数学与信息科学学院2008年硕士研究生复试内容

合集下载

硕士研究生入学历年考试、复试、同等学力加试参考目

硕士研究生入学历年考试、复试、同等学力加试参考目
《电磁学》<上、下册)赵凯华、陈熙谋,高等教育出版社,1985年,第2版
《光学教程》姚启钧,高等教育出版社,2002年,第3版
《信号与线性系统分析》吴大正,高等教育出版社,2005年8月,第4版
837物理化学
《物理化学》天津大学物理化学教研室,高等教育出版社,2004年,第4版
838环境化学
《环境化学》戴树桂,高等教育出版社,2006年,第2版
839无机化学
《无机化学》大连理工大学教研室,高等教育出版社,2007年,第5版
《数字测图原理与方法》潘正风、杨正、程效军,武汉大学出版社,2004年第1版
806测量平差基础
《误差理论与测量平差》武汉大学测绘学院测量平差学科组,武汉大学出版社,2003年
807地理信息系统原理
《地理信息系统基础》龚健雅,科学出版社,2001年
808材料力学
《材料力学》孙训芳,高等教育出版社,2003年,第4版
708马克思主义原理
《马克思主义基本原理概论》教育部社政司组,中国高等教育出版社,2007年
709文学理论
《文学理论教程》童庆炳,高等教育出版社,2004年,修订第2版
《中国古代文论教程》李壮鹰、李春青,高等教育出版社,2005年
710基础英语
《高级英语》(1,2册>张汉熙,外语教案与研究出版社,2002年
801结构力学
《结构力学》李廉锟,高等教育出版社,第4版
《结构力学教程》龙驭球,高等教育出版社,第3版
802土力学
《土质学与土力学》高大钊,人民交通出版社,2001年
803水力学
《水力学》吴持恭等,高等教育出版社,1995年
804道路工程
《道路工程》严作人、陈雨人、姚祖康,人民交通出版社

2008年考研数学(二)真题及解析

2008年考研数学(二)真题及解析

2008年全国硕士研究生入学统一考试数学(二)(科目代码:302)(考试时间:上午8:30-11:30)考生注意事项1.答题前,考生须在试题册指定位置填写考生姓名和考生编号;在答题卡指定位置填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。

2.选择题答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内,超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。

3.填(书)写部分必须使用黑色签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

4.考试结束,将答题卡和试题册按规定交回。

OxyD (,())A a f a ()y f x =(,0)B a yxO222x y u +=221x y +=vuvD 2008年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)设函数2()(1)(2)f x x x x =--,则()f x '的零点个数为(A )0.(B )1.(C )2.(D )3.(2)如图,曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()d axf x x '⎰等于(A )曲边梯形ABOD 的面积.(B )梯形ABOD 的面积.(C )曲边三角形ACD 的面积.(D )三角形ACD 的面积.(3)在下列微分方程中,以123e cos 2sin 2xy C C x C x =++(123,,C C C 为任意常数)为通解的是(A )440y y y y ''''''+--=.(B )440y y y y ''''''+++=.(C )440y y y y ''''''--+=.(D )440y y y y ''''''-+-=.(4)设函数ln ()sin 1x f x x x =-,则()f x 有(A )1个可去间断点,1个跳跃间断点.(B )1个可去间断点,1个无穷间断点.(C )2个跳跃间断点.(D )2个无穷间断点.(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是(A )若{}n x 收敛,则{}()n f x 收敛.(B )若{}n x 单调,则{}()n f x 收敛.(C )若{}()n f x 收敛,则{}n x 收敛.(D )若{}()n f x 单调,则{}n x 收敛.(6)设函数()f x 连续.若22(,)d uvD F u v x y =,其中区域uv D 为图中阴影部分,则Fu∂=∂(A )2()vf u .(B )2()vf u u.(C )()vf u .(D )()vf u u.(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若3=A O ,则(A )-E A 不可逆,+E A 不可逆.(B )-E A 不可逆,+E A 可逆.(C )-E A 可逆,+E A 可逆.(D )-E A 可逆,+E A 不可逆.(8)设1221⎛⎫= ⎪⎝⎭A ,则在实数域上与A 合同的矩阵为(A )2112-⎛⎫⎪-⎝⎭.(B )2112-⎛⎫⎪-⎝⎭.(C )2112⎛⎫⎪⎝⎭.(D )1221-⎛⎫⎪-⎝⎭.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(9)已知函数()f x 连续,且21cos[()]lim1(e 1)()x x xf x f x →-=-,则(0)f =.(10)微分方程2(e )d d 0xy x x x y -+-=的通解是y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程是.(12)曲线23(5)y x x =-的拐点坐标为.(13)设xyy z x ⎛⎫=⎪⎝⎭,则(1,2)z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248=-A ,则λ=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分9分)求极限()40sin sin sin sin limx x x x x →-⎡⎤⎣⎦.(16)(本题满分10分)设函数()y y x =由参数方程20(),ln(1)d .t x x t y u u =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0d 2e 0,d |0.xt x t tx -=⎧-=⎪⎨⎪=⎩的解.求22d d y x .(17)(本题满分9分)计算21x ⎰.(18)(本题满分11分)计算{}max ,1d d Dxy x y ⎰⎰,其中{(,)02,02}D x y x y = .(19)(本题满分11分)设()f x 是区间[0,)+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[0,)t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(Ⅰ)证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰;(Ⅱ)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()d x x ϕϕϕϕ>>⎰,则至少存在一点(1,3)ξ∈,()0ϕξ''<使得.(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值和最小值.(22)(本题满分12分)设n 元线性方程组=Ax b ,其中2222212121212n na a a a a a a a a ⨯⎛⎫⎪ ⎪ ⎪=⎪⎪ ⎪ ⎪ ⎪⎝⎭A ,12n x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭x ,100⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭b .(Ⅰ)证明行列式(1)nn a =+A ;(Ⅱ)当a 为何值时,该方程组有唯一解,并求1x ;(Ⅲ)当a 为何值时,该方程组有无穷多解,并求通解.(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足323=+Aααα.(Ⅰ)证明123,,ααα线性无关;(Ⅱ)令()123,,=P ααα,求-1P AP .2008年考研数学(二)试卷答案速查一、选择题(1)D (2)C (3)D (4)A (5)B (6)A(7)C (8)D二、填空题(9)2(10)(e )xx C --(11)1y x =+(12)(1,6)--(13)2(ln 21)2-(14)1-三、解答题(15)61.(16)22(1)[ln(1)1]t t +++.(17)21π416+.(18)2ln 419+.(19)e e 2x xy -+=.(20)略.(21)222max (2)(2)872u =-+-+=,222min 1126u =++=.(22)(Ⅰ)略.(Ⅱ)0≠a ,1(1)nx n a =+.(Ⅲ)0a =,1001,0000k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ x 为任意常数.(23)(Ⅰ)略.(Ⅱ)1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭2008年全国硕士研究生入学统一考试数学(二)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)【答案】D .【解答】222()2(1)(2)(2)(1)(494)0f x x x x x x x x x x x '=--+-+-=-+=,有三个实数根,所以有三个零点.故答案选D .(2)【答案】C .【解答】()d d ()()()d aa axf x x x f x af a f x x '==-⎰⎰⎰,其中()af a 是矩形面积,()d af x x ⎰为曲边梯形的面积,0()d a xf x x '⎰为曲边三角形的面积.故选C .(3)【答案】D .【解答】由123e cos 2sin 2xy C C x C x =++可知其特征根为12,31,2i λλ==±.故对应的特征方程为2(1)(2)(2)(1)(4)0i i λλλλλ-+-=-+=,即方程为440y y y y ''''''-+-=,故选D .(4)【答案】A .【解答】因为[]111ln 1(1)ln 1(10)lim sin lim sin sin1limsin1111x x x x x x f x x x x x ++→→→+--+===⋅=---,[]111ln 1(1)ln 1(10)lim sin lim sin sin1lim sin1111x x x x x x f x x x x x --→→→+---==-=-⋅=----,所以1x =为跳跃间断点;又因为000021ln ln limsin lim ln lim lim 011|1|x x x x x xx x x x x x x→→→→=⋅===--,所以0x =为可去间断点;故答案选A .(5)【答案】B .【解答】若{}n x 单调,则由()f x 在(,)-∞+∞内单调有界知,{}()n f x 单调有界.由单调有界收敛定理可知{}()n f x 收敛,故答案选B .(6)【答案】A .【解答】由条件可知在极坐标下化二重积分为累次积分22011()(,)d d ()d v uu f r F u v v r r v f r r r==⎰⎰⎰,所以2()Fvf u u∂=∂,故答案选A .(7)【答案】C .【解答】因为3=A O ,所以32()()=-=-++E E A E A E A A .由可逆矩阵的定义可知-E A 可逆,且12()--=++E A E A A .同理,32()()=+=+-+E E A E A E A A ,所以+E A 可逆,且12()-+=-+E A E A A .故答案选C .(8)【答案】D .【解答】12||(1)(3)021λλλλλ---==+-=--E A ,则121,3λλ=-=.所以矩阵A 的正负惯性指数都是1;A 选项,特征方程21(1)(3)012λλλλ+-=++=-+,负惯性指数为2,不合同;B 选项,特征方程21(1)(3)012λλλλ-=--=-,正惯性指数为2,不合同;C 选项,特征方程21(1)(3)012λλλλ--=--=--,正惯性指数为2,不合同;D 选项,特征方程12(1)(3)021λλλλ-=+-=-,则121,3λλ=-=,正负惯性指数都为1,合同.故答案为D .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(9)【答案】2.【解答】由22220001()1cos[()]121lim lim ()()2(e 1)()x x x x x f x xf x f x x f x f x →→→-===-,得0lim ()2x f x →=.因为()f x 连续,所以(0)2f =.(10)【答案】(e )xy x C -=-.【解答】方程可变形为d e d x y yx x x-=,通解为()11d d ee e d ed (e )xx x xx xxy x x C x x C x C ------⎛⎫⎰⎰=+=+=- ⎪⎝⎭⎰⎰.(11)【答案】1y x =+.【解答】设(,)sin()ln()F x y xy y x x =+--,则1cos()1d 1d cos()x y y xy F y y x x F x xy y x-+-'-=-=-'+-,在(0,1)处,得1k =,因此切线方程为1y x =+.(12)【答案】(1,6)--.【解答】21133325()(5)(2)33f x x x x x x --'=+-=-,4310()(1)9f x x x -''=+,由4310()(1)09f x x x -''=+=,得1x =-,且1x <-时,()0f x ''<;1x >-时,()0f x ''>,所以1x =-对应的点(1,6)--为拐点.(13)【答案】(ln 21)2-.【解答】令,y xu v x y==,方程变为v z u =,取对数得ln ln z v u =.方程两边对x 求导得,111ln ln x xz vy v u u z x u y x y∂''=+=-∂,所以,(1,2)(1,2)(1,2)11112(ln )()()(ln 21)2xy z y y y z x y x y x y x y∂=-=-=-∂.(14)【答案】1-.【解答】因为A 是3阶矩阵,248=-A ,所以848=-A ,即6=-A .而23λ=⋅⋅A ,所以1λ=-.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分9分)解:[]43sin sin(sin )sin sin sin(sin )limlim x x x x x x x x x →→--=20cos cos(sin )cos lim 3x x x x x →-⋅=20cos (1cos(sin ))lim 3x x x x →-=613sin 21lim 220==→x xx .(16)(本题满分10分)解:解方程d 2e 0d x xt t--=,且0|0t x ==,可得2ln(1)x t =+.因为函数()y y x =由参数方程20()ln(1)d t x x t y u u =⎧⎪⎨=+⎪⎩⎰确定,所以,()2222d d ln(1)2d 1ln(1)d 2d d 1yy t t t t t x t x t t +⋅===+++,故,()222222d d d ln(1)221ln(1)12d d d 1y y t t tt t t x x x t +⋅+⎛⎫⎡⎤===+++ ⎪⎣⎦⎝⎭+.(17)(本题满分9分)解:令sin x t =,则ππ22122sin 1cos d (1cos 2)d cos 2t t x t t t t t t ⋅==-⋅⎰⎰⎰ππ22200111πd cos2d 22416t t t t t =-=+⎰⎰.(18)(本题满分11分)解:如图,取111{(,)2,2}2D x y x y x= ,2D 是区域D 去掉1D 的剩余部分.则,()12max ,1d d d d 1d d DD D xy x y xy x y x y =+⎰⎰⎰⎰⎰⎰,12211215d d d d ln 24xD xy x y x x y y ==-⎰⎰⎰⎰,21221121d d 1d d 1d d 4d d 12ln 2xD DD x y x y x y x y =-=-=+⎰⎰⎰⎰⎰⎰⎰⎰,所以,()1219max ,1d d d d 1d d ln 24D D D xy x y xy x y x y =+=+⎰⎰⎰⎰⎰⎰1(19)(本题满分11分)解:旋转体体积2()πd tV t y x =⎰,侧面积0()2πtS t x =⎰.因为,202π2πd tt x y x =⎰⎰,两边对变量x求导可得2y =,整理得,221y y '+=,再对变量求导化简可得二阶微分方程y y ''=.由特征方程为210λ-=,特征根为1λ=±,通解为12e exxy C C -=+.将通解代入方程221y y '+=,得1241C C =.再由(0)1f =,得112C =.故该曲线方程为e e 2x xy -+=.(20)(本题满分11分)证明:(Ⅰ)设M 和m 分别是连续函数()f x 在区间[,]a b 上的最大值及最小值,则()()d ()b am b a f x x M b a --⎰ ,1()d ba m f x x Mb a -⎰ .由介值定理,在[,]a b 上至少存在一点η,1()d ,()b af x x a b b a ηη=-⎰ ,即()d ()(),()baf x x f b a a b ηη=-⎰.(Ⅱ)由积分中值定理,则至少存在一点(2,3)c ∈,使得32()d (),(2,3)x x c c ϕϕ=∈⎰,且32(2)()d x x ϕϕ>⎰,则(2)(1),(2)()c ϕϕϕϕ>>.对()x ϕ分别在区间[][]1,2,2,c 上应用拉格朗日中值定理,可得1(2)(1)()0,21ϕϕϕη-'=>-2(2)()()0,2c cϕϕϕη-'=<-则在区间[]12,ηη上对()x ϕ'应用拉格朗日中值定理,有1212()()()0ϕηϕηϕξηη''-''=<-.(21)(本题满分11分)解:构造拉格让日函数2222212(,,)()(4)F x y z x y z x y z x y z λλ=++++-+++-,由1212122222022020040x x y y z x y z x y z λλλλλλ++=⎧⎪++=⎪⎪-+=⎨⎪+-=⎪⎪++-=⎩,解得228x y z =-⎧⎪=-⎨⎪=⎩或112x y z =⎧⎪=⎨⎪=⎩.则点(2,2,8)--和(1,1,2)为函数222u x y z =++在约束条件下的最值点,带入有222max (2)(2)872U =-+-+=,222min 1126U =++=.即最大值为72,最小值为6.(22)(本题满分12分)解:(Ⅰ)利用初等变换进行计算222222121321012221122a a aa a a a a a aaa a==A 2130124034(1)2(1)3231(1)0n a a aa a n a a n a n n a n+==⋅⋅⋅=++.(Ⅱ)方程组=Ax b 有唯一解,需0≠A .因为||(1)nn a =+A ,所以有0a ≠.利用克莱姆法则可得唯一解为111(1)(1)n n D na nx n a n a-===++A ,其中2111000*********2a a a D a=(Ⅲ)当0=A 时,即0a =时,方程组=Ax b 有无穷多解.此时原矩阵变为010010100100⎛⎫ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A .由0100100100(,)0001000000⎛⎫⎪⎪⎪== ⎪⎪ ⎪⎝⎭A A b ,得(,)()1r r n ==-A b A .所以=0Ax 的解为()T1,0,0,,0k ,k 为任意常数.方程组=Ax b 特解为0100η⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ ,所以通解为10010000k ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(k 为任意常数).(23)(本题满分10分)解:(Ⅰ)因为12,αα为A 的分别属于特征值1,1-特征向量,所以1122,=-=AααAαα,且12,αα线性无关.令,112233k k k ++=0ααα①则等式两侧左乘A 得,1122331122323()k k k k k k ++=-+++=0AαAαAααααα,整理可得1123233()k k k k -+++=0ααα②由①和②两式相减可得11322k k -=0αα.所以,130k k ==.再由①可知20k =,故123,,ααα线性无关.(Ⅱ)由于123,,ααα线性无关,()123,,=P ααα,所以P 可逆.因为()()()1231223123100,,,,,,011001-⎛⎫ ⎪==-+= ⎪ ⎪⎝⎭AP A αααααααααα,所以-1100011001-⎛⎫⎪= ⎪ ⎪⎝⎭P AP .。

