ion会议上关于gps的文献
GPS精密单点定位在航道测量中的应用
第11卷第10期中国水运V ol.11N o.102011年10月Chi na W at er Trans port O ct ober 2011收稿日期:作者简介:翟信德(3),长江南京航道局助理工程师。
GPS 精密单点定位在航道测量中的应用翟信德,凡亚军,奚凌云(长江南京航道局,江苏南京210011)摘要:首先介绍了精密单点定位的精度和研究现状,然后讨论了GPS 精密单点定位中的3种常用模型,分析了三种模型的优越性,展望了在航道测量方面的应用可行性。
关键词:GPS ;精密单点定位;模型;航道测量中图分类号:U 612.2文献标识码:A 文章编号:1006-7973(2011)10-0191-02一、前言随着我国发展长江水运战略的实施,航道整治、港口的规划建设等活动日益增加,对定位精度的要求也呈现出多样化,如精密的大比例尺航道测量、航道原型观测等,要求能够达到十几或几十厘米的定位精度,而采用伪距差分定位只能提供米级的定位精度,如果使用RTK 功能,作用距离又不能达到,制约了测量效率的提高。
对于这部分定位需求,现有的定位手段无法满足要求,需要寻求新的定位方式或技术。
随着IG S (In tern at ion al GNSS Service )产品的出现和不断的改进,GPS 定位技术也进入了一个新时代[1]。
GPS 精密单点定位PPP (Precise Poin t Pos it ion in g )技术已在GPS 地面网的解算、车辆导航、大气探测、时间传递以及星载GPS 精密定轨等领域正在得到了深入的应用。
通过对连续运行参考站基准站实测GPS 数据的处理,对3种模型的定轨结果进行了比较、分析,探讨在航道测量上的可行性。
二、精密单点定位技术GPS 精密单点定位技术基本思想简单,就是利用IGS 提供的GPS 精密轨道和精密钟差信息计算卫星坐标和钟差,同时应用比较完整的物理改正模型改正定位过程中的各种误差项,进行单站的绝对定位,以直接确定单测站在ITRF 框架下坐标的一种定位方式[2]。
预处理共轭梯度法解病态问题及在GPS中的应用
收稿日期: 2009209207 基金项目: 国家自然科学基金资助项目( 40574003; 40874005) 作者简介: 张同兵( 1983- ) , 男, 工程师.
得了丰富的成果。这里将引入一种迭代的预处理共 轭梯度算法, 通过减弱法方程的病态性, 来获得较好 的解。通过 GPS 差分动态定位的实例解算, 并与各 种岭估计方法做比较, 验证了该方法能够获得均方 误差较小的有偏估计值。
乘估计的均方误差, 定义为
第4期
张同兵, 等: 预处理共轭梯度法解病态问题及在 GPS 中的应用
# 61 #
X^ ( k) = ( AT P A + kE ) - 1 AT P L, 0 [ k [ ] .
( 2)
可以证明, 岭估计 X^ ( k) 是最小二乘估计 X^ 的
线性组合, 是一种有偏估计。存在 k> 0, 使得
第 19 卷第 4 期 2010 年 8 月
测绘工程 EN GINEERING OF SUR VEYING AND MAPP ING
Vol. 19 l . 4 Aug. , 2010
预 处 理 共 轭 梯 度 法 解 病 态 问 题 及 在 GPS 中 的 应 用
张同兵1 , 谢 建2 , 朱建军2
基于GPS和北斗卫星授时的高精度时间显示系统设计
基于 GPS 和北斗卫星授时的高精度时间显示系统 设计
张鸣凤,谢家祖,吴筝,付玉,时瑞瑞,郭辉,邓帅 (天津师范大学电子与通信工程学院,天津,300387)
摘要:本论文根据目前国内通讯授时系统的情况, 结合了GPS和北斗卫星导航系统(以下简称BDS)的双模授时方法, 提出一种基于GPS和BDS 授时的高精度时间显示系统的设计方案。本文研究了一种由单片机STM32控制的基于GPS和BDS授时的高精度时间显示系统,该系统确保 在卫星数据丢失的条件下,时间显示依然精准稳定,方案中自主设计的STM32F103RCT6模块,在系统工作空间不受局限的同时,预留了 很多可增加的功能空间。 关键词:北斗卫星导航系统;授时系统;STM32处理器
图 2 信号采集模块的程序框架
处理器开机启动后通过卫星信号接收电路中的 RX1 引 脚和 TX1 引脚采集时间数据,然后将时间数据发送到本地 自守时电路,本地自守时电路根据时间推算的算法保证精确 并自动推算时间。在卫星数据丢失的时候,处理器将直接根 据本地自守时电路推算出来的时间作为当前时间,此时间与 卫星信号发送的实际时间几乎无差别。
块均正常工作 , 若任意一个卫星信号的 1PPS 信号检测不到, 和湿度数值,最后将已经获得的时间信息、温度信息和湿度
对应模块都会自动进行重复采集信号的工作。信号采集芯片 信息发送到大尺寸的 LED 数码管显示。图 3 是该系统的程
能将此信号中的时间信息,利用相应的算法原理,转换成当 序处理流程图。
LED 显示电路采用 74HC245 芯片组成的驱动数码管动
态显示电路,LED 显示电路主要用于将处理器发送过来的
时间信息、温度信息和湿度信息显示给用户。
图 1 为本系统的电路结构连接框图。
科技文献中英文对照翻译
Sensing Human Activity:GPS Tracking感应人类活动:GPS跟踪Stefan van der Spek1,*,Jeroen van Schaick1,Peter de Bois1,2and Remco de Haan1Abstract:The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools,but also as instruments used to capture travelled routes:assensors that measure activity on a city scale or the regional scale.TU Delft developed aprocess and database architecture for collecting data on pedestrian movement in threeEuropean city centres,Norwich,Rouen and Koblenz,and in another experiment forcollecting activity data of13families in Almere(The Netherlands)for one week.Thequestion posed in this paper is:what is the value of GPS as‘sensor technology’measuringactivities of people?The conclusion is that GPS offers a widely useable instrument tocollect invaluable spatial-temporal data on different scales and in different settings addingnew layers of knowledge to urban studies,but the use of GPS-technology and deploymentof GPS-devices still offers significant challenges for future research.摘要:增强GPS技术支持使用GPS设备不仅作为导航和定位工具,但也为仪器用来捕捉旅行路线:作为传感器,测量活动在一个城市或区域范围内规模。
手机移动定位系统的设计与实现优秀毕业论文 参考文献 可复制黏贴
硕 士 研 究 生:曹伟
导
师:李斌教授
副 导 师:蒋纯波工程师
申 请 学 位:工程硕士
学 科 、 专 业:软件工程
所 在 单 位:软件学院
答 辩 日 期:2006 年 6 月
授 予 学 位 单 位:哈尔滨工业大学
Classified Index:TP319 U.D.C.: 621.3
Dissertation for the Master’s Degree in Engineering
本课题针对在移动通信系统中对手机进行定位的特征基于普天信息技术4哈尔滨工业大学工程硕士学位论文研究院高可用电信级业务应用开发平台应用移动定位技术实现对手机的定位不仅能够实现对手机的定位而且还能减少定位的时间以及提高定位的精章绪论简要描述课题的来源背景及研究目的以及与手机移动定位系统相关的国内外研究现状
哈尔滨工业大学工程硕士学位论文
services applications development platforms of institute of Putian, this paper introduces how to design and realization the mobile phone positioning system, design and realize the system functions by using programming languages. This paper give the result of testing in the actual network environment in order to verify the system performance. Keywords mobile communication network, mobile position, mobile phone
有关gps的英语作文
有关gps的英语作文英文回答:Global Positioning System (GPS) is a satellite-based navigation system that provides location and time information to receivers on Earth. It is a constellation of 24 satellites that orbit the Earth twice a day,transmitting precise timing signals. These signals are used by receivers to calculate their position and time.GPS was originally developed by the United States Department of Defense for military use, but it has since been made available for civilian use. GPS is now used in a wide variety of applications, including navigation, surveying, mapping, and timing.The GPS system consists of three main components:Space segment: The space segment consists of the 24 GPS satellites that orbit the Earth. These satellites arearranged in six orbital planes, with four satellites ineach plane. The satellites transmit precise timing signals that are used by receivers to calculate their position and time.Control segment: The control segment consists of a network of ground stations that track the GPS satellitesand upload navigation data to them. The control segmentalso monitors the performance of the GPS system and makes corrections to the satellite clocks as needed.User segment: The user segment consists of thereceivers that use the GPS signals to calculate their position and time. GPS receivers are available in a variety of forms, including standalone units, built-in units in vehicles and smartphones, and software applications.GPS is a highly accurate and reliable navigation system. It is available 24 hours a day, 7 days a week, and it canbe used anywhere on Earth. GPS is also relatively inexpensive to use, making it a popular choice for a wide variety of applications.中文回答:全球定位系统(GPS)。
毕业论文 浅谈GPS实时动态定位原理及应用
浅谈GPS实时动态定位原理及应用0、引言随着我国经济的高速发展,为了满足工程施工、测绘等工作的需要,采用GPS 实时动态定位技术的测绘系统逐步进入我国市场。
采用传统GPSRTK (Real-Time-Kinematic)技术的测绘系统的数据链路电台,必须经过无线电管理部门批准才可设置使用,但在此前的几起此类设备所造成的无线电干扰案例中,所查获的无线电台均未向无线电管理部门申报。
目前这类设备使用时所造成的无线电干扰越来越多,因此无线电管理部门应该加强对这类设备的管理。
