数学模型之数学规划模型4-6

合集下载

数学规划模型的建立与求解(建模)

数学规划模型的建立与求解(建模)

数学规划模型的建立与求解
一般地,优化模型可以表述如下:
min z f ( x ) s.t . gi ( x ) 0 , i = 1, 2, , m
这是一个多元函数的条件极值问题,其中 x = [ x 1 , x 2 , … , x n ]。
许多实际问题归结出的这种优化模型,但是其决策变量个数 n 和约束条件
这4名同学约定他们全部面试完以后一起离开公司。假定现在时间是早上 8:00,问他们最早何时离开公司?
数学规划模型的建立与求解
Step 1. 寻求决策,即回答什么? 1. 同学甲、乙、丙、丁的面试次序 1)同学甲、乙、丙、丁每个阶段面试的开始时间 2)先后次序 2. 离开时间 Step 2. 确定决策变量 1. 同学甲、乙、丙、丁参加第j阶段面试的开始时间ti,j; 2. 同学甲、乙、丙、丁面试结束时间:T1,T2,T3,T4 3. 离开时间:T=max{ T1,T2,T3,T4} 4. 先后次序:ri,j,0—1变量 5. 面试时间(已知):ci,j Step 3. 确定优化目标 Min T
数学规划模型的建立与求解
张兴元 2009 年 3 月
数学规划模型的建立与求解
1.优化问题及其一般模型
优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的 问题之一。例如: 设计师要在满足强度要求等条件下选择材料的尺寸, 使结构总重量最轻; 公司经理要根据生产成本和市场需求确定产品价格, 使所获利润最高; 调度人员要在满足物质需求和装载条件下安排从各 供应点到需求点的运量和路线,使运输总费用最低; 投资者要选择一些股票、债券下注,使收益最大,而风险最小 …………
数学规划模型的建立与求解
Step 4. 寻找约束条件

线性规划的数学模型

线性规划的数学模型

线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。

本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。

线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。

线性规划的主要特点是目标函数和约束条件均为线性关系。

线性规划在工程、经济、物流、运输等领域都有广泛的应用。

它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。

线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。

这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。

通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。

希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。

本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。

决策变量在构建线性规划模型时,首先需要确定决策变量。

决策变量是用来表示决策问题中需要决定的未知量。

它们的取值将影响函数的输出结果。

在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。

目标函数确定决策变量后,下一步是确定目标函数。

目标函数是线性规划模型中需要最大化或最小化的函数。

它通常与问题的目标密切相关,并且能够量化问题的目标。

在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。

约束条件除了目标函数,线性规划模型还包括一系列约束条件。

约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。

约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。

在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。

实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。

这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。

数学规划模型

数学规划模型

数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。

数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。

首先,数学规划模型需要明确目标函数和约束条件。

目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。

例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。

接下来,数学规划模型需要定义决策变量。

决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。

例如,对于生产计划问题,决策变量可以是每种产品的生产数量。

然后,将目标函数和约束条件用数学公式表示出来。

例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。

同时,约束条件也可以用一组不等式来表示。

接下来,我们需要使用数学方法来求解这个数学规划模型。

常用的数学方法包括线性规划、整数规划、非线性规划等。

具体的求解方法取决于模型的特点和目标函数的形式。

最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。

这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。

总结来说,数学规划模型是一种解决决策问题的数学方法。

通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。

这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。

第一节 目标规划的数学模型

第一节 目标规划的数学模型

kl , kl 为分别赋予第l个目 式中:Pk为第k级优先因子,k=1,…,K; 标约束的正负偏差变量的权系数;gl为目标的预期目标值, l=1,…L。

建立目标规划数学模型的步骤
(1)按照实际问题所提出的各个目标与条件,列出目标的 优先级。 (2)写出绝对约束和目标约束 (3)给各个目标赋予相应的优先因子Pk,对同一优先级中 各偏差变量,按不同的重要程度赋予不同的权系数。 (4)对要求恰好达到目标值的目标,则取正负偏差变量之 和,即 min(d d ) ;对要求超过目标值的,只取负偏差变量, min d 即 ;对要求不超过目标值的,只取正偏差变量, 即 min d ,构造一个极小化的关于偏差变量的目标函数。
又包含偏差变量;
6. 目标规划模型中的优先级 pi 较之 pi 1的重
要性一般为数倍至数十倍之间; 7. 目标规划模型中的目标函数按照问题的性 质要求可表示为求min或max; 8. 下列表达式能否表达目标规划模型中的 目标函数:
(1)max z p1d1 p2 d 2 (2)min z p1d1 p2 d 2 (3)min z p1d1 p2 ( d 2 d 2 )
6.1.2关于目标规划的几个概念
1.偏差变量
用d+表示超过目标值的差值,称为正偏差变量;
d-表示未达到目标值的差值,称为负偏差变量.
第一目标:尽量完成本周期的利润指标24000元 如果实际利润是23500元,则 d 0, d 500 如果实际利润是24080元,则 d 80, d 0
min d1 300 x1 120 x2 d1 d1 24000 x d d 60 , x d d 100 min( d d 2 2 3 3 1 2 3 ) 2 20 x 10 x d d 1400 4 min d 1 2 4 4