大连理工复试内容及形式

大连理工复试内容及形式

大连理工大学学术型硕士研究生各学科、专业
复试内容及形式
院、系(部)名称:电子与信息工程学院 (7)
院、系(部)名称:电气工程及应用电子技术系 (10)
院、系(部)名称:应用数学系
院、系(部)名称:物理与光电工程学院
院、系(部)名称:运载工程与力学学部院、系(部)名称:工程力学系
院、系(部)名称:船舶工程学院
院、系(部)名称:汽车工程学院
院、系(部)名称:机械工程学院
院、系(部)名称:材料科学与工程学院
院、系(部)名称:土木水利学院
院、系(部)名称:化工学院
院、系(部)名称:电子与信息工程学院
院、系(部)名称:能源与动力学院
院、系(部)名称:人文社会科学学院
院、系(部)名称:电气工程及应用电子技术系
院、系(部)名称:外国语学院
院、系(部)名称:体育教育部
院、系(部)名称:建筑与艺术学院
院系名称:软件学院
院、系(部)名称:环境与生命学院
院、系(部)名称:马克思主义学院
院、系(部)名称:经济系。

2008考研试题及评分标准

2008考研试题及评分标准


x + ∆x
0
f (t ) dt − ∆x

x
0
f ( t ) dt
= lim

x + ∆x
x
f (t ) dt
∆x → 0
∆x
……2 分
……5 分
(Ⅱ) 证法 1:要证明 G ( x) 以 2 为周期,即要证明对任意的 x ,都有 G ( x + 2) = G ( x) , 记 H ( x) = G ( x + 2) − G ( x) ,则
……2 分 ……6 分 ……9 分
(16) 解法 1:

π 0
L
sin 2 xdx + 2 x 2 − 1 ydy = ∫ sin 2 x + 2 x 2 − 1 sin x ⋅ cos x dx
0
(
)
π
[
(
)
]
= ∫ x 2 sin 2 xdx
……4 分
∫ sin 2xdx + 2(x
L D
π x2 ……6 分 = − cos 2 x π 0 + ∫ x cos 2 xdx 0 2 π2 x 1 π π2 =− + sin 2 x π − sin 2 xdx = − ……9 分 0 2 2 2 ∫0 2 解法 2:取 L1 为 x 轴上从点 (π ,0 ) 到点 (0,0 ) 的一段, D 是由 L 与 L1 围成的区域 2
3
(4)设函数 f ( x) 在 ( −∞, +∞ ) 内单调有界, {xn } 为数列,下列命题正确的是
(5) 设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵,若 A = 0 ,则 (B) E − A 不可逆, E + A 可逆. (D) E − A 可逆, E + A 不可逆

2008年全国硕士研究生入学统一考试数学二真题及答案

2008年全国硕士研究生入学统一考试数学二真题及答案
故 线性无关.
(Ⅱ)记 则 可逆,
即 .
【难易度】★★
【详解】
解析:
则 。记 ,则
则 ,正、负惯性指数相同,故选
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)已知函数 连续,且 ,则
【答案】2
【考点】等价无穷小
【难易度】★★
【详解】
解析:利用等价无穷小因子替换有
.
(10)微分方程 的通解是 .
【答案】y=Cx-xe-x,其中C为任意常数
2个无穷间断点
2个跳跃间断点
【答案】
【考点】函数间断点的类型
【难易度】★★
Hale Waihona Puke 【详解】解析: 的间断点为 ,而 ,故 是可去间断点;
, ,故 是跳跃间断点
故选 .
(5)设函数 在 内单调有界, 为数列,下列命题正确的是( )
若 收敛,则 收敛. 若 单调,则 收敛.
若 收敛,则 收敛. 若 单调,则 收敛.
【详解】
解析:令
得方程组 即 ,解得 或
得 .
.
(22)(本题满分11分)
设 元线性方程组 ,其中 , , .
(Ⅰ)证明行列式 ;
(Ⅱ)当 为何值时,该方程组有唯一解,求 ;
(Ⅲ)当 为何值时,该方程组有无穷多解,求通解.
【考点】行列式的基本性质,非齐次线性方程组解的判定
【难易度】★★★
【详解】
解析:(Ⅰ)证明:消元法.记

(Ⅱ)由克莱姆法则, 时方程组有唯一解,故 时方程组有唯一解.
由克莱姆法则,将 得第一列换成 ,得行列式为
所以, .
(Ⅲ)当 时,方程组为
此时方程组系数矩阵的秩和增广矩阵的秩均为 ,所以方程组有无穷多组解,其通解为 ,其中 为任意常数.