而增加对GPSRTK技术的了解和认识,将会对查处工作及无线电管理工作大有帮助。
1RTK概述RTK(Real-Time-Kinematic)技术是GPS实时载波相位差分的简称。
这是一种将GPS与数传技术相结合,实时解算并进行数据处理,在1~2秒时间内得到高精度位置信息的技术。
RTK的工作原理是将一台接收机置于基准站上,另一台或几台接收机置于载体(称为流动站)上,基准站和流动站同时接收同一时间、同一GPS卫星发射的信号,基准站所获得的观测值与已知位置信息进行比较,得到GPS差分改正值。
然后将这个改正值通过无线电数据链电台及时传递给共视卫星的流动站精化其GPS观测值,从而得到经差分改正后流动站较准确的实时位置。
精密GPS定位均采用相对技术。
无论是在几点间进行同步观测的后处理(RTK),还是从基准站将改正值传输给流动站(DGPS),这些都称为相对技术,以采用值的类型为依据可分为4类:(1)实时差分GPS,其精度为1m~3m;(2)广域实时差分GPS,其精度为1m~2m;(3)精密时差分GPS,其精度为1cm~5cm;(4)实时精密时差分GPS,其精度为1cm~3cm。
差分的数据类型有伪距差分、坐标差分和相位差分三类。
前两类定位误差的相关性,会随基准站与流动站的空间距离的增加而迅速降低。
故RTK采用第三类方法。
RTK的观测模型为:因轨道误差、钟差、电离层折射及对流层折射的影响在实际的数据处理中一般采用双差观测值方程来解算,在定位前需确定整周未知数,这一过程称为动态定位的“初始化”(OnTheFly即OTF)。
《全球定位系统》
GPS系统的组成
GPS由三个独立的部分组成: ●空间部分:21颗工作卫星,3颗备用卫 星。 ● 地面控制系统:1个主控站,3个注入 站,5个监测站。 ● 用户设备部分:接收GPS卫星发射信 号,以获得必要的导航和定位信息,经数 据处理,完成导航和定位工作。GPS接收 机硬件一般由主机、天线和电源组成。
整理ppt
整理ppt
空间部分
GPS的空间部分是由24 颗GPS 工 作卫星所组成的。其中21 颗为可用 于导航的卫星,3 颗为活动的备用 卫星。24 颗卫星分布在6个倾角为 55°的轨道上绕地球运行。卫星的 运行周期约为12 恒星时,每颗GPS 工作卫星都发出用于导航定位的信 号,GPS 用户正是利用这些信号来 进行工作的。 目前可用的卫星通常有28颗之多。
全球定位系统
Global Position System
整理ppt
概述
GPS是英文Navigation Satellite Timing and Ranging / Global Positioning System的缩写,意为利用卫星导航进行 测时和测距,以构成全球卫星定位系统。是美国国防部主要 为满足军事部门对海上、陆地和空中设施进行高精度导航 和定位的需要而建立的。自1973年美国军方批准成立联合 计划局开始GPS的研究工作到1993年系统建成,该工程历时 20年,耗资300亿美元,成为继阿波罗登月计划和航天飞 机计划之后的第三项庞大空间计划。它从根本上解决了人 类在地球上的导航和定位问题,在军事和工农业等领域得 到了广泛的应用。给导航和定位技术带来了巨大的变化。
整理ppt
整理ppt
GPS系统由三部分构成,分别为空间星座部分、 地面监控部分、用户设备部分。空间星座和地面 监控部分由美国国防部控制,用户使用GPS接收 机接收卫星信号进行高精度的精密定位以及高精 度的时间传递。目前,二十多颗GPS卫星已覆盖 了全球,每颗卫星均在不间断地向地球播发调制 在两个频段上的卫星信号。在地球上任何一点, 均可连续地同步观测至少4颗GPS卫星,从而保障 了全球、全天候的连续地三维定位,而且具有良 好的抗干扰性和保密性。因此,全球定位系统已 成为美国导航技术现代化的最重要标志,并且被 视为本世纪美国继阿波罗登月计划和航天飞机计 划之后的又一重大科技成就。
一种超高灵敏度GPS信号的跟踪方法
武 汉 大 学 学 报 ·信 息 科 学 版 Geo matics and Info rmation Science of Wuhan University
Vol. 34 No . 11 Nov. 2009
文章编号 :167128860 (2009) 1121368204
f c表示中频载波 , f d 表示多普勒变化率 ( Hz/ s) 。 接收机基带的输入信号为数字中频信号 , r
( t) 离散化表示为 r ( k Ts ) , Ts 表示采样间隔 。如 图 1 所示 ,积分之前的 P 路信号可表示为 I ( k Ts ) 和Q ( k Ts) ,当 P 路本地码与接收到的 GPS C/ A 码对齐时 ,可得 :
表 1 统计了输入信号为 - 163 dBm 的情况
下 ,在不同多普勒变化率和不同 FF T 点数的条件
下得到的| F ( k) | 的峰值对应的输出信噪比的结
果 。从表 1 可知 ,若 f d = 0 ,则| F( k) | 的峰值对应
的输出信噪比随 FF T 点数的增加而线性增加 ;若
f d ≠0 , | F ( k) | 的峰值对应的输出信 噪比 不随
解扩后得到的信噪比增益 , 10lg ( 2 046 ×20) ≈
46 。若输入信号功率为 - 163 dBm ,则信噪比等
效为 SN Rin = - 163 + 111 = - 52 dB ;若采用 128
点 FF T ,则 N = 128 ; 若多普勒变化率 f d = 0 , 则
SN Rf d = 0 dB ;由式 (4) 可计算得到 SN Rout = - 52 + 46 + 21 = 15 dB 。
GPS系统文献综述和参考文献
GPS系统文献综述和参考文献GPS系统可以为全球任意地点,任意多个用户有效的提供全天候、高精度、连续实时的三维定位、三维测速及高精度时间基准。
由于这一定位系统在定位、导航、时间基准等应用方面的高效率和高精度,早期为军事服务,现已在各个学科实践中有广泛的应用,地质勘测及大地测绘等领域则较早的引入了GPS技术。
包括地质能源资源勘探、各类工程测量、板块移动、地震监测等关乎国计民生的重要领域在大量使用GPS定位技术[1],其中定位方法有:伪距差分定位法、载波相位差分定位测量及干涉测量等,以及后续发展的三重差算法等。
所以在勘探过程中合理选择定位技术用最小的成本换取最好的结果。
28736我国在工程项目及科研领域使用GPS技术进行定位已有多年历史,中国科学院、地质矿产部等单位及部门相继从美国购入GPS全球卫星定位系统。
早在1986年我国在西北边疆地区完成了卫星定位网。
由于我国处于多震的位置,地处环太平洋和地中海—喜马拉雅这两个地震带交界处,是地球上目前最活跃的地震带之一。
石油天然气总公司物探局自1988年引进GPS技术,已组建了5个卫星定位队,至今已为油气资源勘探提供近3000个卫星定位点,充分保证在复杂困难地区勘探工作的顺利进行,在塔里木油气资源勘探中有着不可磨灭的贡献,在内蒙古的二连盆地的测绘工作同样也大量依托GPS技术。
目前技术水平,我国静态定位精度完全可达到毫米级,动态定位精度达。
如今使用广泛的定位方法有两种:第一是利用普通手持GPS工作,此方式在精度要求较低(误差10m)情况下定位,如地质考察、地质取样、大范围进行重力勘测以及电法和磁法勘探等。
其次就是采用专门的差分GPS定位技术和设备,其精度可达厘米级甚至毫米级,故广泛应用在定位精度要求较高的环境中,如地震炮点及接收点测量、小范围内地球物理勘测和工程勘探。
源自!六%维^;论:文(网.加7位QQ3249'114上述方法在小范围内勘探领域基本上不存在时间及成本问题,但在万道/十万道级大规模3D地震勘探工程中需多次进行数十万个接受点的定位测量,时间成本及经济成本严重制约了当今3D地震勘探的发展。
GPS实时差分动态定位技术
第22卷 第2期1998年4月武汉交通科技大学学报Journal of Wuhan T ransportation UniversityVol.22 No.2Apr il 1998GPS 实时差分动态定位技术a甘俊英 张有为(广东省五邑大学信息科学研究所 江门 529020)摘要:全球定位系统GPS 是一个实时、全天候和全球性的星基导航定位系统.分析了全球定位系统GPS 的组成及功能,探讨了GPS 实时差分动态定位技术及其误差来源.GPS 实时差分动态定位这一高新技术必将进入社会生活的各个方面,为全社会提供服务.关键词:全球定位系统;差分动态定位;动态定位;实时定位技术中图法分类号:T N967.21 GPS 的组成CPS(Global Positioning System)为全球定位系统,主要由GPS 卫星、地面监控系统和用户设备三部分组成.全球定位的空间卫星由21颗工作卫星和3颗备用卫星组成.工作卫星分布在6个轨道面内,每个轨道面分布3~4颗卫星.卫星轨道面相对地球赤道面的倾角为55°,各轨道面升交点的赤径相差60°,在相邻轨道面上,卫星的升交距相差30°.轨道平均高度约为20200km,卫星运行周期为11h 58min.因此,在同一测站上每天出现的卫星分布图相同,只是每天提前约4min .每颗卫星每天约有5h 在地面线上,同时位于地平线上的卫星数目随时间和地点而异,最少为4颗,最多为11颗.这样的空间配置,可保证在地球上任何时间、任何地点均至少可以同时观测到4颗卫星,加之卫星信号的传播和接收不受天气的影响,因此,GPS 是一种全球性、全天候的连续实时导航系统.GPS 地面监控部分是由5个监控站、3个注入站和一个基准站组成.基准站位于美国科罗拉多・斯平士(Colorado Spr ings)的联合空间执行中心(Consolidated Space Oper ation Center ),三个注入站分别设在大西洋、印度洋和太平洋的3个美国军事基地,即大西洋的阿森松(Ascension)岛、印度洋的狄哥・伽西亚(Diego Garcia )和太平洋的卡瓦加兰(Kwajalein),5个监控站除了位于基准站和3个注入站之外的4个站以外,还在夏威夷设立了一个监控站,监控站为数据自动采集中心,配有双频GPS 接收机、高精度原子钟、环境数据传感器和大型计算设备,为基准站提供各种观测数据.基准站为系统管理和数据处理中心,其主要任务是利用本站及各监控站的观测数据推算各卫星的星历、卫星钟差和大气延迟修正参数,提供全球定位系统时间基准,并将这些数据传到注入站,调整偏离轨道的卫星,使之沿预定的轨道运行,启用备用卫星以代替失效的工作卫星.注入站将基准站推算和编制的卫星星历、钟差、导航电文和其他控制指令等注入相应卫星的存储系统,并监控注入信息的正确性.用户部分包括GPS 接收机、天线、计算机及其处理软件.按照GPS 信号的不同用途,GPS 信号接收机可分成3大类:导航型、测地型和守时型.按照GPS 信号的应用场合,可以分为袖珍型、背负式、车载式、船用式、机载式、弹载式和星载式等7种类型.天线一般采用全向振子天线、小型螺旋天线和微带天线.微带天线将成为GPS 信号接收机的主要发展方向.GPS 信号接收机通过RS -232接口与PC 机进行实时通信,经常采用的是Visual Basic 4.0.因为该软件有专门的通信应用设计为MSCOMM.V BX 控件,编写通信程序显得很容易.2 GPS 的实时差分动态定位技术2.1 GPS 的实时差分动态定位原理GPS 实时定位要求观测和数据处理在定位a收稿日期 甘俊英:女,的瞬间完成.GPS实时定位方式主要包括:单点动态定位、实时差分动态定位、后处理差分动态定位.单点动态定位方式是用安设在一个运动载体上的GPS信号接收机,自主地测得该运动载体的实时位置,从而描绘出该运动载体的运行轨迹.故单点动态定位又称为绝对动态定位.行驶的火车常采用单点动态定位方式.实时差分动态定位方式是用安设在一个运动载体的上GPS信号接收机,及安设在一个基准点上的另一台GPS信号接收机,联合测得该运动载体的实时位置,从而描绘出该运动载体的运行轨迹,故差分动态定位又称为相对动态定位.飞机着陆和船舰进港,由于要求较高的定位精度,一般采用实时差分动态定位方式.后处理差分动态定位方式与实时差分动态定位方式的主要差别是,在运动载体和基准点之间,不像实时差分动态定位方式那样须进行无线电数据传输,而是在定位观测以后,对两台GPS信号接收机所采集的定位数据进行测后的联合处理,从而测得接收机所在运动载体的实时位置.在航空摄影测量时,用GPS信号测量每一个摄影瞬间的摄站位置,则采用后处理差分动态定位方式.下面详细探讨GPS的实时差分动态定位方式.差分动态定位DGPS(Differential Global Po-sitionitg System),就是用2台接收机于2个测站上同时测量来自相同GPS卫星的导航定位信号,用以联合测得动态用户的精确位置.图1为差分动态定位原理框图.图中一个测站是位于业已测定的已知点,称为基准站.另一个是运动载体,称为动态用户.设在该已知点(基准点)的GPS信号接收机,叫做基准接收机.安设在动态用户上的GPS信号接收机,叫做动态接收机.基准接收机和动态接收机同时测量来自相同GPS卫星的导航定位信号.基准接收机所测得的三维位置与基准站数据进行比较,经过校正处理器的处理,便可获得GPS定位数据的校正值.如果及时将GPS 校正值通过校正发射器,发送给若干台共视卫星用户的动态接收机,经导航处理器,可获得动态用户的差分解.该差分解是经过基准站校正数据改正后所测得的动态用户的实时位置.图1中,基准站坐标已知,基准接收机为单频GPS接收机,持续地进行伪距观测,由基准站坐标与卫星广播星历计算的每颗GPS卫星瞬时坐标之间求出的卫地距与同一时刻观测的伪距值相减,即得该时刻该卫星的伪距改正数.同时求出每颗能观测到的卫星的伪距改正数,并实时传送给用户.用户接收到这种伪距改正数并加到观测得到的伪距上,即得到改正后的伪距值,根据卫星广播星历和至少4颗以上卫星的伪距值即可求出用户站较精确的坐标.图1 GP S差分动态定位原理框图2.2 GPS定位的观测值及误差来源GPS观测值是某一时刻未知动态用户坐标、卫星坐标、钟差相位整周模糊度及各种延迟的函数,可表示为Q=f(X T,X S,$t,N,E)式中: Q——GPS观测值;X T——动态用户位置参数;X S——卫星位置参数;$t——钟差参数;N——整周模糊度;E——其他延迟及误差.在实际应用中,除可获取上述观测值外,还可得到卫星星历.卫星星历包括用以确定各卫星位置的参数、卫星钟差修正及其它改正信息.