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模(线性规划).

数学建模(线性规划).
已知该部门现有资金100万元,试为该部门确定投资 方案,使得第五年末它拥有的资金本利总额最大?
1)模型建立。
①决策变量。决策变量为每年年初向四个项目的投资 额,设第i(i=1,2,3,4,5)年年初向A,B,C,D(j=1,2,3,4) 四个项目的投资额为xij(万元)。 ②目标函数。设第五年年末拥有的资金本利总额为z, 为了方便,将所有可能的投资列于下表1.2
表1.3 三个货舱装载货物的最大容许量和体积
前舱 重量限制/t 10
中舱 16
后舱 8
体积限制/m3
6800
8700
5300
现有四类货物供该货机本次飞行装运,其有关信息 如表1.4,最后一列指装运后获得的利润。
表1.4 四类装运货物的信息
货物1 货物2 货物3 货物4
质量/t 18 15 23 12
空间/(m3/t) 480 650 580 390
利润(元/t) 3100 3800 3500 2850
应如何安排装运,使该货机本次飞行利润最大?
1)模型假设。问题中没有对货物装运提出其他要 求,我们可做如下假设:
①每种货物可以分割到任意小; ②每种货物可以在一个或多个货舱中任意分布; ③多种货物可以混装,并保证不留空隙。 2)模型建立。 ①决策变量:用xij表示第i种货物装入第j个货舱的重 量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。
年份
1 x11
2 x21 x23 x24
3 x31 x32 x34
4 x41
5
项目
投资限额/万 元
A B C D
年年末回收的本利之和,于是, 目标函数为 ③约束条件 z 1.15x41 1.25x32 1.40 x23 1.06 x54

线性规划问题的数学模型

线性规划问题的数学模型
x1 =1, x2 =2, x3 =x4 =x5 =0 f= 2×1+3×2=8 用非基变量表示目标函数 f= 8 - 3x3 –5x4 - 1x5
式中所有非基变量的系数均是负数,意味着目标函数值不 可能再增加,故此时的基本可行解就是最优解,最优值为8
2.最优性检验
由标准形等式约束条件得
代入目标函数进行简单的运算后,用非基变量表示目标函数为
某工厂生产A 、B两种产品,现有资源数、生产每单位产品所需原 材料数以及每单位产品可得利润如下表所示。问如何制定生产计划使两 种产品总利润最大?
单位产品
产品
耗用资源
资源
铜(吨)
电力(千瓦)
劳动日(个)
单位利润 (万元/公斤)
A(公斤)
9 4 3 7
B(公斤)
4 5 10 12
现有资源
360 200 300
解 : x2
例4 若把例3改为使的目标函数的值最 大,从图可看出目标函数无上界,因此 无最优解
X1+2x2=0
X1-x2=1
2X1+2x2=16
x1 0
2X1+2x2=6 2X1+2x2=10
2X1+2x2=2 最优解 X1=1,x2=0, 目标函数最小值 s=2
例5 求x1、x2的值,使它们满足 并且使目标函数s=2 x1+2x2的值最小。
3. 单纯形表
用表格的形式来表示上面求解线性规划问题的单纯形法的计算过程可以 使计算和检验更加简便。具体方法如下:
将目标函数式改写为-f+ c1 x1 + c2 x2 +…+ cnxn =0 且作为等式约束方程 组的第m+1个方程,得

数学建模-数学规划模型

数学建模-数学规划模型
建立数学模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类

线性规划的数学模型和基本性质

线性规划的数学模型和基本性质

1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?