2008考研数农真题及解析

2008考研数农真题及解析

2008年全国硕士研究生入学统一考试农学门类联考数学试题一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,请选出一项最符合题目要求的. (1) 设函数2sin(1)()1x f x x -=-,则 ( )(A) 1x =-为可去间断点,1x =为无穷间断点. (B) 1x =-为无穷间断点,1x =为可去间断点. (C) 1x =-和1x =均为可去间断点. (D) 1x =-和1x =均为无穷间断点.(2) 设函数()f x 可微,则(1)x y f e -=-的微分dy = ( )(A) (1)(1)x x e f e dx --'+-. (B) (1)(1)x x e f e dx --'--. (C) (1)x x e f e dx --'--.(D) (1)x x e f e dx --'-.(3) 设函数()f x 连续,2()()x F x f t dt =⎰,则()F x '= ( )(A) 2()f x -. (B) 2()f x . (C) 22()xf x -. (D) 22()xf x .(4) 设函数(,)f x y 连续,交换二次积分次序得1022(,)y dy f x y dx -=⎰⎰( )(A)122(,)x dx f x y dy +-⎰⎰.(B)0212(,)x dx f x y dy -+⎰⎰.(C)212(,)x dx f x y dy -⎰⎰.(D)20012(,)xdx f x y dy -⎰⎰.(5) 设123,,ααα为3维列向量,矩阵1232123(,,),(,2,)A B ααααααα==+ ,若行列式3A =,则行列式B = ( )(A) 6.(B) 3.(C) 3-. (D) 6-.(6) 已知向量组123,,ααα线性无关,则下列向量组中线性无关的是 ( )(A) 1223312,2,αααααα++-. (B) 1223312,,2αααααα---. (C) 1223312,2,αααααα-+-. (D) 122331,2,2αααααα-++.(7) 设123,,A A A 为3个随机事件,下列结论中正确的是 ( )(A) 若123,,A A A 相互独立,则123,,A A A 两两独立. (B) 若123,,A A A 两两独立,则123,,A A A 相互独立.(C) 若123123()()()()P A A A P A P A P A =,则123,,A A A 相互独立. (D) 若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立.(8) 设随机变量X 服从参数为,n p 的二项分布,则 ( )(A) (21)2E X np -=.(B) (21)4E X np +=.(C) (21)2(1)D X np p -=-. (D) (21)4(1)D X np p +=-.二、填空题:9~14小题,每小题4分,共24分. (9) 函数()2xf x e ex =--的极小值为______________. (10)2||2(1)x e x dx -+=⎰______________.(11) 曲线sin()ln()xy y x x +-=在点(0,1)处的切线方程是______________. (12) 设22{(,)|1,0}D x y x y y x =+≤≤≤,则22x y De dxdy +=⎰⎰______________.(13) 设3阶矩阵A 的特征值为1,2,3,则行列式12A -=______________.(14) 设1234,,,X X X X 为来自正态总体(2,4)N 的简单随机样本,X 为其样本均值,则2()E X =______________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限21cos(sin )lim1x x x e →--.(16)(本题满分10分)计算不定积分.(17)(本题满分10分)求微分方程2()0x y x e dx xdy -+-=满足初始条件1|0x y ==的特解.(18)(本题满分11分)证明:当0x >时,2(1)1x x e x -+>-.(19)(本题满分11分)设sin(2)xyz e y =+,求z x ∂∂,z y ∂∂及2zx y∂∂∂.(20)(本题满分9分)设3阶矩阵X 满足等式2AX B X =+,其中311012004A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,110102202B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X .(21)(本题满分12分)对于线性方程组123123122,21,23.x x x x x ax x x b ++=⎧⎪++=-⎨⎪+=⎩讨论,a b 取何值时,方程组无解、有唯一解和无穷多解,并在方程组有无穷多解时,求出通解.(22)(本题满分11分)设随机变量X 的概率密度为,01,(),12,0,ax x f x b x <≤⎧⎪=<<⎨⎪⎩其他,且X 的数学期望1312EX =,(I) 求常数,a b ;XY 00.10.20 101- 20.30.10.3(II) 求X 的分布函数()F x .(23)(本题满分10分)设二维随机变量(,)X Y 的概率分布为(I) 分别求(,)X Y 关于,X Y 的边缘分布; (II) 求{2}P X Y +≤; (III) 求{0|0}P Y X ==.2008年全国硕士研究生入学统一考试农学门类联考数学试题解析一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,请选出一项最符合题目要求的. (1)【答案】(B) 【解析】函数2sin(1)()1x f x x -=-在点1x =±没有定义,而 21sin(1)lim1x x x →--=∞-,所以1x =-为无穷间断点;211sin(1)sin(1)1limlim 1(1)(1)2x x x x x x x →→--==--+,所以1x =为可去间断点.故选(B).(2)【答案】(D)【解析】(1)(1)(1)(1)x x x x x dy df e f e e dx f e e dx -----'''=-=--=-, 故选(D).(3)【答案】(C) 【解析】由于2()()x F x f t dt =⎰,则()222220()()()()()2()x x F x f t dt f t dt f x x xf x ''⎛⎫''==-=-⋅=- ⎪⎝⎭⎰⎰, 故选(C).(4)【答案】(A)【解析】积分区域D 如右图所示.由于{}(,)|01,220(,)|20,01,2D x y y y x x x y x y =≤≤-≤≤⎧⎫=-≤≤≤≤+⎨⎬⎩⎭ 所以,10012222(,)(,)x y dy f x y dx dx f x y dy +--=⎰⎰⎰⎰,故选(A).(5)【答案】(D)【解析】根据行列式的性质,有2123213223123223,2,,2,,,2,,02,,2 6.B A αααααααααααααααα=+=+=-+=-=-=-故选(D).(6)【答案】(C)【解析】对于A 、B 、D 选项,由于122331(2)(2)()0αααααα+-++-=; 122331(2)2()(2)0αααααα-+-+-=; 122331()(2)(2)0αααααα-++-+=,根据线性相关的定义可知,A 、B 、D 选项中的向量组都是线性相关的.由排除法可得C 正确.事实上,可以根据定义证明选项C 正确.设 112223331(2)(2)()0k k k αααααα-+++-=, 整理得 131122233(2)()(2)0k k k k k k ααα-+-+++=.由于向量组123,,ααα线性无关,所以13122320,0,20,k k k k k k -=⎧⎪-+=⎨⎪+=⎩此线性方程组的系数矩阵201110021A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭.由于 20122022110110401121021A -=-=-==≠-,所以方程组13122320,0,20,k k k k k k -=⎧⎪-+=⎨⎪+=⎩只有零解,即1230k k k ===.由线性无关的定义可知,向量组1223312,2,αααααα-+-线性无关. (7)【答案】(A)【解析】若123,,A A A 相互独立,由相互独立的定义可知,121223231313123123()()(),()()(),()()(),()()()(),P A A P A P A P A A P A P A P A A P A P A P A A A P A P A P A ====由此可得123,,A A A 两两独立,故(A)正确;对于选项(B),若123,,A A A 两两独立,则121223231313()()(),()()(),()()(),P A A P A P A P A A P A P A P A A P A P A === 但123123()()()()P A A A P A P A P A =不一定成立,即123,,A A A 不一定相互独立,(B)不正确;根据相互独立的定义可知,选项(C)显然不正确;对于选项(D),令事件2A =∅,则1A 与2A 独立,2A 与3A 独立,但1A 与3A 不一定独立.故选项(D)不正确. (8)【答案】(D)【解析】X 服从参数为,n p 的二项分布,则(),()(1)E X np D X np p ==-.由期望和方差的性质,可得(21)(2)(1)2()121;(21)(2)(1)2()121;(21)(2)4()4(1);(21)(2)4()4(1).E X E X E E X np E X E X E E X np D X D X D X np p D X D X D X np p -=-=-=-+=+=+=+-===-+===-故选项(D)正确,应选(D).二、填空题:9~14小题,每小题4分,共24分. (9)【答案】2-【解析】令()0x f x e e '=-=,可得1x =.()xf x e ''=,(1)0f e ''=>,根据极值的第二充分条件,可得1x =为函数()2xf x e ex =--的极小值点,极小值为(1)2f =-.(10)【答案】222e -【解析】22222||||||20222(1)2222x x x x x e x dx e dx xe dx e dx e e ---+=+===-⎰⎰⎰⎰.(11)【答案】1y x =+【解析】首先求(0,1)y '.方程sin()ln()xy y x x +-=两边对x 求导,得1cos()()(1)1xy y xy y y x''⋅++⋅-=-, 将0,1x y ==代入上式,得(0,1)1y '=,即切线的斜率为1,所以,切线方程为1y x =+. (12)【答案】(1)8e π-【解析】作极坐标变换cos ,sin x r y r θθ==,则{}22(,)|1,0(,)|01,04D x y x y y x r r πθθ⎧⎫=+≤≤≤=≤≤≤≤⎨⎬⎩⎭,2222214011201(1).4288x y r Dr redxdy d e rdre dr e e πθπππ+=⋅=⋅==-⎰⎰⎰⎰⎰(13)【答案】43【解析】由于A 的特征值为1,2,3,所以1236A =⨯⨯=,1131422863A A--==⨯=. (14)【答案】5【解析】由于1234,,,X X X X 为来自正态总体(2,4)N 的简单随机样本,所以()2,()4,1,2,3,4.i i E X D X i ===又由于22()()()E X D X E X =+,而442114411111()()()()1,44411()()()()2,44i i i i i i i i i i D X D X D X D X E X E X E X E X ============∑∑∑∑所以 222()()()125E X D X E X =+=+=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 【解析】 2200001cos(sin )1cos(sin )sin(sin )cos sin 1limlimlim lim 2221x x x x x x x x x x x x x e →→→→--====-.(16)(本题满分10分)【解析】令2,2t x t dx tdt ===2ln(1)2ln(1)2112ln(1)2(1)12ln(1)22ln(1)1).t dt tt t dt t t t dtt t t t t C C =+=+-+=+--+=+-+++=-⎰⎰⎰(17)(本题满分10分) 【解析】原方程可化为1x y y xe x-'-=,则 11.dx dx x xx x x y e e xe dx C x e dx C xe Cx ----⎡⎤⎰⎰⎡⎤=⋅+=+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 将10x y ==代入得1C e =,故所求特解为x x y xe e-=-.(18)(本题满分11分)【解析】设 2()(1)1x f x x e x -=++-,则 22()(12)1,()4x x f x x e f x xe --'''=-++=.当0x >时,()0f x ''>,则()f x '单调增加,故()(0)0,()f x f f x ''>=单调增加.于是()(0)0f x f >=,即2(1)1x x e x -+>-.(19)(本题满分11分) 【解析】cos(2)xy xy zye e y x∂=+∂, (2)cos(2)xy xy zxe e y y∂=++∂, 2cos(2)cos(2)sin(2)(2)[(1)cos(2)(2)sin(2)].xy xy xy xy xy xy xy xy xy xy xy ze e y xye e y ye e y xe x ye xy e y y xe e y ∂=+++-+⋅+∂∂=++-++(20)(本题满分9分)【解析】由2AX B X =+,得(2)A E X B -=,其中E 为单位矩阵.1112012002A E ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭.因为220A E -=-≠,所以2A E -可逆,1(2)X A E B -=-.而13112(2)0111002A E -⎛⎫- ⎪ ⎪-=- ⎪ ⎪ ⎪⎝⎭,则 1111(2)100101X A E B ---⎛⎫ ⎪=-= ⎪ ⎪⎝⎭.(21)(本题满分12分)【解析】解法1 方程组系数行列式111121230D a a ==--. 当0D ≠时,即1a ≠-时,由克莱姆法则知方程组有唯一解;当1a =-时,方程组的系数矩阵111121230A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,对方程组的增广矩阵施行初等行变换得11121112121101232300001B b b ⎛⎫⎛⎫⎪⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭. 当1b ≠时,()2,()3,()()r A r B r A r B ==≠,线性方程组无解; 当1b =时,()()23r A r B ==<,线性方程组有无穷多解,其通解为123533201x x k x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k 为任意常数.解法2 方程组的系数矩阵11112230A a ⎛⎫⎪= ⎪ ⎪⎝⎭,对方程组的增广矩阵施行初等行变换得1112111212101132300011B aa b a b ⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.当1,1a b =-≠时,()2,()3,()()r A r B r A r B = =≠,线性方程组无解;当1,a b ≠-任意时,()()3r A r B ==,线性方程组有唯一解; 当1,1a b =-=时,()()23r A r B ==<,线性方程组有无穷多解,其通解为123533201x x k x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k 为任意常数.(22)(本题满分11分)【解析】(I) 由()1f x dx +∞-∞=⎰知120112a axdx bdx b +=+=⎰⎰, 而由1312EX =知122013133212a b ax dx bxdx +=+=⎰⎰, 解得11,2a b ==. (II) 当0x ≤时,()()0xF x f t dt -∞==⎰;当01x <≤时,20()2x x F x tdt ==⎰; 当12x <≤时,1011()22x x F x tdt dt =+=⎰⎰; 当2x >时,()1F x =;即 20,0,,01,2(),12,21, 2.x x x F x x x x ≤⎧⎪⎪<≤⎪=⎨⎪<≤⎪⎪>⎩(23)(本题满分10分)【解析】(I)关于X 的边缘分布为 020.30.7XP ,关于Y 的边缘分布 1010.40.30.3Y P - .(II) {2}{0,1}{0,0}P X Y P X Y P X Y +≤===-+=={2,1}{2,0}P X Y P X Y +==-+== 0.10.20.30.10.7=+++=. 或 {2}1{2,1}10.30.7P X Y P X Y +≤=-===-=. (III) {0,0}0.22{0|0}{0}0.33P X Y P Y X P X ========.。

2008考研数一真题及解析

2008考研数一真题及解析

(x2 y2 )dxdy
x2 y2 4
2 x2 y2 4
1
2
d
2 r3dr 4 。
20
0
(高斯公式)
P d
yd z Qd zd x Rd xd
y
P x
Q y
R z
d xd
ydz;
P cos Q cos R cos
d S=
P Q R x y z
dx d ydz 。
(13) 设 A 为 2 阶矩阵,1,2 为线性无关的 2 维列向量,A1 0, A2 21 2 ,则 A 的非零特征值为
第 4 页 共 13 页
.
【答案】1
【详解】
A(1,
2
)
(
A1
,
A
2
)
(0,
21
2
)
(1
,2
)
0 0
2 1
,记
P
(1
,2
)

B
0 0
2 1

则 AP PB ,因为1,2 线性无关,所以 P 可逆. 从而 B P1AP ,即 A 与 B 相似。
2
由| E B |
( 1) 0 ,得 0 及 1为 B 的特征值,
二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
(9) 微分方程 xy y 0 满足条件 y 1 1的解是 y .
【答案】1 x
【详解】由 dy y ,两端积分得 ln y ln x ln | C | ,所以 1 C x ,又 y(1) 1 ,所以 y 1 。
【答案】 B
D 若 f (xn ) 单调,则xn 收敛.

2008年全国考研数学一真题

2008年全国考研数学一真题

y
)ቤተ መጻሕፍቲ ባይዱ
(A)
i
(B) i .
(C)
j.
(D) j .
【答案】 应选(A).
1 x y2 x . y 【详解】因为 f y . f x 1 x2 x 2 y 2 y 1 x2 x 2 y2 y2 y2
所以
f x (0,1)
1,
f y
0 ,于是gradf (x, y)
(B) E A 不可逆,则 E A 可逆. (D) E A 可逆,则 E A 不可逆.
(E A)(E A A 2 ) E A3 E , (E A)(E A A2 ) E A3 E .
故 E A , E A 均可逆.故应选(C).
X N (0,1) , Y N (1, 4) ,得
EX 0, EY 1, E(aX b) aEX b . 1 a 0 b , b 1 .从而排除(B).故应选 (D).
( 1)( 2i)( 2i) ( 1)(2 4) 3 4 2 4 3 2 4 4
所以所求微分方程为 y y 4 y 4 y 0 .应选(D).
4
设函数 f ( x) 在 (, ) 内单调有界,{xn } 为数列,下列命题正确的是( (A) 若 {xn } 收敛,则 { f ( xn )} 收敛 (C) 若 { f ( xn )} 收敛,则 {xn } 收敛. (B) 若 {xn } 单调,则 { f ( xn )} 收敛 (D) 若 { f ( xn )} 单调,则 {xn } 收敛.
又 f (x) 2 ln(2 x )
2
4x2 0 ,恒大于零,所以 f (x) 在 ( , ) 上是单调递增的.又 2 x2

