山西省2018届高三第一次统考理数(B卷)试卷(扫描版,无答案)
2018高考全国卷1理科数学试题及答案(word版)
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( )A .0B .12C .1D 2.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .334B .233C .324D .32二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
山西省太原市2018届高三上学期期末考试数学理试题(解析版)
太原市2017~2018学年第一学期高三年级期末考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】B【解析】【详解】,所以.2.某中学初中部共有110名教师,高中部共有150名教师,根据下列频率分布条形图(部分)可知,该校女教师的人数为()A. 93B. 123C. 137D. 167【答案】C【解析】.3.已知,都是实数,那么“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.4.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】A【解析】,对应点,在第四象限.5.等差数列的前项和为,,,则()A. 21B. 15C. 12D. 9【答案】B【解析】依题意有,解得,所以.6.已知,,,,那么()A. B. C. D.【答案】C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.7.已知,那么()A. B. C. D.【答案】A【解析】依题意有,故8.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A. 10B. 12C. 60D. 65【答案】D【解析】,,判断否,,,判断否,,,判断是,输出.故选.9.展开式中的常数项为()A. 1B. 21C. 31D. 51【答案】D【解析】常数项有三种情况,都是次,或者都是次,或者都是二次,故常数项为10.已知函数的最大值为,最小值为,则的值为()A. B. C. D.【答案】B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.11.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A. B. C. D.【答案】C【解析】由三视图可知,三棱锥的体积为12.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.【答案】A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数,,则的最大值是__________.【答案】3【解析】函数在上为减函数,故最大值为.14.不共线的三个平面向量,,两两所成的角相等,且,,则__________.【答案】4【解析】原式【点睛】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.15.已知,那么__________.【答案】2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.16.三棱柱中,底面边长和侧棱长都相等,.则异面直线与所成角的余弦值为_____。
2018年山西省太原市高考一模数学试卷(理科)【解析版】
8.(5 分)已知抛物线 y2=2px(p>0)的焦点为 F,准线为 l,A,B 是抛物线上
的两个动点,且满足∠AFB=60°.设线段 AB 的中点 M 在 l 上的投影为 N,
则( )
A.|AB|≥2|MN| B.2|AB|≥3|MN| C.|AB|≥3|MN| D.|AB|≥|MN|
9.(5 分)某空间几何体的三视图如图所示,则该几何体的体积是( )
2018 年山西省太原市高考数学一模试卷(理科)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的.
1.(5 分)已知集合
,则 A∩B=
()
A.(1,+∞) B.
C.
D.
2.(5 分)若复数
在复平面内对应的点在第四象限,则实数 m 的取值范
售出水量 x
7
6
6
5
6
(单位:
箱)
收入 y(单 165
142
148
125
150
位:元)
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考 核前 20 名,获一等奖学金 500 元;综合考核 21﹣50 名,获二等奖学金 300 元;综合考核 50 名以后的不获得奖学金.
(1)若 x 与 y 成线性相关,则某天售出 9 箱水时,预计收入为多少元? (2)甲乙两名学生获一等奖学金的概率均为 ,获二等奖学金的概率均为 ,
其他任何人的概率是
.
16.(5 分)数列{an}中,
,若数列{bn}
满足
,则数列{bn}的最大项为第
项.
三、解答题:本大题共 70 分.解答应写出文字说明、证明过程或演算步骤. 17 .( 12 分 ) △ ABC 的 内 角 为 A , B , C 的 对 边 分 别 为 a , b , c , 已 知
2018太原高三一模理数
2018太原高三一模理数一、填空题:本大题共14小题,每小题5分,共70分,请把答案填写在答题纸相应的位置上。
1.若_____,则_______________.2.函数_____的定义域是_______________.3.已知幂函数_____的题像过点_____,则_______________.4.设函数_____满足_____,则_____的表达式是_______________.5.函数_____的值域是_______________.6.若_____,_____,则用将_____按从大到小可排列为_______________.7.已知函数_____,则_______________.8.若函数_____在区间_____上的最大值与最小值之和为_____,则a的值为_______________.9.给定函数:①_____,②_____,③_____,④_____,其中在区间_____上是单调递减函数的序号是_______________.(填上所有你认为正确的结论的序号)10.已知方程_____的解所在区间为_____,则_____=_______________.11.已知函数_____在区间_____上是减函数,则_____的取值范围是_______________.12.定义在实数集R上的奇函数_____满足:①_____在_____内单调递增,②_____,则不等式_____的解集为_______________.13.