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DA=DE,∴∠DAE=∠DEA=×(180°﹣70°)=55°,故答案为:55°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).2.(1)证明:∵四边形ABDE是平行四边形,∴AB∥DE,AB=ED,∵DC=ED,∴DC=AB,DC∥AB,∴四边形ABCD是平行四边形,∵DE⊥AD,∴∠ADC=90°,∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F,∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO,∴OD=OC,∵OF⊥CD,∴DF=CF=CD==1,∴OF=BC==2,EF=DE+DF=2+1=3,∴OE===.3.证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=(BE+CE)•FG=(5+5)×=48.4.(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴BC•AG=AC•BD,即5AG=×6×8,∴AG=.5.证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AB=CD,∠ABC=90°,∴CB⊥AE,又∵AC=EC,∴AB=BE,∴BE=CD,BE∥CD,∴四边形BECD为平行四边形;(2)∵AB=AD,∴矩形ABCD是正方形,∴∠GAD=∠GAE=45°,∵EG⊥AC,∴∠E=∠GAE=45°,∴GE=GA,又∵AF=BE,∴AF+BF=BE+BF,即AB=EF,∴EF=AD,在△EGF和△AGD中,,∴△EGF≌△AGD(SAS).6.解:(1)设AB,OE交于F,∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∴AF=BF,∵四边形ABCD是平行四边形,∴DC∥AB,OD=OB.∵OE⊥CD,∴OE⊥AB.∴AB⊥BC,∴四边形ABCD是矩形;(2)连接DE,过E作EH⊥DA交DA的延长线于H,∵四边形AEBO是平行四边形,∴AE=OB,∵OD=OB∴BD=2AE=2,∵AD=BC=2,∴AB===2,∴AF=AB=,∵∠AFE=∠F AH=∠AHE=90°,∴四边形AHEF是矩形,∴EH=AF=,AH=EF=OF=AD=1,∴DE===.7.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠AEF=∠CFE,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∵AO=CO,∴四边形AFCE是平行四边形;∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,EO=FO=EF=2,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OA=EO=2,∴AC=2OA=4,∴四边形AFCE的面积=AC×EF=×4×4=8.8.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ(SAS),∴AP=BQ;(2)∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.9.证明:(1)∵四边形ABCD是矩形,∴OB=OD,∵AE∥CF,∴∠E=∠F,∠OBE=∠ODF,在△BOE与△DOF中,,∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵△BOE≌△DOF,∴OE=OF,∵四边形ABCD是矩形,∴OA=OC,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.10.(1)证明:∵AE∥BC,AB∥DE,∴四边形ABDE为平行四边形,∴AE=BD,又∵AD为Rt△ABC斜边上的中线,∴BD=CD,∴AE=DC,∴四边形ADCE为平行四边形,又∵DE∥AB,∠BAC=90°,∴DO⊥OC,∴四边形ADCE为菱形,(2)设OD=a,∴DE⊥AC,AO=,在Rt△AOD中,由勾股定理得:=,∴菱形ADCE的周长为4a.11.证明:(1)∵D、F分别为BC、AC的中点,使DF=FE,∴CF=F A,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由(1)得四边形AECD是矩形,∴矩形AECD是正方形.12.解:(1)在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)当时,四边形BCEF是菱形.理由如下:连接BE,交CF与点H,∵AC=DF,∴AC﹣FC=DF﹣FC,即AF=CD,若四边形BCEF是菱形时,∴BE⊥CF,,EF=BC=3.在Rt△ABC中,AB=4,BC=3,∴.∵,即.在Rt△BCH中,,BC=3,∴.∴,∴,∴当时,四边形BCEF是菱形.13.证明:∵四边形ABCD是平行四边形,∴OB=OD=BD,∵BD=2AB,∴AB=OB,∵AE∥BD,OE∥AB,∴四边形ABOE是平行四边形,∵AB=OB,∴四边形ABOE是菱形.14.