由此可确定某一时刻的卫星坐标及相应的钟差改正.因此在上述观测方程中,测站坐标、接收机钟差和整周模糊度为实际待定参数.GPS定位的误差源包括:卫星星历误差、卫星钟误差和电离层折射引起的时间延迟误差.了解GPS定位的误差源,目的是为了提高定位精度.目前,利用GPS实时差分动态定位技术,可使定位精度达5~10m.3 总结与展望在GPS系统设计之初,美国国防部的主要目的是使GPS系统能够在海陆空3个领域内提供实时、全天候和全球性的导航服务,并用于情报收・174・武汉交通科技大学学报1998年 第22卷集、核爆监测和应急通信等一些军事目的.但是,对GPS 试验卫星的应用开发表明,不仅GPS 系统能够达到上述目的,而且用GPS 卫星发送的导航定位信号能够进行厘米级甚至毫米级精度的静态定位,米级甚至亚米级精度的动态定位,亚米级甚至厘米级精度的速度测量和纳秒级精度的时间测量.因此,GPS 系统的广泛运用,吸引着许多不同行业的科学家进行热心研究和开发.用GPS 实时差分动态定位技术可以进行海空导航、车辆引行、导弹制导、精密定位、工程测量、动态测量、设备安装、时间传递、速度测量等.GPS 实时差分动态定位技术与电子地图相结合,可用于对各种车辆、舰船和飞行器的调度和监控.目前,GPS 的实时差分动态定位技术还在继续发展,可进一步提高其定位精度、扩大其实时定位范围,以至覆盖全球,而且与其他卫星系统(定位、通信)相结合,形成兼有通信、定位的GPS 的地面车辆导航系统.GPS 这门高新技术必将进入社会生活的各个方面,为全社会提供服务.参考文献1 邓 强,黄顺吉.最大似然估计在GPS 定位中的应用研究.电子科技大学学报,1996,25(1)2 詹舒波,张其善.GPS /电子地图的坐标转换算法和实现.北京航空航天大学学报,1996,22(5)3 房建成,万德钧.GPS 组合导航系统在车辆导航中的应用.东南大学学报,1996,26(3)4 刘基余.全球定位系统原理及其应用.北京:测绘出版社,1995.92~103Differential Dynamic Positioning T echnologgwith GPS in Real T imeGan Junying Zhang Youwei(I nstitute of I nf or mation Science ,Wuyi Univer sity ,J iangmen City ,Gua ngdong Province )Abst ractGlobal positioning system (GPS)is a r eal-time,all-climate,global navigation and positioning system base on satellites .This paper analyzes the components and features of GPS ,discusses differ-ential dynamic positioning technology with GPS in real time and its er ror sources.T he high technolo-gy of differential dynamic positioning with GPS in r eal time will enter s into society and life in all kinds of ways,and offers service for the whole society.Key wor ds : GPS ;differential dynamic positioning ;dynamic positioning ;real -time positioning tech-nology・175・ 第2期甘俊英等:GPS 实时差分动态定位技术。
gps solution文章参考文献的格式
一、引言GPS(Global Positioning System)是一种依靠卫星定位实现全球定位的技术系统。
在现代化的社会中,GPS技术已经得到了广泛的应用,涵盖了军事、航海、航空、车辆导航、地理信息系统等多个领域。
在GPS技术使用过程中,参考文献的格式非常重要,可以有效地记录和展示研究的成果,为其他研究人员提供可靠的参考依据。
本文将从文献名称、作者、刊物名称、出版日期等方面介绍GPS解决方案文章参考文献的格式。
二、文献名称格式1. 期刊文章:作者. 文献题目[J]. 刊物名称, 出版年份, 卷号(期号): 起止页码.例如:Smith A, Johnson B. GPS technology in navigation system[J]. Applied Geography, 2015, 35(2): 123-136.2. 会议论文:作者. 文献题目. 会议名称, 会议地点, 会议时间. 出版地:出版者, 出版年份: 起止页码.例如:Brown C, White D. Application of GPS technology in agriculture. In: Proceedings of the International Conference on Precision Agriculture, Beijing, China, 2018. Beijing: Science Press, 2018:56-68.3. 专著:作者. 书名. 出版地:出版者, 出版年份: 起止页码.例如:Johnson E. GPS and Its Applications. New York: Springer, 2017: 102-115.三、作者格式在参考文献中,作者的格式应当遵循姓在前、名在后的原则,并用逗号隔开。
若参考文献中存在多个作者,应当列出所有作者的尊称。
例如:Lee, David; Smith, John四、刊物名称格式在参考文献中,刊物名称应当使用标准的缩写格式,如期刊的缩写格式为J.,会议论文的缩写格式为In:。
高精度GPS定位系统设计与研究
高精度GPS定位系统设计与研究摘要:GPS(Global Positioning System)定位技术是一种现代化的全球卫星导航系统,它在交通、军事、地质勘探以及民用领域中有着广泛的应用。
然而,传统的GPS定位系统在精度方面存在一定的限制,因此对于高精度GPS定位系统的设计与研究具有重要意义。
本文通过分析目前广泛应用的高精度GPS定位系统技术,探讨了其原理、构架和关键技术,并对其性能进行了评估和改进。
同时,本文还对未来高精度GPS定位系统的发展趋势进行了展望。
关键词:GPS定位系统、高精度、原理、构架、关键技术、性能评估、发展趋势1. 引言GPS定位系统是一种基于卫星导航的定位技术,通过接收来自卫星的信号来计算接收器的位置。
随着现代科技的不断发展,GPS定位系统的精度也不断提高。
然而,在某些领域,如精密农业、自动驾驶、航空航天等,传统的GPS定位系统精度存在一定的不足。
因此,设计与研究高精度的GPS定位系统成为了现实需求。
2. 高精度GPS定位系统的原理高精度GPS定位系统的原理基本上与传统GPS定位系统相似,但在信号处理、数据融合和算法改进方面进行了优化。
高精度GPS定位系统通过接收来自多颗卫星的信号,并利用测量学方法来计算接收器的位置信息。
具体来说,高精度GPS定位系统通过解算卫星发射信号与接收器接收信号之间的距离差,利用多个卫星的信号进行三角定位,以提高定位的精度。
3. 高精度GPS定位系统的构架高精度GPS定位系统的构架包括接收机、卫星、用户终端和数据处理设备。
接收机负责接收卫星信号,并对信号进行处理和解算。
卫星通过发送信号来提供定位信息。
用户终端接收接收机解算得到的定位信息,并将其用于实际应用。
数据处理设备负责对接收到的卫星信号进行处理和计算,以提高GPS定位的精度。
4. 高精度GPS定位系统的关键技术4.1 多频率信号处理技术传统的GPS定位系统只使用单频GPS信号进行定位。
而高精度GPS定位系统则采用多频GPS信号,通过分析不同频率信号的差异来提高定位的精度。
最新浅析gps导航原理论文[五篇范例]
最新浅析gps导航原理论文[五篇范例]第一篇:最新浅析gps导航原理论文摘要本文重点分析了各种不同的地球坐标系以及互相转换,阐述了GPS定位的基本原理,分析了其主要误差来源以及消除方法,并给出了相应的叠代算法,最后,对该方法的实现过程提出了自己的观点。
关键词 GPS;导航;星历;误差全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。
它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。
它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。
GPS用户部分的核心是GPS接收机。
其主要由基带信号处理和导航解算两部分组成。
其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。
导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。
本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。
本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。
地球坐标系简述图1背景图片要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。
因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。
地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。
地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90度方向)。
ION2005_A1-1_Integrated GPS anti-jam systems
Integrated GPS Anti-Jam SystemsDavid Rowe, John Weger, and Joel WalkerRockwell Collins Government SystemsBIOGRAPHIESDavid Rowe is a Systems Engineering Manager for the High Performance Navigation Products department of Rockwell Collins Government Systems. David has over 20 years of experience in the development of numerous aircraft and missile navigation systems and holds several navigation related patents. Prior to his current assignment David was the Technical Director for the Integrated GPS Antijam System (IGAS). David has also lead the technical development of various GPS products including the development of the highly successful Rockwell Collins NavStrike™ GPS receiver as well as JAGR-S receiver which is the Digital Antijam Receiver currently being installed in JASSM missiles. David holds a BS in Computer Engineering from Iowa State University.John Weger is a Technical Director for the High Performance Navigation Products department of Rockwell Collins Government Systems. John has over 10 years of experience in the engineering of GPS designs from the prototype phase through production. John currently serves as the Technical Director for the GPS receivers used by the Joint Direct Attack Munition (JDAM) and Small Diameter Bomb (SDB). John has also been involved with other GPS developments that include the Miniature Integrated Navigation Technology (MINT) program, the Miniature Integrated Navigator Demonstration (MIND), the Miniaturized Integrated Digital Anti-jam System (MIDAS), and various Competent Munition demonstrators. John holds a BA from Luther College.Joel Walker is a Senior Systems Engineer in the High Performance Navigation Products department of Rockwell Collins Government Systems. Joel has over 20 years of experience supporting the development of