已知函数_____,当_____时,_____恒成立,则实数_____的取值范围是_______________.14.已知函数_____,现给出下列命题:①_____当其题像是一条连续不断的曲线时,则_____=_____;②_____当其题像是一条连续不断的曲线时,能找到一个非零实数_____使_____在_____上是增函数;③_____当_____时,不等式_____恒成立;④_____函数_____是偶函数.其中正确命题的序号是_______________.(填上所有你认为正确的命题的序号)二、解答题:本大题共6小题,共计90分,请在答题纸相应的位置上作答,解答时应写出文字说明、证明或演算步骤15.(本小题满分14分)设全集_____R,集合_____,_____.(1)求(2)若集合_____,满足_____,求实数_____的取值范围16.(本小题满分14分)(1)计算_____的值;(2)已知_____,求_____和_____的值.17.(本小题满分15分)已知_____为定义在R上的奇函数,当_____时,_____为二次函数,且满足_____,_____在_____上的两个零点为_____和_____.(1)求函数_____在R上的解析式;(2)做出_____的题像,并根据题像讨论关于_____的方程_____根的个数.18.(本小题满分15分)已知函数_____,其中_____,记函数_____的定义域为D.(1)求函数_____的定义域D;(2)若函数_____的最小值为_____,求_____的值;(3)若对于D内的任意实数_____,不等式_____恒成立,求实数_____的取值范围.19.(本小题满分16分)已知函数_____(_____R).(1)试判断_____的'单调性,并证明你的结论;(2)若_____为定义域上的奇函数,①_____求函数_____的值域;②_____求满足_____的_____的取值范围.20.(本小题满分16分)若函数_____满足下列条件:在定义域内存在_____使得_____成立,则称函数_____具有性质_____;反之,若_____不存在,则称函数_____不具有性质_____.(1)证明:函数_____具有性质_____,并求出对应的_____的值;(2)_____已知函数_____具有性质_____,求_____的取值范围;(3)试探究形如:①_____,②_____,③_____,④⑤_____的函数,指出哪些函数一定具有性质_____?并说明理由.。
2018届高三第一次全国大联考(新课标Ⅰ卷)理数卷(考试版)
条渐近线与 3x y 1 0 垂直,且点 P 在双曲线 C 上,则双曲线 C 的离心率等于
A. 2
10
B.
3
C. 10
D. 2 2
6.如图,半径为 R 的圆 O 内有四个半径相等的小圆,其圆心分别为 A, B, C, D ,这四个小圆都与圆 O 内
切,且相邻两小圆外切,则在圆 O 内任取一点,该点恰好取自阴影部分的概率为
理科数学试题 第 4 页(共 6 页)
………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
学校:______________姓名:_____________班级:_______________考号:______________________
22.(本小题满分 10 分)选修 4-4:坐标系与参数方程
在平面直角坐标系
xOy
中,已知曲线 C
的参数方程为
x
1 2
t
( t 为参数),在以 O 为极点,x 轴的正
y 3 t
半轴为极轴的极坐标系中,曲线 D 的极坐标方程为 (1 sin ) 2 .
(Ⅰ)求曲线 C 的普通方程与曲线 D 的直角坐标方程; (Ⅱ)若曲线 C 与曲线 D 交于 M , N 两点,求| MN | .
数 f (x) 与 g(x) 互为“ n 度零点函数”.若 f (x) 2x2 1与 g(x) x2 aex 互为“1度零点函数”,则实数
a 的取值范围为
理科数学试题 第 3 页(共 6 页)
16.2017 年吴京执导的动作、军事电影《战狼 2》上映三个月,以 56.8 亿震撼世界的票房成绩圆满收官,
山西省2018届高三第一次模拟考试数学(理)试题(解析版)
理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知单元素集合,则()A. 0B. -4C. -4或1D. -4或0【答案】D【解析】由于只有一个元素,故判别式为零,即,故选D.2. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有()A. 6种B. 12种C. 18种D. 24种【答案】B【解析】方法数有种.故选B.3. 已知函数,若,则的大小关系是()A. B. C. D.【答案】D【解析】由于,故函数为奇函数,由于,故函数为定义域上的增函数,而,所以,故选D.4. 在平行四边形中,点为的中点,与的交点为,设,则向量()A. B. C. D.【答案】C【解析】,故选C.5. 已知抛物线,过点的直线与相交于两点,为坐标原点,若,则的取值范围是()A. B. C. D.【答案】B【解析】设直线方程为,代入抛物线方程得,所以,由于,解得,故选.6. 《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵中,,则阳马的外接球的表面积是()A. B. C. D.【答案】B【解析】以为边,将图形补形为长方体,长方体外接球即阳马的外接球,长方体的对角线为球的直径,即,故球的表面积为.选B.7. 若满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】画出可行域如下图所示,由图可知,目标函数分别在点和点处取得最大值与最小值,故选A.8. 执行如图所示的程序框图,如果输入的是10,则与输出结果的值最接近的是()A. B. C. D.【答案】B【解析】,, ,,……,此时不成立,输出.故选B.9. 在中,点为边上一点,若,,,,则的面积是()A. B. C. D.【答案】C【解析】,且,在中,有余弦定理,有,解得,在中,可得.则.选C.10. 某市1路公交车每日清晨6:30于始发站A站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A站搭乘该公交车上班,甲在6:35-6:55内随机到达A站候车,乙在6:50-7:05内随机到达A站候车,则他们能搭乘同一班公交车的概率是()A. B. C. D.【答案】A【解析】建立如图所示的直角坐标系,分别表示甲,乙二人到达站的时刻,则坐标系中每个点可对应某日甲乙二人到达车站时刻的可能性.根据题意,甲乙二人到达站时间的所有可能组成的可行域是图中粗线围成的矩形,而其中二人可搭乘同一班车对应的区域为黑色区域,根据几何概型概率计算公式可知,所求概率为.11. 