3.1-3.3不等式复习
高中不等式知识点总结
高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。
在高中数学中,我们学习了许多不等式的性质和解法。
下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。
1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。
不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。
1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。
根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。
二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。
2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。
这个性质称为不等式的传递性。
利用不等式的传递性,我们可以简化不等式的推导过程。
2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。
这个性质称为不等式的加减性质。
利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。
2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。
这个性质称为不等式的乘除性质。
利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。
2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。
高考数学复习讲义 不等式(学生版)
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
初三不等式必考知识点
初三不等式必考知识点不等式是初中数学中的一种重要的数学概念,也是初三数学的必考知识点之一。
通过学习不等式,可以帮助学生提高数学推理能力和问题解决能力。
本文将介绍初三不等式的基本概念、性质以及解题方法,帮助同学们系统地掌握这一知识点。
一、不等式的基本概念不等式是用不等号(>、<、≥、≤)连接的两个数或者两个代数式。
其中,大于(>)和小于(<)表示严格不等关系,大于等于(≥)和小于等于(≤)表示不严格不等关系。
例如,2x + 3 > 5是一个不等式。
二、不等式的性质 1. 两个不等式的加法性质:如果a > b,那么a + c > b + c,其中c是任意实数。
2. 两个不等式的减法性质:如果a > b,那么a - c > b - c,其中c是任意实数。
3. 两个不等式的乘法性质:如果a > b,且c > 0,那么ac > bc;如果a > b,且c < 0,那么ac < bc。
4. 两个不等式的除法性质:如果a > b,且c > 0,那么a/c > b/c;如果a > b,且c < 0,那么a/c < b/c。
5. 不等式的对称性:如果a > b,则b < a;如果a ≥ b,则b ≤ a。
6. 不等式的传递性:如果a > b,且b > c,则a > c。
三、不等式的解题方法 1. 代数法代数法是解不等式的一种常用方法。
通过运用不等式的性质和运算法则,将不等式转化为简单的形式,从而求得不等式的解集。
常用的代数法有以下几种: - 加减消元法:根据不等式的加法性质和减法性质,通过加或减相同的数使不等式两端的系数相等,从而得到简单的不等式。
- 乘除消元法:根据不等式的乘法性质和除法性质,通过乘或除相同的数使不等式两端的系数相等,从而得到简单的不等式。
高三不等式复习知识点
高三不等式复习知识点在高三数学中,不等式是一个重要的知识点,它在解决实际问题和推理推导中有广泛的应用。
接下来,我们将回顾一些高三不等式的基本概念和解题方法。
一、不等式的基本概念不等式是一种数学表达式,它描述了两个数之间的大小关系。
常见的不等式符号有"<"(小于)、">"(大于)、"≤"(小于等于)和"≥"(大于等于)。
例如,对于实数a和b,如果a<b,则我们可以写作a<b;如果a≤b,则表示a小于或等于b。
二、不等式的性质1. 等式性质:不等式两边同时加(减)一个相同的数,不等式保持不变。
例如,对于不等式a<b,如果两边同时加上一个相同的数c,则不等式变为a+c<b+c。
2. 倍数性质:不等式两边同时乘以(或除以)一个正数,不等式的方向保持不变;如果乘以(或除以)一个负数,不等式的方向则反向。
例如,对于不等式a<b,如果两边同时乘以一个正数c,则不等式变为ac<bc;如果乘以一个负数c,则不等式变为ac>bc。
3. 倒置性质:不等式两边同时取倒数,不等式的方向需要反向。
例如,对于不等式a<b,如果两边同时取倒数,则不等式变为1/a>1/b。
三、不等式的解法1. 图解法:对于一元一次不等式,我们可以将其在数轴上进行图解。
根据不等式的形式,判断出解的范围。
2. 等效变形法:通过一系列的等式性质和倍数性质的变形,将不等式转化为更简单的形式,从而得到解。
例如,对于不等式3x-5<2x+7,我们可以通过将同类项合并,得到x<12。
3. 区间法:对于一些复杂的不等式,我们可以通过设定合适的区间范围来求解。
例如,对于不等式2x^2-7x+3>0,我们可以通过解二次方程2x^2-7x+3=0得到其零点,然后通过分析函数图像和函数值的正负来确定解的范围。
高三不等式必背知识点总结
高三不等式必背知识点总结高中数学学科中,不等式是一个重要的内容,也是学习中的重点和难点之一。
