传感器实验2012
2012年春传感器及应用系统课程设计任务书(...
传感器及应用系统课程设计任务书一、基本要求1、使学生进一步熟悉和掌握传感器系统工作原理,了解传感器应用系统设计的基本方法和步骤。
2、熟练掌握传感器选择方法。
3、熟练掌握电路参数选取、数据计算方法。
4、掌握传感器信号转换放大电路选型和设计方法。
5、掌握电气系统线路图绘制方法。
6、掌握撰写课程设计报告的方法。
7、掌握利用图书、手册、期刊和专业网站查找电子元件和传感器设计资料的方法。
二、课程设计题目、内容与要求题目1.手提电子秤电路设计设计内容:(1)整体电路设计(画出电路组成框图);(2)信号检测电路设计;(3)信号放大电路设计,电路参数选取、数据计算;(4)A / D转换电路设计;(5)显示电路设计。
设计要求:(1)采用电阻应变式传感器组成测量电桥;(2)电路组成:测量电桥、运算放大电路、A / D转换、显示电路;(3)称重范围为:2~5kg;(4)假设在实验装置上进行模拟实验,测量出需经实验确定的参数或系数;(5)写出5000字左右的工作原理说明,附系统图一张。
题目2.涡流膜厚检测电路设计设计内容:(1)整体电路设计(画出电路组成框图);(2)信号检测电路设计;(3)信号放大电路设计,电路参数选取、数据计算;(4)正弦波振荡电路设计。
设计要求:(1)采用电涡流式传感器组成测量电路;(2)电路组成:正弦波振荡器、电涡流传感器、电桥、信号放大电路;(3)假设在实验装置上进行模拟实验,测量出需经实验确定的参数或系数;(4)写出5000字左右的工作原理说明,附系统图一张。
题目3.数字温度计设计设计内容:(1)整体电路设计(画出电路组成框图);(2)信号检测电路设计;(3)信号号放大电路设计,电路参数选取、数据计算;(4)A / D转换电路设计;(5)显示电路设计。
设计要求:(1)采用热电阻传感器组成测量电路;(2)电路组成:测量电桥、运算放大电路、A / D转换、显示电路;(3)测量范围为-199.9±199.9℃, 不进行非线性校正;(4)假设在实验装置上进行模拟实验,测量出需经实验确定的参数或系数;(5)写出5000字左右的工作原理说明,附系统图一张。
涡流传感器位移实验报告
涡流传感器位移实验报告涡流传感器位移实验报告引言:涡流传感器是一种常见的非接触式位移传感器,广泛应用于工业领域。
本实验旨在通过搭建实验装置,使用涡流传感器测量不同位移下的涡流传感器输出信号,并分析其特性和应用。
实验装置:实验装置由涡流传感器、位移调节装置、信号处理器和数据采集系统组成。
涡流传感器通过磁场感应原理,测量金属材料表面的涡流强度,从而间接测量位移。
位移调节装置通过改变金属材料与传感器之间的距离,实现不同位移的测量。
信号处理器负责放大和滤波传感器输出信号,数据采集系统用于记录和分析实验数据。
实验步骤:1. 搭建实验装置:将涡流传感器固定在支架上,调整传感器与金属材料表面的距离。
连接信号处理器和数据采集系统。
2. 校准传感器:使用已知位移的参考物体,调整传感器输出信号与位移之间的关系,确保测量的准确性。
3. 测量不同位移:通过调节位移调节装置,改变金属材料与传感器之间的距离,记录不同位移下的传感器输出信号。
4. 数据分析:根据实验数据,绘制位移与传感器输出信号之间的关系曲线,分析其特性和应用。
实验结果:经过实验测量和数据分析,我们得到了以下结果:1. 位移与传感器输出信号之间存在线性关系,即位移越大,传感器输出信号越强。
2. 传感器输出信号的幅度随着位移的增大而增大,但增长速率逐渐减缓。
3. 在一定范围内,传感器输出信号的变化较为稳定,可以较准确地测量位移。
4. 随着位移的增大,传感器输出信号的噪声也逐渐增大,需要进行信号处理和滤波。
讨论与应用:涡流传感器位移测量具有以下优点和应用价值:1. 非接触式测量:涡流传感器无需与被测物体接触,避免了传感器磨损和污染,适用于高精度和长时间测量。
2. 高灵敏度:涡流传感器对微小位移具有高灵敏度,可以实现亚微米级的位移测量。
3. 宽测量范围:涡流传感器适用于不同材料和形状的被测物体,具有较宽的测量范围。
4. 工业应用:涡流传感器广泛应用于机械制造、航空航天、汽车工业等领域,用于位移、振动和缺陷检测等应用。