燕山大学2008年研究生初试、复试科目及参考书目

燕山大学2008年研究生初试、复试科目及参考书目

燕山大学2008年研究生初试、复试科目及参考书目初试科目专业代码专业名称招生人数考试科目备注010101马克思主义哲学10① 101政治② 201英语或 202俄语或 203日语③ 701马克思主义哲学原理④ 801西方哲学史(德国古典哲学部分)010104逻辑学15① 101政治② 201英语或 202俄语或 203日语③ 701马克思主义哲学原理④ 802形式逻辑020202区域经济学25① 101政治② 201英语③ 303数学三④ 803西方经济学030106诉讼法学30① 101政治② 201英语或 202俄语或 203日语③ 702法理学④ 804民事诉讼法或 805刑事诉讼法030201政治学理论7① 101政治② 201英语或 202俄语或 203日语③ 703政治学原理④ 806国际政治学概论030501马克思主义基本原理6① 101政治② 201英语或 202俄语或 203日语③ 701马克思主义哲学原理④ 807邓小平理论概论030503马克思主义中国化研究15① 101政治② 201英语或 202俄语或 203日语③ 701马克思主义哲学原理④ 807邓小平理论概论030505思想政治教育31① 101政治② 201英语或 202俄语或 203日语③ 701马克思主义哲学原理④ 807邓小平理论概论050201英语语言文学18① 101政治② 211俄语或 212日语或 213法语或 214德语③ 704基础英语④ 808语言学与英美文学050202俄语语言文学5① 101政治② 215英语③ 705基础俄语④ 809俄语语言理论及综合知识050211外国语言学及应用语言学(英语方向)7① 101政治② 211俄语或 212日语或 213法语或 214德语③ 704基础英语④ 810语言学外国语言学及应用语言学(日语方向)6① 101政治② 215英语③ 706基础日语④ 811语言学基础050402音乐学7① 101政治② 201英语或 202俄语或 203日语③ 707中外音乐史④ 812和声、曲式050404设计艺术学14① 101政治② 201英语或 203日语③ 708设计史论④ 501专业综合(设计基础)专业综合(设计基础)考试时间为六小时,安排在第三天上午进行070102计算数学18① 101政治② 201英语③ 709数学分析④ 813高等代数070103概率论与数理统计15① 101政治② 201英语③ 709数学分析④ 813高等代数070105运筹学与控制论30① 101政治② 201英语③ 709数学分析④ 813高等代数070205凝聚态物理14① 101政治② 201英语或 202俄语或 203日语③ 302数学二或 710普通物理学(力、热、电磁部分)④ 814量子力学或 815电动力学070207光学11① 101政治② 201英语或 202俄语或 203日语③ 302数学二或 710普通物理学(力、热、电磁部分)④ 814量子力学或 815电动力学080101一般力学与力学基础5① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 817材料力学080102固体力学5① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 817材料力学080103流体力学(机械学院)3① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 817材料力学请认真选择所报考学院流体力学(建工学院)3① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 817材料力学080104工程力学9① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 817材料力学080201机械制造及其自动化24① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 818材料力学国家重点学科080202机械电子工程70① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 816理论力学或 819控制工程基础国家重点学科080203机械设计及理论107① 101政治② 201英语或 202俄语国家重点学科③ 301数学一④ 816理论力学或 818材料力学080204车辆工程17① 101政治② 201英语③ 301数学一④ 816理论力学或 818材料力学国家重点学科080220流体传动及控制6① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 819控制工程基础一级学科为国家重点学科080221微机电工程4① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 816理论力学或 819控制工程基础一级学科为国家重点学科080222重型装备设计理论及其数字化技术6① 101政治② 201英语或 202俄语③ 301数学一④ 816理论力学或 818材料力学一级学科为国家重点学科080300光学工程11① 101政治② 201英语或 203日语③ 301数学一④ 820工程光学080401精密仪器及机械9① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 822自动控制理论080402测试计量技术及仪器17① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 822自动控制理论080501材料物理与化学12① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 823 X射线衍射学或 824高分子化学国家重点实验室080502材料学(材料学院)65① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 823 X射线衍射学或 824高分子化学国家重点学科国家重点材料学(国防科技学院)10① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 823 X射线衍射学或 824高分子化学实验室请认真选择所报考学院080503材料加工工程36① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 816理论力学或 818材料力学080521大型铸锻件材料与制造技术5① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 823 X射线衍射学或 824高分子化学国家重点实验室080522高分子材料7① 101政治② 201英语或 202俄语或 203日语③ 302数学二④ 823 X射线衍射学或 824高分子化学国家重点实验室080704流体机械及工程4① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 819控制工程基础一级学科为国家重点学科080706化工过程机械6① 101政治② 201英语③ 301数学一④ 818材料力学080801电机与电器5① 101政治② 201英语③ 301数学一④ 821电路原理或 825自动控制理论080802电力系统及其自动化18① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论080803高电压与绝缘技术4① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论080804电力电子与电力传动34① 101政治② 201英语③ 301数学一④ 821电路原理或 825自动控制理论080805电工理论与新技术5① 101政治② 201英语③ 301数学一④ 821电路原理或 825自动控制理论080901物理电子学5① 101政治② 201英语或 203日语③ 301数学一④ 821电路原理或 826模拟电子技术080902电路与系统30① 101政治② 201英语或 203日语③ 301数学一④ 821电路原理或 826模拟电子技术080903微电子学与固体电子学5① 101政治② 201英语或 203日语③ 301数学一④ 821电路原理或 826模拟电子技术080904电磁场与微波技术5① 101政治② 201英语或 203日语③ 301数学一④ 821电路原理或 826模拟电子技术081001通信与信息系统35① 101政治② 201英语或 203日语③ 301数学一④ 826模拟电子技术或 827信号与系统081002信号与信息处理15① 101政治② 201英语或 203日语③ 301数学一④ 826模拟电子技术或 827信号与系统081101控制理论与控制工程50① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论081102检测技术与自动化装置20① 101政治② 201英语或 202俄语或 203日语④ 821电路原理或 822自动控制理论081103系统工程6① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论081104模式识别与智能系统8① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论081105导航、制导与控制4① 101政治② 201英语或 202俄语或 203日语③ 301数学一④ 821电路原理或 825自动控制理论081201计算机系统结构28① 101政治② 201英语③ 301数学一④ 828数据结构081202计算机软件与理论40① 101政治② 201英语③ 301数学一④ 828数据结构081203计算机应用技术70① 101政治② 201英语③ 301数学一④ 828数据结构081402结构工程15① 101政治② 201英语或 202俄语③ 301数学一④ 817材料力学081702化学工艺8① 101政治② 201英语③ 302数学二④ 829物理化学081704应用化学23① 101政治② 201英语③ 302数学二④ 829物理化学082001油气井工程5① 101政治② 201英语④ 830工程流体力学082002油气田开发工程6① 101政治② 201英语③ 302数学二④ 830工程流体力学082304载运工具运用工程4① 101政治② 201英语③ 301数学一④ 816理论力学或 818材料力学083002环境工程14① 101政治② 201英语③ 302数学二④ 831环境监测083100生物医学工程20① 101政治② 201英语或 202 俄语或 203日语③ 301数学一④ 826模拟电子技术或 832医学传感器120100管理科学与工程28① 101政治② 201英语③ 303数学三④ 833管理学或 834技术经济学120201会计学14① 101政治② 201英语③ 303数学三④ 833管理学120202企业管理28① 101政治② 201英语③ 303数学三④ 833管理学120203旅游管理15① 101政治② 201英语③ 304数学四④ 835旅游经济学和现代饭店管理120204技术经济及管理5① 101政治② 201英语③ 303数学三④ 833管理学或 834技术经济学120401行政管理(经管学40① 101政治请认真选初试参考书目考试科目参考书名出版社作俄语《大学俄语基础教程》1-4册高等教育出版社日语《标准日本语》初级、中级人民教育出版社法语《法语》1-3册商务印书馆德语《大学德语》1-3册高等教育出版社(修订版)英语《大学体验英语综合教程》1-4册《大学体验英语扩展教程》1-4册高等教育出版社(2002年第一版)孔庆专业综合(设计基础)大学本科相关教材马克思主义哲学原理《辩证唯物主义和历史唯物主义原理》中国人民大学出版社(2004年第五版)李秀法理学《法理学》高等教育出版社(2003年版)张文政治学原理《政治学导论》中国人民大学出版社(2000年第一版)杨光基础英语《新编英语教程》1-7册上海外语教育出版社李观基础俄语北外“东方”《大学俄语》5-8册外语教学与研究出版社(1995年第一版)丁树基础日语《日语》5-8册上海外语教育出版社(2005年版)陈生中外音乐史《中国音乐史稿》《中国近现代音乐史》《西方音乐通史》人民音乐出版社(第一版)人民音乐出版社(第二次修订版)上海音乐出版社(2003年第三版)杨荫汪毓于润设计史论《世界现代设计史》中国青年出版社王受数学分析《数学分析》高等教育出版社(第二版)陈纪710普通物理学(力、热、电磁部分)《力学》《热学》《电磁学》高等教育出版社高等教育出版社人民教育出版社漆安慎张玉民赵剀华711管理学《管理学》高等教育出版社(第一版)周三多712一般管理学原理《一般管理学原理》中国人民大学出版社(2005年修订版)张康之李传军801西方哲学史(德国古典哲学部分)《西方哲学简史》北京大学出版社(第一版)赵敦华802形式逻辑《形式逻辑》高等教育出版社樊明亚803西方经济学《西方经济学》中国人民大学出版社(第三版)高鸿业804民事诉讼法《民事诉讼法》高等教育出版社(2004年版)江伟805刑事诉讼法《刑事诉讼法》中国政法大学出版社(2002年版)樊崇义806国际政治学概论《国际政治学概论》中国人民大学出版社(2000年第一版)宋新宁、陈岳807邓小平理论概论《邓小平理论概论》高等教育出版社(1999年第一版)田克勤808语言学与英美文学《语言学教程》《英国文学史选读》(上、下)《美国文学史选读》(上、下)北京大学出版社(英文修订版)北京外语教学与研究出版社北京外语教学与研究出版社胡壮麟吴伟仁吴伟仁809俄语语言理论及综合知识《现代俄语理论教程》(上、下)《苏联概况》《俄罗斯国情》《俄罗斯文学史》上海外语教育出版社(1989年版)北京大学出版社(1986年版)哈尔滨工业大学出版社(2001年版)北京大学出版社(2003年俄文版)王超尘李明滨金亚娜任光宣、张建华、余一中810语言学《语言学教程》北京大学出版社(英文修订版)胡壮麟811语言学基础《日本语通论》大连理工大学出版社(2003年版)崔崟812和声、曲式《和声学教程》《曲式与作品分析》人民音乐出版社(第一版)人民音乐出版社(第一版)伊·斯波索宾吴祖强813高等代数《高等代数》高等教育出版社(第三版)北大数学系814量子力学《量子力学》科学技术出版社(第二版)周世勋815电动力学《电动力学》高等教育出版社(第三版)郭硕鸿816理论力学《理论力学》高等教育出版社(第五版或第六版)哈工大817材料力学《材料力学》高等教育出版社(第四版)刘鸿文《材料力学》科学出版社白象忠818材料力学《材料力学》高等教育出版社(第四版)刘鸿文819控制工程基础《控制工程基础》机械工业出版社王益群、孔祥东820工程光学《工程光学》机械工业出版社(第一版)郁道银、谈恒英821电路原理《电路原理》高等教育出版社邱关源822自动控制理论《自动控制理论》哈尔滨工业大学出版社(第二版)鄢景华823X射线衍射学《X射线衍射学》机械工业出版社范雄824高分子化学《高分子化学》化学工业出版社(第三版)潘祖仁825自动控制理论《自动控制原理》国防工业出版社吴忠强826模拟电子技术《模拟电子技术》华中理工大学出版社(第四版)康华光827信号与系统《信号与系统》高等教育出版社(第二版)郑君里828数据结构《数据结构》(P、C语言版本均可) 清华大学出版社(第二版)严蔚敏829物理化学《物理化学》高等教育出版社(第四版)傅献彩830工程流体力学《工程流体力学》石油工业出版社(第一版)袁恩熙831环境监测《环境监测》高等教育出版社(第三版)奚旦立832医学传感器《医学传感器》科学出版社(1999年版)姜远海833管理学《管理学》高等教育出版社(第一版)周三多834技术经济学《工业技术经济学》清华大学出版社(第三版)傅家骥835旅游经济学和现代饭店管理《旅游经济学》《现代饭店管理—理论、方法与案例》南开大学出版社(修订版)南开大学出版社林南枝、陶汉军翁钢民836行政管理概论《行政管理概论》北京大学出版社(2000年第二版)张国庆复试科目业代码专业名称考试科目0101马克思主义哲学901马克思主义哲学综合0104逻辑学902逻辑学教程0202区域经济学903区域经济学原理0106诉讼法学904证据法学030201政治学理论905西方政治思想史030501马克思主义基本原理906当代世界经济与政治030503马克思主义中国化研究906当代世界经济与政治030505思想政治教育906当代世界经济与政治050201英语语言文学907翻译与写作(英语)050202俄语语言文学908词法、句法、写作050211外国语言学及应用语言学(英语方向)907翻译与写作(英语)外国语言学及应用语言学(日语方向)909翻译与写作(日语)050402音乐学910中国传统音乐概论或911音乐理论综合测试050404设计艺术学912专业设计综合(设计草图)070102计算数学913数值分析或914常微分方程070103概率论与数理统计915概率论与数理统计070105运筹学与控制论914常微分方程或915概率论与数理统计070205凝聚态物理916固体物理学070207光学917物理光学080101一般力学与力学基础918结构力学或919机械原理080102固体力学918结构力学或919机械原理080103流体力学(机械学院)918结构力学或919机械原理流体力学(建工学院)918结构力学或919机械原理080104工程力学918结构力学或919机械原理080201机械制造及其自动化920机械制造工艺学或921数字控制技术080202机械电子工程922液压伺服控制系统或923机械电子学080203机械设计及理论919机械原理或924机械设计080204车辆工程919机械原理或925汽车理论080220流体传动及控制922液压伺服控制系统080221微机电工程923机械电子学080222重型装备设计理论及其数字化技术919机械原理或924机械设计080300光学工程926数字电子技术080401精密仪器及机械927误差理论与数据处理或928微型计算机系统原理及应用或929传感器原理设计及应用080402测试计量技术及仪器927误差理论与数据处理或928微型计算机系统原理及应用或929传感器原理设计及应用080501材料物理与化学930物理化学080502材料学931材料工程基础或932无机材料物理化学或933高分子物理080503材料加工工程919机械原理或934金属塑性成型原理080521大型铸锻件材料与制造技术931材料工程基础080522高分子材料933高分子物理080704流体机械及工程922液压伺服控制系统或923机械电子学080706化工过程机械935过程装备设计080801电机与电器936电力电子技术080802电力系统及其自动化937电力系统稳态分析080803高电压与绝缘技术937电力系统稳态分析080804电力电子与电力传动936电力电子技术080805电工理论与新技术936电力电子技术080901物理电子学926数字电子技术或938信号与系统080902电路与系统926数字电子技术或938信号与系统080903微电子学与固体电子学926数字电子技术或938信号与系统080904电磁场与微波技术926数字电子技术或938信号与系统081001通信与信息系统939数字信号处理081002信号与信息处理939数字信号处理081101控制理论与控制工程940电路原理或941自动控制理论081102检测技术与自动化装置942非电量电测技术081103系统工程940电路原理或941自动控制理论081104模式识别与智能系统940电路原理或941自动控制理论081105导航、制导与控制940电路原理或941自动控制理论081201计算机系统结构943计算机组成原理、操作系统081202计算机软件与理论944操作系统、程序设计(C语言)081203计算机应用技术943计算机组成原理、操作系统081402结构工程945钢结构或946钢砼混凝土结构原理081702化学工艺947有机化学081704应用化学947有机化学082001油气井工程948钻井工程理论与技术082002油气田开发工程949油藏工程原理与方法082304载运工具运用工程950汽车运用工程083002环境工程951环境工程083100生物医学工程940电路原理或952生理学120100管理科学与工程953生产与运作管理120201会计学954财务成本管理或955会计学120202企业管理956人力资源管理或957市场营销120203旅游管理958旅游学概论120204技术经济及管理959项目管理120401行政管理(经管学院)960西方经济学行政管理(文法学院)961政治学导论120280工商管理硕士962管理学复试参考书目考试科目参考书名出版社作者马克思主义哲学综合《辩证唯物主义和历史唯物主义原理》中国人民大学出版社(2004年第五版)李秀逻辑学教程《逻辑学教程》高等教育出版社何向区域经济学原理《区域经济学原理》中国轻工业出版社(第一版)张敦证据法学《证据法学》法律出版社(2005年版)何家弘品新西方政治思想史《西方政治思想史》天津教育出版社(2000年第一版)徐大当代世界经济与政治《当代世界经济与政治》高等教育出版社(2003年版)吴翻译与写作(英语)无(相当于英语专业八级水平)词法、句法、写作北外“东方”《大学俄语》5-8册外语教学与研究出版社(1995年第一版)丁树翻译与写作(日语)无(相当于英语专业八级水平)910中国传统音乐概论《中国传统音乐概论》上海音乐出版社(2000年第一版)袁静芳911音乐理论综合测试《音乐学基础知识问答》人民音乐出版社(第一版)俞人豪、周青青912专业设计综合(设计草图)大学本科相关教材913数值分析《数值分析》华中科技大学出版社(第三版)李庆阳914常微分方程《常微分方程》高等教育出版社(第二版)王高雄915概率论与数理统计《概率论与数理统计》高等教育出版社(第一版)复旦大学916固体物理学《固体物理学》上海科技出版社方俊鑫、陆栋917物理光学《物理光学与应用光学》(物理光学部分)西安电子科技大学出版社石顺祥918结构力学《结构力学》高等教育出版社(第二版)龙驭球919机械原理《机械原理教程》机械工业出版社安子军920机械制造工艺学《机械制造工艺学》机械工业出版社王先逵921数字控制技术《数字控制技术》哈尔滨工业大学出版社王永章922液压伺服控制系统《液压伺服控制系统》机械工业出版社王春行923机械电子学《机械电子学》国防科技大学出版社刘政华、何将三924机械设计《机械设计》高等教育出版社邱宣怀925汽车理论《汽车理论》机械工业出版社(第三版)余志生926数字电子技术《数字电子技术基础》清华大学出版社(第四版)阎石927误差理论与数据处理《误差理论与数据处理》机械工业出版社(第四版)费业泰928微型计算机系统原理及应用《微型计算机系统原理及应用》清华大学出版社(第四版)周明德929传感器原理设计及应用《传感器原理设计及应用》国防科技大学出版社(第二版)刘迎春930物理化学《物理化学》高等教育出版社(第三版)宋世谟931材料工程基础《材料工程基础》机械工业出版社(第一版)谷臣清932无机材料物理化学《无机材料物理化学》中国建筑工业出版社叶瑞伦933高分子物理《高分子物理》化学工业出版社(2000年版)金日光934金属塑性成型原理《金属塑性成型原理》机械工业出版社汪大年935过程装备设计《过程装备设计》化工出版社(第三版)郑津洋936电力电子技术《电力电子技术》机械工业出版社(第四版)王兆安937电力系统稳态分析《电力系统稳态分析》中国电力出版社(第二版)陈珩938信号与系统《信号与系统》高等教育出版社(第二版)郑君里939数字信号处理《数字信号处理》西安电子科技大学出版社(第二版)丁玉美940电路原理《电路原理》高等教育出版社邱关源941自动控制理论《自动控制原理》国防工业出版社吴忠强942非电量电测技术《非电量电测技术》机械工业出版社(第二版)严钟豪943计算机组成原理、操作系统《计算机组成原理》(面向21世纪课程教材)《操作系统》高等教育出版社(第一版)西安电子大学出版社(第三版)唐朔飞汤子瀛944操作系统、程序设计(C语言)《操作系统》《程序设计(C语言)》西安电子大学出版社(第三版)清华大学出版社(第二版)汤子瀛潭浩强945钢结构《钢结构》武汉工业大学出版社(第二版)魏明钟946钢砼混凝土结构原理《钢砼混凝土结构原理》建工出版社(第三版)东南大学、天津大学、同济大学947有机化学《有机化学》高等教育出版社(第四版)高鸿宾948钻井工程理论与技术《钻井工程理论与技术》中国石油大学出版社(第一版)陈庭根、管志川949油藏工程原理与方法《油藏工程原理与方法》中国石油大学出版社(第一版)姜汉桥、姚军等950汽车运用工程《汽车运用基础》机械工业出版社陈焕江951环境工程《大气污染控制工程》《废水处理工程》高等教育出版社(第二版)化学工业出版社(第三版)郝吉明唐受印952生理学《生理学》人民卫生出版社(2004年版)姚泰953生产与运作管理《现代生产管理学》清华大学出版社(第二版)潘家轺954财务成本管理《财务成本管理》经济科学出版社(2007年版)注会考试委员会955会计学《会计学》中国财政经济出版社(2007年版)注会考试委员会956人力资源管理《人力资源开发与管理》清华大学出版社(第二版)张德957市场营销《营销管理》中国人民大学出版社(第十版)菲利普·科特勒958旅游学概论《旅游学概论》南开大学出版社(第五版或修订李天元注意:控制理论与控制工程,系统工程,模式识别与智能系统,导航、制导与控制专业:初试科目选择"825自动控制理论"的考生复试科目必须选择"940电路原理";初试科目选择"821电路原理"的考生复试科目必须选择"941自动控制理论"。