avionics, communications, and navigation systems. In his current role, Joel is involved with the development of GPS products for precision guided munition (PGM) and airborne applications. Joel holds an ME in Systems Engineering from Iowa State University, a BA in Physics and Computer Science, and a BS in Mathematics. ABSTRACTIn the past, high performance Global Positioning System Anti-Jam (GPS AJ) capability was only available in federated systems having substantial size, weight, and power consumption. Those traits are significant cost adders for the total navigation system of a precision guided munition or airborne platform.Rockwell Collins has recently leveraged its experience in GPS receivers and AJ electronics with new technologies to create highly integrated GPS AJ systems that fit within the size and cost constraints of former non-AJ GPS installations. Our company has already built several integrated GPS AJ systems and demonstrated their performance, including at the latest JamFest where greater than 95 dB of AJ performance against multiple broadband jammers was exhibited. Now, the first configuration of an integrated GPS AJ system is being readied for production. This paper will provide an overview of the features and performance of a Rockwell Collins integrated GPS AJ system, and will describe how size, cost, and performance requirements can be satisfied to provide highly reliable navigation on virtually all PGM and airborne applications. This integrated system builds upon the existing Rockwell Collins NavStrike GPS receiver to provide 24 channels of all-in-view dual frequency tracking, and includes over 6,000 correlators to support fast direct-Y code acquisitions with up to 10 ms of time error. This capability is significant because it demonstrates that GPS AJ is now available to applications that previously faced prohibitive size or cost when selecting a navigation system. Small, low cost, integrated GPS AJ systems will become the standard for future military GPS navigation. We will take a closer look at a specific system, the Rockwell Collins Integrated GPS Anti-jamming System (IGAS) that will be in production by the second quarter of 2006. Highlights of the IGAS requirements and capabilities will be reviewed, along with top-level IGAS design details.INTRODUCTIONPerformance of GPS AJ systems has traditionally been a trade between size, weight, power, cost, jamming performance, and number of jammers that are able to be excised.Rockwell Collins’ extensive GPS product engineering experience has been applied to the development of a new GPS AJ architecture to meet the demanding requirements of current and future PGM and airborne applications.TRADITIONAL GPS AJ SYSTEMSTraditional GPS AJ applications involved procuring separate signal conditioning and GPS processing assemblies, and integrating them at a third-party. Doing this requires integrators to carry additional overhead cost associated with dealing with multiple vendors and supply chains, as well as resolve problems created by interactions of the federated components.In addition to these overhead expenses, federated GPS AJ systems are typically costly in terms of both volume and power. Each system component typically contains its own power supply, debug and troubleshoot interface, and connectorized I/O.Transitioning to an integrated solution from a single vendor resolves these integration issues by maintaining consistent design practices and controlled input/output between the various functional blocks of the system. Issues discovered during performance testing are traced to root cause more rapidly, and the burden of cyclic updates to component specifications to better control system interaction is lifted.Integrated systems that eliminate subsystem interconnect saves both cost and space, leading to a more efficient, more effective GPS AJ solution.GPS AJ DEVELOPMENT HISTORYSeveral years ago, Rockwell Collins recognized that digital GPS and digital AJ technologies offer performance significantly exceeding that of analog systems in capability, size, weight, and power characteristics. For these reasons, we have been investigating these techniques including digital nulling, digital beam steering, Space Time Adaptive Processing (STAP), Space Frequency Adaptive Processing (SFAP), and Ultra Tight Coupling (UTC) approaches.In a fully integrated GPS AJ system, performance is measured largely by AJ benefit, which is defined as the improvement in a given satellite’s C/No as a result of the AJ processing. This includes both the effects of nulling the jamming energy as well as enhanced gain in the direction of the signal due to beamsteering.Rockwell Collins GPS AJ development has included systems designed to meet specific GPS AJ application requirements. The required level of AJ benefit provided by these systems has ranged from the low end (20+ dB of AJ benefit), through mid-range (35-40 dB of AJ benefit),to the high-end (55+ dB of AJ benefit).Traditional nulling systems can successfully remove the jamming energy, but at the cost of degrading the antenna pattern in the directions of a subset of the GPS satellites.A Rockwell Collins approach to enhanced AJ performance involves the use of advanced digital processing to form a set of independently-steered (in azimuth and elevation) signal reception “beams”. For each beam, the receiver optimizes the signal-to-noise ratioin the direction of that beam.By incorporating multiple beams, the jamming signal can be significantly attenuated without degrading the signals of the GPS satellites being tracked. Thus, GPS tracking is improved considerably as each tracking channel operates on a uniquely optimized antenna pattern.MODERN GPS AJ SYSTEMSRockwell Collins has demonstrated the ability to match the appropriate AJ system to customer requirements.The issues involved with designing systems of varied performance levels are substantially different. PGM and airborne programs can benefit from our ability to scale the product solution appropriately for a specific application’s operating environment.Multiple systems have been