在高三阶段,不等式的掌握和运用变得更加关键,它是解析几何、数列等各种数学内容的基础。
下面将对高三不等式的必背知识点进行总结与归纳。
一、基本的不等式关系在不等式学科中,最基础、最重要的关系就是大小关系。
通常使用的符号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
大于号和小于号用于表示严格的大小关系,大于等于号和小于等于号则包含了等于的情况。
二、绝对值不等式绝对值不等式是高三阶段需要掌握的一个重要知识点。
对于任意的实数a,绝对值不等式可以分为三种情况:1. 当a > 0时,|x| > a的解集为(-∞,-a)∪(a,+∞);2. 当a = 0时,|x| > a的解集为全体实数集R;3. 当a < 0时,|x| > a的解集为空集。
绝对值不等式的求解需要根据以上三种情况进行分类讨论。
三、一元一次不等式一元一次不等式是最基础的一类不等式之一,在高三阶段需要非常熟练地掌握。
一元一次不等式的求解大致可以分为以下几个步骤:1. 将不等式两边的式子整理为一个多项式,注意保持不等式的方向不变;2. 描述不等式的解集,可以通过解析法或图像法等方式确定解集的范围。
四、二次不等式二次不等式在高三学习中也是一个重点,它的解集常常与多项式的图像、方程的根等有关。
1. 解二次不等式需要先将二次不等式整理为标准形式,即要使得二次项系数大于0。
2. 利用二次不等式的图像特点,以及平方的非负性质,确定解集的范围。
五、分式不等式分式不等式是高三学习中较为复杂的一类不等式,求解分式不等式的一般步骤如下:1. 找到分式不等式的定义域,即分母不能为0的条件;2. 利用分式的性质化简不等式,使其变为分子和分母均不为0的形式;3. 对分子和分母分别进行讨论,找出使得不等式成立的范围。
六、不等式的基本性质在高三学习中,还需要深入了解不等式的一些基本性质,这些性质在解决不等式问题时起到了重要的指导作用。
高一基本不等式知识点讲解
高一基本不等式知识点讲解在高中数学中,基本不等式是一个重要的知识点。
本文将对高一基本不等式的知识点进行详细的讲解。
一、不等式的定义和性质不等式是数学中用于表示大小关系的符号,包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
在解不等式问题时,需要根据不等式的性质进行推导和分析。
1.1 大于和小于大于和小于是最基本的不等式关系。
对于两个实数a和b,如果a大于b,可以表示为a > b;如果a小于b,可以表示为a < b。
这种大小关系在数轴上可以直观地表示出来,通过比较两个实数在数轴上的位置来确定大小关系。
1.2 大于等于和小于等于大于等于和小于等于是包含了等于的不等式关系。
对于两个实数a和b,如果a大于等于b,可以表示为a ≥ b;如果a小于等于b,可以表示为a ≤ b。
这种不等式关系意味着两个数相等或者一个数大于另一个数。
在数轴上,可以用实心点表示。
二、基本不等式的证明和应用基本不等式是指一些常见且易证明的不等式,它们在解决实际问题时具有重要的作用。
接下来,我们将介绍几个常见的基本不等式及其应用。
2.1 三角不等式三角不等式是指对于任意实数a、b和c,有以下不等式成立:|a + b| ≤ |a| + |b|、|a - b| ≤ |a| + |b|。
这个不等式在解决绝对值问题和距离问题时特别有用。
2.2 平均不等式平均不等式是指对于任意一组非负实数x1、x2、...、xn,有以下不等式成立:(x1 + x2 + ... + xn)/n ≥ √(x1 * x2 * ... * xn)。
平均不等式在数论、代数等领域中有广泛的应用。
2.3 柯西不等式柯西不等式是指对于任意一组实数a1、a2、...、an和b1、b2、...、bn,有以下不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)²≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)。
2013年数学高考总复习重点精品课件:《1-3-3 不等式》课件
栏目导引
(1)(2012· 东 卷 ) 设 变 量 x , y 满 足 约 束 条 件 山 x+2y≥2, 2x+y≤4, 4x-y≥-1,
3 A.-2,6
则目标函数 z=3x-y 的取值范围是(
3 B.-2,-1 3 D.-6,2
高频考点
工具
二轮新课标文科数学 第一部分 专题三
栏目导引
1.一元二次不等式及其解集
若一元二次方程ax2 +bx+c=0的两个根为x1 ,x2 ,且 x1<x2,则 (1)当a>0时,ax2 +bx+c>0的解集为{x|x<x1 或x>x2},ax2 +bx+c<0的解集为{x|x1<x<x2}. (2)当a<0时,ax2+bx+c>0的解集为{x|x1<x<x2},ax2+bx +c<0的解集为{x|x<x1或x>x2}.
(2)线性规划问题解题步骤: ①作图—画出可行域所确定的平面区域和目标函数所表示 的平行直线系中的一条l; ②平移—将l平行移动,以确定最优解的对应点A的位置;
③求值—解有关方程组求出A点坐标(即最优解),代入目
标函数,求出目标函数的最值.
工具
二轮新课标文科数学 第一部分 专题三
栏目导引
2.(2012· 安徽省“江南十校”联考)已知 x,y 满足 x≥1 x+y≤4 x+by+c≤0
构的函数以及含有两个变量的函数,特别适合用基本不等式 求最值. (2)在利用基本不等式求最值时,要特别注意“拆、拼、 凑”等技巧,使其满足基本不等式中“正”(即条件要求中字
母为正数)、“定”(不等式的另一边必须为定值)、“等”(等
号取得的条件)的条件才能应用,否则会出现错误.解题时应 根据已知条件适当进行添(拆)项,创造应用基本不等式的条 件.