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF=90°﹣∠FEN,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)①CE⊥CG,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠CDA=∠DCG,∵∠ACD+∠CAD+∠ADC=180°,∠ADC=90°,∴∠ACG=∠ACD+∠DCG=∠ACD+∠CAD=90°,∴CE⊥CG;②由①知,△ADE≌△CDG,∴AE=CG,∴CE+CG=CE+AE=AC=AB=×=2,故答案为:2.15.证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS),∴∠ACD=∠EDC(全等三角形对应角相等),∴OA=OC(等角对等边);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.16.(1)证明:∵EF是对角线AC的垂直平分线,∴AF=CF,AE=CE,OA=OC,∴∠EAC=∠ECA,∠F AC=∠FCA,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠F AO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∵AF=CF,AE=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠D=45°,∴△CDH是等腰直角三角形,∴CH=DH=CD=1,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2﹣x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2﹣x)2+12,解得:x=,∴AF=CF=,∴菱形AECF的周长=×4=5.17.(1)证明:在△ABC中,D是BC边的中点,∴BD=CD,∵CF∥BE,∴∠CFD=∠BED,在△CFD和△BED中,,∴△CFD≌△BED(AAS),∴CF=BE,∴四边形BFCE是平行四边形;(2)满足条件AB=AC时四边形BECF为菱形.理由:若AB=AC时,△ABC为等腰三角形,∵AD为中线,∴AD⊥BC,即FE⊥BC,由(1)知,△CFD≌△BED,∴BD=CD,ED=FD,∴平行四边形BECF为菱形.18.(1)证明:作AG⊥EF于G,如图1,则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=BG,同理:Rt△ADF≌Rt△AGF(HL),∴DF=GF,∴BE+DF=GE+GF=EF,设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,整理得:xy+6(x+y)=36,∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=6,∴GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,解得:a=3,即HR=3.当△PQR是钝角三角形时,过P作PT⊥PR交RQ延长线于T,如图3所示:则∠TPQ=90°﹣45°=45°,由①得:TH=3,∴PT===3,设HR=x,PR=y,则TR=x+3,∵△PTR的面积=(x+3)×6=×3y,∴y=6+2x,∴5y2=(6+2x)2①,在Rt△PRH中,由勾股定理得:y2=62+x2②,由①②得:(x﹣12)2=0,∴x=12,即HR=12;综上所述,HR为3或12,19.解:(1)AE=BF且AE⊥BF,理由是:∵四边形ABCD是正方形,∴∠ABE=∠C=90°,AB=BC,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠BHE=180°﹣90°=90°,∴AE⊥BF.(2)BF=GE,证明:过点A作AM∥GE交BC于M,∵EG⊥BF,∴AM⊥BF,∴∠BAM+∠ABF=90°,∵四边形ABCD是正方形,∴AB=BC,AD∥BC,∠ABC=∠BCD=90°,∴∠CBF+∠ABF=90°,∴∠BAM=∠CBF,在△ABM和△BCF中,∴△ABM≌△BCF(ASA),∴AM=BF,∵AM∥GE且AD∥BC,∴AM=GE,∴BF=GE.20.证明:如图1,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠ABD=∠ADB=45°;∵ME⊥BD,∴∠BME=90°;∵点O是BE中点,∴AO=BE=BO,∴∠OAB=∠OBA,∴∠AOE=∠OAB+∠OBA=2∠OBA;同理,∠MOE=2∠OBM,∴∠AOM=∠AOE+∠MOE=2(∠OBA+∠OBM)=2∠ABD=90°.(2)DM2+NB2=MN2,理由如下:如图2,作EF∥BD,交AN于点F,连接MO、MF、ME,∵∠OEF=∠OBN,OE=OB,∠EOF=∠BON,∴△EOF≌△BON(ASA),∴FE=NB,OF=ON,∵OM⊥FN,∴MF=MN;∵∠DME=90°,∠MDE=45°,∴∠MED=45°,∴∠MDE=∠MED,∴EM=DM;∵∠MEF=∠DME=90°,∴EM2+FE2=MF2,∴DM2+NB2=MN2.。
北师版九年级数学上册 第1章 特殊平行四边形中的旋转、最值、动点问题 专题训练 (含答案)
6.解:(1)根据图形的对称性,本来DF和BF相等,但是“在正方形AEFG绕点A旋转的过程中,线段DF与BF始终相等”不正确.例如,当点F旋转到AB上时,BF最短(小于AB),而这时DF大于AD,即DF大于BF
(2)如图②,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段与DG始终相等,并以图为例说明理由.