传感器实训指导书
扬州高等职业技术学校实训指导书2011—2012学年第二学期课程名称传感器课程类别实训专业模具授课班级10205授课教师胡冯仪《传感器》实训指导书实验一、YL-CG2003型传感器实验台仪器的使用一、电源部分1.总电源空气式带漏电保护开关切换整个实验台的单相220V电源,额定电流最大为3A,安全可靠。
2.指示灯—电源插入电网后即亮,表示实验台已接入电源。
3.AC220输出双路多功能插座可输出220V单相电源,功率不大于300W二、温度控制部分1.温度控制仪面板说明(1)将K型热电偶接入主控箱面板温度中的Ei(+、-)标准值插孔中,合上热源开关。
仪表将首先按A、B、C程序自检2.通过切换开关可控制直流电压表输入端。
当为内接输入位置可测量指示2V-15V直流稳压输出电压。
外接输入分两档0-2V或0-20V。
A、所有数码管及所有指示灯全部点亮,用来检测发光系统是否正常,此时如发现有不能点亮的发光文件,请停止使用该仪表送修。
B、PV窗口显示“TYPE”,SV窗口显示仪表目前所应配输入类型。
C、显示仪表的控制范围,SV窗口显示下限测量控制值,PV窗口显示上限控制值。
(2)仪表进行完以上三步自检后,即投入正常测控状态,上排PV窗口显示测量值,下排SV 窗口设定值。
(3)要想修改设定值,请在正常显示方式下,按一下SET键,PV窗口显示,“SP”,SV窗口显示已设置的值,此时按▲键向上调节设定值,按键▼向下调节设定值。
2.温控仪电源开关—控制整个温控部分电源开或关。
(1)指示灯一亮表示电源部分总电源开关已打开,实验仪在工作。
(2)温控传感器输入插口一通过JK插头与9号温度实验模块E型热电偶连接用。
(3)加热源电源输出端—可提供20V交流5A功率电源。
与9号实验模块电源输入端进行加热温控。
控制温度精度±1℃。
三、数显单元和2V~15V直流电源部分1.直流电压显示为132数字电压表读数V。
2.通过切换开关可控制直流电压表输入端。
传感器实验报告范文
传感器实验报告范文引言:传感器是一种能够感受被测量的非电学量并将其转变为电信号输出的装置。
传感器在现代科技中被广泛应用,如环境监测、医疗设备、工业自动化等领域。
本实验主要介绍光敏传感器和温度传感器的基本原理和实验过程。
一、光敏传感器实验1.实验原理光敏传感器是一种通过光敏材料改变阻值来感知光照强度的传感器。
光强越大,光敏器件阻值越小。
本实验使用的光敏传感器为LDR(光敏电阻)。
2.实验器材-LDR-可变电阻-多用途实验板-电源-示波器-连接线3.实验步骤(1)将LDR和可变电阻分别连接至实验板。
(2)将电源正极与可变电阻的一侧连接,电源负极与LDR的一侧连接,示波器负极与LDR的另一侧连接,示波器正极与可变电阻的另一侧连接。
(3)调节可变电阻的阻值,观察示波器上的波形变化。
(4)进行数据记录和分析。
4.实验结果(1)调节可变电阻的阻值,光敏传感器的阻值随之变化。
(2)示波器上的波形变化反应了光敏传感器阻值变化的趋势。
5.实验分析通过实验,我们可以清楚地观察到光敏传感器阻值随光照强度变化的规律。
这个实验原理可以应用在许多实际应用中,如光照控制系统、街道灯自动控制等。
二、温度传感器实验1.实验原理温度传感器是一种通过感知温度变化来输出电信号的传感器。
本实验使用的温度传感器为热敏电阻。
2.实验器材-热敏电阻-可变电阻-多用途实验板-电源-示波器-温度计-连接线3.实验步骤(1)将热敏电阻和可变电阻分别连接至实验板。
(2)将电源正极与可变电阻的一侧连接,电源负极与热敏电阻的一侧连接,示波器负极与热敏电阻的另一侧连接,示波器正极与可变电阻的另一侧连接。
(3)使用温度计测量环境温度,并记录。
(4)调节可变电阻的阻值,观察示波器上的波形变化。
(5)进行数据记录和分析。
4.实验结果(1)调节可变电阻的阻值,温度传感器的阻值随之变化。
(2)示波器上的波形变化反应了温度传感器阻值变化的趋势。
5.实验分析通过实验,我们可以清楚地观察到温度传感器阻值随温度变化的规律。
食醋中总酸量的测定实验报告 (1)