第三章数学规划模型

第三章数学规划模型

第三章数学规划模型第三章数学规划模型数学规划论起始20世纪30年代末,50年代与60年代发展成为⼀个完整的分⽀并受到数学界和社会各界的重视。

七⼋⼗年代是数学规划飞速发展时期,⽆论是从理论上还是算法⽅⾯都得到了进⼀步完善。

时⾄今⽇数学规划仍然是运筹学领域中热点研究问题。

从国内外的数学建模竞赛的试题中看,有近1/4的问题可⽤数学规划进⾏求解。

数学规划模型的⼀般表达式:),,(..),,(min(max)≤βαβαx g t s x ff 为⽬标函数,g 为约束函数,x 为可控变量,α为已知参数,β为随机参数。

本章主要介绍线性规划、整数规划、⾮线性规划的基本概念与基本原理、⽆约束问题的最优化⽅法、约束问题的最优化⽅法、动态规划。

3.1线性规划线性规划模型是运筹学的重要分⽀,是20世纪三四⼗年代初兴起的⼀门学科。

1947年美国数学家丹齐格G.B.Dantzig 及其同事提出的求解线性规划的单纯形法及有关理论具有划时代的意义。

他们的⼯作为线性规划这⼀学科的建⽴奠定了理论基础。

随着1979年前苏联数学家哈奇扬的椭球算法和1984年美籍印度数学家卡玛卡尔H.Karmarkar 算法的相继问世,线性规划的理论更加完备成熟,实⽤领域更加宽⼴。

线性规划研究的实际问题多种多样,如⽣产计划问题、物资运输问题、合理下料问题、库存问题、劳动⼒问题、最优设计问题等。

就模型⽽⾔,线形规划模型类似于⾼等数学中的条件极值问题,只是其⽬标函数和约束条件都限定为线性函数。

线性规划模型的求解⽅法⽬前仍以单纯形法为主要⽅法。

本节介绍的主要内容有:线性规划模型的建⽴以及求解,线性规划的matlab 解法,线性规划问题的建模实例。

3.1.1 线性规划模型的建⽴以及求解⼀、线性规划模型的建⽴例1、某机床⼚⽣产甲、⼄两种机床,每台销售后的利润分别为4000元与3000元。

⽣产甲机床需⽤B A 、机器加⼯,加⼯时间分别为每台2⼩时和1⼩时;⽣产⼄机床需⽤C B A 、、三种机器加⼯,加⼯时间为每台各⼀⼩时。

线性规划模型

线性规划模型

1
(1-7)
标准型的特征
w目标函数最大化 w约束条件为等式 w右端相为非负值 w决策变量非负值
而称以下的形式为标准矩阵形式:
Max z C X
T
s.t. AX b
X 0
(1-8)
如何将线性规划转化为标准型
(1)若目标函数是求最小值 Min S = CX
令 S ˊ = - S,

Max Sˊ= - CX
令 z = -f = - 3.6x1 + 5.2x2 - 1.8x3 ,
其次考虑约束,有2个不等式约束,引进
松弛变量x4,x5 ≥0。于是,我们可以得到以
下标准形式的线性规划问题: Max z = - 3.6 x1 + 5.2 x2 - 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 + x4 = 15.7 4.1 x1 x1 + 3.3 x3 + x2 + x3 - x5 = 8.9 = 38
取其等式在坐标系中作出直线,通过判断确定不等
式所决定的半平面。各约束半平面交出来的区域
(存在或不存在),若存在,其中的点表示的解称 为此线性规划的可行解。这些符合约束限制的点集 合,称为可行集或可行域。进行(3);否则该线 性规划问题无可行解。
(3)任意给定目标函数一个值作一条目标函数的 等值线,并确定该等值线平移后值增加的方向,平移 此目标函数的等值线,使其达到既与可行域有交点又 不可能使值再增加的位置(有时交于无穷远处,此时 称线性规划的解无界)。若有交点时,此目标函数等 值线与可行域的交点即最优解(一个或多个),此目 标函数的值即最优值。
例2 将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3

数学模型复习-第4章离散优化模型

数学模型复习-第4章离散优化模型

第4章离散优化模型【内容总结与思考】§1数学规划(最优化模型)概述。

规划模型(最优化模型)的三要素:决策(设计,控制)变量,约束条件和目标函数,最优化模型就是在满足约束条件的集合中(可行集)求目标函数的最优值。

按目标函数分分为多目标规划和单目标规划。

单目标规划模型的一般形式:max (min) Z = f(x),x = (x{,x2,...,x n)Ts.t.(x) < 0, i = 1.2,...m线性规划:目标函数和约束条件都是线性的称为线性规划。

