卢瑟福背散射分析 Rutherford Backscattering Spectrometry (RBS)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 这里只介绍表面能近似和数值积分法
表面能近似
• 由于薄靶和厚靶的近表面 区是一薄层,故近似认为 其能损值为一常量
– 入射路径上取:
dE dE dx x dx x in E0
– 出射路径上取:
dE dE dx x dx x out kE0
– 在某一深度处的背散射产额:
• H(E1)= Npσ(E)ΩNδkE/S(E)
单元素厚靶
– δkE=( S(kE)/ S(E1))δE1 – H(E1)= – Npσ(E)ΩN {S(kE)/[ S(E1) S(E)]}δE1
返回
Lanzhou University
卢瑟福背散射分析
Rutherford Backscattering Spectrometry (RBS)
主讲:Zhang Xiaodong E-mail: zhangxd@lzu.edu.cn
Department of Modern Physics in Lanzhou University
– 轻基体上的重元素有很好的分辨 – 重基体上的轻元素分辨差
返回
深度分辨
• 由表面能近似可值不同深度x1和x2处散射 的粒子能量差ΔE=S Δx,
– 即: Δx= ΔE/S由此式可知,要使Δx尽可能的 小,应从两方面着手 :
• 提高探测系统的分辨,即减小ΔE • 增大S
– 采用重离子入射 – 采用倾角入射,即增大θ1 θ2
2.4实验设备
• 一台小型加速器,目前实验式采用 2X1.7MeV串列加速器(如图)
2.4实验设备
• 电子学探测系统
2.5背散射能谱和产额
• 薄靶
– 单元素 – 多元素
• 厚靶
– 单元素 – 多元素
2.6 RBS技术的应用
• 表面层厚度的分析 • 杂质的深度分布 • 应用于阻止本领测定 • 利用共振背散射探测重基体上得轻元素
d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
Ns N p N0dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
• 采用表面能近似误差为5% • 采用数值积分法误差为0.2%
返 回
质量分辨
• 在K因子的推导中曾得出这样一个结论:
M 2 E1 M 2 M1 (4 2 ) E0
2
• 增大散射角
• 增大入射粒子质量 • 增大入射粒子能量 • 提高探测系统的分辨
返回
含量分辨
• 由于散射粒子计数N正比于散射截面σ,故 截面越大,计数越多,分辨越好
2 1/ 2
d L 1 4 d 0
2
Z1 Z 2 e 2 E sin 2 L
2
2
2
2.2.2 背散射微分截面—含量分析
• 因为探测器所张的立体角是有限的,故取平均散 射截面: (其定义式如下)
1
结束
2.2.1 运动学因子—质量分析
运动学因子的 定义: K=E1/E0, 其中E0是入射 粒子能量,E1 是散射粒子能 量。
2.2.1 运动学因子—质量分析
实验室坐标系中的K因子的表达式为(详细的推导参见 王广厚--《粒子同固体物质相互作用》P102):
2 2 M 1 sin M 1 cos 1 M M2 2 E1 K M1 E0 1 M2 1
2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M1 (4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
返回
源自文库
单元素薄靶
• 下图为单元素薄靶的背散射图
薄靶背散射图 1200 800 400 0 350 370 390 410 道数 430 450 470
返回
计数
多元素薄靶
• 下图为单元素薄靶的背散射图
多元素薄靶 1200 800 400 0 300 320 340 360 道数 380 400 420
• 在出射路程中
E1 kE
0
dE dx x dx in dE dx x dx out
x / cos 2 dE dE dx x dx 0 dx x dx in out
x / cos 2
2.1 背散射研究的发展史
1909年,盖革(H. Geiger) 和马斯顿(E. Marsden)观 察到了α粒子散射实验现象 1911年,卢瑟福(Lord Ernest Rutherford)揭示了该 现象,并确立了原子的核式 结构模型 1957年,茹宾(Rubin)首次 利用质子和氘束分析收集在 滤膜上的烟尘粒子的成份 1967年,美国的测量员5号空 间飞船发回月球表面土壤的 背散射分析结果
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)
M 1 cos 1 M sin 2 2 1/ 2 M 1 1 sin M2
• 由上式可得:
E kE0 E1 k
x / cos1 0
2.2.3能损因子—深度分析
• 上面导出了ΔE与深度x的关系式,由于式子比较复杂, 故在实际的应用中采用多种近似方法,(参见王广 厚《粒子同固体物质的相互作用》 P111)
– 表面能近似—适用于薄靶或厚靶的近表面区
– 平均能量近似—适用于厚靶 – 能量损失比法—适用于薄靶,对厚靶也适用,但精度差 – 数值积分法—适用于薄靶和厚靶
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的, 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃
计数
返回
单元素厚靶
• 表面产额
– 取δE为探测系统每一道对应的能量, δx为对应 于能量间隔的靶厚度,
– 则表面层的产额为:
• H=Npσ(E0)ΩNδx/cosθ1 • 为简化,令θ1 =0 • H=Npσ(E0)ΩNδx,利用表面能近似结论 • H=Npσ(E0)ΩNδE/S(E0)
单元素厚靶
2.2 卢瑟福背散射分析的原理
RBS是利用带电粒子与靶核间的大角度库仑 散射的能谱和产额确定样品中元素的质量 数、含量及深度分布。该分析中有三个基 本点,即:
运动学因子—质量分析 背散射微分截面—含量分析 能损因子—深度分析
2.3最佳实验条件的选取
• 由背散射的原理可导出最佳的实验条件:
– 质量分辨 – 含量分辨 – 深度分辨
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2