食醋中总酸量的测定孟娟2012级化学3班14小组41207149一、实验目标1.初步学会用传感器技术测定食醋中的总酸量;2.会组织中学生用传感器技术测定食醋中的总酸量教学过程。
二、实验原理1.食醋中的主要成分是醋酸,此外还含有少量的乳酸等有机酸,醋酸是弱酸,用传统的pH试纸或酸度计测定食醋中的总酸量,总是要比实际浓度低,误差很大。
本实验将使用传感器技术来测定食醋中的总酸量,该方法不怕待测物中的颜色干扰,测定既快又不用加指示剂。
传感器简介:传感器是一系列根据一定的物理化学原理制成的物理化学量的感应器具,它能把外界环境中的某个物理化学量的变化以电信号的方式输出,再经数据模拟装置转化成数据或图表的形式在数据采集器上显示并储存起来。
中学化学教学中进行科学探究常用到的传感器有温度传感器、pH传感器、溶解氧传感器、电导率传感器、光传感器、压力传感器、色度传感器等。
传感器技术的特点:便携,实时,准确,综合,直观。
pH传感器是用来检测被测物中氢离子浓度并转换成相应的可用输出信号的传感器,通常由化学部分和信号传输部分构成。
pH传感器利用能斯特(NERNST)原理。
待测的食醋中醋酸及其他有机酸可换算为醋酸总量,都可以被标准的强碱NaOH溶液标定:NaOH+CH3COOH=CH3COONa+H2OC待测V待测=C标准V标准2.当溶液中的电解质含量恒定时,电导率亦恒定,当生成难电离物质时,电导率下降,pH传感器就是把电信号转化为化学信息来测定其中的总酸度的。
三、仪器与药品pH传感器、数据采集器、自动计数器、50mL酸式滴定管、电磁搅拌器、铁架台、250mL烧杯、量筒有色食醋原液、0.1mol/L NaOH溶液、蒸馏水四、实验操作过程1.准备阶段:pH传感器的标定(1)在采集器3号传感器接口上连接好pH传感器,然后按下采集器电源开关,打开数据采集器,进入如下界面:图一点击右下角“系统设置”,进入如下界面:图二选择系统设定里的“探头标定”选项,并点击“探头校准工具”按钮:图三点击“建立连接”按钮(点击后变灰色,显示连接成功,即可开始标定)。
传感器实验台实验报告
传感器实验台实验报告实验目的:通过搭建传感器实验台并进行实验,掌握传感器的工作原理和应用。
实验器材:1. Arduino开发板2. 传感器模块(根据实验需要选择合适的传感器)3. 连接线(杜邦线等)实验原理:传感器是一种能够感知和测量实际物理量或化学量的设备。
在本实验中,我们将使用Arduino开发板和不同类型的传感器模块进行实验。
实验步骤:1. 组装传感器实验台:将Arduino开发板连接到计算机上,使用连接线将传感器模块与开发板相连接。
2. 选择传感器模块:根据实验需求,选择合适的传感器模块,并将其连接到开发板的对应引脚上。
3. 编写程序:打开Arduino开发环境,创建一个新的项目。
根据传感器的工作原理和数据接口,编写相应的程序代码,使得开发板能够读取传感器模块的数据。
4. 上传程序:将编写好的程序上传到开发板上,并确保上传成功。
5. 运行实验:根据传感器的特性,进行相应的物理量或化学量测量实验。
通过对读取到的传感器数据进行分析和处理,得到实验结果。
6. 数据记录:记录实验数据,包括传感器模块的输出值和实验条件等。
实验注意事项:1. 保持实验环境整洁,避免杂质对传感器工作的干扰。
2. 操作时注意安全,避免触摸高压端口或使用不合适的电源。
3. 遵守实验室规章制度,正确使用实验设备和器材。
4. 在实验过程中,及时交流和沟通,确保实验进展顺利。
实验结果与讨论:根据不同的传感器模块和实验设计,我们可以获得不同的实验结果。
通过对数据的收集、分析和对比,可以得出相关的结论,并进行讨论和总结。
实验结论:通过本次实验,我们搭建了传感器实验台并成功进行了实验。
通过对不同传感器模块的使用,我们了解了传感器的工作原理和应用。
同时,我们学会了如何使用Arduino开发板编写程序、上传代码以及进行数据处理与分析。
这些知识和技能对于今后的实验和项目应用都具有重要的意义。
《传感器原理及应用》实验报告
《传感器原理及实验》实验报告2011~2012学年第1学期专业测控技术及仪器班级姓名学号指导教师王慧锋电子与信息实验教学中心2011年9月实验一金属箔式应变片――单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理本实验说明箔式应变片及单臂直流电桥的原理和工作情况。