不是线性规划统称为非线性规划。

二次规划:目标函数是二次的,约束条件是线性的称为二次规划。

整数规划:决策变量均取整数值的规划称为整数规划。

部分决策变量取整数,其它取实数则称为混合整数规划。

只取0,1 的变量称为0-1变量。

实际问题建模(生产计划•线性规划)。

建模.软件计算,结果分析:对偶价格。

敏感性分析结果应用:系数变化范围(目标函数系数,约束右端项系数)例题1最优化模型的三姜素为()■最优化问题就规划问题,整数规划是()o§1生产计划建模:决策变量为目标为利润(费用),约束为生产要素限制,一般为线性规划。

例题1 一般的生产规划模型的目标函数是(),决策变量是(),约束条件为()。

其一般模型为()§2运输问题建模(自来水输运与装机)lo 一般运输问题建模。

第,个供应点(源)第丿个需求点(汇)的量为®,则模型为m nmin( max)i=l j=ln m ms.t. 2L x u -a i»Z x ij -lb j^x ij - ub j»j=l i=l i=l目标为费用最小(或利润最大),约束包括两类,供应约束(源点,始点)需求约束(终点•汇)。

一般运输问题的数据表结构:利润表+右边表示供应点的数据+底边表示各需求点的数据。

2O运输问题编程「水库送水问题Idefine set and variable;sets: gong/1..3/:a;xu/1..4/:bl f bu;link(gon g f xu):x f c;en dsets•evaluate to known variable;data:a=100,120,100;bl 二30,70,10,10;bu=80,140,30,50;c 二290,320,230,280,310,320,260,300,260,250,220,-1000;enddatamax=@sum(link(i,j):c(ij)*x(ij));@for(gong(i):@sum(xu(j):x(ij))<=a(i)); @for(xu(j):@sum(gong(i):x(ij))>=bl(j)); @for(xu(j):@sum(gong(i):x(ij))<=bu(j)); end例题1 一般运输问题的模型( 厂目标函数的形式为( ),约束条件是( )例题2 Lingo编程中重要的三部分是:set段,data段,和砂段。

数学建模-整数规划

数学建模-整数规划
数学建模
整数规划
Integer Programming
数信学院 任俊峰
2012-4-15
数学建模之整数规划
整数规划模型(IP)
如果一个数学规划的某些决策变量或全部决策 变量要求必须取整数,则称这样的问题为整数规 划问题,其模型称为整数规划模型。 如果整数规划的目标函数和约束条件都是线性 的,则称此问题为整数线性规划问题.
松弛问题最优解满足整数要求,则该最优解为整数 规划最优解;
数学建模之整数规划
整数线性规划的求解方法
从数学模型上看整数规划似乎是线性规划的 一种特殊形式,求解只需在线性规划的基础上,通 过舍入取整,寻求满足整数要求的解即可。 但实际上两者却有很大的不同,通过舍入得到
的解(整数)也不一定就是最优解,有时甚至不能
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160 x 1 210 x 2 60 x 3 80 x 4 180 x 5 210 x 1 300 x 2 150 x 3 130 x 4 260 x 5 600 x x2 x3 1 1 x3 x4 1 x x 1 5 x1 , x 2 , x 3 , x 4 , x 5 0 或 1
1 2
14 x1 9 x 2 51 6 x1 3 x 2 1 x1 , x 2 0
数学建模之整数规划
用图解法求出最优解 x1=3/2, x2 = 10/3 且有 z = 29/6 现求整数解(最优解): 如用“舍入取整法”可得到4 个点即(1,3) (2,3) (1,4) (2,4)。显然,它们都不可能 是整数规划的最优解。
数学建模之整数规划
例5 固定费用问题

数学建模——规划模型

数学建模——规划模型
i a b d 1 1 .2 5 1 .2 5 3 2 8 .7 5 0 .7 5 5 3 0 .5 4 .7 5 4 4 5 .7 5 5 7 5 3 6 .5 6 6 7 .2 5 7 .7 5 11
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)

数学模型----目标规划模型

数学模型----目标规划模型

目标规划模型企业内部的生产计划有各种不同的情况。

从空间层次看,在工厂级要根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品的生产计划,在车间级则要根据产品生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产作业计划。

从时间层次看,若在短时间内认为外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则就要制订多阶段生产计划。

接下来我们就用案例来建立这类问题的数学模型,并利用软件求解并对输出结果作一些分析。

案例1.加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1,或者在乙类设备上用8小时加工成4公斤A2。

根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲类设备每天至多能加工100公斤A1,乙类设备的加工能力没有限制。