如图,中,,若其顶点在轴上运动,顶点在轴的非负半轴上运动.设顶点的横坐标非负,纵坐标为,且直线的倾斜角为,则函数的图象大致是()A. B.C. D.【答案】A【解析】由题意可得,对应的图象应该是A.【点睛】本小题主要考查平面几何中的动点轨迹问题,考查三角函数作图方法.三角函数作图可采用五点作图法:先列表,令,求出对应的五个的值和五个值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到在一个周期的图像,最后把这个周期的图像以周期为单位,向左右两边平移,则得到函数的图像.12. 定义在上的函数满足,且当时,,若对任意的,不等式恒成立,则实数的最大值是()A. -1B.C.D.【答案】C【解析】函数为偶函数,且当时,函数为减函数,时,函数为增函数.若对任意的,不等式恒成立,则,即,所以.当时,,所以,解得,所以.当,时,不等式成立,当时,,无解,故,的最大值为.【点睛】本小题主要考查函数的奇偶性与单调性,考查不等式恒成立问题的转化方法及利用分类讨论的方法解含有绝对值的不等式.函数的奇偶性的判断,则函数为偶函数,若则函数为奇函数.奇函数的图象关于原点对称,偶函数的图象关于轴对称.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13. 在复平面内,复数对应的点位于第三象限,则实数的取值范围是__________.【答案】【解析】依题意有且,解得.14. 已知,则__________.【答案】【解析】由得,所以.15. 过双曲线的右焦点,且斜率为2的直线与的右支有两个不同的公共点,则双曲线离心率的取值范围是__________.【答案】【解析】由双曲线及其渐近线可知,当且仅当时,直线与双曲线的右支有两个不同的公共点,故,故.16. 一个正方体的三视图如图所示,若俯视图中正六边形的边长为1,则该正方体的体积是__________.【答案】【解析】依题意可知,该正方体的一条对角线即为俯视方向(如图1),距最高点最近的三个顶点构成的平面与俯视方向垂直(如图2),由俯视图中正六边形的边长为,可知图3中,故图2中,正方体面对角线长为,故棱长为,所以体积为.【点睛】本小题主要考查由三视图还原为原图,考查几何体的体积公式. 三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知等比数列中,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】【试题分析】(1)利用基本元的思想,将已知转化为,解方程求得,由此求得.(2)化简,利用并项求和法求得其前项和.【试题解析】(1)设等比数列的公比为,则,因为,所以,因为,解得,所以;(2),设,则,.18. 某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近60天,每天揽件数量统计如下表:以上数据已做近似处理,并将频率视为概率.(1)计算该公司未来3天内恰有2天揽件数在之间的概率;(2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?【答案】(1)(2)①15元②公司将前台工作人员裁员1人对提高公司利润不利【解析】【试题分析】(1)根据所给数据可知包裹件数在之间的天数为,由此计算出概率为.(2) ①利用总费用除以,得到平均费用为.②分别计算出两种情况下公司平均每日利润的分布列及期望值,根据期望值可判断公司将前台工作人员裁员1人对提高公司利润不利.【试题解析】(1)样本中包裹件数在之间的天数为48,频率,故可估计概率为,显然未来3天中,包裹件数在之间的天数服从二项分布,即,故所求概率为;(2)①样本中快递费用及包裹件数如下表:故样本中每件快递收取的费用的平均值为(元),故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,可使前台工资和公司利润增加(元),将题目中的天数转化为频率,得若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司平均每日利润的期望值为(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司平均每日利润的期望值为(元)因,故公司将前台工作人员裁员1人对提高公司利润不利.19. 如图,在多面体中,四边形为菱形,,,且平面平面.(1)求证:;(2)若,,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】【试题分析】(1)连接,根据菱形的几何性质有,由面面垂直的性质定理可知平面,所以,,,所以平面,所以.(2) 设,过点作的平行线,以为坐标原点建立空间直角坐标系,通过计算平面和平面的法向量来求二面角的余弦值. 【试题解析】(1)证明:连接,由四边形为菱形可知,∵平面平面,且交线为,∴平面,∴,又,∴,∵,∴平面,∵平面,∴;(2)解:设,过点作的平行线,由(1)可知两两互相垂直,则可建立如图所示的空间直角坐标系,设,则,所以,设平面的法向量为,则,即,取,则为平面的一个法向量,同理可得为平面的一个法向量.则,又二面角的平面角为钝角,则其余弦值为.20. 已知椭圆:过点,且两个焦点的坐标分别为,.(1)求的方程;(2)若,,为上的三个不同的点,为坐标原点,且,求证:四边形的面积为定值.【答案】(1);(2)证明见解析.【解析】【试题分析】(1)通过椭圆的定义求得,而,由此求得,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,代入,利用弦长公式求得,利用点到直线的距离公式求得原点到直线的距离,由此求得四边形的面积.【试题解析】(1)由已知得,∴,则的方程为;(2)当直线的斜率不为零时,可设代入得:,设,则,,设,由,得,∵点在椭圆上,∴,即,∴,,原点到直线的距离为.∴四边形的面积:.当的斜率为零时,四边形的面积,∴四边形的面积为定值.【点睛】本小题主要考查利用椭圆定义求椭圆方程,考查直线和椭圆的位置关系,考查一元二次方程根与系数关系.在求椭圆方程的过程中,首先注意到题目给定椭圆的焦点坐标,和椭圆上一点坐标,故采用椭圆的定义,即椭圆上任意一点到两个焦点的距离之和相等,并且和为,由此求得椭圆方程.21. 已知函数.(1)当时,若函数恰有一个零点,求的取值范围;(2)当时,恒成立,求的取值范围.【答案】(1) 或 (2)【试题解析】(1)函数的定义域为,当时,,所以,①当时,时无零点,②当时,,所以在上单调递增,取,则,因为,所以,此时函数恰有一个零点,③当时,令,解得,当时,,所以在上单调递减;当时,,所以在上单调递增.