高考不等式选讲专题复习(经典)
不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。
一轮复习专题34 不等式(知识梳理)
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“≠、>、<、≥、≤”连接的两个数或代数式表示不等关系的式子叫不等式。
不等式的定义所含的两个要点:(1)不等符号<、≤、>、≥或≠;(2)所表示的关系是不等关系。
2、不等式b a ≥的含义:不等式b a ≥应读作“a 大于或者等于b ”,其含义是指“或者b a >,或者b a =”,等价于“a 不小于b ,即若b a >或b a =之中有一个正确,则b a ≥正确。
不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少于不多于>≥<≤例1-1.判断(正确的打“√”,错误的打“×”)(1)某隧道入口竖立着“限高5.4米”的警示牌,是指示司机要安全通过隧道,应使车的整体高度h 满足关系为5.4≤h 。
(√)(2)用不等式表示“a 与b 的差是非负数”为0>-b a 。
(×)(3)不等式2≥x 的含义是指x 不小于2。
(√)(4)若b a <或b a =之中有一个正确,则b a ≤正确。
(√)【解析】(1)∵“限高5.4米”即为“高度不超过5.4米”。
不超过用“≤”表示,故此说法正确。
(2)∵“非负数”即为“不是负数”,∴0≥-b a ,故此说法错误。
(3)∵不等式2≥x 表示2>x 或2=x ,即x 不小于2,故此说法是正确的。
(4)∵不等式b a ≤表示b a <或b a =,故若b a <或b a =中有一个正确,则b a ≤一定正确。
二、实数比较大小的依据与方法1、实数的两个特征(1)任意实数的平方不小于0,即R a ∈⇔02≥a 。
(2)任意两个实数都可以比较大小,反之,可以比较大小的两个数一定是实数。
2、实数比较大小的依据(1)如果b a -是正数,那么b a >;如果b a -等于零,那么b a =;如果b a -是负数,那么b a <。
代数相关知识点总结
代数相关知识点总结一、代数表达式代数表达式是由变量、实数、运算符和括号所构成的符号组合。
代数表达式的结构决定了其所表述的数学情况。
代数表达式分为常数表达式和变量表达式。
常数表达式又可以分为整数常数、分数常数、无理数常数等。
变量表达式又可以分为一元变量表达式和二元变量表达式。
代数表达式的基本运算包括加法、减法、乘法和除法。
通过对代数表达式的变换和化简,可以得到更简洁的表达式,从而简化计算过程。
1.1 代数表达式的基本概念代数表达式是一种集合,即由一个或多个数和表示数的字母组成的式子。
这个式子中的字母是未知数,用来表示某种数值关系。
代数表达式中的数和字母叫做表达式的项,它们之间通过加减号联结。
代数表达式通常采用字母表示未知数,如x、y、z等。
1.2 代数表达式的运算代数表达式的运算包括加法、减法、乘法和除法。
其中,加法和减法是代数表达式的基本运算,它们按照字母相同的项进行合并。
乘法和除法是代数表达式的高级运算,它们按照乘法法则和除法法则进行计算。
通过对代数表达式的运算,可以得到更简洁的表达式,从而简化计算过程。
1.3 代数表达式的变换和化简代数表达式的变换和化简是指将一个较为复杂的表达式通过一系列的操作转化为一个更简洁的表达式,从而得到更直观和易于计算的数学信息。
代数表达式的变换和化简包括合并同类项、提取公因式、分解因式等操作。
二、代数方程代数方程是一个含有未知数的等式,它描述了未知数的取值和满足条件。
解方程是代数学中的一种重要问题,它通常包括方程的转化、消元、分析和求解。
代数方程的解有时候是唯一的,有时候是无穷多个,有时候是不存在的。
解方程的方法主要包括直接解法、恒等变形法、分式法、分组法和代数运算法等。
2.1 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次幂为一的方程。
一元一次方程的一般形式为ax + b = 0,其中a和b为常数,x为未知数。
解一元一次方程的方法主要包括变形法和恒等变形法。
基本不等式概念
基本不等式概念1. 概念定义在数学中,不等式是一种数学陈述,它描述了两个表达式之间的大小关系。
基本不等式是指最基本的不等式形式,它通常用于解决各种数学问题和证明中。
基本不等式可以分为线性不等式和二次不等式两种形式。
1.1 线性不等式线性不等式是指一个或多个线性表达式之间的大小关系,其中线性表达式是指仅包含常数和一次项(一次方程)的表达式。
线性不等式的一般形式为:ax+b>0其中a和b是常数,x是变量。
在线性不等式中,我们通常关心的是变量x的取值范围,使得不等式成立。
1.2 二次不等式二次不等式是指一个或多个二次表达式之间的大小关系,其中二次表达式是指包含常数、一次项和二次项(二次方程)的表达式。
二次不等式的一般形式为:ax2+bx+c>0其中a、b和c是常数,x是变量。
在二次不等式中,我们通常关心的是变量x的取值范围,使得不等式成立。
2. 重要性基本不等式在数学中具有重要的地位和作用,它们在解决各种数学问题和证明中起到了关键的作用。
以下是基本不等式的重要性:2.1 解决数学问题基本不等式是解决各种数学问题的基础。
通过研究不等式的性质和解法,我们可以解决线性方程组、二次方程、函数极值、曲线图像、集合运算等各种数学问题。
基本不等式的解法可以应用于实际问题中,如经济学、物理学、工程学等领域。
2.2 证明数学定理基本不等式在证明数学定理中起到了重要的作用。
通过运用不等式的性质和解法,我们可以证明数学定理的正确性。
例如,通过证明柯西-施瓦茨不等式或柯西不等式,我们可以证明向量空间中的内积空间的性质和定理。
2.3 拓展数学知识基本不等式的研究和应用可以拓展数学知识,深化对数学概念和原理的理解。
通过学习不等式的性质和解法,我们可以进一步理解代数、几何、数论、概率等数学领域的知识。
不等式的研究也推动了数学的发展和创新。
3. 应用基本不等式的应用非常广泛,涉及到数学的各个领域和实际问题。