developed that utilize these digital GPS and digital anti-jam technologies. These include the Digitally Integrated GPS Anti-jam Receiver (DIGAR), the Miniature Integrated Navigator Demonstration (MIND), the Synergistic Integrated Receiver Techniques for Interference Adaptation and Suppression (SIRIAS) program, and the Miniaturized Integrated Digital Anti-jam System (MIDAS).The MIND and SIRIAS programs were both targeted toward development of advanced demonstrator units and proving out end-to-end performance of integrated navigation systems. A common “do-all” brassboard receiver was developed for evaluation of various anti-jam and GPS/Inertial integration algorithms. The MIND assembly is shown in Figure 1.Figure 1 The MIND Assembly.Jamming excision demonstrations performed on the MIND and SIRIAS programs include variations Space-Time Adaptive Processing (STAP), Space-Frequency Adaptive Processing (SFAP), in applications ranging from 4 to 7 antenna systems. The SIRIAS is shown in Figure 2.Figure 2 SIRIAS.GPS/Inertial algorithms demonstrated ranged from traditional stand-alone tracking loops as used in a loosely coupled system, through the current generation tightly-coupled navigation algorithms, reaching into the next generation ultra-tightly coupled GPS/inertial integrations. The MIDAS is a 4-beam system that exists in two configurations. The first is a stand-alone GPS navigator with an integrated 4-element AJ system. The second variation of the MIDAS is currently in use as the Defense Advanced GPS Receiver (DAGR) vehicular AJ accessory. The MIDAS is shown in Figure 3.The MIDAS integrated GPS AJ system consumes about 12 watts of power for all processing functions. Interfaces available to the host integrator consist of standard crypto (DS-101, DS-102), test instrumentation, and host serial control using the message set of the Rockwell Collins NavStrike GPS receiver family.Figure 3 MIDAS.The DAGR vehicular anti-jam accessory variant of MIDAS replaces the GPS Selective Availability Anti-Spoofing Module (SAASM) back-end with an analog up-converter such that the unit can be connected to a standard Rockwell Collins DAGR to improve anti-jam immunity by up to 45 dB.The DIGAR, shown in Figure 4, is contained in an AE-1 form factor for installation in airborne platforms. This system is designed for 24 channel, 16 beam, simultaneous L1/L2 operation. This system interfaces to a standard 7-element controlled radiation pattern antenna (CRPA). The DIGAR is currently in development, and will serve as an ideal replacement for fielded 3A and Miniaturized Airborne GPS Receivers (MAGR).Figure 4 DIGAR Airborne GPS AJ Receiver.The following sections of this paper describe the latest example of a state-of-the-art integrated GPS AJ product solution – the Rockwell Collins Integrated GPS Anti-jam System (IGAS).INTEGRATED GPS ANTI-JAM SYSTEMThe Integrated GPS Anti-jam System (IGAS), shown in Figure 5 and Figure 6, is the latest result derived fromyears of GPS and AJ developments at Rockwell Collins. IGAS is a fully integrated GPS and digital beamforming AJ system optimized for high performance PGM and airborne applications.Figure 5 IGAS Circuit Card.Figure 6 IGAS Enclosure.The IGAS is an outcome of the combined evolution ofseveral Rockwell Collins GPS AJ programs, as illustrated in Figure 7.Figure 7 Evolution of IGASIGAS is a 4-element, 12-beam, digital GPS AJ system consisting of three major sub-system elements:• RF downconverter and synthesizer • Digital AJ • Digital GPS receiverThe design includes 24 channel GPS operation and the capability to support simultaneous L1/L2 track on 12 satellites.The overall functional IGAS architecture, illustrated in Figure 8 and Figure 9, provides an optimum hardware solution by tightly integrating the AJ and GPS functions, while eliminating redundant hardware, such as the RF upconverters and external AJ to GPS interfaces necessitated by traditional federated systems.G P SS ig n a lsw ithJ a m m in gFigure 8 IGAS Overall Functional Architecture.Figure 9 Architecture Relationship to the SAASM. The system architecture, RF circuitry and AJ algorithms have been repeatedly validated in lab and live jamming tests using the IGAS product and its MIDAS predecessor. The IGAS incorporates the Rockwell Collins SAASM 3.3, the GPS functionality of the NavStrike GPS receiver, the AJ performance of MIDAS, and an established software baseline. This predominant use of proven technology significantly reduces the amount of time, effort, and risk associated with integrating the IGAS into a PGM or airborne platform.Rockwell Collins’ IGAS approach results in a system with reduced size, power, weight, and cost – while eliminating signal losses associated with redundant filtering and frequency conversion. Superior overall GPS AJ performance is realized.IGAS RF DOWNCONVERTER/SYNTHESIZERA mature high-fidelity RF design comprises the IGAS RF section, incorporating a single downconversion approach as utilized in other Rockwell Collins products.The RF design is optimized for critical anti-jam performance parameters, such as channel-to-channel frequency matching, linearity, dynamic range, and signal-to-noise ratio.IGAS AJ BEAMFORMER SECTIONA proven digital AJ beamformer design, summarized in Figure 10, is implemented by the IGAS. This design is based on algorithms with demonstrated high performance in both lab and live jamming environments.Figure 10 IGAS AJ Beamformer Section.Since this AJ implementation has 12 simultaneously steered beams, the design reduces system complexity and provides enhanced performance by placing a beam on each of the satellites utilized by the GPS receiver.IGAS DIGITAL GPS SECTIONThe design of the IGAS GPS section is summarized in Figure 11. The foundation of this section is the SAASM 3.3 device, combined with hardware and software that is common with other Rockwell Collins products.24 channel dual-frequency operation is provided, and with over 6,000 correlators, extremely fast P(Y) acquisitions are possible. Internal digital interfacing supports up to 16 simultaneous AJ beams, of which 12 