要使函数有一个零点,则即,综上所述,若函数恰有一个零点,则或;(2)令,根据题意,当时,恒成立,又,①若,则时,恒成立,所以在上是增函数,且,所以不符题意.②若,则时,恒成立,所以在上是增函数,且,所以不符题意.③若,则时,恒有,故在上是减函数,于是“对任意,都成立”的充要条件是,即,解得,故.综上,的取值范围是.【点睛】本小题主要考查利用函数导数研究函数的单调性,最值,考查利用函数的导数求解不等式恒成问题.要通过求解不等式恒成立问题来求得参数的取值范围,可将不等式变形成一为零的形式,然后将另一边构造为函数,利用函数的导数求得这个函数的最值,根据最值的情况来求得参数的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 【选修4-4:坐标系与参数方程】在平面直角坐标系中,曲线的参数方程为:(为参数,),将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与相交于两点,且,求的值.【答案】(1) (2) 或【解析】【试题分析】(1)先将的参数方程消参变为直销坐标方程,把代入上述方程可得到的方程,代入极坐标和直角坐标转化公式可求得的极坐标方程.(2)写出直线的极坐标方程,分别代入的极坐标方程,求得对应,结合可求得的值.【试题解析】(1)的普通方程为,把代入上述方程得,,∴的方程为,令,所以的极坐标方程为;(2)在(1)中建立的极坐标系中,直线的极坐标方程为,由,得,由,得,而,∴,而,∴或.23. 【选修4-5:不等式选讲】已知函数.(1)若的最小值不小于3,求的最大值;(2)若的最小值为3,求的值.【答案】(1) (2) 或-4【解析】【试题分析】(1)由,求得的取值范围和最大值.(2)对分成和三类,去绝对值,将变为分段函数,利用最小值为求得的值.【试题解析】(1)因为,所以,解得,即;(2),当时,,所以不符合题意,当时,,即,所以,解得,当时,同法可知,解得,综上,或-4.。
山西省太原市2018届高考一模数学试卷(理)含答案
太原五中2017-2018学年度第二学期阶段性检测高 三 数 学(理)出题人、校对人:刘晓瑜、郭舒平、董亚萍、刘锦屏、凌河、闫晓婷(2018.4.2) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知{}{}2ln(1),2,xP x y x Q y y x P ==-==∈,则=P Q ( ).A (0,1).B 1(,1)2.C 1(0,)2.D (1,2)2、已知复数(2a iz i i+=-为虚数单位)在复平面内对应的点在第三象限,则实数a 的取值范围是( ).A 1(2,)2-.B 1(,2)2-.C (,2)-∞-.D 1(+)2∞, 3、在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若直线cos cos 0bx y A B ++=与cos cos 0ax y B A ++=平行,则ABC ∆一定是( ).A 锐角三角形 .B 等腰三角形 .C 直角三角形 .D 等腰或直角三角形4、在区间[1,5]随机地取一个数m ,则方程22241x m y +=表示焦点在y 轴上的椭圆的概率是( ).A 15.B 14.C 35.D 345、若2012(21)n n nx a a x a x a x +=++++ 的展开式中的二项式系数和为32,则12+n a a a ++= ( ).A 241.B 242.C 243.D 2446、《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m 的值为0,则输入的a 的值为( ).A 218.B 4516.C 9332.D 189647、已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ).A 若30a >,则20150a <.B 若40a >,则20140a < .C 若30a >,则20150S >.D 若40a >,则20140S >8、已知k R ∈,点(,)P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( ).A 15.B 9.C 1.D 53-9、若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,所表示的平面区域存在点00(,)x y ,使00+20x ay +≤成立,则实数a 的取值范围是( ).A 1a ≤-.B 1a <-.C 1a >.D 1a ≥10、平行四边形ABCD 中,1,1,2-=⋅==AD AB ,点M 在边CD 上,则⋅的最大值为( ).A 5.B 2.C 1.D 111、已知12,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左支交于点A ,与右支交于点B ,若a AF 21=,3221π=∠AF F ,则=∆∆221ABF F AF S S ( ).A 1.B 21.C 31.D 3212、不等式2ln (2)2x x x m x m ++-≤有且只有一个整数解,则m 的取值范围为( ).A [1,)-+∞.B (,44ln 2][1,)-∞---+∞.C (,33ln3][1,)-∞---+∞ .D (44ln 2,33ln3][1,)-----+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题—第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分 13、11sin 2)x dx -=⎰.14、已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈,当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,则b 的取值范围是.15、如图是某四面体的三视图,则该四面体的体积为 .16、已知数列{}n a 满足22(2)(2)n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对n N *∀∈恒成立,则实数λ的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17、(本小题满分12分) 已知23BAC P π∠=,为BAC ∠内部一点,过点P 的直线与BAC ∠的两边交于点,B C,且,PA AC AP ⊥=(1)若3AB =,求PC ;(2)求11PB PC+的取值范围. 18、(本小题满分12分)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,对角线AC 与BD 的交点为O,2,60PD PB AB PA BCD ====∠= .