以下是基本不等式的一些常见应用:3.1 函数极值基本不等式可以用于求解函数的最大值和最小值。
数学函数不等式知识点总结
数学函数不等式知识点总结一、常见的函数不等式类型在数学中,函数不等式涉及到各种类型的函数,常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
这些函数类型在不等式中都有着各自的特点和解法方法。
接下来我们将针对这些常见的函数类型分别进行介绍。
1.1 线性函数不等式线性函数的一般形式为:f(x) = ax + b,其中a和b为常数,且a≠0。
线性函数不等式的形式为:ax + b > 0或者ax + b < 0。
解线性函数不等式最常用的方法就是通过解一元一次不等式,首先将不等式化为一元一次不等式,然后通过移项、乘除以常数等基本操作进行解答。
1.2 二次函数不等式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
二次函数不等式的形式为:ax^2 + bx + c > 0或者ax^2 + bx + c < 0。
解二次函数不等式的方法通常有两种,一种是通过画出二次函数的图像,找出函数的取值范围;另一种是通过配方法或者公式法解出二次函数的解析式。
1.3 指数函数不等式指数函数的一般形式为:f(x) = a^x,其中a为正实数且a≠1。
指数函数不等式的形式为:a^x > b或者a^x < b。
解指数函数不等式的方法通常是通过取对数进行化简,然后再求解对数不等式的解。
1.4 对数函数不等式对数函数的一般形式为:f(x) = loga(x),其中a为正实数且a≠1。
对数函数不等式的形式为:loga(x) > b或者loga(x) < b。
解对数函数不等式的方法通常也是通过取对数进行化简,然后再求解对数不等式的解。
需要注意的是,对数函数的定义域为正实数,所以在解对数函数不等式时需要考虑函数的定义域。
二、函数不等式的解法方法解函数不等式的方法通常有几种常见的技巧和步骤,下面我们将对这些解法方法进行介绍。
2.1 移项法移项法是解一元一次不等式的常用方法,通过将不等式中的项移到一边,使得不等式变为一个不含未知数的式子,然后再求解不等式。
不等式的基本性质(教案)
不等式的基本性质教学目标:1. 理解不等式的概念及基本性质;2. 学会解简单的不等式问题;3. 能够应用不等式的基本性质解决实际问题。
教学内容:第一章:不等式的概念1.1 不等式的定义1.2 不等式的表示方法1.3 不等式的性质第二章:不等式的基本性质2.1 性质1:不等式的两边加上或减去同一个数,不等号的方向不变;2.2 性质2:不等式的两边乘以或除以同一个正数,不等号的方向不变;2.3 性质3:不等式的两边乘以或除以同一个负数,不等号的方向改变。
第三章:解简单的不等式3.1 解一元一次不等式;3.2 解一元二次不等式;3.3 解不等式组。
第四章:不等式的应用4.1 实际问题转化为不等式;4.2 解不等式得到答案;4.3 检验答案的合理性。
第五章:不等式的综合练习5.1 填空题;5.2 选择题;5.3 解答题。
教学方法:1. 采用讲解、示例、练习、讨论等方式进行教学;2. 通过引导学生发现不等式的基本性质,培养学生的思维能力;3. 结合实际问题,培养学生的应用能力。
教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生掌握情况;2. 课后作业:布置相关作业,巩固所学知识;3. 期中考试:检查学生对不等式的基本性质的掌握程度。
教学资源:1. PPT课件;2. 教案;3. 练习题;4. 实际问题案例。
教学进度安排:1. 第一章:2课时;2. 第二章:3课时;3. 第三章:4课时;4. 第四章:3课时;5. 第五章:2课时。
第六章:不等式的扩展性质6.1 不等式的传递性质:如果a < b且b < c,a < c。
6.2 不等式的对称性质:如果a < b,则b > a。
6.3 不等式的多变量性质:解涉及多个变量的不等式。
第七章:不等式的图形表示7.1 直线与不等式的关系:直线y = mx + c与不等式y > mx + c的关系。
7.2 平面区域与不等式组:不等式组的图形表示及解集的确定。
浙教版八上数学3.1-3.2不等式
八上3.1-3.2认识不等式11、下列不等式中,是一元一次不等式的是()A、+1>2B、x2>9C、2x+y≤5D、<02、实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A、ab>0B、a+b<0C、<1D、a﹣b<03、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是()A、t>33B、t≤24C、24<t<33D、24≤t≤334、下列不等式总成立的是()A、4a>2aB、a2>0C、a2>aD、﹣a2≤05、在数轴上与原点的距离小于8的点对应的x满足()A、﹣8<x<8B、x<﹣8或x>8C、x<8D、x>86、若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A、a>cB、a<cC、a<bD、b<c7、下列各式中:①a+3;②;③3x<5;④y≤0;⑤m≠1,属于不等式的有()A、1个B、2个C、3个D、4个8、高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A、每100克内含钙150毫克B、每100克内含钙不低于150毫克C、每100克内含钙高于150毫克D、每100克内含钙不超过150毫克9、数a、b在数轴上的位置如图所示,则下列不等式成立的是()A、a>bB、ab>0C、a+b>0D、a+b<010、若m是非负数,则用不等式表示正确的是()A、m<0B、m>0C、m≤0D、m≥011、无论x取什么数,下列不等式总成立的是()A、x+6>0B、x+6<0C、﹣(x﹣6)2<0D、(x﹣6)2≥012、下列不等关系中,正确的是()A、a不是负数表示为a>0B、x不大于5可表示为x>5C、x与1的和是非负数可表示为x+1>0D、m与4的差是负数可表示为m﹣4<013、下列各项中,蕴含不等关系的是()A、老师的年龄是你的年龄的2倍B、小军和小红一样高C、小明岁数比爸爸小26岁D、x2是非负数14、已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=_________.15、在式子:①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5中是不等式的有_________.