二、最值问题
7.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.2 B.4
∴BD,EG互相平分,∴BO=OD,
∴点O为正方形的角平分线的交点,
∴直线EG必过正方形角平分线的交点
20.解:(1)BG=DE,BG⊥DE,证明如下:
延长BG交DE于点H,
∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴△BCG≌△DCE(SAS),
(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?
24.已知点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.
(1)如图①,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式是;
(2)如图②,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
九上北师大数学第一章、二章重点习题复习
1.方程(x﹣4)(x+1)=1的根为()A.x=4B.x=﹣1C.x=4或x=﹣1D.以上都不对2.方程(x﹣2)2=b的解的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定3.方程x2+8x+9=0配方后,下列正确的是()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+8)2=7 4.若(a+b﹣1)(a+b+1)﹣4=0,则a+b的值为()A.2 B.±2 C.D.5.方程x2+x﹣1=0的根是()A.1﹣B.C.﹣1+D.6.若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=.7.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=0 8.方程x2+x﹣1=0的根是()A.1﹣B.C.﹣1+D.9.已知:方程(a+9)x|a|﹣7+8x+1=0是一元二次方程,则a的值为.10.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD、BC于点E、F,则AE的长为.11.方程x2+(k﹣1)x﹣3=0的一个根是1,则k的值是,另一个根是.12.一个盒子里有完全相同的三个球,球上数字分别标有﹣2,1,4,随机摸出一个球(不放回)记作a,再随即摸出一个球记作b,则a>b的概率是.13.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是.14.我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想15.代数式x2+8x+5的最小值是.16.如图,正方形ABCD的边长为1,E为BC上任意一点,EF⊥AC于F,EG⊥BD于G,则EF+EG的值为()A.B.2 C.3 D.17.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.B.C.D.18.在矩形ABCD中,AB=5,AD=12,P是AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF=.19.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()A.B.C.3 D.520.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=度.21.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F 两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A.1 B.C.D.22.如图,正方形ABCD与正方形CEFG,E是AD的中点,若AB=2,则点B与点F之间的距离为.23.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.24.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.125.关于x的方程(m+2)x|m﹣1|﹣1+x﹣2=0有两个实数根,则m的值是.26.如图,线段AC,BD交于点P,∠A=30°,∠ACD=120°,∠D=15°,AB=1,CD=,则BD的长为.27.如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°:连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°,…,按此规律所作所第2018个菱形的边长为()A.()2017 B.()201 7C.22018 D.()201828.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接ED,则DE的长度是,B′D的最小值是.29.关于x的方程x2+3x+m=0的两根为x1、x2,且=,求m的值.30.关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长,若方程有两个相等的实数根.(1)试判断△ABC的形状,并说明理由.(2)若a=,b=1,直接写出△ABC的面积是.31.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?32.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利1200元.(2)要想平均每天赢利2000元,可能吗?请说明理由.33.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.34.如图,已知直线L1:y=3x+6与x轴、y轴分别交于A、B两点,直线L1绕坐标原点O顺时针旋转135°,得到直线L2与x轴、y轴分别交于C、D两点.(1)直接写出点A、B的坐标是A、B.(2)点P(a,4)是直线L2上一点,求a的值.(3)连接OP,将OP绕点P逆时针旋转90°到PD,连接OD交直线L2于点Q,直接写出点Q的坐标是.35.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=8,BC =20,若不改变矩形ABCD的形状和大小.(1)当矩形顶点C在x轴的正半轴上左右移动时,矩形的另一个顶点B始终在y轴的正半轴上随之上下移动,当∠OCB=30°时,求点A的坐标;(2)如图(2)、(3),长方形ABCD中,BC在x轴上,且O与B 重合,将矩形折叠,折痕GF的一个端点F在边AD上,另一个端点G在边BC上,且G(10,0).顶点B的对应点为E,连接BF.①如图(2),当顶点B的对应点E落在边AD上时,求折痕FG的长;②如图(3),当顶点B的对应点E落在长方形内部,E的纵坐标为6,求AF的长.36.如图,在直角坐标系中,B(0,8),D(10,0),一次函数y=x+的图象过C(16,n),与x轴交于A点.(1)求证:四边形ABCD为平行四边形;(2)将△AOB绕点O顺时针旋转,旋转得△A1OB1,问:能否使以点O、A1、D、B1为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由.37已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).38.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)。
2022九年级数学上册第1章二次函数本章复习总结作业课件新版浙教版202211231172
时,w 有最大值是:9×400=3600,∴一次性批发 A
品牌服装 x(100≤x≤400)件时,x 为 190 元或 200 元时,
w 最大,最大值是 3800 元.