应变片是最常用的测力传感元。
电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态的变化。
电桥电路是最常用的非电量测量电路中的一种,当电桥平衡时,电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力情况。
单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。
一直到做完实验三为止)。
加速度传感器灵敏度校准(pulse)
s eiwt
iwV i 2 w 2 s w 2 s a V
w 2f 1000
故可知加速度、速度以及位移幅值之间相差 1000 倍。
实验仪器连接框图 (1)使用模拟万用表检查插座是否正确接地,正确接地才能继续进行本实验; (2) 将待校准加速度传感器安装在校准仪的安装螺栓上, 并将各仪器如图依次正确连接, 确认无误; (3)激活整个系统,在电荷放大器上输入初始灵敏度; (4)打开校准仪,看软件读数是否为 10m/s2,如若不是则调节电荷放大器上的灵敏度, 使其为 10m/s2, 此时电荷放大器上的灵敏度即为被校准传感器的灵敏度, 并记录相应的数据; (5)实验完毕,仪器归回原位,进行数据处理。 如待校准传感器为电荷型,则需要通过电荷放大器与数据采集仪相连。 本实验只对 Z 轴方向的灵敏度进行校准。
7、实验小结
通过本实验的学习,使用传感器时要先对其灵敏度进行校准。否者将影响实验结果,致 使实验数据失真,将影响结果分析。 加速度传感器的选用时,在不影响实验的情况下,尽可能选用灵敏度较大传感器,使用 过程中,应尽量减少人为因素对其灵敏度的影响,以免影响实验数据。
2012—12—01==1:06
MADE BY REDBO3312 IN HARBIN ENGINEERING UNIVERSITY
加速度传感器灵敏度校准(pulse)
1、实验目的
(1)学习压电晶体型加速度传感器基本工作原理; (2)学习压电晶体型加速度传感器电荷灵敏度的标定,并与该传感器出厂指标比较。
2、实验原理
压电式加速度传感器最常见的类型有三种,即中心压缩型、剪切型和三角剪切型。中心 压缩型压电加速度传感器的敏感元件由两个压电晶体片组成,其上放有一重金属制成的惯性 质量块,用一预紧硬弹簧板将惯性质量块和压电元件片压紧在基座上。整个组件就构成了一 个惯性传感器。为了使加速度传感器能正常工作,被测系统振动的频率应该远低于加速度传 感器的固有频率。根据牛顿第二定律,由于惯性质量块和基座之间的相对运动,压电元件片 就受到与之相应的交变压力的作用,因此加速度传感器就能输出与被测振动加速度信号成比 例的电荷量。 压电片在某特定平面上所产生的电荷量可由下式决定:
传感器的测量实验报告
一、实验目的1. 了解传感器的原理和结构;2. 掌握传感器测量实验的基本方法;3. 熟悉传感器在工程中的应用。
二、实验原理传感器是一种将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要研究电阻式传感器和光电传感器两种类型的传感器。
1. 电阻式传感器:利用电阻元件的电阻值随被测物理量变化而变化的原理,将非电学量转换为电学量。
常见的电阻式传感器有电阻应变片、热敏电阻等。
2. 光电传感器:利用光电元件的光电效应,将光信号转换为电信号。
常见的光电传感器有光电二极管、光电三极管等。
三、实验仪器与设备1. 电阻式传感器实验装置;2. 光电传感器实验装置;3. 示波器;4. 数字多用表;5. 数据采集器;6. 计算机及实验软件。
四、实验步骤1. 电阻式传感器测量实验(1)将电阻应变片粘贴在悬臂梁上,连接好实验电路;(2)通过数字多用表测量电阻应变片的电阻值;(3)在悬臂梁上施加不同的力,观察电阻应变片的电阻值变化;(4)利用示波器观察电阻应变片电阻值的变化波形;(5)记录实验数据,分析电阻应变片的灵敏度。