2008考研数学一真题及答案解析

2008考研数学一真题及答案解析

2008年全国硕士研究生入学统一考试数学试题参考答案和评分参考数 学(一)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.) (1)设函数2()ln(2)x f x t dt =+⎰,则()f x '的零点个数为 (B )(A )0 (B )1 (C )2 (D )3 (2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于 (A ) (A )i (B )i - (C )j (D )j -(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是 (D ) (A )044=-'-''+'''y y y y . (B )044=+'+''+'''y y y y (C )044=+'-''-'''y y y y . (D )044=-'+''-'''y y y y(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是 (B )(A )若{}n x 收敛,则{()}n f x 收敛. (B) 若{}n x 单调,则{()}n f x 收敛. (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. (5) 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若03=A ,则 (C )(A )E A -不可逆,E A +不可逆. (B )E A -不可逆,E A +可逆.(C )E A -可逆,E A +可逆. (D )E A -可逆,E A +不可逆 (6)设A 为3阶非零矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为 (B ) (A )0 (B )1 (C )2 (D )3(7) 随机变量X ,Y 独立同分布,且X 的分布函数为F(x),则Z=max{X, Y}分布函数为 (A )(A ))(2x F ;(B ))()(y F x F ;(C )2)](1[1x F --;(D ))](1)][(1[y F x F -- (8)随机变量~(0,1),~(1,4)X N Y N ,且相关系数1XY ρ=,则 (D )(A ){21}1P Y X =--= (B ){21}1P Y X =-= (C ){21}1P Y X =-+= (D ){21}1P Y X =+=二、填空题:(9~14小题,每小题4分,共24分.)(9) 微分方程'0xy y +=满足条件(1)1y =的解是=y x/1(10) 曲线sin()ln()xy y x x +-=在点(0,1)处的切线方程是1+=x y .(11) 已知幂级数(2)nnn a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数(3)nn n a x ∞=-∑的收敛域为(]5,1(12) 设曲面∑是z =⎰⎰∑++dxdy x xdzdx xydydz 2=π4(13) 设A 为2阶矩阵,21,αα为线性无关的2维列向量,12120,2Aa Aa a a ==+则A 的非零特征值为__1___(14) 设随机变量X 服从参数为1的泊松分布,则{}2EX X P ==e21三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分)求极限40[sin sin(sin )]sin limx x x xx →-解: ()[]()3040sin sin sin lim sin sin sin sin limx x x x x x x x x -=-→→ ……2分=()()20203sin cos 1lim 3cos sin cos cos lim xx x x x x x x -=-→→ ……6分 613sin lim 22210==→x x x ……9分 (16)(本题满分9分) 计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.解法1:()()[]⎰⎰⋅-+=-+π22cos sin 122sin 122sin dx x x x x ydy x xdx Ldx x x⎰=π22sin ……4分⎰+-=ππ0022c o s 2c o s 2x d x x x x ……6分 22s i n 212s i n 222002ππππ-=-+-=⎰x d x x x ……9分解法2:取1L 为x 轴上从点()0,π到点()0,0的一段,D 是由L 与1L 围成的区域()⎰⎰⎰-+--+=-++11)1(22sin )1(22sin 122sin 222L L L Lydy x xdx ydy x xdx ydy xxdx ……2分⎰⎰⎰--=02sin 4πxdx xydxdy D……5分⎰⎰⎰⎰--=-=--=ππππ0020sin 00)2cos 1(sin 22cos 214dx x x xdx x x xydy dx x22sin 212sin 2220002ππππ-=-+-=⎰xdx x x x ……9分 (17)(本题满分11分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求C 上距离xOy 面最远的点和最近的点.解:点),,(z y x 到xOy 面的距离为z ,故求C 上距离xOy 面最远点和最近点的坐标,等价于求函数2z H =在条件02222=-+z y x 与53=++z y x 下的最大值点和最小值点. ……3分 令)53()2(),,,,(2222-+++-++=z y x z y x z z y x L μλμλ ……5分由⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-+=+-==+==+=530203*********'''z y x z y x z z L y L x L z y x μλμλμλ ……7分 得y x =,从而⎩⎨⎧=+=-53202222z x z x ,解得⎪⎩⎪⎨⎧=-=-=555z y x 或⎪⎩⎪⎨⎧===111z y x ……10分根据几何意义,曲线C 上存在距离xOy 面最远的点和最近的点,故所求点依次为)5,5,5(--和)1,1,1( ……11分(18)(本题满分10分) 设()f x 是连续函数, (I) 利用定义证明函数⎰=x dt t f x F 0)()(可导,且()()F x f x '=;(II) 当()f x 是以2为周期的周期函数时,证明函数⎰⎰-=2)()(2)(dt t f x dt t f x G x 也是以2为周期的周期函数.(I) 证:对任意的x ,由于()f x 是连续函数,所以xdt t f x dtt f dt t f x x F x x F xx xx x xx x x ∆=∆-=∆-∆+⎰⎰⎰∆+→∆∆+→∆→∆)(lim )()(lim )()(lim 00000 ……2分 )(lim )(lim 00ξξf xx f x x →∆→∆=∆∆= (其中ξ介于x 与x x ∆+之间) 由)()(lim 0x f f x =→∆ξ,可知函数)(x F 在x 处可导,且)()('x f x F = ……5分(II) 证法1:要证明)(x G 以2为周期,即要证明对任意的x ,都有)()2(x G x G =+,记)()2()(x G x G x H -+=,则()()222()2()(2)()2()()x x H x f t dt x f t dt f t dt x f t dt +'''=-+--⎰⎰⎰⎰0)()(2)()2(222=+--+=⎰⎰dt t f x f dt t f x f ……8分又因为00)(2)(2)0()2()0(2020=-⎪⎭⎫ ⎝⎛-=-=⎰⎰dt t f dt t f G G H 所以0)(=x H ,即)()2(x G x G =+ ……10分证法2:由于()f x 是以2为周期的连续函数,所以对任意的x ,有⎰⎰⎰⎰++-+-=-+220)()(2)()2()(2)()2(x xx dt t f x dt t f dt t f x dt t f x G x G⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡--+=⎰⎰⎰⎰⎰⎰+x xx x dt t f du u f dt t f dt t f dt t f dt t f 002002022)()2(2)()()()(2……8分[]0)()2(20=-+=⎰x dt t f t f即)(x G 是以2为周期的周期函数. ……10分(19)(本题满分11分)将函数21)(x x f -=,)0(π≤≤x 展开成余弦级数,并求级数121(1)n n n +∞=-∑的和.解:由于⎰-=-=πππ220322)1(2dx x a ……2分,2,1,)1(4cos )1(21202=-=-=+⎰n nnxdx x a n n ππ……5分 所以nx n nx a a x f n n n n cos )1(431cos 2)(121210∑∑∞=+∞=-+-=+=π,π≤≤x 0, ……7分 令0=x ,有∑∞=+-+-=1212)1(431)0(n n n f π, 又1)0(=f ,所以12)1(2121π=-∑∞=-n n n ……11分(20)(本题满分10分)设βα,为3维列向量,矩阵,T T A ααββ=+其中Tα,Tβ为α,β的转置. 证明: (I) 秩()2r A ≤;(II) 若,αβ线性相关,则秩() 2.r A < 证:(I) ()()T T r A r ααββ=+()()T T r r ααββ≤+ ……3分2)()(≤+≤βαr r ……6分(II) 由于βα,线性相关,不妨设βαk =,于是21)())1(()()(2<≤≤+=+=βββββααr k r r A r T T T ……10分(21)(本题满分12分)设n 元线性方程b Ax =,其中A =2222212121212n na a a a a a a a a ⨯⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,100b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (I) 证明行列式na n A )1(+=;(II) 当a 为何值时,该方程组有唯一解,并求1x ; (Ⅲ) 当a 为何值时,该方程组有无穷多解,并求通解.(I) 证法1:记n D A ==2222212121212na a a a aa a a a当1=n 时,a D 21=,结论成立, 当2=n 时,2223212a aa a D ==,结论成立 ……2分假设结论对小于n 的情况成立,将n D 按第1行展开得2122n n n D aD a D --=-n n n a n a n a ana )1()1(2221+=--=--,即na n A )1(+= ……6分证法2:2222122222121321012211212212122nna a a a a a aa aA r ar a a a a aa a a =-……2分3222221301240123321212na a a r ar a a a a a a -=……4分nnn n a n a n n a n n a a a ar nn r )1(111013412301211+=+----……6分(Ⅱ) 解:当0≠a 时,方程组系数行列式0≠n D ,故方程组有唯一解. 由克莱姆法则,将n D 第1列换成b ,得行列式为22112222111210212121212122n n n na a a aaaD na a a aa a a aa ---===所以,an nD D x n n )1(11+==- ……9分(Ⅲ) 解:当0=a 时,方程组为 12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1-n ,所以方程组有无穷多解,其通解为()()01001000TTx k =+ ,其中k 为任意常数 ……12分(22)(本题满分11分)设随机变量X 与Y 相互独立,X 概率分布为1{}(1,0,1)3P X i i ===-,Y 的概率密度为101()0Y y f y ≤≤⎧=⎨⎩,其它记 Y X Z += (I) 求1{0}2P Z X ≤=; (II) 求Z 的概率密度)(z f z . 解:(I) ⎭⎬⎫⎩⎨⎧=≤+=⎭⎬⎫⎩⎨⎧=≤021021X Y X P X Z P 2121=⎭⎬⎫⎩⎨⎧≤=Y P ……4分(II) {}{}z Y X P z Z P z F Z ≤+=≤=)({}{}{}1,0,1,=≤++=≤++-=≤+=X z Y X P X z Y X P X z Y X P {}{}{}1,10,1,1=-≤+=≤+-=+≤=X z Y P X z Y P X z Y P {}{}{}{}{}{}11011=-≤+=≤+-=+≤=X P z Y P X P z Y P X P z Y P{}{}{}[]1131-≤+≤++≤=z Y P z Y P z Y P [])1()()1(31-+++=z F z F z FY Y Y ……7分 []13()()(1)()(1)Z Z Y Y Y f z F z f z f z f z '==+++- ……9分 ⎩⎨⎧<≤-=其他,021,31z ……11分 (23)(本题满分11分)设12,,,n X X X 是总体为2(,)N μσ的简单随机样本,记∑==n i i X n X 11,212)(11∑=--=n i iX X n S ,221S nX T -= (I) 证明T 是2μ的无偏估计量; (II) 当0,1μσ==时,求DT.(I) 证:因2222221)(1)1(ES nX D X E ES n X E S n X E ET -+=-=-= ……4分2222μσσμ=-+=nn所以T 是2μ的无偏估计量 ……7分(II) 解:当0=μ,1=σ时,由于X 与2S 独立 ,有)1(22S n X D DT -=2221DS nX D += ……9分 []22222)1()1(11)(1S n D n n X n D n --⋅+= )1(21112)1(2)1(11212222-=⎪⎭⎫ ⎝⎛-+=-⋅-⋅+⋅=n n n n n n n n ……11分数 学(二)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.)(1)设函数2()(1)(2)f x x x x =--,则()f x '的零点个数为 (D )(A )0 (B )1 (C )2 (D )3(2)如图,曲线段的方程为()y f x =,函数在区间[0,]a 上有连续导数, 则定积分()axf x dx '⎰等于 (C )(A )曲边梯形ABCD 面积. (B )梯形ABCD 面积.(C )曲边三角形ACD 面积. (D )三角形ACD 面积. (3)【 同数学一(3)题 】 (4)判断函数x x x x f sin 1ln )(-=,则)(x f 有 (A )(A )1个可去间断点,1个跳跃间断点; (B )1个跳跃间断点,1个无穷间断点.(C )2个跳跃间断点; (D )2个无穷间断点(5)【 同数学一(4)题 】 (6)设函数f 连续,若dxdy yx y x f v u F vu D ⎰⎰++=2222)(),(,其中区域uv D 为图中阴影部分,则Fu∂=∂ (A ) (A ))(2u vf (B ))(2u f u v (C ) )(u vf (D ))(u f uv(7)【 同数学一(5)题 】(8)设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为 (D )(A )⎪⎪⎭⎫⎝⎛--2112 (B )⎪⎪⎭⎫⎝⎛--2112 (C ) ⎪⎪⎭⎫ ⎝⎛2112 (D )⎪⎪⎭⎫⎝⎛--1221二、填空题:(9~14小题,每小题4分,共24分.) (9) 已知函数()f x 连续,且1)()1()](cos[1lim2=--→x f ex xf x x ,则=)0(f 2. (10) 微分方程0)(2=-+-xdy dx e x y x 的通解是=y )(x e C x --.(11) 【 同数学一(10)题 】 (12) 曲线32)5(x x y -=的拐点坐标为)6,1(--.(13) 已知xyy z x ⎛⎫=⎪⎝⎭,则=∂∂)2,1(xz)12(ln 22-.(14) 设3阶矩阵A 的特征值是λ,3,2,若行列式482-=A ,则=λ1-.三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 【 同数学一(15)题 】 (16)(本题满分10分)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+==⎰20)1ln()(t du u y t x x 确定,其中)(t x 是初值问题⎪⎩⎪⎨⎧==-=-020t xx te dt dx 的解,求22dx y d . 