are utilized by the IGAS.The use of the SAASM 3.3 greatly reduces risks associated with performance and life cycle management. Performance capabilities of the SAASM 3.3 meet or exceed the GPS performance requirements specified for many PGM and airborne applications. SAASM 3.3 performance has been verified through qualification testing in the NavStrike GPS family of receivers.A key feature of SAASM 3.3 is its bank of over 6,000 correlators – giving IGAS the ability to meet a 10 ms time uncertainty acquisition requirement over the domain of 20 year of aging and specified signal level conditions.BeamformerThe SAASM 3.3 design is also optimized for low power and small size by incorporating a custom processor internal to the SAASM boundary, eliminating the need for an external processor device to run the GPS application software.IGAS INTERFACESThe IGAS provides a precise time interface to support improved initialization of a platform’s datalink system, if applicable. The IGAS precise time outputs include 1PPS or Time Mark, plus HaveQuick.With the precise time interface, Serial Host Control Interface (SHCI), crypto interface, and the additional interfaces shown in Figure 12, full connectivity with the IGAS user’s host platform is supported.Figure 12 IGAS External Interfaces.IGAS PERFORMANCEWhen the user configures the IGAS for Auto AJ operation, the system will automatically select the best means of overcoming the jamming threat by utilizing both frequencies, and will turn on the AJ capability when needed. Using Auto mode enables the customer’s application to achieve maximum performance and maximum threat protection through autonomous anti-jam mode control. IGAS also supports user-selectable AJ on/off manual operation.The receiver’s all-in-view 12-beam steering capability provides enhanced satellite coverage to produce better navigation performance through increased signal to noise ratios, ensuring an improved geometric dilution of precision.With the IGAS, beamsteering has been taken to its logical conclusion by providing a dedicated beam for every tracked satellite. This technique maximizes availability by providing all-in-view beamsteering and maximizing the signal-to-noise ratio for each and every satellite.In a single jammer environment, each satellite will see approximately 6 dB of AJ benefit as a result of beamsteering gain. The benefit can be far greater under jamming conditions since the AJ processor will optimize the SNR to each satellite. By doing so, the receiver avoids the alignment of a sympathetic null with a satellite’s line-of-sight.A sympathetic null is an area of the antenna pattern that has low gain in an area that is spatially separated from the jammer. The generation of sympathetic nulls cannot be avoided in a non-beamsteering system in the process of nulling the jamming energy.The IGAS is able to optimize AJ performance for each SV tracked, which is not possible in a traditional GPS AJ system. This significantly improves satellite availability by eliminating the possibility of a satellite being accidentally nulled by the AJ processing. The corresponding increase in performance ultimately translates into more precise platform navigation.Figure 13 graphically compares the AJ benefit provided by beamsteering to that provided by nulling over the entire view of the sky.Figure 13 Sky Coverage, Nulling vs. Beamsteering.Primary Power Interface Auxiliary Power InterfaceThe beamsteering plot is a composite picture of the AJbenefit achievable at each angle of arrival assuming a beam is steered in that direction. The simulation is that of an IGAS system in the presence of two broadband jammers, shown in the figure as small circles.In the nulling AJ benefit plot, there are several relatively large areas of the sky where the AJ benefit drops below 35 dB due to sympathetic nulls in the pattern. These areas are eliminated when a beam is provided for every satellite as the beamsteering AJ benefit plot shows.Simulation results showing how sympathetic nulls could inadvertently reduce satellite availability and that greater relative AJ benefit is achieved through multi-beam steering.In Figure 14, the cumulative distribution function (CDF) is shown for the Nulling AJ benefit and for the Beamsteering AJ benefit for a signal angle of arrival uniformly distributed in the celestial hemisphere.Figure 14 AJ Cumulative Distribution Function. The curves show the percentage of sky exceeding each given AJ benefit level for the nuller (lower plot) and the beamformer (upper plot). Note, for example, that 30% more of the sky exceeds 35 dB AJ benefit when beamsteering is available as in the IGAS solution. Performance is significantly better for the beamsteered system compared to nulling system results.Another potential problem that is mitigated through the use of beamsteering is GPS multipath. By enhancing gain in the direction of the desired satellites, the gain in other directions, including the direction of multipath sources, is reduced. This is especially true when every tracked satellite receives the benefit of beamsteering, as performed by the IGAS. The error induced by GPS multipath is significantly reduced as shown in Figure 15.Figure 15 Beamsteering Multipath Mitigation.STAP and SFAP designs can also meet customeroperational requirements. However, some applicationsmay not be able to accommodate the additionalcomplexity, size, weight, cost, or power consumption of aSTAP or SFAP implementation for currently definedjamming threats.Rockwell Collins has significant experience with bothSTAP and SFAP, and these algorithms can be added toIGAS in the future if desired by the application to counterthe evolving threat environment.However, the best value, high performance GPS AJsystem for many applications is provided today by thecapabilities of the IGAS.CONCLUSIONAs has been demonstrated by the IGAS, a digitalintegrated approach for GPS AJ provides significantadvantages over federated systems in terms of size,weight, power consumption, cost, and performance. Thistechnology is available today.20CDF of AJ ImprovementAJ Improvement, dBPercentNullerBeamformer。