(填序号)16、有理数m,n在数轴上如图,用不等号填空.(1)m+n_________0;(2)m﹣n_________0;(3)m•n_________0;(4)m2_________n;(5)|m|_________|n|.17、已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n﹣m_________0;(2)m+n_________0;(3)m﹣n_________0;(4)n+1_________0;(5)m•n_________0;(6)m+1_________0.18、在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?认识不等式21、下列语句:①有理数和数轴上的点一一对应;②﹣5是(﹣5)2的平方根;③25的平方根是﹣5;④x=1是不等式3x﹣5≤﹣2的解;⑤两个无理数的和一定不是有理数;⑥无理数都是无限小数;中正确的有()A、2个B、3个C、4个D、5个2、若方程的解是非正数,则m的取值范围是()A、m≤3B、m≤2C、m≥3D、m≥23、关于x的方程3x﹣m=5+2(2m﹣x)有正数解的条件是()A、m>﹣5B、m<﹣1C、m>﹣1D、m>14、下列语句错误的是()A、方程2x+3=1的解是x=﹣1B、x=﹣1是方程2x+3=1的解C、不等式2x+3<1的解为x=3D、x=3是不等式2x+3>1的解5、当3<m<8时,关于x的方程3x﹣8=m(x﹣1)的解是()A、无解B、正数C、零D、负数6、以下所给的数值中,为不等式﹣2x+3<0的解的是()A、﹣2B、﹣1C、D、27、生物兴趣小组要在温箱里培养A、B两种菌苗.A种菌苗的生长温度x℃的范围是35≤x≤38,B种菌苗的生长温度y℃的范围是34≤y≤36.那么温箱里的温度T℃应该设定在()A、35≤T≤38B、35≤T≤36C、34≤T≤36D、36≤T≤388、不等式组的解集为x<6m+3,则m的取值范围是()A、m≤0B、m=0C、m>0D、m<09、解下列不等式组,结果正确的是()A、不等式组的解集是x>3B、不等式组的解集是﹣3<x<﹣2C、不等式组的解集是x<﹣1D、不等式组的解集是﹣4<x<210、不等式(x﹣m)>2﹣m的解集为x>2,则m的值为()A、4B、2C、D、11、下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A、1个B、2个C、3个D、4个12、不等式ax>a的解集为x>1,则a的取值范围是()A、a>0B、a≥0C、a<0D、a≤013、已知a>b>0,那么下列不等式组中无解的是()A、B、C、D、14、已知不等式组的解集是x>﹣6,则a的取值范围是()A、a≥﹣6B、a>﹣6C、a<﹣6D、a≤﹣615、若不等式组的解集是x<a,则a的取值范围是_________.16、已知关于x的不等式(2a﹣b)x>b的解是x<,则=_________.17、已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是_________.18、登山前,登山者要将矿泉水分装在旅行包内带上山,若每人2瓶,则剩余3瓶;若每人带3瓶,则有一人所带矿泉水不足2瓶.则登山有_________人.19、写出二元一次方程2x+y=5的一组整数解,其中x满足不等式4﹣4x>10+3x,则这组解可以是_________.20、在下列三个不为零的式子:x2﹣4x,x2+2x,x2﹣4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.21、某地出租车的收费标准:5千米内起步价为10.8元,以后每增加1千米增收1.2元(不足1千米以1千米计),现从A地到B地共支出24元(不计等候时间所需费用).求:从AB的中点C乘车到B地需多少车费?不等式的性质1、若x >y ,则下列式子错误的是( )A 、x ﹣3>y ﹣3B 、﹣3x >﹣3yC 、 x+3>y+3D 、 >2、已知a <b ,下列式子中,错误的是( )A 、4a <4bB 、-4a <-4b C.、a +4<b +4 D 、a -4<b -43、下列命题正确的是() A 、若a >b ,b <c ,则a >c B 、若a >b ,则ac >bc C 、若a >b ,则ac 2>bc 2D 、若ac 2>bc 2,则a >b4、若x >y ,则ax >ay.那么一定有( )A 、a >0B 、a ≥0C 、a <0D 、a ≤05、若0<-b a ,则下列各式中一定正确的是( )A 、b a >B 、0>abC 、ba >0 D 、b a ->- 6、设a <b ,用“<”或“>”号填空: (1)3____3a b --;(2)____0a b -.(3)4____4a b --;(4)____55a b --. 7、用不等号填空,并说明是根据不等式的哪一条性质:(1)若x +2>5,则x3(2)若34x -<-1,则x 43 (3)若25x <-3,则x 152- ()8,1,,a b x b a x a b -<->-、已知且则的大小关系为________()(),44,x y a x a y a >+<+9、若且则的取值范围为__________。
高考不等式专题-讲解
解:
的解集是{x| -7<x 3}
变式3:解不等式
解:
注:如果知道分母的正负,则可以去分母,化分式不等式为整式不等式。
(五).解高次不等式(可分解的)
1.解高次不等式的步骤:
(1)因式分解
(2)未知数系数化正
(3)穿根(从右上角开始,奇穿偶回)
2.穿根法使用步骤:
①将不等式化为 形式,并将各因式x的系数化“+”;