2. 光电传感器测量实验(1)将光电传感器安装在实验装置上,连接好实验电路;(2)利用数据采集器采集光电传感器的输出信号;(3)改变光源的强度,观察光电传感器的输出信号变化;(4)利用示波器观察光电传感器输出信号的变化波形;(5)记录实验数据,分析光电传感器的灵敏度。
五、实验结果与分析1. 电阻式传感器测量实验结果(1)当悬臂梁上施加的力增加时,电阻应变片的电阻值也随之增加,两者呈线性关系;(2)根据实验数据,计算电阻应变片的灵敏度为0.2Ω/με。
2. 光电传感器测量实验结果(1)当光源强度增加时,光电传感器的输出信号也随之增加,两者呈线性关系;(2)根据实验数据,计算光电传感器的灵敏度为1mV/lx。
六、实验总结1. 通过本次实验,掌握了电阻式传感器和光电传感器的测量原理和实验方法;2. 熟悉了传感器在工程中的应用,提高了对传感器技术的认识;3. 在实验过程中,发现了实验装置和实验方法的一些不足,为以后的研究提供了参考。
全自动洗衣机中的传感器
论文题目:全自动洗衣机传感器学院:_机械学院__专业:_机械制造__班级:_____学号:__学生姓名:____指导教师:__冯治国__2012年12月5日全自动洗衣机传感器学生:( )一、调研背景洗衣机是一种在家庭中不可缺少的家用电器,发展非常快,全自动式洗衣机因使用方便得到大家的青睐。
这种洗衣机以人们洗衣操作的经验作为模糊控制的规则,采用多种传感器把水温、布质、布量、洗净度等洗衣状态信息检测出来,并将这些信息送到单片机中,单片机应用模糊控制程序对所检测到的信息进行分析,以确定其最佳的洗涤时间、水流强度、漂洗方式、脱水时间以及注水水位等参数,对洗衣全过程进行自动控制,最大限度模拟人工操作,达到最佳的洗涤效果。
在这种情况下,各种传感器在洗衣机中的应用应运而生。
本文主要介绍了几种典型的传感器及其在洗衣机中的应用以及工作原理,如水位传感器、光传感器、布质和布量传感器。
二、传感器的概述(一)什么是传感器传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
国家标准GB7665-87对传感器下的定义是:“能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。
这里所说的“可用输出信号”是指便于加工处理、便于传输利用的信号。
现在电信号是最易于处理和便于传输的信号。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
(二)传感器的组成一般说来,可以把传感器看作由敏感元件(有时又称为预变换器)和变换元件(有时又称为变换器)两部分组成。
敏感元件:能完成预变换的器件。
变换器:能将感受到的非电量变换为电量。
(三)传感器的性能指标静态特性:是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
传感器原理及应用实验
传感器原理及应用实验
传感器是一种能够感知和测量环境变量的装置或设备,它能够将环境中的物理量转换为电信号或其他方便处理的形式。
传感器原理及应用的实验是为了研究和验证某种传感器的工作原理以及应用场景。
在实验中,我们通常会使用模拟传感器或数字传感器来进行测量和控制。
模拟传感器是指将物理量转换为模拟电压或电流信号的传感器,如温度传感器、压力传感器等。
数字传感器是指将物理量转换为数字信号的传感器,如光电传感器、加速度传感器等。
实验的第一步通常是准备实验装置和所需材料,如传感器、电源、电路板等。
接下来,我们需要按照实验步骤连接电路,并将传感器与电路板相连接。
在实验过程中,我们需要根据传感器的工作原理合理地选择信号放大电路、滤波电路等辅助电路。
同时,对于数字传感器,我们还需要使用单片机或其他数字处理器对信号进行处理和分析。
实验中,我们可以通过改变环境条件或操控实验装置来模拟不同的应用场景。
例如,在温度传感器实验中,可以通过改变热源的温度来观察传感器输出的电信号变化;在光电传感器实验中,可以调节光源的强度或改变测试物体与光源之间的距离来观察传感器的反应。
进行实验后,我们可以通过观察和记录传感器输出的电信号或其他相应数据来分析传感器的性能,并根据实验结果来判断传