航空航天类会议
国内及国外会议美国导航学会(ION) 国际会议ION 是美国导航学会( Inst itute of Navig atio n) 的字头缩写简称, 美国导航学会成立于1945 年, 是一个致力于推进导航科学和技术发展的非赢利性组织。
它服务于对航天、航空、航海、陆地导航等感兴趣的各种组织及个人。
虽然ION 是一个美国的学术组织, 但其会员遍布世界各地, 它也是隶属于国际导航协会的组织。
自1988 年起, ION 每年都举办GPS 年会, 每次年会都吸引了世界各国各行业的GPS 专家参会。
会上除有涉及美国的GPS 政策、GPS 系统的现状和未来的发展趋势、GPS 应用的理论和实践、GPS 用户设备和软件开发的最新进展等方面的众多论文发表外, 也有世界各国和各地区组织的新的导航系统及其发展情况的介绍, 还有各GPS 软硬件生产厂商新产品的展示。
ION GPS 年会已经成为全世界规模最大, 最具权威性的GPS 方面的学术交流和产品展示会。
由于GPS 的应用领域, 已经远远超出了导航应用的范畴, 因此在ION GPS 年会上发表的论文、参加会议的人员和参展的厂商, 也不再只局限于导航应用, 而是包含了GPS 的所有应用领域。
导航学会每年承办3个会议:1) 一月份举办导航学会国家技术会议( Natio na l T echnical Meeting of the Institute o f Nav igat ion) ( 简称ION NTM) , 内容全面、技术含量高, 汇聚美国无线电导航领域内的最新成果。
2) 六月份举办美国导航学会年度会议( Annual Meeting of Inst. o f Nav ig ation) ( 简称ION AM) 汇集导航届著名专家、学者本年度在会议上的交流资料。
内容丰富、技术新, 介绍导航领域内最新技术发展动态。
3) 九月份举办美国导航学会ION GNSS 国际技术会议( ION GNSS Inter nat ional T echnical Meeting o f the Satellite Div ision of t he Institute of Nav igat ion) ( 简称ION GNSS) ( 2004 年更名, 原名为ION GPS) 内容广泛、新颖, 涉及有关GPS 研制、生产的最前沿技术难点和热点。
GPS电离层计算方法研究
GPS 电离层计算方法研究进引言:随着GPS 的发展及应用,GPS 数据的精度要求不断提高,对GPS 误差源的研究也更加精细更加科学。
为了提高GPS 观测数据的精度,人们在接收机、卫星以及各种数据处理的模型方面尤其是在电离层计算方法上面不断进行改进。
目前,对电离层折射的研究,国内外通用的方法就是利用大气传播原理建立电离层修正模型。
1、电离层的性质电离层主要分布在大气层的顶部,约在地面上70km 以上的范围。
由于氧原子吸收了太阳紫外线的能量,在电离层上,温度随着高度的增加而迅速上升。
电离层分层结构十分复杂,总是随纬度、经度呈现复杂的空间变化,并且具有昼夜、季节、年、太阳黑子周等变化。
由于电离层各层的化学结构、热结构不同,各层的形态变化也不尽相同。
由于太阳和其他天体各种射线的作用,使得该层的大气分子部分发生电离,因此具有较高密度的带电粒子,这些电子离子能使无线电波改变传播速度,发生折射、反射和散射,产生极化面的旋转并受到不同程度的吸收。
因此电离层电子浓度总含量(TEC)对电波传播及其修正具有十分重要的意义,是穿透电离层的星地电波通讯应用中非常重要的参量。
电离层犯C 对经过电离层传播的无线电信号产生相对于真空的附加传输时延,可严重影响到GPS 卫星的定位、导航、授时的精度。
电离层花C 的扰动对无线电系统,尤其是对高频无线电通讯具有重要影响。
GPS 信号是一种电磁波,当电磁波通过电离层时,由于电离层自由电子的干扰而产生电离层误差。
电离层对一次测距的影响,可从最大时的 150m 到最小时的 5m 。
电离层是一种散射介质,在电离层中,电磁波的传播速度与频率有关,其折射系数是电波频率的函数,对不同频率有不同影响。
2、电离层对GPS 信号传播的影响由于太阳和其他天体的强烈辐射,电离层中大部分大气分子被电离,而产生密度很高的自由电子,在离子化的大气层中,折射率的弥散公式为:210222]41[et e m f e N n επ-= (1) 其中,t e 是电荷量;e m 是电子质量,单位kg ;e N 为电子密度单位(电子数/m 3); 0ε是真空介质常数(2312s m kg c --)。
GPS-RTK测量方法研究与精度分析
GPS-RTK测量方法研究与精度分析Measurement Method and Precision Analysisof the GPS-RTK测绘与地理信息学院测绘工程张廷雷201003215李建章摘要RTK(Real Time Kinematic)是一种利用GPS载波相位观测值进行实时动态相对定位的技术。
RTK测量操作简便、自动化程度高、高效、方法灵活,较之于传统测量手段的众多优点,使其在城市建设、各类工程测量中越来越具有重要的作用和地位,但是,RTK 测量技术也受地形、卫星、电台、测区控制点分布、转换参数求取等各种因素的制约。
特别是所求转换参数的精度,在很大程度上直接决定了RTK测量结果的质量!本论文结合RTK定位技术的现状,论述了RTK测量原理、RTK定位技术的现状等,通过实验,验证分析了四种常用RTK测量模式及其精度,并在此基础上探究小范围内控制点不足的测区与周围控制点充足测区之间的坐标传递及转换方案,并探讨方案的可行性及精度,针对性提出了相应的操作流程及注意事项,分析了各方案的适用程度,进一步完善了现场特殊问题的应对方案,最后拟定相应的的数据处理及成果形成方案。
本论文讲了RTK定位技术的原理、 RTK误差来源及测量精度;陈述了复杂地形下影响RTK高程精度的因素和需要采取的相应措施;对常用四种RTK测量模式进行了探讨及精度分析;阐述了RTK定位技术的应用前景。
结合校内实验阐述了测量过程中遇到的问题,提出了不同境况RTK测量存在的问题和所采取的相关方法和手段。
最后对各种实测成果进行了概括论述,讲了通过实测得到的相关结论,主要包括:基准站安置到已知点和未知点以及现有控制点WGS84坐标是否已知四种情况下RTK测量精度分析、小范围内控制点不足的测区与周围控制点充足测区之间的坐标传递及转换方案可行性及精度。
关键词:GPS-RTK;测量模式;精度分析;影响因素AbstractRTK (Real Time Kinematic) is a real-time dynamic relative positioning technique using a GPS carrier phase observations. RTK measurement has the advantages of simple operation, high degree of automation, high efficiency, flexible, many advantages compared with the traditional methods, in the city construction, all kinds of engineering measurement has become more and more important role, however, the RTK measurement technique is also affected by topography, satellite,radio, a test area restricted distribution, transformation parameter staking various factors. Especially the transformation precision,quality largely determines the results of RTK measurements! In this paper, combining with the current situation of RTK positioning technology, discusses the principle of RTK measurement, RTK positioning technology of the status , through the experiment,verify the analysis of four kinds of commonly used RTK measurement-model and its accuracy, and on this basis to explore within a small range of control points of test area and control points around the adequacy measurement coordinate zone between the transfer and conversion scheme, and discusses the feasibility and accuracy of the scheme, put forward the corresponding operation process and the matters needing attention, and analyzed the application degree of each scheme, and further improve the program to deal with special problem son-site, finally, draws up the corresponding data processing and results in the formation of scheme.RTK principle, error source and the measuring accuracy of this thesis about the RTK positioning technology; representations over complex terrain factors influencing RTK height precision and corresponding measures need to be taken; on four kinds of common RTK measurement mode is analyzed and precision; application of RTK positioning technology. Combined with the experiment described in the measurement process, puts forward some methods have different circumstances RTK measurement problems and measures and means. At the end of the measured results is reviewed, about the relevant conclusions, obtained mainly includes: base station placement to the known and unknown point and the existing control point WGS84 coordinate is known to the four cases RTK measurement accuracy analysis, control measure and control points around the adequacy measurement coordinate zone between the transfer and conversion feasibility and accuracy is not enough small range KEYWORDS: GPS-RTK; Measurement model; Accuracy analysis; Influencing factors目录第一章绪论 (1)第一节引言 (1)第二节国内外研究现状 (4)第三节研究的背景及意义 (6)第四节研究的主要内容和目标 (8)第二章RTK定位技术概述 (10)第一节 GPS测量原理 (10)一、GPS系统组成 (10)二、GPS工作原理 (11)三、GPS误差来源及应对措施 (13)第二节 RTK测量原理及特点 (14)一、RTK工作原理 (14)二、求差法载波相位GPS原理及双差模型 (15)(一)求差法 (15)(二)双差模型 (16)三、RTK测量的技术特点 (17)第三节 RTK误差来源及处理措施 (19)一、RTK的误差来源 (19)二、影响因素处理措施 (20)第四节 RTK定位技术类型及应用前景 (22)一、常规RTK (22)二、网络RTK原理及分析对比 (23)三、基于CORS系统的网络RTK的应用前景 (25)第三章理论公式及验证方法讨论 (27)第一节 RTK定位结果精度验证方法及公式 (27)第二节实验总体设计 (28)一、静态控制网实验设计 (28)二、RTK实验设计 (29)第三节实验仪器 (30)一、静态测量及RTK测量仪器 (30)二、约束平差测边仪器 (30)第四章几种常用RTK模式下精度验证实验及分析 (32)第一节静态控制网测量 (32)一、GPS静态网建立 (32)二、GPS静态观测 (32)第二节控制点WGS84坐标已知时的精度验证分析 (35)一、基准站安置到已知点(模式一have84-y) (35)(一)实验方案及步骤 (35)(二)数据处理及精度分析 (36)二、基准站安置到未知点(模式二have84-n) (38)(一)实验方案及步骤 (38)(二)数据处理及精度分析 (38)第三节控制点WGS84坐标未知时的精度验证分析 (39)一、基准站安置到已知点(模式三no84-y) (40)(一)实验方案及步骤 (40)(二)数据处理及精度分析 (40)二、基准站安置到未知点(模式四no84-n) (41)(一)实验方案及步骤 (41)(二)数据处理及精度分析 (41)第四节同一工程转换参数合理利用问题 (43)第五节不同模式的综合分析 (45)总结 (47)致谢 (49)参考文献 (50)第一章绪论本章介绍了 GPS-RTK 定位技术的研究现状及其局限性,阐明了本文研究的背景和意义,确定了本文研究的主要内容和目标。