解:由02=--x te dtdx得tdt dx e x 2=,积分并由条件00==t x ,得21t e x +=, 即)1ln(2t x += ……4分)1ln()1(122)1ln(2222t t t t t t dt dxdt dydx dy ++=+⋅+== ……7分[][]1)1ln()1(122)1ln(2)1ln()1()(22222222+++=+++=++==t t t t t t t dt dx t t dt ddx dy dx d dxy d ……10分(17)(本题满分9分) 计算21⎰.解:由于+∞=--→2211arcsin lim x xx x ,故dx xx x ⎰-10221arcsin 是反常积分 令t x =arcsin ,有t x sin =,[0,)2t π∈⎰⎰⎰==-120202222sin cos cos sin 1arcsin ππtdt t tdt ttt dx xx x ……3分⎰+-=202022sin 4142sin 16πππtdt t t ……7分 41162cos 81162202+=-=πππt ……9分 (18)(本题满分11分) 计算{}⎰⎰Ddxdy xy 1,max ,其中{}20,20),(≤≤≤≤=y x y x D .解:曲线1=xy 将区域D 分成如图所示的两个区域1D 和2D ……3分{}⎰⎰⎰⎰⎰⎰+=211,m ax D D Ddxdy xydxdy dxdy xy ……5分⎰⎰⎰⎰⎰⎰++=x xdy dx dy dx xydy dx 102212021021221 ……8分2ln 4192ln 212ln 415+=++-=……11分 (19)(本题满分11分)设)(x f 是区间[)+∞,0上具有连续导数的单调增加函数,且1)0(=f ,对任意的[)+∞∈,0t ,直线t x x ==,0,曲线)(x f y =以及x 轴围成的曲边梯形绕x 轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数)(x f 的表达式.解:旋转体的体积⎰=t dx x f V 02)(π,侧面积⎰+=tdx x f x f S 02')(1)(2π,由题设条件知⎰⎰+=t t dx x f x f dx x f 02;02)(1)()( ……4分上式两端对t 求导得:)(1)()(2'2t f t f t f +=, 即y '=……6分由分离变量法解得12)1ln(C t y y +=-+,即 t Ce y y =-+12 ……9分将1)0(=y 代入知1=C ,故t e y y =-+12,)(21t t e e y -+=于是所求函数为)(21)(x x e e x f y -+== ……11分(20)(本题满分11分)(I) 证明积分中值定理:若函数)(x f 在闭区间[]b a ,上连续,则至少存在一点[]b a ,∈η,使得)()()(a b f dx x f ba-=⎰η;(II) 若函数)(x ϕ具有二阶导数,且满足)1()2(ϕϕ>,⎰>32)()2(dx x ϕϕ,则至少存在一点)3,1(∈ξ,使得()0ϕξ''<证:(I) 设M 与m 是连续函数)(x f 在[]b a ,上的最大值与最小值,即M x f m ≤≤)(,[]b a x ,∈由积分性质,有⎰-≤≤-ba ab M dx x f a b m )()()(,即M dx x f a b m ba ≤-≤⎰)(1……2分 由连续函数介值定理,至少存在一点[]b a ,∈η,使得⎰-=badx x f a b f )(1)(η,即))(()(a b f dx x f ba-=⎰η ……4分(II) 由 (I) 知至少存在一点[]3,2∈η,使)()23)(()(32ηϕηϕϕ=-=⎰dx x ……6分又由)()()2(32ηϕϕϕ=>⎰dx x 知,32≤<η,对)(x ϕ在]2,1[和],2[η上分别应用拉格朗日中值定理,并注意到)1()2(ϕϕ>,)()2(ηϕϕ>,得21,012)1()2()('11<<>--=ξϕϕξϕ,32,02)2()()('22≤<<<--=ηξηϕηϕξϕ ……9分在],[21ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有211221()()()0,(,)(1,3)ϕξϕξϕξξξξξξ''-''=<∈⊂- ……11分(21)(本题满分11分)求函数222z y x u ++=在约束条件22y x z +=和4=++z y x 下的最大值与最小值.解:作拉格朗日函数)4()(),,,,(22222-+++-++++=z y x z y x z y x z y x F μλμλ……3分令⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=04002022022'22''''z y x F z y x F z F y y F x x F z y x μλμλμλμλ ……6分解方程组得)2,1,1(),,(111=z y x ,)8,2,2(),,(222--=z y x ……9分 故所求的最大值为72,最小值为6. ……11分(22)(本题满分12分) 【 同数学一(21)题 】 (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值-1,1的特征向量,向量3α满足323A ααα=+,(I) 证明123,,ααα线性无关; (Ⅱ)令123{,,}P ααα=,求1P AP -.证明: (I) 设存在数321,,k k k ,使得0332211=++αααk k k ○1 用A 左乘○1的两边,并由11αα-=A ,22αα=A ,得:0)(3323211=+++-αααk k k k ○2 ……3分 ○1-○2得:022311=-ααk k ○3 因为21,αα是A 的属于不同特征值的特征向量,所以21,αα线性无关,从而031==k k 代入○1得,022=αk ,又由于02≠α,所以02=k ,故123,,ααα线性无关. ……7分 (Ⅱ)由题设,可得),,(),,(321321ααααααA A A A AP ==⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=100110001100110001),,(321P ααα由(I)知,P 为可逆矩阵,从而⎪⎪⎪⎭⎫⎝⎛-=-1001100011AP P ……10分数 学(三)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.)(1)设函数()f x 在区间]1,1[-上连续,则x=0是函数0()()xf t dtg x x=⎰的 (B )(A )跳跃间断点. (B )可去间断点. (C )无穷间断点. (D )振荡间断点.(2)【 同数学二(2)题 】 (3)已知(,)f x y =则 (B )(A ))0,0(x f ',)0,0(y f '都存在 (B ))0,0(x f '不存在,)0,0(y f '存在(C ))0,0(x f '存在,)0,0(y f '不存在 (D ))0,0(x f ' )0,0(y f '都不存在 (4)【 同数学二(6)题 】 (5)【 同数学一(5)题 】 (6)【 同数学二(8)题 】 (7)【 同数学一(7)题 】 (8)【 同数学一(8)题 】二、填空题:(9~14小题,每小题4分,共24分.)(9) 设函数21,()2,x x c f x x cx ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则=c 1.(10) 函数3411x x f x x x +⎛⎫+= ⎪+⎝⎭,求积分⎰=222)(dx x f 3ln 21. (11) 设{}1),(22≤+=y x y x D ,则⎰⎰=-Ddxdy y x )(24/π.(12) 【 同数学一(9)题 】(13) 设3阶矩阵A 的特征值是1, 2, 2,E 为3阶单位矩阵,则E A --14= _3___ . (14) 【 同数学一(14)题 】三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 计算201sin limlnx xx x→. 解:原式=20lnsin ln lim x x x x →-=xx xx x x sin 2sin cos lim 20-→ ……4分 302sin cos lim x x x x x -=→206sin limx xx x -=→ ……7分 61-= ……9分 (16)(本题满分10分)设(,)z z x y =是由方程22()x y z x y z ϕ+-=++所确定的函数,其中ϕ具有二阶导数且1ϕ'≠-,(I) 求 dz ; (II) 记 1(,)()z z u x y x y x y ∂∂=--∂∂,求ux∂∂. 解法1:(I) 设)(),,(22z y x z y x z y x F ++--+=ϕ则2x F x ϕ'=-,2y F y ϕ''=-,1z F ϕ''=-- ……3分由公式x z F z x F '∂=-∂',y zF z y F '∂=-∂',得 21z x x ϕϕ'∂-='∂+,21z y y ϕϕ'∂-='∂+ 所以[]1(2)(2)1z z dz dx dy x dx y dy x y ϕϕϕ∂∂''=+=-+-'∂∂+ ……7分 (II) 由于2(,)1u x y ϕ='+, 所以 2322(21)(1)(1)(1)u z x x x ϕϕϕϕ'∂-∂+''=+=-''∂+∂+ ……10分 解法2:(I) 对等式)(22z y x z y x ++=-+ϕ两端求微分,得22()xdx ydy dz dx dy dz ϕ'+-=⋅++ ……5分解出dz 得 2211x y dz dx dy ϕϕϕϕ''--=+''++ ……7分(II) 同解法1 ……10分 (17)(本题满分11分) 【 同数学二(18)题 】 (18)(本题满分10分) ()f x 是周期为2的连续函数, (I) 证明对任意实数t ,有⎰⎰=+22)()(dx x f dx x f t t;(II) 证明⎰⎰+-=xt tdt ds s f t f x G 02])()(2[)(是周期为2的周期函数.证法1:(I) 由积分的性质知对任意的实数t ,⎰⎰⎰⎰++++=022202)()()()(tt t tdx x f dx x f dx x f dx x f ……2分令2-=x s ,则有⎰⎰⎰⎰-==+=+0022)()()2()(tttt dx x f ds s f ds s f dx x f所以⎰⎰⎰⎰⎰=-+=+222)()()()()(dx x f dx x f dx x f dx x f dx x f ttt t……5分(II) 由 (I) 知对任意的t 有⎰⎰=+22)()(ds s f ds s f t t记a ds s f =⎰20)(,则ax dt t f x G x-=⎰0)(2)(因为对任意的x ,ax dt t f x a dt t f x G x G xx +-+-=-+⎰⎰+020)(2)2()(2)()2(a dt t f x x 2)(22-=⎰+ ……8分02)(22=-=⎰a dt t f所以)(x G 是周期为2的周期函数. ……10分证法2:(I) 设 ⎰+=2)()(t tdx x f t F ,由于0)()2()('=-+=t f t f t F , ……2分所以)(t F 为常数,从而有)0()(F t F = 而⎰=20)()0(dx x f F ,所以⎰=20)()(dx x f t F ,即⎰⎰=+22)()(dx x f dx x f t t……5分(II) 由 (I) 知对任意的t 有⎰⎰=+22)()(ds s f ds s f t t记a ds s f =⎰2)(,则ax dt t f x G x -=⎰0)(2)(,⎰++-=+20)2()(2)2(x x a dt t f x G ……7分由于对任意x ,((2))2(2)2()G x f x a f x a '+=+-=-,(())2()G x f x a '=- 所以((2)())0G x G x '+-=,从而)()2(x G x G -+是常数,即有0)0()2()()2(=-=-+G G x G x G ,所以)(x G 是周期为2的周期函数. ……10分(19)(本题满分10分)设银行存款的年利率为05.0=r ,并依年复利计算,某基金会希望通过存款A 万元实 现第一年提取19万元,第二年提取28万元,…,第n 年提取)910(n +万元,并能按此规 律一直提取下去,问A 至少应为多少万元?解:设n A 为用于第n 年提取)910(n +万元的贴现值,则)910()1(n r A n n ++=-故∑∑∞=∞=++==11)1(910n nn n r nA A ……3分 ∑∑∑∞=∞=∞=++=+++=111)1(9200)1(9)1(110n nn n n n r nr n r ……6分 设∑∞==1)(n nnxx S ,)1,1(-∈x因为21()()()1(1)n n x x S x x x x x x ∞=''===--∑,)1,1(-∈x ……9分 所以42005.1111=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+S r S (万元)故39804209200=⨯+=A (万元),即至少应存入3980万元. ……10分(20) ( 本题满分12分 ) 【 同数学一(21)题 】 (21) ( 本题满分10分 ) 【 同数学二(23)题 】 (22) ( 本题满分11分 ) 【 同数学一(22)题 】 (23) ( 本题满分11分 ) 【 同数学一(23)题 】数 学(四)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.) (1)设0a b <<,则=+--∞→nnn n b a1)(lim (B )(A )a . (B )1-a . (C )b . (D )1-b . (2)【 同数学三(1)题 】(3)设()f x 是连续的奇函数,()g x 是连续的偶函数,区域},10),{(x y x x y x D ≤≤-≤≤=则以下结论正确的是 (A ) (A )()()0.Df yg x dxdy =⎰⎰ (B )()()0.Df xg y dxdy =⎰⎰(C )[()()]0.Df xg y dxdy +=⎰⎰ (D )[()()]0Df yg x dxdy +=⎰⎰(4)【 同数学二(2)题 】 (5)【 同数学一(5)题 】 (6)【 同数学二(8)题 】 (7)【 同数学一(7)题 】 (8)【 同数学一(8)题 】二、填空题:(9~14小题,每小题4分,共24分.) (9) 【 同数学三(9)题 】 (10) 已知函数()f x 连续且0()lim2x f x x→=,则曲线()y f x =上对应0x =处切线方程是xy 2= .(11)=⎰⎰121ln xdy x dx y2/1.(12) 【 同数学二(10)题 】(13) 设3阶矩阵A 的特征值互不相同,且行列式0A =,则A 的秩为___2___. (14) 【 同数学一(14)题 】三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 【 同数学三(15)题 】 (16)(本题满分10分)设函数dt x t t x f ⎰-=10)()()10(<<x ,求()f x 的极值、单调区间及曲线)(x f y =的凹凸区间.解:31231)()()(310+-=-+-=⎰⎰x x dt x t t dt t x t x f xx……4分 令21()02f x x '=-=,得22,22-==x x (舍去) 因()20f x x ''=>(10<<x ) ……5分故22=x 为()f x 的极小值点,极小值)221(31)22(-=f ,且曲线)(x f y =在)1,0(内是凹的. ……8分 由21()2f x x '=-知,()f x 在)22,0(内单调递减,在)1,22(内单调递增. ……10分(17)(本题满分11分) 【 同数学二(21)题 】 (18)(本题满分10分) 【 同数学三(16)题 】 (19)(本题满分10分) 【 同数学三(18)题 】 (20)(本题满分12分) 【 同数学一(21)题 】 (21)(本题满分10分) 【 同数学二(23)题 】 (22)(本题满分11分) 【 同数学一(22)题 】 (23)(本题满分11分)设某企业生产线上产品合格率为0.96,不合格产品中只有34产品可进行再加工,且再加工合格率为0.8,其余均为废品,每件合格品获利80元,每件废品亏损20元,为保证该 企业每天平均利润不低于2万元,问企业每天至少应生产多少件产品?解:进行再加工后,产品的合格率984.08.075.004.096.0=⨯⨯+=p ……4分 记X 为n 件产品中的合格产品数,)(n T 为n 件产品的利润,则n np EX p n B X 984.0),,(~== ……8分 )(2080)(X n X n T --=,()1002078.4ET n EX n n =-= ……10分要20000)(≥n ET ,则256≥n ,即该企业每天至少应生产256件产品. ……11分。