如图是一款抛物线型落地灯筒示意图,防滑
螺母C为抛物线支架的最高点,灯罩D距离地面1.5
米,最高点C距灯柱的水平距离为1.6米,灯柱AB
=1.5米,若茶几摆在灯罩的正下方,则茶几到灯
柱的距离AE为多少米( A )
A.3.2
B.0.32
C.2.5
D.1.6
(2020·毕节)已知y=ax2+bx+c(a≠0)的图象
如图所示,对称轴为直线x=2.若x1,x2是一元二次方
程ax2+bx+c=0(a≠0)的两个根,且x1<x2,-1<x1
C.先向右平移2个单位长度,然后向上平移1个单 位长度
D.先向右平移2个单位长度,然后向下平移1个单 位长度
如图,已知抛物线y=x2-4与x轴交于点A, B(点A位于点B的左侧),
C为顶点,直线y=x+m经过点A,与y轴交于点D. (1)求线段AD的长; (2)平移该抛物线得到一条新拋物线,设新抛物线 的顶点为C′.若新抛物线经过点D,并且新抛物线的顶 点和原抛物线的顶点的连线CC′平行于直线AD,求
(3) 零 售 商 到 此 服 装 厂 一 次 性 批 发 A 品 牌 服 装 x(100≤x≤400)件,服装厂的利润为w元,问:x为何 值时,w最大?最大值是多少? 解:(1)y与x的函数关系式为: y=-x+110; (2)当x=200时, y=-20+110=90, ∴90×200=18000(元), 答:需要支付18000元;
北师版九上数学教材习题课件-第一章复习题
AC=60 cm,周长为200 cm.
(1)由题意,得AC⊥BD,AB= 1 ×200=
1
4
50(cm),OA=OC= AC= 30 cm,OB=OD.
2
∴在Rt△AOB中,OB= AB2 OA2 =40 cm.
∴另一条对角线BD=2OB=80 cm.
(2)S菱形ABCD=
1 2
AC∙BD= 1×60×80=2400(cm2 ). 2
解:(1)这个菱形是正方形,理由如下: 因为一个菱形绕对角线的交点旋转90°后,所 得图形与原来的图形重合,所以这个菱形相邻 内角相等.因为菱形的相邻内角互补,所以这个 菱形的内角都为90°.所以这个菱形是正方形.
(2)如果一个四边形绕对角线的交点旋转 90°后,
所得图形与原来的图形重合,那么这个四边形是正方
么图形?试说明理由.
解:重合部分△BFD是等腰三角形,理由如下: ∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠DBC. 由折叠得∠FBD=∠DBC, ∴∠FBD=∠ADB.∴BF=DF. ∴重合部分△BFD是等腰三角形.
16. 如图,把两个全等的矩形ABCD和矩形CEFG拼成如
图所示的图案,求∠ACF,∠AFC的度数.
证明:如图,
∵BE⊥AC,ME为Rt△BEC的中线,
∴ME= 1 BC.同理得MF= 1 BC.
2
2
∴ME=MF.
10. 已知正方形的对角线的长为l,求这个正方形的周长
和面积.
已知:如图,四边形ABCD是正方形,对角线 AC=BD=l.求正方形ABCD的周长和面积. 解:依题意得AB=BC,∠ABC=90°. 在Rt△ABC中,AB²+BC²=AC²,即2AB²=l²,
北师版九年级数学上册作业课件(BS) 第一章 特殊平行四边形 本章考点整合训练一
10.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开, 若测得AM的长为1.2 km,则M,C两点间的距离为(D ) A.0.5 km B.0.6 km C.0.9 km D.1.2 km
11.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂 直于横梁AC,AB=8 m,∠ABC=60°,则DE=_2_m__.