(1)证明:PO ⊥平面ABCD ;(2)在棱CD 上是否存在点M ,使平面ABP 与平面MBP 所若存在,请指出M 点的位置;若不存在,请说明理由. 19、(本小题满分12分)侧视图俯视图2APBCD OA CPB在2018年2月K12联盟考试中,我校共有500名理科学生参加考试,其中语文考试成绩近似服从正态分布2(95,17.5)N ,数学成绩的频率分布直方图如图:(1)如果成绩大于130的为特别优秀,这500名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(3)根据以上数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀? ①若X ~2(,)N μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<≤+=-<≤+=②22()=()()()()n ad bc K a b c d a c b d -++++③20、(本小题满分12分)已知椭圆)0(1:22221>>=+b a by a x C ,F 为左焦点,A 为上顶点,)0,2(B 为右顶点,=,抛物线2C 的顶点在坐标原点,焦点为F . (1)求1C 的标准方程;(2)是否存在过F 点的直线,与1C 和2C 交点分别是P ,Q 和M ,N ,使得OMN OPQ S S ∆∆=21?如果存在,求出直线的方程;如果不存在,请说明理由.21、(本小题满分12分) 已知函数()(2)()x f x x e ax =--.(1)当0a >时,讨论)(x f 的极值情况; (2)若(1)[()]0x f x a e --+≥,求a 的值.请考生从第22、23 题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22、(本小题满分10分)【选修4——4:坐标系与参数方程】 在平面直角坐标系xOy 中,曲线1C 的参数方程为2+2cos 2sin x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy 有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为=(0)6πθρ>.(1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积. 23、(本小题满分10分)【选修4——5:不等式选讲】 已知函数()||21f x x m x =++-. (1)当=1m 时,解不等式()3f x ≥; (2)若14m <,且当[,2]x m m ∈时,不等式1()12f x x ≤+恒成立,求实数m 的取值范围.理科数学 参考答案1.B2.C3.C 【解析】由两直线平行可得cos cos 0b B a A -=,由正弦定理可得sin cos sin cos 0B B A A -=,即11sin 2sin 222A B =,又,(0,)+(0,)A B A B ππ∈∈,,所以22A B =或2+2=A B π,即A B =或+=2A B π,当A B =时,cos cos a b A B ==,,此时两直线重合,不符合题意,舍去.则ABC ∆是直角三角形. 4.B 5.B 6.C7.C 【解析】等比数列的公比0q ≠,若30a >,则2201411201510,0,0a q a a a q >∴>∴=>,所以A 错误;若40a >,则3201311201410,0,0aq aq a aq >∴>∴=>,所以B 错误;若30a >,则312=0,1a a q q >∴=时,20150S >,1q ≠时,201512015(1)=0(11a q S q q->--与20151q -同号),所以C 一定成立;易知D 不成立. 8.B【解析】由题意得:d =≤,且2230k k -+>,解得31k -≤≤.2222222=()()4(23)323ab a b a b k k k k k +-+=--+=+-,所以:当=3k -时,ab 取到最大值9.9.A 【解析】由线性区域可得00y >,由题意得0max 02()x a y +≤-,002yx +表示(2,0)-与00(,)x y03y 002713x y +-≤-≤-,1a ≤-.10.B 11.B12.D 【解析】由2ln (2)2x x x m x m ++-≤得2ln 2(2)x x x x x m +-≤-,所以当2x >时,满足2ln 2(2)x x x xm x +-≥-只有一个整数解或当02x <<时,满足2ln 2(2)x x x xm x +-≤-只有一个整数解.令2ln 2()(2)x x x x f x x +-=-,所以222ln 32()(2)x x x f x x -+-'=-,令2()2ln 32g x x x x =-+-,得(21)(2)()x x g x x--'=-,所以()g x 在(0,2)单调递增,(2)+∞,单调递减,所以max ()(2)2ln 24622ln 20g x g ==-+-=>,又(1)0g =, (3)2ln320,(4)4ln 260g g =->=-<,所以存在0(3,4)x ∈,使0()=0g x ,所以()f x 在(0,1),0(,)x +∞单调递减,在(1,2),0(2,)x 单调递增,所以当(0,2)x ∈时,min ()(1)1f x f ==-,当(2,)x ∈+∞时,max 0()()f x f x =,又(3)33ln3(1),(4)44ln 2(1)f f f f =--<=--<,且16(3)(4)ln027ef f -=>,所以2ln 2(2)x x x x x m +-≤-有且只有一个整数解的解为1x =或3x =,所以(1)m f >或(4)(3)f m f <≤,即1m ≥-或44ln 233ln 3m --<≤--13.2π 14.1 15.2 16.[0,)+∞17. 【解析】(1)2=326BAC PAC BAP πππ∠=∠∴∠=,,,在PAB ∆中,由余弦定理知2222cos36PB AP AB AP AB π=+-= ,得PB AP ,则233BPA APC ππ∠=∠=,.在直角APC ∆中,=cos3AP PC π=(2)设APC θ∠=,则6ABP πθ∠=-,在直角APC ∆中,=cos APPC θ,在PAB ∆中,由正弦定理知,sin()sin2sin()666AP PB AP PB πππθθ=∴=--.所以2s in(11s 3s i n 6=s i n P BPCA P A Pπθθθ-++==,由题意知1,sin 1622ππθθ<<∴<<,所以11PB PC +的取值范围是1(,1)2. 18.【解析】(Ⅰ)证明:∵ PD =PB ,且O 为BD 中点,∴ PO ⊥BD. 