2008考研数二真题及解析

2008考研数二真题及解析

2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3(2) 如图,曲线段方程为()y f x =, 函数在区间[0,]a 上有连续导数,则 定积分()axf x dx '⎰等于( )()A 曲边梯形ABOD 面积.()B 梯形ABOD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3) 在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=. ()B 440y y y y ''''''+++=. ()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.(4) 判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( ) ()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点yC (0, f (a )) A (a , f (a ))y =f (x )O B (a ,0) xD()D 有两个跳跃间断点(5) 设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6) 设函数f 连续. 若()2222,uvD f x y F u v dxdy x y+=+⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂( ) ()A ()2vf u()B ()2vf u u()C ()vf u()D ()vf u u(7) 设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若3A O =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8) 设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为( )()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) ()f x 连续,21cos(sin )lim1(1)()x x x e f x →-=-,则(0)f =O xvx 2+y 2=u 2 x 2+y 2=1 D uvy(10) 微分方程2()0xy x e dx xdy -+-=的通解是y = (11) 曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12) 求函数23()(5)f x x x =-的拐点______________. (13) 已知xyy z x ⎛⎫=⎪⎝⎭,则(1,2)_______z x ∂=∂. (14) 矩阵A 的特征值是,2,3λ,其中λ未知,且248A =-,则λ=_______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦.(16) (本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题 020|0xt dx te dtx -=⎧-=⎪⎨⎪=⎩的解. 求22d y dx .(17)(本题满分9分)计算2121dx x-⎰(18)(本题满分11分)计算{}max ,1,Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[0,)+∞上具有连续导数的单调增加函数,且(0)1f =. 对于任意的[0,)t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成曲边梯形绕x 轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(I) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰;(II) 若函数()x ϕ具有二阶导数,且满足,32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,则至少存在一点(1,3)ξ∈,()0ϕξ''<使得.(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大和最小值.(22)(本题满分12分)设n 元线性方程组Ax b =,其中2221212n n a a a A a a ⨯⎛⎫ ⎪⎪= ⎪⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,100b ⎛⎫⎪⎪= ⎪ ⎪⎝⎭(I) 证明行列式()1nA n a =+(II) 当a 为何值时,该方程组有唯一解,并求1x (III) 当a 为何值时,该方程组有无穷多解,并求通解(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足323A ααα=+,(I) 证明123,,ααα线性无关; (II) 令()123,,P ααα=,求1P AP -2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 由于()f x '是三次多项式,三次方程()0f x '=的实根不是三个就是一个,故D 正确.(2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是440y y y ''''''-+-=(4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 111ln lim ()lim lim sin sin11x x x xf x x x--+→→→=⋅=--所以 0x =是可去间断点,1x =是跳跃间断点.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.(6)【答案】A【详解】用极坐标得 ()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰所以()2Fvf u u∂=∂(7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆.(8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确.二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f =(10)【答案】()xx eC --+【详解】微分方程()20x y x e dx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y xdx F x xy y x--'-=-=-'+-, 将(0)1y =代入得01x dy dx==,所以切线方程为10y x -=-,即1y x =+(12)【答案】(1,6)-- 【详解】53235y xx =-⇒2311351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x--+''=+= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)--(13)【答案】2(ln 21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yv vy u y y u ux y x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭所以(1,2)2(ln 21)2z x ∂=-∂(14)【答案】-1【详解】||236A λλ =⨯⨯= 3|2|2||A A =32648λ∴⨯=- 1λ⇒=-三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦(16)【详解】方法一:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d ye x dx=+(17)【详解】 方法一:由于2211x x-→=+∞-,故2121dx x-⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈221222220000sin cos 2cos sin ()cos 221t t t t t dx tdt t tdt dt t xπππ===--⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:2121dx x -⎰12201(arcsin )2x d x =⎰ 121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈12222200011(arcsin )sin 2cos 224x x dx t tdt t d t ππ==-⎰⎰⎰ 222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+(18)【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰D 1123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积202()1()tS f x f x dx π'=+⎰,由题设条件知220()()1()ttf x dx f x f x dx '=+⎰⎰上式两端对t 求导得 22()()1()f t f t f t '=+ 即 21y y '=-由分离变量法解得 21ln(1)y y t C -=+, 即 21t y y Ce -=将(0)1y =代入知1C =,故21t y y e -=,1()2t t y e e -=+于是所求函数为 1()()2t t y f x e e -==+(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由 32(2)()()x dx ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得 1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂(21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6.(22)【详解】(I)证法一:2222122212132101221221122a a a a a a aa aA r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a a n a a n ar ar a n a nnn a n--+-=⋅⋅⋅=++ 证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a aa==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a aD aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)n A n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102*********n n n nn n a a a aa aa aD na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.(23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3) 因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.。

考研方向

考研方向

一、考研方向:1.电路与系统,2.信号处理,3.通信,4.微电子,4.集成电路设计,5.微波(高频信号)电路设计与对抗,6.信息安全,7.嵌入式设计二、考研名校:1.中科大:一般只考信号系统吧,徐守时那本硕士研究方向硕士考试科目覆盖范围参考书目01智能信息处理02集成电路与系统设计03信息安全技术04计算机应用05复杂系统与复杂性研究①101政治理论②201英语一③301数学一④840电子线路或844信号与系统电子线路、数字电路;连续时间和离散时间信号与系统(包括在输入输出描述方式和状态描述方式下,以及时域、频域和复频域)的一整套概念、理论和方法及其在通信、信号处理中的主要应用,以及数字信号处理的基本概念和方法(DFT,FFT和数字滤波波器)《线性电子线路》戴蓓倩,中国科学技术大学出版社《数字电子基础基础》阎石、高等教育出版社,第4版;《信号与系统:理论、方法和应用》徐守时,中国科大出版社,2006修订版;《数字信号处理》3-5章王世一,北京理工大学出版社19972.中科大电子信息的考研专业080904电磁场与微波技术本专业主要从事电磁场理论、微波光波技术及其工程应用的研究,包括电磁场理论与应用、光波导理论与技术、微波毫米波技术与系统、微波毫米波集成技术、光波技术及其应用等几个主要研究方向。

研究课题主要涉及电磁理论中的辐射与散射、计算电磁学、微波毫米波器件与电路、微波毫米波通信与雷达系统、超宽带(UWB)技术、新型天线技术、复杂目标的散射特性和复杂环境的传播特性、光器件与光传感技术、空间光通信与量子密钥分配技术以及与相关学科交叉的理论与技术等。

研究方向与研究课题紧密结合国家重大需求和本学科的最新进展,具有创新思想活跃、理论与工程技术实践相结合的优势。

081001通信与信息系统本学科是国家重点学科。

主要研究方向为宽带无线通信、移动通信网、新型互联网、通信信号处理等。

本学科在无线通信和移动通信领域具有突出优势和地位,是中国3G、4G和超宽带通信的主要推动者之一。

全国研究生统一招生入学考试2008年国家线

全国研究生统一招生入学考试2008年国家线

备注:
*A类考生:报考地处一区招生单位的考生。

*B类考生:报考地处二区招生单位的考生。

*C类考生:①报考地处三区招生单位的考生;或者②目前在三区就业且定向或委托培养回原单位的考生。

一区系北京、天津、上海、江苏、浙江、福建、山东、河南、湖北、湖南、广东等11省(市);
二区系河北、山西、辽宁、吉林、黑龙江、安徽、江西、重庆、四川、陕西等10省(市);
三区系内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆等10省(区)。

*照顾专业(一级学科):力学[0801]、冶金工程[0806]、动力工程及工程热物理[0807]、水利工程[0815]、地质资源与地质工程[0818]、矿业工程[0819]、船舶与海洋工程[0824]、航空宇航科学与技术[0825]、兵器科学与技术[0826]、核科学与技术[0827]、农业工程[0828]。

08年考研数学大纲(数1)

08年考研数学大纲(数1)

2008考研数学一大纲高等数学第一章:函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第二章:一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值弧微分曲率的概念曲率圆曲率半径考试要求:1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。