GPS/InSAR
GPS/InSAR摘要:文章探讨了由和GPS/ InSAR 数据融合的组合系统,通过对合成孔径雷达干涉测量GPS和(InSAR)原理的描述,及对两者数据融合的分析,对其在变形监测中的应用前景作了探讨。
关键词:沉陷滑坡监测数据融合0前言全球卫星定位系统GPS( G lobal Posit ioning System)的英文名称为/ N av igat ion Sate llite T im ing A ndRang ing /G loba l Position ing System0, 即/ 卫星测时测距导航/全球定位系统0, 简称GPS系统。
它是以卫星为基础的无线电导航定位系统, 具有全能性(陆地、海洋、航空和航天)、全球性、全天候、连续性和实时性的导航、定位和定时的功能。
能为各种用户提供精确的三维坐标、速度和时间。
InSAR 根据复雷达图像信息的相位差信息,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,通过影像处理和几何转换来提取地面目标区地形的三维信息。
其特点是主动式遥感,全天候成像,空间分辨率高,覆盖范围大。
GPS 用于变形监测的作业方法主要有经典静态测量方法和动态测量方法。
GPS 和InSAR 技术的融合将在变形监测中具有广阔的应用前景。
1 系统简介GPS 即全球卫星定位系统( Global PositioningSystem) 是美国国防部研制发展的以卫星为基础的新一代导航定位系统。
该系统能满足军事部门和民用部门对连续实时定位以及三维导航的迫切要求,于1995 年4 月建成并投入使用。
GPS 是一种高精度的对地观测技术, 能较精确地确定电离层、对流层参数, 具有非常好的定位精度和时间分辨率。
GPS 主要由三部分构成: ①空间部分,由21 颗工作卫星和3 颗备用卫星组成,分布在20200 km 高的6 个轨道平面上;②地面监控分,由主控站、监测站、注入站、通讯及辅助系统组成; ③用户部分,由GPS 接收机、天线单元、接收单元组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Paul Thevenon is a GNSS engineer in the GNSS signal processing team of CNES (Centre National d’Etudes Spatiales), the French space research center. He graduated as electronic engineer from Ecole Centrale de Lille and obtained a research master at ISAE (Institut Supérieur de l’Aéronautique et de l’Espace) in space telecommunications. Thevenon later obtained a Ph.D. degree in the signal processing laboratory of ENAC (Ecole Nationale de l’Aviation Civile) in Toulouse, France, studying the feasibility of self-positioning a receiver using mobile TV signals. His current activity is GNSS signal measurement and processing, with an emphasis on urban environment. ABSTRACT Since the rise of technologies using GNSS positioning systems, development of carrier phase tracking receiver for precise point positioning in hostile environments is becoming one of the most important challenges for future satellite navigation applications. Because phase locked loops (PLL) that track carrier phase suffer from cycle slips phenomenon, noise robustness of the formers has to be reinforced if one wants to use precise positioning techniques in the widest range of challenging environments. The purpose of this article is to propose a new PLL design using a phase unwrapping algorithm that effectively corrects cycle slips due to phase noise in low CN0. Unlike phase unwrapping algorithms using a threshold approach for cycle slips detection, the algorithm implemented in our PLL structure is based on a system of prediction and pre-compensation of the phase dynamic stress. In order to reduce the cycle slips and enforce noise robustness of phase tracking, this algorithm is adapted to tracking loops with the aim to propose two innovative PLL structures. A comparative study is performed to show the effectiveness of the two proposed structures in case of noisy environment.
PLL Unwrapping Structures using Polynomial Prediction Algorithm for Noisy Carrier Phase Tracking
S. Roche, TeSA-ISAE, France S. Bidon, O. Besson, ISAE, France M. Monnerat, Thales Alenia Space, France L. Ries, P. Thevenon, CNES, France
47Байду номын сангаас
INTRODUCTION Over the last years, precise point positioning (PPP) techniques have considerably progressed in terms of precision. Current PPP methods use accurate orbital data, accurate satellite clock data and carrier phase observations collected by GNSS receiver to estimate user pseudo-ranges [1,2]. Phase tracking is realized via phase locked loops (PLL) which have to provide accurate estimation of carrier phase. Although user positioning is more precise with carrier phase data than with code phase data [3], phase estimation suffers from a lack of robustness in case of low carrier-to-noise-density-ratio (CN0), thereof preventing using such techniques in a large number of hostile environments such as urban canyons. It also prevents this new appealing technique from being used in one of the main GNSS outlet, the mass market. Besides, the new generation satellites navigation systems offer now pilot tone signals allowing envisaging new tracking techniques to reach higher performances, in particular for urban users. But even with this new signals the critical aspect remains the carrier phase tracking loop when it question of high accuracy in bad reception conditions. One of the most important problems with noisy carrier phase tracking is cycle slips. Cycle slips are a distinctive characteristic of PLLs which directly results from the periodic nature of phase discriminators used in tracking loops [4]. These biases (the cycle slips), that can appear during the phase estimation and make the tracking fail, can be caused by either a high dynamic stress and/or a high noise level, including the consequences of signal fading due to multipath. Several techniques aimed at detecting and correcting cycle slips have already been developed and adapted to PLL [5,6]. Basically, they rely on a threshold approach that try to correct cycle slips by comparing the discriminator output with the previous output to determine, by thresholding, if a cycle slip has occurred or not. However, due to the nonlinear nature introduced by thresholding, these structures are not robust to noise and do not provide an adequate phase tracking for precise positioning in low CN0 environments. It is possible to add a filtering step for this unwrapping structure (i.e., the filter involved is the inverse system of the unwrapping structure under linear approximation) that improves the noise robustness [6], but this step is not efficient enough in challenging environments. What is proposed in this paper is two new PLL structures including a phase unwrapping system that offers better robustness to noise. More precisely, the phase unwrapping algorithm used for our PLL structures is based on a phase polynomial prediction and precompensation to anticipate cycle slips [7]. The first proposed PLL structure consists in analyzing phase