感器的可行性、精度和稳定性。
在实验结束后,如果有必要,我们还可以根据实验结果对传感器进行调整和优化,以适应更广泛的应用场景。
传感器的原理及应用实验对于探索和理解传感器的工作原理和应用具有重要意义。
通过实验,我们可以深入了解传感器的特性和性能,为传感器应用领域的研究和开发提供实验数据和依据。
应变式传感器实验报告
应变式传感器实验报告一、引言应变式传感器是一种广泛应用于工业领域的传感器,其主要作用是测量物体的应变量。
本实验旨在通过实验操作和数据分析,深入了解应变式传感器的原理、性能和应用。
二、实验原理1. 应变式传感器的原理应变式传感器是利用金属材料受力时会产生形变而引起电阻值的变化,从而转化成电信号输出。
当物体受到外力作用时,其表面会产生微小的形变,进而改变金属材料内部电阻值,将这种形变转换为电信号输出即可测量物体所受外力大小。
2. 实验仪器与材料(1)多功能测试仪(2)应变片(3)导线3. 实验步骤(1)将应变片粘贴在被测物体表面,并固定好。
(2)将多功能测试仪连接到计算机上,并打开相应软件。
(3)通过测试仪对被测物体施加不同大小的外力,并记录下相应的电信号输出值。
(4)根据实验数据计算出被测物体所受外力大小。
三、实验结果与分析1. 实验数据记录表外力大小(N)电信号输出值(mV)0 010 2.520 5.130 7.840 10.22. 数据分析从实验数据中可以看出,随着被测物体所受外力的增加,其电信号输出值也随之增加,呈现出一定的线性关系。
通过对实验数据进行拟合,可以得到应变式传感器的灵敏度和线性误差等性能指标。
四、实验结论与建议1. 实验结论本实验通过对应变式传感器的原理和性能进行了深入了解,并通过实验操作和数据分析验证了其可靠性和准确性。
应变式传感器在工业领域有着广泛的应用前景。
2. 实验建议(1)在实验过程中要注意被测物体表面必须平整光滑,并且应变片固定牢固。
(2)在进行数据分析时要注意选择合适的拟合方法,并对误差进行修正。
(3)在使用多功能测试仪时要仔细阅读说明书,并按照说明书操作。
五、参考文献[1] 王志勇, 马海彬, 陈明,等. 应变式传感器原理及其应用[J]. 传感器与微系统, 2010(4):1-4.[2] 黄华, 郑海峰. 应变式传感器的原理及应用[J]. 电气自动化,2012(5):25-27.。
霍尔式传感器特性实验报告
霍尔式传感器特性实验报告引言霍尔式传感器是一种常用于检测磁场的传感器,它利用霍尔效应实现对磁场的测量。
本实验旨在通过实际操作,探索霍尔式传感器的特性以及其应用。
实验材料•霍尔式传感器•磁铁•电源•电压表•电流表•连接线实验步骤1.连接电路将电源、霍尔式传感器、电压表和电流表按照电路图连接起来。
确保电路连接正确无误。
2.测量传感器感应电压在电路中加入磁铁,通过改变磁铁与传感器的距离,观察并记录感应电压的变化。
分析感应电压与磁场强度之间的关系。
3.测量传感器输出电流在电路中加入一个负载电阻,通过改变磁铁与传感器的距离,观察并记录传感器输出电流的变化。
分析输出电流与磁场强度之间的关系。
4.测量传感器响应时间将磁铁快速靠近和远离传感器,观察并记录传感器的响应时间。
分析传感器的响应时间与磁场变化的关系。
5.分析实验结果根据所测量的数据和观察结果,分析霍尔式传感器的特性,并探讨其在实际应用中的潜力和限制。
实验结果与讨论我们测量了不同磁场强度下传感器的感应电压和输出电流,并观察了传感器的响应时间。
通过实验数据和分析,我们发现传感器的感应电压与磁场强度呈线性关系,即感应电压随磁场强度的增加而增加。
这说明霍尔式传感器可以用于测量磁场的强度。
传感器的输出电流也与磁场强度呈线性关系,即输出电流随磁场强度的增加而增加。
这为使用传感器进行电流测量提供了一种可行的方法。
我们还观察到,传感器的响应时间较短,即传感器能够迅速地对磁场强度的变化做出响应。
这对于需要实时检测磁场的应用非常有价值。
然而,我们也发现传感器在极弱的磁场下可能无法正常工作,或者在磁场过强时会发生饱和现象,导致输出电流不再随磁场强度的增加而增加。
因此,在实际应用中需要根据具体情况选择合适的传感器。
结论通过本实验,我们深入了解了霍尔式传感器的特性,并验证了其对磁场的测量能力。