在菱形ABCD 中,∵ ∠BCD =600,AB =2,∴ OA =3,OB =1. 又PB =2, ∴ PO = 3.∵ PA =6,∴ PA 2=PO 2+OA 2,PO ⊥OA. ∵ BD ∩AO =O ,∴ PO ⊥平面ABCD ; (Ⅱ)建立如图所示坐标系,则A(3,0,0),B(0,1,0),C(-3,0,0),D(0,-1,0),P(0,0,3).∴ → AB =(-3,1,0),→ BP =(0,-1,3),→ BC =(-3,-1设平面ABP 的一个法向量为n 1,由⎩⎪⎨⎪⎧n 1·→ AB =0n 1·→ BP =0 得n 1=(1,3,设→ CM =λ→ CD ,则→ BM =→ BC +→ CM =→ BC +λ→CD =(3(λ-1),-(λ+1)设平面BPM 的一个法向量为n 2,由⎩⎪⎨⎪⎧n 2·→ BM =0n 2·→BP =0 得n 2=(λ+1,3(λ-1),λ-1) 由 |cos < n 1,n 2>|=|5λ-3|5(λ+1)2+4(λ-1)2=55 得 5λ2-6λ+1=0,∴ λ=1或λ=15 .即,当点M 与点D 重合或|→ CM|=15 |→ CD|时,锐二面角的余弦值为55.19.【解析】解:(1)∵语文成绩服从正态分布2(95,17.5)N , ∴语文成绩特别优秀的概率为11(130)(10.96)0.022p P X =≥=-⨯=,数学成绩特别优秀的概率为20.0012200.024p =⨯=, ∴语文特别优秀的同学有5000.02=10⨯人, 数学特别优秀的同学有5000.024=12⨯人.(2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3,321101063316161231066331616327(0),(1),1456151(2),(3),5628C C C P X P X C C C C C P X P X C C ============∴X 的分布列为:()0123145656288E X =⨯+⨯+⨯+⨯=.(3)2×2列联表:∴22500(648446)=144.5 6.6351049012488K ⨯⨯-⨯≈>⨯⨯⨯ ∴有99%以上的把握认为语文特别优秀的同学,数学也特别优秀.20.【解析】(Ⅰ)依题意可知=,即2227b a a +=,由右顶点为)0,2(B ,得2=a ,解得32=b ,所以1C 的标准方程为13422=+y x . (Ⅱ)依题意可知2C 的方程为x y 42-=,假设存在符合题意的直线,设直线方程为1-=ky x ,),(11y x P ,),(22y x Q ,),(33y x M ,),(44y x N ,联立方程组⎪⎩⎪⎨⎧=+-=134122y x ky x ,得096)43(22=--+ky y k , 由韦达定理得436221+=+k k y y ,439221+-=k y y ,则431122221++=-k k y y ,联立方程组⎩⎨⎧-=-=xy ky x 412,得0442=-+ky y ,由韦达定理得k y y 443-=+,443-=y y ,所以14243+=-k y y ,若OMNOP Q S S ∆∆=21,则432121y y y y -=-,即1243112222+=++k k k ,解得36±=k , 所以存在符合题意的直线方程为0136=++y x 或0136=+-y x . 21.【解析】(1)已知()()(2)()(1)2(1)(1)(2)x x x x f x e ax x e a x e a x x e a '=-+--=---=-- 因为0a >,由()0f x '=得1x =或ln 2x a =.① 当=2e a 时,()(1)()0xf x x e e '=--≥,()f x 单调递增,故()f x 无极值; ② 当02ea <<时,ln 21a <,则所以:()f x 有极大值2(ln 2)=(ln 22)f a a a --,极小值(1)=f a e -③2ea >时,ln 21a >,则所以:()f x 有极大值(1)=f a e -,极小值2(ln 2)=(ln 22)f a a a -- 综上所述:02ea <<时,()f x 有极大值2(ln 22)a a --,极小值a e -; =2ea 时,()f x 无极值;2ea >时,()f x 有极大值a e -,极小值2(ln 22)a a --; (2)令()()g x f x a e =-+,则(1)()0x g x -≥, 且()()(1)(2)x g x f x x e a ''==--①0a ≤时,20xe a ->,所以当1x <时,()0g x '<,()g x 单调递减,所以()(1)0g x g >=,此时(1)()0x g x -<,不满足题意;③ 由于()g x 与()f x 由相同的单调性,由(1)知a.当=2ea 时,()g x 在R 上单增,且(1)=0g ,所以1x ≥时,()0g x ≥,1x <时,()0g x <, 所以当=2ea 时,恒有(1)()0x g x -≥,满足题意; b.当02ea <<时,()g x 在(ln 2,1)a 上单减,所以(ln 2,1)x a ∈时,()(1)=0g x g >,此时 (1)()0x g x -<,不满足题意;c.当2ea >时,()g x 在(1,ln 2)a 递减,所以当(1,ln 2)x a ∈时,()(1)=0g x g <,此时 (1)()0x g x -<,不满足题意;综上:=2e a .22.【解析】(1)曲线1C 的普通方程:22(2)4x y -+=,即22-40x y x +=.所以1C 的极坐标方程为24cos 0ρρθ-=,即=4cos ρθ. 曲线3C的直角坐标方程:(0)y x x =>,...........5分 (2)依题意,设点P 、Q 的极坐标分别为12(,),(,)66ππρρ. 将=6πθ代入=4cos ρθ,得1ρ 将=6πθ代入=2sin ρθ,得2=1ρ, 所以121PQ ρρ=-=,依题意得,点1C 到曲线=6πθ的距离为1sin16d OC π==.所以11111)222C PQ S PQ d ∆=== .......10分 23. 【解析】(1)当=1m 时,()|1|21f x x x =++-,则-3(1)1()2-(1)213()2x x f x xx x x ⎧⎪<-⎪⎪=-≤≤⎨⎪⎪>⎪⎩,由()3f x ≥解得1x ≤-或1x ≥,即原不等式的解集为(,1][1,)-∞-⋃+∞........5分(2)1()12f x x ≤+,即11+2-1122x m x x +≤+,又[,2]x m m ∈且14m <, 所以10,4m <<且0x > 所以11+121222m x x x ≤+--.即221m x x ≤+--.令()221t x x x =+--,则131(0)2()13()2x x t x x x ⎧+<<⎪⎪=⎨⎪-≥⎪⎩,所以[,2]x m m ∈时,min ()()=31t x t m m =+, 所以31m m ≤+,解得12m ≥-, 所以实数m 的取值范围是1(0,)4. ......10分。