解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°, ∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF 平分∠CAB, ∴∠CAF=∠BAF=30°,∴∠ACD=∠CAF=30°, ∴CE=AE,过点 E 作 EH⊥AC 于点 H,
∴CE=2EH,CH=AH.∵AC=4,∴CH=2,∴CE=43 3
(2)四边形CEGF是菱形,理由:∵FG⊥AB,FC⊥AC,AF平分∠CAB, ∴ ∠ ACF = ∠ AGF = 90° , CF = GF , 又 ∵ AF = AF , ∴ Rt△ACF≌Rt△AGF(HL) , ∴ ∠ AFC = ∠ AFG , ∵ CD⊥AB , FG⊥AB , ∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE= FG,∵CD∥FG,∴四边形CEGF是平行四边形.∵CF=GF,∴▱CEGF是 菱形
A.5 B.10 C.20 D.40
3.如图,以菱形ABCD的对角线AC为边向上作等边△ACE. 已知∠DAB=70°,则∠EAD=___2_5.°
4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分 ∠CAB,交CD于点E,交CB于点F.
(1)若∠B=30°,AC=4,求CE的长; (2)过点F作AB的垂线,垂足为G,连接EG, 试判断四边形CEGF的形状,并说明理由.
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
人教版九年级数学上册作业课件 第二十一章 一元二次方程 单元复习(一) 一元二次方程
A.16 B.24 C.16或24 D.48
16.(2020·山西)如图是一张长12 cm,宽10 cm的矩形铁皮,将其剪去两个 全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24 cm2 的有盖的长方体铁盒.则剪去的正方形的边长为__2___cm.
17.(大连中考)某村2016年的人均收入为20000元, 2018年的人均收入为24200元. (1)求2016年到2018年该村人均收入的年平均增长率; (2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同, 请你预测2019年该村的人均收入是多少元? 解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得 20000(1+x)2=24200,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答: 2016年到2018年该村人均收入的年平均增长率为10% (2)24200×(1+10%) =26620(元).答:预测2019年该村的人均收入是26620元
解:(1)Δ=16-4(k+1)=16-4k-4=12-4k≥0,∴k≤3 (2)由题意可知:x1+x2=4,x1x2=k+1,∵x31 +x32 =x1x2-4, ∴3(xx11+x2x2) =x1x2-4,∴k3×+41 =k+1-4, ∴k=5 或 k=-3,由(1)可知 k≤3,∴k=-3
15.(2020·黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程 x2-10x+24=0的一个根,则该菱形ABCD的周长为( B)
此方程可变形为( A )
A.(x+2ba )2=b2-4a42ac
B.(x+2ba )2=4a4c-a2 b2
C.(x-2ba )2=b2-4a42ac
D.(x-2ba )2=4a4c-a2 b2
九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析
微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。
初中九年级数学上册测试卷(前三章)
九年数学阶段测试一一、选择题(每小题3分,共24分)1a 的取值范围是( ) A 5a ≥ B 7a ≤ C 5a ≥或B 7a ≤ D 57a ≤≤ 2=m 的取值范围是( ) A m >3或m <12B 0<m <3C m ≥12D m >3 3、下列方程中有两个不相等的实数根的是( )A 238x x =-B 25100x x ++=C 271470x x -+=D 2753x x x -=-+ 4、下列图形中不是轴对称图形但是中心对称图形的是( ) A 等边三角形 B 矩形 C 菱形 D 平行四边形5、如图所示,⊙O 中弦AB 垂直于直径CD 于E ,则下列结论:①弧AD=弧BD ②弧AC=弧BC ③AE=BE ④EO=ED ,其中正确的有( ) A ①②③④ B ①②③ C ②③④ D ①④第一题5题第一题8题A6、已知要使2235x x --的值等于4-6x 的值,则x 应为( ) A32-或-3 B 、32或-3 C32-或3 D 32或37、半径分别是5和8的两个圆的圆心距是d ,若3<d ≤13,则这两个圆的位置关系是( )A 相交B 相切C 内切或相交D 外切或相交8、如图所示,在Rt △ABC 中,∠ACB=90°,AC =6,AB =10.CD 是斜边上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则P 与⊙O 的位置关系是( )A 点P 在⊙O 内B 点P 在⊙O 上C 点P 在⊙O 外D 不能确定 二、填空题(每小题3分,共24分)9、相交两圆的公共弦长为16cm ,若两圆的半径分别是10cm 和17cm ,则这两个圆的圆心距是 。