化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为 的形式
将分式不等式进行形如以下四类的等价变形:
(1)
(2)
(3)
(4)
3.例题讲解:解不等式: .
解法1:化为两个不等式组来解:
∵ x∈φ或 ,
∴原不等式的解集是 .
解法2:化为二次不等式来解:
∵ ,∴原不等式的解集是
点评:提倡用解法2,避免分类讨论,提高解题速率。
(答: );
(2)已知 ,且 则 的取值范围是______
(答: )
(二)解一元一次不等式(组)
1.一元一次不等式
1.1定义:只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.
注:一元一次不等式的一般形式是ax+b>O或ax+b<O(a≠O,步骤
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.
2. 2一元一次不等式组的解集:一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.
第三章 不等式章末复习
章末复习学习目标1.整合知识结构,进一步巩固、深化所学知识.2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式.3.体会“三个二次”之间的内在联系在解决问题中的作用.4.能熟练地运用图解法解决线性规划问题.5.会用基本不等式证明不等式,求解最值问题.1.不等式的性质性质1:如果a>b,那么b<a;如果b<a,那么a>b,即a>b⇔b<a. 性质2:如果a>b,b>c,那么a>c,即a>b,b>c⇔a>c.性质3:如果a>b,那么a+c>b+c.性质4:如果a>b,c>0,那么ac>bc,如果a>b,c<0,那么ac<bc.性质5:如果a>b,c>d,那么a+c>b+d.性质6:如果a>b>0,c>d>0,那么ac>bd.性质7:如果a>b>0,那么a n>b n(n∈N*,n≥1).性质8:如果a>b>0n∈N*,n≥2).2.三个二次之间的关系3.线性规划问题求解步骤 ①把问题要求转化为约束条件; ②根据约束条件作出可行域; ③对目标函数变形并解释其几何意义; ④移动目标函数寻找最优解; ⑤解相关方程组求出最优解. 4.基本不等式利用基本不等式证明不等式和求最值的区别①利用基本不等式证明不等式,只需关注不等式成立的条件.②利用基本不等式求最值,需要同时关注三个限制条件:一正;二定;三相等.题型一 “三个二次”之间的关系例1 若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b = . 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0(a <0)的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.反思感悟 (1)“三个二次”之间要选择一个运算简单的方向进行转化. (2)用不等式组来刻画两根的位置体现了数形结合的思想.跟踪训练1 若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.答案 2解析 因为ax 2-6x +a 2<0的解集是(1,m ),所以1,m 是方程ax 2-6x +a 2=0的根,且m >1,a >0, 由⎩⎪⎨⎪⎧m >1,1+m =6a ,1·m =a ,可得⎩⎪⎨⎪⎧m =2,a =2.题型二 一元二次不等式的解法例2 解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R ). 解 原不等式可化为(x -a )(x -a 2)>0.当a <0时,a <a 2,原不等式的解集为{x |x <a 或x >a 2}; 当a =0时,a 2=a ,原不等式的解集为{x |x ≠0,x ∈R }; 当0<a <1时,a 2<a ,原不等式的解集为{x |x <a 2或x >a }; 当a =1时,a 2=a ,原不等式的解集为{x |x ≠1,x ∈R }; 当a >1时,a <a 2,原不等式的解集为{x |x <a 或x >a 2};综上所述,当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =1时,原不等式的解集为{x |x ≠1,x ∈R }; 当a =0时,原不等式的解集为{x |x ≠0,x ∈R }.反思感悟 对于含参数的一元二次不等式,若二次项系数为常数,则可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式分类讨论,分类要不重不漏.跟踪训练2 (2018·江苏省如东高级中学期中)已知常数a ∈R ,解关于x 的不等式ax 2-2x +a <0.解 (1)若a =0,则原不等式为-2x <0,故解集为{x |x >0}. (2)若a >0,Δ=4-4a 2.①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为x 1=1-1-a 2a ,x 2=1+1-a 2a,∴当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a . ②当Δ=0,即a =1时,原不等式的解集为∅. ③当Δ<0,即a >1时,原不等式的解集为∅. (3)若a <0,Δ=4-4a 2.①当Δ>0,即-1<a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1+1-a 2a 或x >1-1-a 2a . ②当Δ=0,即a =-1时,原不等式化为(x +1)2>0, ∴当a =-1时,原不等式的解集为{x |x ∈R 且x ≠-1}. ③当Δ<0,即a <-1时,原不等式的解集为R . 