试为该工厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个问题:(1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?每天:50桶牛奶时间480小时至多加工100公斤A1案例2.奶制品的生产销售计划问题例1给出的A1,A2两种奶制品的生产条件、利润、及工厂的“资源”限制全都不变。

为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1公斤A1加工成0.8公斤高级奶制品B1,也可将1公斤A2加工成0.75公斤高级奶制品B2,每公斤B1能获利44元,每公斤B2能获利32元,试为该工厂制订一个生产销售计划,使每天的净利润最大。

案例3.自来水输送问题问题某市有甲,乙,丙,丁四个居民区,自来水由A、B、C 三个水库供应。

数学模型之数学规划模型

数学模型之数学规划模型

多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。

数学建模实验答案__数学规划模型二.

数学建模实验答案__数学规划模型二.

实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。

★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。

LINGO函数@gin见提示。

★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 4 ≤ 20000
约束 条件
产量 x1 x2 x3 x4 罐身 1 2 0 4
y1 ~ 易拉罐个数;y2 ~ 不配套的罐身; y3 ~ 不配套的底、盖。
底、盖 10 4 16 5
配套约束
y 2 = x1 + 2 x 2 + 4 x 4 − y1
y 3 = 10 x1 + 4 x 2 + 16 x 3 + 5 x 4 − 2 y 1
为满足客户需要,按照哪些种合理模式,每种模式切割多 少根原料钢管,最为节省? 数 学 两种 1. 原料钢管剩余总余量最小 模 标准 2. 所用原料钢管总根数最少 型
决策 x ~按第i 种模式切割的原料钢管根数(i=1,2,…7) i 变量 Min Z 1 = 3 x1 + x 2 + 3 x 3 + 3 x 4 + x 5 + x 6 + 3 x 7 目标1(总余量)
【问题分析】 计算各种模式下的余料损失 问题分析】
模式1: 正方形 边长24cm 上、下底直径d=5cm,罐 身高h=10cm。
模式1 余料损失 242-10×πd2/4 - πdh=222.6 cm2
罐身个数 模式1 模式2 模式3 模式4 1 2 0 4 底、盖 个数 10 4 16 5 余料损失 (cm2) 222.6 183.3 261.8 169.5 冲压时间 (秒) 1.5 2 1 3
整数约束: xi ,r1i, r2i, r3i, r4i (i=1,2,3)为整数
整数非线性规划模型
数 学 模 型
钢管下料问题2 钢管下料问题
增加约束,缩小可行域,便于求解 每根原料钢管长19米
4 × 50 + 5 × 10 + 6 × 20 + 8 × 15 = 26 19
16 ≤ 4 r13 + 5 r 23 + 6 r33 + 8 r43 ≤ 19
r11 x 1 + r12 x 2 + r13 x 3 ≥ 50
r21 x 1 + r22 x 2 + r23 x 3 ≥ 10
r31 x 1 + r32 x 2 + r33 x 3 ≥ 20
r41 x 1 + r42 x 2 + r43 x 3 ≥ 15
模式1:1.5秒 模式2:2秒
上盖 罐 身 下底
模式3:1秒
板材规格2: 2 长方形, 32×28cm, 2万张。
模式4:3秒
罐身高10cm,上 盖、下底直径均 5cm。
每周工作40小时,每只易拉罐利润0.10元,原料余料损失0.001元 如何安排每周生产? 如何安排每周生产? / cm2(不能装配的罐身、盖、底也是余料) 数学模型
4 x1 + 3 x 2 + 2 x 3 + x 4 + x 5 ≥ 50
x 2 + 2 x 4 + x 5 + 3 x 6 ≥ 20
x 3 + x 5 + 2 x 7 ≥ 15
xi 为整数 按模式2切割15根,按 模式5切割5根,按模式 7切割5根,共25根,余 料35米
最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。
模型构成】 【模型构成】 y1 ~ 易拉罐个数;y2 ~ 不配套的罐身;
y3 ~ 不配套的底、盖。
产量 x1 x2 x3 x4 余料 222.6 183.3 261.8 169.5 时间 1.5 2 1 3
每只易拉罐利润0.10元,余 料损失0.001元 / cm2 罐身面积πdh=157.1 cm2 底盖面积πd2/4=19.6 cm2
与目标1的结果“共切割27 根,余料27米” 相比 虽余料增加8米,但减少 了2根 数 学 模 型
当余料没有用处时,通常以总根数最少为目标