10、在△ABC 中,∠A =80°,O 是△ABC 的内心,则∠BOC 等于 度。
11、已知12,x x 是方程2310xx -+=两个根,则212412110x x -+=的值为 .12、已知关于x 的一元二次方程()222110m x m x +-+=有两个不相等的实数根,则m 的取值范围是 。
江苏省江阴市夏港中学2024-2025学年九年级上学期第一次作业反馈数学试题
江苏省江阴市夏港中学2024-2025学年九年级上学期第一次作业反馈数学试题一、单选题1.下列方程中,是一元二次方程的是( ) A .2x +3x +y =0B .x +y +1=0C .2x =0D .2x 1x++5=02.已知O e 的半径为3,当5OP =时,点P 与O e 的位置关系为( ) A .点P 在圆内B .点P 在圆外C .点P 在圆上D .不能确定3.把方程2230x x +-=配方后,可变形为( ) A .()223x +=B .()214x +=C .()212x +=D .()212x +=-4.下列说法中,正确的是( ) A .同弦所对的圆周角相等 B .三角形的外心到三个顶点的距离相等 C .长度相等的两条弧是等弧D .任意三点确定一个圆5.如图,AB 是O e 的直径,弦CD AB ⊥于点,2,8E BE CD ==,则O e 半径为( )A .2B .3C .5D .86.如图,在直角坐标系中,OAB ∆和OCD ∆是位似图形,O 为位似中心,若A (1,1),B (2,1),C (3,3),那么点D 的坐标是( )A .(4,2)B .(6,3)C .(8,4)D .(8,3)7.如图,AB 是O e 的直径,点,,C D E 在O e 上,若100C ∠=︒,则E ∠的度数为( )A .10︒B .20︒C .30︒D .40︒8.“读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( ) A .250(1)80x += B .250(1%)80x +=C .250(12)80x +=D .25050(1)50(1)80x x ++++=9.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法,以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程:2280x x --=解法的构图是( )A .B .C .D .10.如图,ABC V 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足AD =,则下列结论:①AE BD =②135DFE ∠=︒;③ABF △面积的最大值是4;④CF 的最小值是其中正确的是( )A .①③B .①②④C .②③④D .①②③④二、填空题11.若△ABC 与△A 1B 1C 1相似,且相似比为1:3,则△ABC 与△A 1B 1C 1的周长比为. 12.已知关于x 的一元二次方程280x x c -+=有一个根为5,则c 的值为.13.若矩形的长和宽是方程()20960x m m x -+<≤=的两根,则矩形的周长为.14.直角三角形的两直角边长分别为6和8,那么这个三角形的外接圆半径等于. 15.如图,正方形ABCD 四个顶点都在⊙O 上,点P 是在弧BC 上的一点(P 点与C 点不重合),则CPD ∠的度数是.16.如图, AB CD 、是O e 的直径,弦CE AB ∥,若75AOC ∠=︒,则»CE的度数是.17.如图,在正方形ABCD 中,AB =2,F 是BD 边上的一个动点,连接AF ,过点B 作BE ⊥AF 于E ,在点F 变化的过程中,线段DE 的最小值是.18.如图,点D 在射线BC 上移动(不含B 点),Rt Rt ABC ADE V V ∽,90ACB ∠=︒,10AB =,8BC =,若 3.6CDE S =△时,则BD =.三、解答题19.用适当的方法解方程: (1)2220x x --=; (2)2250x x --=; (3)()241160x --=; (4)()()3222x x x -=-;20.已知关于x 的一元二次方程()22210x m x m +-+=.(1)若方程有实数根,求m 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且满足221214x x +=.求m 的值. 21.如图,BAD CAE ∠=∠,B D ∠=∠.(1)ABC V 与ADE V 相似吗?为什么?(2)如果2AB AD =,4BC =,那么DE 的长为多少?22.如图,在平面直角坐标系中,已知ABC V 三个顶点的坐标分别是()2,2A -,()0,4B ,()4,4C .、(1)以点O 为位似中心,将ABC V 缩小为原来的12得到111A B C △,请在x 轴下方画出111A B C △;点(),P a b 为ABC V 内的一点,则点P 在111A B C △内部的对应点1P 的坐标为_______. (2)ABC V 外接圆的圆心坐标为_______,外接圆的半径是_______.23.