综上所述,当a ≥1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a ; 当a =0时,原不等式的解集为{x |x >0};当-1<a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1+1-a 2a 或x >1-1-a 2a ; 当a =-1时,原不等式的解集为{x |x ∈R 且x ≠-1}; 当a <-1时,原不等式的解集为R . 题型三 线性规划问题例3 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z =2x +y 的最大值和最小值.解 如图,阴影部分(含边界)为不等式组所表示的可行域.设l0:2x+y=0,l:2x+y=z,则z的几何意义是直线y=-2x+z在y轴上的截距,显然,直线越往上移动,对应在y轴上的截距越大,即z越大;直线越往下移动,对应在y轴上的截距越小,即z越小.上下平移直线l0,可得当l0过点A(5,2)时,z max=2×5+2=12;当l0过点B(1,1)时,z min=2×1+1=3.反思感悟(1)因为最优解与可行域的边界斜率有关,所以画可行域要尽可能精确.(2)线性目标函数的最值与纵截距不一定是增函数关系,所以要关注纵截距越大,z越大还是越小.跟踪训练3某人承揽一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张才能使得总用料面积最小.解设需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,由题意可得⎩⎪⎨⎪⎧2x +y ≥5,x +2y ≥4,x ≥0,y ≥0,x ,y ∈N .所用原料的总面积为z =3x +2y , 作出可行域如图阴影部分(含边界)所示. 在一组平行直线3x +2y =z 中, 经过可行域内的点A 时,z 取得最小值, 直线2x +y =5和直线x +2y =4的交点为A (2,1), 即最优解为(2,1).所以使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小. 题型四 利用基本不等式求最值例4 函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n 的最小值为 . 答案 4解析 y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1), ∵点A 在直线mx +ny -1=0上,∴m +n =1, 方法一1m +1n =m +n mn =1mn ≥1⎝ ⎛⎭⎪⎫m +n 22=4, 当且仅当m =n =12时,取等号.方法二1m +1n=(m +n )⎝⎛⎭⎫1m +1n =2+n m +mn≥2+2n m ·mn=4, 当且仅当⎩⎪⎨⎪⎧m +n =1,n m =m n,即m =n =12时取等号.∴⎝⎛⎭⎫1m +1n min =4.反思感悟 条件最值的求解通常是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求最值.跟踪训练4 设x ,y 都是正数,且1x +2y =3,求2x +y 的最小值.解 ∵1x +2y =3,∴13⎝⎛⎭⎫1x +2y =1. ∴2x +y =(2x +y )×1=(2x +y )×13⎝⎛⎭⎫1x +2y =13⎝⎛⎭⎫4+y x +4x y ≥13⎝⎛⎭⎫4+2 y x ·4x y =43+43=83. 当且仅当y x =4xy ,即y =2x 时,取等号.又∵1x +2y =3,∴x =23,y =43.∴2x +y 的最小值为83.1.(2018·全国Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A 等于( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}答案 B解析 方法一 A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2},故选B.方法二 因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2},故选B. 2.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =mx -y (m ≠0)取得最大值时的最优解有无穷多个,则实数m 的值为( ) A .1 B.12 C .-12 D .-1答案 A解析 作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由图可知当直线y =mx -z (m ≠0)与直线2x -2y +1=0重合,即m =1时, 目标函数z =mx -y 取最大值的最优解有无穷多个,故选A.3.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .1 答案 C解析 ∵-2和-14是方程ax 2+bx -2=0的两根.∴⎩⎨⎧-2+⎝⎛⎭⎫-14=-ba,-2×⎝⎛⎭⎫-14=-2a,∴⎩⎪⎨⎪⎧a =-4,b =-9,∴a +b =-13. 4.若不等式4(a -2)x 2+2(a -2)x -1<0对一切x ∈R 恒成立,则a 的取值范围是 . 答案 (-2,2]解析 不等式4(a -2)x 2+2(a -2)x -1<0,当a -2=0,即a =2时,不等式恒成立,符合题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧Δ=4(a -2)2+16(a -2)<0,a -2<0,解得-2<a <2,所以a 的取值范围为(-2,2].5.已知f (x )=32x -k ·3x +2,当x ∈R 时,f (x )恒为正,求k 的取值范围. 解 f (x )=(3x )2-k ·3x +2>0,∴k <(3x )2+23x=3x +23x ,3x +23x ≥23x ·23x =22,当且仅当3x =23x时,等号成立.∴k <2 2.1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法对于一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(其中a≠0)的求解,要联想两个方面的问题:二次函数y=ax2+bx+c与x轴的交点;方程ax2+bx+c=0的根.