2008考研数学(二)真题及参考答案

2008考研数学(二)真题及参考答案

2008年研究生入学统一考试数学二试题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若2222()(,)uvD f x y F u v dxdy x y +=+⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂ ()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0xy x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设xyy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭OO O ,现矩阵A 满足方程AX B =,其中()1,,T nX x x =L ,()1,0,,0B =L ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x edx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y xdx F x xy y x--'-=-=-'+-, 将(0)1y =代入得1x dydx ==,所以切线方程为10y x -=-,即1y x =+ 本题的难度值为0.759. (12)【答案】(1,6)-- 【详解】53235y xx =-⇒2311351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x --+''=+=1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)21)- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yvvy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)(ln 21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯=Q 3|2|2||A A =32648λ∴⨯=- 1λ⇒=- 本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+Q 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦ 本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d y e x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈22122220000sin cos 2cos sin ()cos 22t t t t t tdt t tdt dt t πππ===-⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+方法二:21⎰12201(arcsin )2x d x =⎰121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+本题的难度值为0.524.(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知2()(ttf x dx f x =⎰⎰上式两端对t 求导得2()(f t f t = 即y '=由分离变量法解得1ln(y t C =+, 即t y Ce =将(0)1y =代入知1C =,故t y e =,1()2t t y e e -=+于是所求函数为 1()()2x x y f x e e -==+本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由 32(2)()()x dx ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122a a a a a a a a a A r ar a a a a=-=O O L O OO O OO OO OO121301240134(1)2(1)3231(1)0n n n a a an a a n a r ar a n a nnn a n--+-=⋅⋅⋅=++O K O OO OO 证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a-=-OO O OO21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=L即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+L1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102*********n n n nn n a a a aa a a a D na a a a a --⨯-⨯-===O O O OO O OO OO OO所以 11(1)n n D nx D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M O OM 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +L L为任意常数.本题的难度值为0.270. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)Q 11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为0.272.。

2008年数四 考研数学真题及解析

2008年数四 考研数学真题及解析

2008年全国硕士研究生入学统一考试数学四试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设0a b <<,则()10lim nnnn ab--→+( )()A a .()B 1a -. ()C b .()D 1b -.(2)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()x f t dt g x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷.()D 振荡.(3)设()f x 是连续奇函数,()g x 是连续偶函数,区域{(,)01,D x y x y =≤≤≤≤则正确的( )()A ()()0Df yg x dxdy =⎰⎰.()B ()()0D f x g y d x d y =⎰⎰.()C [()()]0Df xg y dxdy +=⎰⎰.()D [()()]0Df yg x dxdy +=⎰⎰.(4)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'0()axf x dx ⎰( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭ ()B 2112-⎛⎫ ⎪-⎝⎭ ()C 2112⎛⎫ ⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭. (7)随机变量,X Y 独立同分布且X 的分布函数为()F x ,则{}max ,Z X Y =的分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()0,1X N ,()1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)已知函数()f x 连续且0()lim2x f x x→=,则曲线()y f x =上对应0x =处切线方程为 . (11)2113ln y dx x xdy =⎰⎰ .(12)微分方程2()0x y x e dx xdy -+-=通解是y = .(13)设3阶矩阵A 的特征值互不相同,若行列式0A =,则A 的秩为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分) 设()()1f x t t x dt =-⎰,01x <<,求()f x 的极值、单调区间和凹凸区间.(17)(本题满分10分)求函数222u x y z =++在在约束条件22z x y =+和4x y z ++=下的最大和最小值.(18)(本题满分10分)设(),z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时,求(1)dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.(19)(本题满分10分)()f x 是周期为2的连续函数,(1)证明对任意实数都有()()22t tf x dx f x dx +=⎰⎰(2)证明()()()202x t t g x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数. (20)(本题满分11分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程AX B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+(2)a 为何值,方程组有唯一解(3)a 为何值,方程组有无穷多解 (21)(本题满分11分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,证明(1)123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.(22)(本题满分9分)设随机变量X 与Y 相互独立,X 概率分布为{}()11,0,13P X i i ===-,Y 概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(2)求Z 的概率密度(23)(本题满分9分)设某企业生产线上产品合格率为0.96,不合格产品中只有34产品可进行再加工且再加工的合格率为0.8,其余均为废品,每件合格品获利80元,每件废品亏损20元,为保证该企业每天平均利润不低于2万元,问企业每天至少生产多少产品?.。

2008年考研数学三真题及解析(非常详细)

2008年考研数学三真题及解析(非常详细)

2008年考研数学(三)真题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知24(,)x y f x y e+=,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f 连续,若2222()(,)uvD f x y f u v dxdy x y +=+⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( ) (A )2()vf u (B )2()v f u u(C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上域与A 合同矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则222()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX== .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限21sin limln x xx x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时. (1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求ux∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数,(1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?(20) (本题满分12分)设矩阵2221212n n a a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+, 证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n i i S X X n ==--∑,221T X S n=-.(1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2008年考研数学(三)真题解析一、选择题 (1)【答案】B【详解】 ()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】B【详解】240000(,0)(0,0)11(0,0)lim lim lim 0xx xx x x f x f e e f x xx+→→→---'===- 0011lim lim 1xx x x e e x x ++→→--==,0011lim lim 1xx x x e e x x---→→--==- 故(0,0)x f '不存在.242020000(0,)(0,0)11(0,0)lim limlim lim 00y y y y y y y f y f e e y f y yyy +→→→→---'=====- 所以(0,0)y f '存在.故选B . (4)【答案】A【详解】用极坐标得 ()()222()22211,()vuuf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂. (5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故,E A E A -+均可逆. (6)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----,所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. (7)【答案】A【详解】()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==.(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+01,a b =⨯+= 所以1b =. 排除()B . 故选择()D . 二、填空题 (9)【答案】1【详解】由题设知||0c x ≥≥,所以22,()1,2,x x c f x x c x c x x c >⎧⎪=+-≤≤⎨⎪-<-⎩因为 ()22lim lim(1)1x cx cf x x c --→→=+=+,()22lim lim x c x cf x x c++→→== 又因为()f x 在(,)-∞+∞内连续,()f x 必在x c =处连续所以 ()()lim lim ()x cx cf x f x f c +-→→==,即2211c c c+=⇒=. (10)【答案】1ln 32【详解】222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭,令1t x x =+,得()22t f t t =- 所以()()()22222222222111ln 2ln 6ln 2ln 32222x f x dx dx x x ==-=-=-⎰⎰. (11)【答案】4π【详解】()22221()2DDDx y dxdy x dxdy x y dxdy -=+⎰⎰⎰⎰⎰⎰利用函数奇偶性 21200124d r rdr ππθ==⎰⎰.(12)【答案】1y x= 【详解】由dy y dx x-=,两端积分得1ln ln y x C -=+,所以1x C y =+,又(1)1y =,所以1y x =. (13)【答案】3【详解】A 的特征值为1,2,2,所以1A -的特征值为1,12,12, 所以14A E --的特征值为4113⨯-=,41211⨯-=,41211⨯-= 所以143113B E --=⨯⨯=. (14)【答案】112e - 【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以 {}21111222P X e e --===!.三、解答题(15) 【详解】 方法一:22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=- 方法二:2230001sin cos sin cos sin lim ln lim lim2sin 2x x x x x x x x x xx x x x x →→→--=洛必达法则 20sin 1lim 66x x x x →-=-洛必达法则 (16) 【详解】(I) ()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+()()221x dx y dydz ϕϕϕ''-++-+⇒='+()1ϕ'≠-(II) 由上一问可知22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+, 所以 ()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++所以 ()()()()223322(1)2(1)2(12)2(12)11111x z u x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++. (17) 【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++- 19ln 24=+ (18) 【详解】方法一:(I) 由积分的性质知对任意的实数t ,()()()()20222t t ttf x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰令2x u =+,则()()()()222t tttf x dx f u du f u du f x dx +=+==-⎰⎰⎰⎰所以()()()()()222t tttf x dx f x dx f x dx f x dx f x dx +=+-=⎰⎰⎰⎰⎰(II) 由(1)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()2a f x dx =⎰,则()0()2xG x f u du ax =-⎰. 所以,对任意的x ,()()2(2)()2(2)2x xG x G x f u du a x f u du ax ++-=-+-+⎰⎰()()22022220x xf u du a f u du a +=-=-=⎰⎰所以()G x 是周期为2的周期函数.方法二:(I) 设2()()t tF t f x dx +=⎰,由于()(2)()0F t f t f t '=+-=,所以()F t 为常数,从而有()(0)F t F =. 而2(0)()F f x dx =⎰,所以2()()F t f x dx =⎰,即220()()t tf x dx f x dx +=⎰⎰.(II) 由(I)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()20a f x dx =⎰,则O 0.5 2 xD 1D 3 D 2()0()2x G x f u du ax =-⎰ , ()2(2)2(2)x G x f u du a x ++=-+⎰由于对任意x ,()(2)2(2)2()G x f x a f x a '+=+-=-,()()2()G x f x a '=- 所以 ()(2)()0G x G x '+-=,从而 (2)()G x G x +-是常数 即有 (2)()(2)(0)0G x G x G G +-=-= 所以()G x 是周期为2的周期函数.(19) 【详解】方法一:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109)n n A r n -=++故 1111110919102009(1)(1)(1)(1)n n n nnn n n n nn n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设 1()(1,1)n n S x n x x ∞==∈-∑因为 21()()()(1,1)1(1)nn x xS x x x xx x x ∞=''=== ∈---∑所以 11()()4201 1.05S S r ==+(万元) 故 2009420398A =+⨯=(万元),即至少应存入3980万元.方法二:设第t 年取款后的余款是t y ,由题意知t y 满足方程1(10.05)(109)t t y y t -=+-+, 即 11.05(109)t t y y t --=-+ (1)(1)对应的齐次方程 11.050t t y y --=的通解为 (1.05)tt y C = 设(1)的通解为 *t y at b =+,代入(1)解得 180a =,3980b = 所以(1)的通解为 (1.05)1803980tt y C t =++ 由0y A =,0t y ≥得 3980A C =+ 0C ≥ 故A 至少为3980万元.(20) 【详解】(I) 证法一:2222122121213210122122112221301240134(1)2(1)3231(1)0n n n a a aa a a a a a A r ar aaa aa a an a a n a r ar a n a nnn a n-=-=-+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得221221221210212121222(1)(1)n n n n nn n a a a aD aD a aaD a D ana a n a n a -----=-=-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-,所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a aaD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II) 因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III) 方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k + 为任意常数.(21)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.(22)【详解】(I) 1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y dy P X =≤≤==+≤===≤===⎰(II) (){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=[]1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤- []1(1)()(1)3Y Y Y F z F z F z =+++-所以 []1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它(23) 【详解】(I) 因为2(,)X N μσ ,所以2(,)X N nσμ ,从而2,E X DX nσμ= =.因为 221()()E T E X S n =-221()E X E S n =-221()()DX E X E S n =+-222211n nσμσμ=+-=所以,T 是2μ的无偏估计(II)方法一:22()()D T ET ET =-,()0E T =,22()1E S σ==所以2()D T ET =442222()S E X X S n n=-⋅+4224221()()()()E X E X E S E S n n=-+因为(0,1)X N ,所以1(0,)X N n,有10,E X DX n ==,()221E X DX E X n=+=所以22422221()()()()()E X D X E X D n X D X E X n ⎛⎫⎡⎤=+=⋅++⎪⎣⎦⎝⎭()2221()D n XD X n⎡⎤=+⎣⎦2221132n n n ⎛⎫=⋅+= ⎪⎝⎭()2422222()1ES E S DS ES DS ⎡⎤==+=+⎢⎥⎣⎦因为2222(1)(1)(1)n S W n S n χσ-==-- ,所以2(1)DW n =-,又因为22(1)DW n DS =-,所以22(1)DS n =-,所以4211(1)1n ES n n +=+=--所以 2223211111n ET n n n n n +=-⋅⋅+⋅-2(1)n n =-. 方法二:当0,1μσ==时221()()D T D X S n =- (注意X 和2S 独立)()222222221111(1)(1)DX DS DnXD n S n nn n ⎡⎤=+=+⋅-⎣⎦-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.王道俊等:《教育学》,人民教育出版社
2008年硕士研究生招生参考书目登记表
招生专业:基础数学\计算数学\应用数学\控制论\课程与教学论
院(系):数学与信息科学学院(盖章)
考试科目
参考书名
作者
出版社、出版时间
数学分析
高等代数
教育学
近世代数
实变函数
常微分方程
概率论
一般拓扑学
《数学分析》
(上、下册)
《高等代数》
西安出版社
高等教育出版社
计算数学
应用数学
运筹学与控制论
课程与教学论
1、笔试:笔试科目:《数学分析》(30%),《高等代数》(30%),《数学教育学》(40%)。
2、面试内容为《数学分析》,《高等代数》,《数学教育学》以及其它数学专业课知识(基础),同时,对考生的英语进行测试。
增加复试参考书:1.罗增儒等:《数学教学论》,陕西师范大学出版社
数学与信息科学学院2008年硕士研究生复试内容
专业
复试内容
基础数学
1、笔试:复试科目为《近世代数》,《实变函数》,《常微分方程》,《概率论》和《一般拓扑学》,各20%。要求考生掌握各科的基本概念,了解考生对基本内容的掌握情况。
2、面试:科目为《数学分析》,《高等代数》及上面五门中任选一门,要求考生对数学专业的基础有全面的了解,对自己感兴趣的专业课知识有较深入的掌握,同时,对考生的英语进行测试。
《教育学》《近世代数》ຫໍສະໝຸດ 《实变函数与泛函分析基础》
《常微分方程》
《概率论与数理统计》
《点集拓扑讲义》(第二版)
华东师范大学数学系
北京大学
王道俊、王汉澜
或南京师大教育学院
张禾瑞
程其襄等
东北师范大学微分方程教研室
刘新平、魏启恩
熊金城
高等教育出版社
高等教育出版社
人民教育出版社
高等教育出版社
高等教育出版社
高等教育出版社
相关文档
最新文档