如图,ABC V 中,90C ∠=︒,3AC =,4BC =,以点C 为圆心、CA 的长为半径的圆与AB 、BC 分别相交于点D 、E .(1)用直尺和圆规作出劣弧AD 的中点F (保留作图痕迹,不写作法); (2)求AD 的长.24.已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC (1)求证:AB =AC ;(2)若AB =4,BC =CD 的长.25.社区利用一块矩形空地建了一个小型的居民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?(涨价后月租金不能超过300元)26.定义:若关于x 的一元二次方程20(a 0)++=≠ax bx c 的两个实数根分别为1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点. (1)直接写出方程220x x +=的衍生点M 的坐标为______; (2)已知关于x 的方程222(1)20x m x m m -+++=.①求证:不论m 为何值,该方程总有两个不相等的实数根; ②求该方程衍生点M 的坐标;③已知不论(0)k k ≠为何值,关于x 的方程20x bx c ++=的䘕生点M 始终在直线2(4)y kx k =-++上,求b ,c 的值.27.如图,(1)如图1,在矩形ABCD 中,CE BD ⊥于点H ,交AD 于点E .求证:CE CDBD BC=; (2)如图2,在四边形ABCD 中,90,4,9,7A B AD BC CD ∠=∠=︒===.E 是边AB 上的一动点,过点C 作CG ED ⊥,交ED 的延长线于点G ,交AD 的延长线于点F .试探究CFDE是否为定值?若是,请求出CFDE的值;若不是,请说明理由; (3)如图3,在Rt ABD △中,90BAD ∠=︒,将ABD △沿BD 翻折得到CBD △,点E ,F 分别在边,AB AD 上,连接,CF DE .若AED AFC ∠=∠,且CF DE =35,则 ADAB 的值为 .28.【学习心得】小雯同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加轴助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC V 中,AB AC =,90BAC ∠=︒,D 是ABC V 外一点,且AD AC =,求B D C ∠的度数.若以点A 为圆心,AB 长为半径作辅助圆A e ,则C 、D 两点必在A e 上,BAC ∠是A e 的圆心角,BDC ∠是A e 的圆周角.则45BDC ∠=︒.(1)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,25BDC ∠=︒,则BAC ∠=︒; (2)如图3,已知线段AB 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得30APB ∠=︒(不写作法保留作图痕迹);(3)①如图4①,已知矩形ABCD ,4AB =,BC m =,M 为边CD 上的点,若满足45AMB ∠=︒的点M 恰好有两个,则m 的取值范围为;②如图4②,在ABC V 中,45BAC ∠=︒,AD 是BC 边上的高,且3BD =,1CD =,求AD 的长.。
(word完整版)九年级数学总复习试卷及参考答案
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习作业1
1、对于y=-1
x
,当x>0时,y随x的增大而
2、二次函数y=x2
+x-5取最小值是,自变量x的值是
3、抛物线y=(x-1)2
-7的对称轴是直线x=
4、函数y=1
2-4x
中,自变量x的取值范围是
5、若函数y=(m+1)xm2+3m+1
是反比例函数,则m 的值为
6、已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围
是
7、抛物线y=(x+3)2
-2的顶点在 ( )
(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 8、抛物线y=(x-1)(x-2)与坐标轴交点的个数为 ( ) (A)0 (B)1 (C)2 (D)3
9、下列各图中能表示函数和在同一坐标系中的图象大致是( )
(A) (B) (C) (D)
10、下列抛物线,对称轴是直线x=1
2
的是( )
(A ) y=12 x2(B )y=x2+2x(C )y=x2+x+2(D )y=x2
-x-2
11、不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
12、某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线(抛
物线所在平面与墙面垂直,(如图)如果抛物线的最高点M 离墙1米,离地面40
3 米,
则水流下落点B 离墙距离OB 是( )
(A )2米 (B )3米 (C )4米 (D )5米
13、二次函数=2(x - 32
)2
+1图象的对称轴是 。
14、若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。
4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。
15若y 与x 2成反比例,位于第四象限的一点P (a ,b )在这个函数图象上,且a,b 是方程x 2