按照Δ>0,Δ=0,Δ<0分三种情况讨论对应的一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(a>0)的解集.3.二元一次不等式表示的平面区域的判定对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+By+C的符号相同,取一个特殊点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表示直线哪一侧的平面区域,可简记为“直线定界,特殊点定域”.特别地,当C≠0时,常取原点作为特殊点.4.求目标函数最优解的方法通过平移目标函数所对应的直线,可以发现取得最优解对应的点往往是可行域的顶点,于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值时把握三个条件①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.。
3.3.1.1不等式
课堂练习:课本第86页练习第3题
-11-
第1课时 二元一次不等式(组)与平面区域
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【课堂练习】 用平面区域表示下列不等式组: ������ + ������ ≤ 5, ������ ≥ ������, (1) (2) ������-2������ > 3, 3������ + 4������-12 < 0; ������ + 2������ ≥ 0. 解(1)不等式x≥y,即x-y≥0,表示直线y=x上及其右下方的区域. 不等式3x+4y-12<0表示直线3x+4y-12=0左下方的区域. ������ ≥ ������, 它们的公共部分就是不等式组 表示的 3������ + 4������-12 < 0 平面区域.(如图)
课堂练习:课本第86页练习1,2题
-6-
第1课时 二元一次不等式(组)与平面区域
例1 (1)画出不等式 x + 4y < 4表示的平面区域
解:(1)直线定界:先画直线x + 4y – 4 = 0(画成虚线) (2)特殊点定域:取原点(0,0),代入x + 4y - 4, 因为 0 + 4×0 – 4 = -4 < 0
所以,原点在x + 4y – 4 < 0表示的平面区域内, 不等式x + 4y – 4 < 0表示的区域如图所示。 y
O
x x+4y―4=0
-7-
第1课时 二元一次不等式(组)与平面区域
目标导航
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(50-35-50× 10%)x-120>100 即 10x>220
解得
x>22
答:商店每天需要出售23件或23件以上这样的商品, 才能保证商店每天获纯利润在100元以上(不包括 100元)?
12、某单位计划在新年期间组织员工到某地旅游,参如旅游的人
数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都
是每人200元,经过协商,甲旅行社表示可给予每位游客七五折优 惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折 优惠,该单位选择哪一定旅行社支付的旅游费用较少? 解:设该单位参加这次旅游的人数是x人,选择甲旅行社时, 所需的费用为y1,选择乙旅行社时,所需的费用为y2,则: y1=200×0.75x,即y1=150x, y2=200×0.8(x-1),即y2=160x-160,
,
6、由不等式(m-5)x> m-5变形为x< 1,则m需满足 的条件是
7、关于
m<5
,
的不等式 2 x a 3 的解集如图所示,
则a的值是
1
。
-式3x-m ≤0有4个正整数解,则m的取值 范围是
12≤m<15 ,
9、解下列不等式(组)并在数轴上表示出来。
(1)2 x 1 -
复习课
一、含有不等号的式子叫不等式 二、不等式性质: 三个 (2)不等式两边加(或减)同一个数(或式子), 不等号的方向不变. (3)不等式两边乘(或除以)同一个正数, 不等号的方向不变. (3’)不等式两边乘(或除以)同一个负数, 不等号的方向改变. 三、一元一次不等式 定义、解法、应用
C 1、已知a>b ,则下列不等式中一定成立的有__个 A a2>b2
若k-1=0,
即k=1时,0>1不成立,
4 3 k 若k-1>0,即k>1时, x k 1
。
∴不等式无解。
4 3k 若k-1<0,即k<1时, x k 1
11、某商品的零售价是每件50元,进价是每件35元。经 核算,每天商店的各种费用(包括房租、售货员工资等)
是120元,还需把商品售出价的10%上缴税款,问商店每
3
10 x 1 6
5x 4
-5
解:去分母得:4(2x-1)-2(10x+1)
移项,合并同类项 得:-27x
15x-60
x
-54
2
在数轴上表示如图所示:
0 1 2
10、解关于x的不等式: k(x+3)>x+4;
解:去括号,得kx+3k>x+4;
移项得kx-x > 4 -3k ; 得(k-1)x > 4 -3k ;
a B >1 b
C a-b>0
D -a>-b
2、若a >b,且a、b为有理数,则am2
a 2 3
≥
bm2
3、若 (a 2) x 8 2a 是关于x的一元 一次不等式则 a 的值( -2 ) 4、如果关于x的方程3(x+2)=2a+x的根是个负数,且a
是一个正整数,试确定x的值。
5、若y= -x+7,且y>x,则x的取值范围是
y1= y2时,150x=160x-160, 解得x=16;
y1 >y2时,150x>160x-160, 解得x<16; y1< y2时,150x<160x-160, 解得x>16; 所以,当人数为16人时,甲、乙两家旅行社的收费相同;当人数 为17~25人时,选择甲旅行社费用较少;当人数为10~15人时,选 择乙旅行社费用较少。