(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档
2018 年普通高等学校招生全国统一考试 理科数学
注意事项: 1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡
皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
y
0
D.
3 2
.
14. 记 Sn 为数列an的前 n 项和,若 Sn 2an 1 ,则 S6
.
15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
A. y 2x
B. y x
C. y 2x
6. 在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
3 1 AB AC
A. 4
4
1 3 AB AC
B. 4
4
3 1 AB AC
C. 4
4
D. y x
1 3 AB AC
D. 4
4
7. 某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱 表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。 z 1 i 2i
1. 设 1 i ,则| z |
2018年3月2018届高三第一次全国大联考(新课标Ⅰ卷)理数卷(考试版)
理科数学试题 第1页(共6页) 理科数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018年第一次全国大联考【新课标Ⅰ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|2}P x y x x ==--+,{|ln 1}Q x x =<,则P Q =A .(0,2]B .[2,e)-C .(0,1]D .(1,e)2.若复数z 满足42ii 1z -=-(i 为虚数单位),则下列说法正确的是 A .复数z 的虚部为1 B .||10z =C .3i z=-+D .复平面内与复数z 对应的点在第二象限3.已知角α的终边经过点(2,)P m (0m ≠),若5sin 5m α=,则3πsin(2)2α-= A .35- B .35 C .45D .45-4.已知锐角ABC △的内角,,A B C 的对边分别为,,a b c ,若3c =,36sin a A =,ABC △的面积3S =,则a b +=A .21B .17C .29D .55.已知函数()3log (7)(0,1)a f x x a a =+->≠的图象恒过点P ,若双曲线C 的对称轴为两坐标轴,一条渐近线与310x y --=垂直,且点P 在双曲线C 上,则双曲线C 的离心率等于A .2B .103C .10D .226.如图,半径为R 的圆O 内有四个半径相等的小圆,其圆心分别为,,,A B C D ,这四个小圆都与圆O 内切,且相邻两小圆外切,则在圆O 内任取一点,该点恰好取自阴影部分的概率为A .322-B .642-C .962-D .1282-7.如图为某几何体的三视图(图中网格纸上每个小正方形的边长为1),则该几何体的体积等于A .π12+B .5π123+ C .π4+D .5π43+ 8.已知函数π()3)cos (03)2f x x x ωωω=--<<的图象过点π(,0)3P ,若要得到一个偶函数的图象,则需将函数()f x 的图象A .向左平移2π3个单位长度 B .向右平移2π3个单位长度 C .向左平移π3个单位长度D .向右平移π3个单位长度9.若执行下面的程序框图,则输出的结果为理科数学试题 第3页(共6页) 理科数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .180B .182C .192D .20210.当地时间2018年1月19日晚,美国参议院投票否决了一项旨在避免政府停摆的临时拨款法案,美国联邦政府非核心部门工作因此陷入停滞状态.某国家与美国计划进行6个重点项目的洽谈,考虑到停摆的现状,该国代表对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有 A .240种B .188种C .156种D .120种11.如图,已知抛物线28y x =,圆C :22430x y x +-+=,过圆心C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则||9||PN QM +的最小值为A .32B .36C .42D .5012.已知{|()0}M f αα==,{|()0}N g ββ==,若存在M α∈,N β∈,使得||n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若2()21x f x -=-与2()e xg x x a =-互为“1度零点函数”,则实数a 的取值范围为A .214(,]e eB .214(,]e eC .242[,)e eD .3242[,)e e第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13.已知向量,a b 满足(cos 2018,sin 2018)=a ,||7+=a b ,||2=b ,则,a b 的夹角等于 . 14.已知点P 在不等式组2221y xx y x ≤⎧⎪+≥⎨⎪≤⎩表示的平面区域内,(3,2)A 、(2,1)B ,则PAB △面积的最大值为 .15.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱111ABC A B C -,其中AC BC ⊥,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为 .16.2017年吴京执导的动作、军事电影《战狼2》上映三个月,以56.8亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A ,B ,C ,D 的四张电影票放在编号分别为1,2,3,4的四个不同盒子里,让四位好朋友进行猜测:甲说:第1个盒子里面放的是B ,第3个盒子里面放的是C ; 乙说:第2个盒子里面放的是B ,第3个盒子里面放的是D ;丙说:第4个盒子里面放的是D ,第2个盒子里面放的是C ;丁说:第4个盒子里面放的是A ,第3个盒子里面放的是C . 小明说:“四位朋友,你们都只说对了一半.” 