-x -12=0
的两根,则这个函数的关系式 。
16、已知点P (1,a )在反比例函数y=k x
(k ≠0)的图象上,其中a=m 2
+2m+3(m 为实数),则这个函数图象在第 象限。
17. x,y 满足等式x=
32
21
y y +-,把y 写成x 的函数
,其中自变量x 的取值范围
是 。
18.二次函数y=ax 2
+bx+c+(a ≠0)的图象如图,则点P (2a-3,b+2) 在坐标系中位于第 象限 19.二次函数y=(x-1)2+(x-3)2
,当x= 时,达到最小值 。
20.抛物线y=x 2
-(2m-1)x- 6m 与x 轴交于(x 1,0)和(x 2,0)两点,已知x 1x 2=x 1+x 2+49,要使抛物线经过原点,应将它向右平移 个单位。
21.抛物线y=x 2
+6x+8与y 轴交点坐标( ) (A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(-4,0) 22.抛物线y= -
12
(x+1)2
+3的顶点坐标( ) (A )(1,3) (B )(1,-3) (C )(-1,-3) (D )(-1,3)
23.如图,如果函数y=kx+b 的图象在第一、二、三象限,那么函数y=kx 2
+bx-1的图象大致是( )
24.函数y=
1
x +x 的取值范围是( ) (A )x ≤2 (B )x<2 (C )x> - 2且x ≠1 (D )x ≤2且x ≠–1
25.把抛物线y=3x 2
先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )
(A )=3(x+3)2 -2 (B )=3(x+2)2+2 (C )=3(x-3)2 -2 (D )=3(x-3)2
+2 26.已知抛物线=x 2
+2mx+m -7与x 轴的两个交点在点(1,0)两旁,则关于x 的方程14
x 2
+(m+1)x+m 2
+5=0的根的情况是( )
(A )有两个正根 (B )有两个负数根 (C )有一正根和一个负根 (D )无实根
27.如果以y 轴为对称轴的抛物线y=ax 2
+bx+c 的图象,如图, 则代数式b+c-a 与0的关系( )
(A )b+c-a=0 (B )b+c-a>0 (C )b+c-a<0 (D )不能确定
x
y o -2-2
x y o x y o x
y
o x y o 11-1-1
A B C D y x
O
28、已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=5
3
,
(1) 求这条抛物线的解析式;
(2) 试证明这条抛物线与X 轴的两个交点中,必有一点C ,使得对于x轴上任意一点D 都有AC
+BC ≤AD +BD 。
29、已知抛物线y=x2
-(a+2)x+9顶点在坐标轴上,求a的值。
30、、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:
(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围; (2) 当x为何值时,S的数值是x的4倍。
D
A
B
C
E F
G
X X
X
31、已知抛物线y=x2
+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,B,C三点的坐标;
(2) 设m=a2
-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,
若不存在,请说明理由;
(3) 设m=a2
-2a+4,当∠BAC最大时,求实数a的值。
32、如图抛物线与直线
)4(-=x k y 都经过坐标轴的正半轴上A ,B 两点,该抛物线的对称轴x=
—1,与x 轴交于点C,且∠ABC=90°求: (1)直线AB 的解析式;
(2)抛物线的解析式。
33、已知:二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两个不同的点M 、N ,求a 、b 的值。
34、如图,已知⊿ABC 是边长为4的正三角形,AB 在x 轴上,点C 在第一象限,AC 与y 轴交于点D ,点A 的坐标为{—1,0),求 (1)B ,C ,D 三点的坐标;
(2)抛物线c bx ax y ++=2
经过B ,C ,D 三点,求它的解析式; (3)过点D 作DE ∥AB 交过B ,C ,D 三点的抛物线于E ,求DE 的长。
2 35、巳知:抛物线
62)5(2
22+++-=m x m x y (1)求证;不论m 取何值,抛物线与x 轴必有两个交点,并且有一个交点是A(2,0); (2)设抛物线与x 轴的另一个交点为B ,AB 的长为d ,求d 与m 之间的函数关系式; (3)设d=10,P(a ,b)为抛物线上一点:
①当⊿A BP是直角三角形时,求b 的值;
②当⊿AB P是锐角三角形,钝角三角形时,分别写出b 的取值范围(第2题不要求写出过程)
36、已知二次函数的图象)9
24(2)254(222+--+--=m m x m m x y 与x 轴的交点为A ,B(点B在点A 的右边),与y 轴的交点为C ; (1)若⊿ABC 为Rt ⊿,求m 的值;
(1)在⊿ABC 中,若AC=BC,求sin ∠ACB 的值;
(3)设⊿ABC 的面积为S ,求当m 为何值时,s 有最小值.并求这个最小值。
Y
X
B
C
O
A
Y
X
B C
O A
D E。