钢管下料问题2 钢管下料问题 增加一种需求:5米10根;切割模式不超过3种。 现有4种需求:4米50根,5米10根,6米20根,8米15根, 用枚举法确定合理切割模式,过于复杂。 对大规模问题,用模型的约束条件界定合理模式 决策变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,3) 数 r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管生产4米、学 模 5米、6米和8米长的钢管的数量 型
4米1根
6米1根
8米1根
余料1米
Байду номын сангаас
4米1根
6米1根
6米1根
余料3米
8米1根
8米1根
余料3米
合理切割模式的余料应小于客户需要钢管的最小尺寸 数学模型
钢管下料问题1 钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
6米钢管根数 0 1 0 2 1 3 0 8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
模式2生产40125张, 2 40125 模式3生产3750张, 模式4生产20000张, 共产易拉罐160250个 (罐身和底、盖无剩余), 净利润为4298元 数学模型
下料问题的建模
• 确定下料模式 一维问题(如钢管下料) 一维问题(如钢管下料) 规格不太多,可枚举下料模式,建立整数线性规划模型,否则要 构造整数非线性规划模型,求解困难,可用缩小可行域的方法进 行化简,但要保证最优解的存在。 • 构造优化模型
目标
Max
0 . 1 y1 − 0 . 001 ( 222 . 6 x1 + 183 . 3 x 2 + 261 . 8 x 3 + 169 . 5 x 4 + 157 . 1 y 2 + 19 . 6 y 3 )
数 学 模 型
约束 条件
时间约束 1.5x1 + 2x2 + x3 + 3x4 ≤ 144000 (40小时) 原料约束 x1 + x 2 + x3 ≤ 50000 ,
二维问题(如易拉罐下料) 二维问题(如易拉罐下料) 具体问题具体分析(比较复杂 )
数 学 模 型
模式1:每根原料钢管切割成3根4米 和1根6米钢管,共10根; 模式2:每根原料钢管切割成2根4米、 1根5米和1根6米钢管,共10根; 模式3:每根原料钢管切割成2根8米 钢管,共8根。 原料钢管总根数为28根。 数 学 模 型
【问题】 问题】
例2 易拉罐下料
板材规格1: 正方形,边长24cm, 5万张。
模式排列顺序可任定
x1 ≥ x 2 ≥ x 3
数 学 模 型
LINGO求解整数非线性规划模型 求解整数非线性规划模型
Local optimal solution found at iteration: 12211 Objective value: 28.00000 Variable Value Reduced Cost X1 10.00000 0.000000 X2 10.00000 2.000000 X3 8.000000 1.000000 R11 3.000000 0.000000 R12 2.000000 0.000000 R13 0.000000 0.000000 R21 0.000000 0.000000 R22 1.000000 0.000000 R23 0.000000 0.000000 R31 1.000000 0.000000 1.000000 0.000000 R32 R33 0.000000 0.000000 R41 0.000000 0.000000 R42 0.000000 0.000000 R43 2.000000 0.000000
模型求解】 【模型求解】
LINDO发出警告信息:“数据之间的数量级差别太大,建议进行预处理, 缩小数据之间的差别”
将所有决策变量扩大10000倍(xi ~万张,yi ~万件)
1.5 x1 + 2 x2 + x3 + 3 x4 ≤ 14.4, x1 + x2 + x3 ≤ 5, x4 ≤ 2
OBJECTIVE FUNCTION VALUE 1) 0.4298337 VARIABLE VALUE REDUCED COST Y1 16.025000 0.000000 X1 0.000000 0.000050 X2 4.012500 0.000000 X3 0.375000 0.000000 X4 2.000000 0.000000 Y2 0.000000 0.223331 Y3 0.000000 0.036484
钢管下料问题2 钢管下料问题 目标函数(总根数) 目标函数(总根数) 约束 条件 满足需求
Min x1 + x 2 + x3
模式合理:每根余 料不超过3米
16 ≤ 4 r11 + 5 r21 + 6 r31 + 8 r41 ≤ 19
16 ≤ 4 r12 + 5 r22 + 6 r32 + 8 r42 ≤ 19
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
约束
满足需求
4 x 1 + 3 x 2 + 2 x 3 + x 4 + x 5 ≥ 50
y 1 = min{ x 1 + 2 x 2 + 4 x 4 , (10 x 1 + 4 x 2 + 16 x 3 + 5 x 4 ) / 2}
y 1 ≤ x1 + 2 x 2 + 4 x 4 ,
相关文档
最新文档