可以推测,第4个盒子里面放的电影票为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)理科数学试题 第5页(共6页) 理科数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________已知数列{}n a 中0n a >,其前n 项和为n S ,且对任意*n ∈N ,都有2(1)4n n a S +=.等比数列{}n b 中,1330b b +=,46810b b +=.(Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)求数列{(1)}nn n a b -+的前n 项和n T .18.(本小题满分12分)据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:送货单数30 40 50 60 天数甲1010 20 10 乙515255已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪60元,每单抽成1元;乙公司规定底薪80元,每日前40单无抽成,超过40单的部分每单抽成t 元.(Ⅰ)分别求甲、乙快递公司的快递员的日工资12y y ,(单位:元)与送货单数n 的函数关系式; (Ⅱ)若将频率视为概率,回答下列问题:①记甲快递公司的快递员的日工资为X (单位:元),求X 的分布列和数学期望;②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由. 19.(本小题满分12分)如图所示的多面体中,下底面平行四边形ABCD 与上底面111A B C 平行,且111AA BB CC ∥∥,122AB AC AA ==,1π3A AC ∠=,AC BC ⊥,平面11ACC A ⊥平面ABC ,点M 为11BC 的中点.(Ⅰ)过点1B 作一个平面α与平面AMC 平行,并说明理由;(Ⅱ)求平面1A MC 与平面11AC D 所成锐二面角的余弦值. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,1)B ,且过点22,P . (Ⅰ)求椭圆C 的方程及其离心率;(Ⅱ)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值. 21.(本小题满分12分)已知函数2(e ()xa f x ax =+∈R ,e 为自然对数的底数).(Ⅰ)当e2a =-时,求函数()f x 的单调区间; (Ⅱ)若()1f x x ≥+在0x ≥时恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为123x ty t⎧=⎪⎨⎪=-⎩(t 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线D 的极坐标方程为(1sin )2ρθ+=. (Ⅰ)求曲线C 的普通方程与曲线D 的直角坐标方程; (Ⅱ)若曲线C 与曲线D 交于,M N 两点,求||MN . 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|23||1|f x x x =-+-. (Ⅰ)解不等式()2f x >;(Ⅱ)若正数,,a b c 满足123()3a b c f ++=,求123a b c++的最小值.。
2018年山西高考数学理科试题含答案(B4 可直接打印 也可缩印成A4纸)
绝密★启用前2018年普通高等学校招生全国统一考试 (山西卷)理科数学注意事项:1.答卷前,考生务必将自己 的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目 的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出 的四个选项中,只有一项是符合题目要求 的。
1.设1i2i 1iz -=++,则||z =A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年 的新农村建设,农村 的经济收入增加了一倍,实现翻番,为更好地了解该地区农村 的经济收入变化情况,统计了该地区新农村建设前后农村 的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确 的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入 的总和超过了经济收入 的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处 的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上 的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱 的高为2,底面周长为16,其三视图如图.圆柱表面上 的点M 在正视图上 的对应点为A ,圆柱表面上 的点N 在左视图上 的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径 的长度为学校:班级:姓名:考号:密封线A.172B.52C.3 D.28.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C交于M,N两点,则FM FN⋅=A.5 B.6 C.7 D.89.已知函数e0()ln0x xf xx x⎧≤=⎨>⎩,,,,()()g x f x x a=++.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III 的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p311.已知双曲线C:2213xy-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若△OMN为直角三角形,则|MN|=A.32B.3 C .23D.4 12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷1理科数学试题及答案[2]
2018年高考全国卷1理科数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考全国卷1理科数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考全国卷1理科数学试题及答案(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:本题共4小题,每小题5分,共20分。