我们发现,霍尔式传感器具有线性响应、快速响应和可靠性高的特点,适用于多种磁场测量和电流测量的应用场景。
GS_莫尔效应及光栅传感实验仪实验指导及操作说明书_2012-12-30
ZKY-GS莫尔效应及光栅传感实验仪实验指导及操作说明书成都世纪中科仪器有限公司地址:成都市人民南路四段九号中科院成都分院邮编:610041电话:(028)85247006 85213812 传真:(028)85247006网址; E-mail: ZKY@ZKY.C n2012-12-30莫尔效应及光栅传感实验几百年前,法国人莫尔发现一种现象:当两层被称作莫尔丝绸的绸子叠在一起时将产生复杂的水波状的图案,如薄绸间相对挪动,图案也随之幌动,这种图案当时称之为莫尔或者莫尔条纹。
一般说,任何具有一定排列规律的几何图案的重合,均能形成按新规律分布的莫尔条纹图案。
1874年,瑞利首次将莫尔图案作为一种计测手段,即根据条纹的结构形状来评价光栅尺各线纹间的间隔均匀性,从而开拓了莫尔计量学。
随着时间的推移,莫尔条纹测量技术现已经广泛应用于多种计量和测控中。
在位移测量、数字控制、伺服跟踪、运动比较、应变分析、振动测量,以及诸如特形零件、生物体形貌、服装及艺术造型等方面的三维计测中展示了广阔前景。
例如广泛使用于精密程控设备中的光栅传感器,可实现优于1μm的线位移和优于1"(1/3600度)的角位移的测量和控制。
实验目的1.理解莫尔现象的产生机理2.了解光栅传感器的结构3.观察直线光栅、径向圆光栅、切向圆光栅的莫尔条纹并验证其特性4.用直线光栅测量线位移5.用圆光栅测量角位移实验原理1.莫尔条纹现象两只光栅以很小的交角相向叠合时,在相干或非相干光的照明下,在叠合面上将出现明暗相间的条纹,称为莫尔条纹。
莫尔条纹现象是光栅传感器的理论基础,它可以用粗光栅或细光栅形成。
栅距远大于波长的光栅叫粗光栅,栅距接近波长的光栅叫细光栅。
直线光栅两只光栅常数相同的光栅,其刻划面相向叠合并且使两者栅线有很小的交角θ,则由于挡光效应(光栅常数d >20μm)或光的衍射作用(光栅常数d <10μm),在与光栅刻线大致垂直的方向上形成明暗相间的条纹,如图1所示。
北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验
2012/4/29彩色线阵CCD传感器系列实验实验时刻:2021年4月27日礼拜五(一)实验目的:1.了解并学习CCD的利用、驱动原理和功能特性等。
(二)实验内容:1.本实验共分为以下四个实验部份,要紧内容为:1)线阵原理及驱动2)特性测量实验3)输出信号二值化4)线阵CCD的AD数据搜集(三)实验仪器:1.双踪迹同步示波器(带宽50MHz以上)一台,2.彩色线阵CCD多功能实验仪YHCCD-IV一台3.实验用PC运算机及A/D数据搜集大体软件(四)实验结果及数据分析:一、线阵原理及驱动1)驱动频率与周期表格 1 驱动频率与周期实验结果由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz;对应F1,F2频率始终是驱动信号的8分之一,而RS那么为F1,F2频率的2倍;现象及数据分析:由上图可知,在同一频率档位上,随着积分时刻档位的增加,FC周期慢慢增加;关于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系;2)积分时刻测量表格 2 积分时刻测量结果现象及数据分析:由上图可知,在同一频率档位上,随着积分时刻档位的增加,FC周期慢慢增加;关于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系;二、特性测量实验表格 3 输出信号幅度与积分时刻的关系0档对应曲线:图表 1 输出信号幅度与积分时刻的关系0档表格 4 输出信号幅度与积分时刻的关系1档图表 2 输出信号幅度与积分时刻的关系1档表格 5 输出信号幅度与积分时刻的关系2档表格 6 输出信号幅度与积分时刻的关系3档现象及数据分析:通过表格3、4、五、6及其对应的图表一、二、3、4能够看出,随着积分时刻档位和驱动频率档位的改变,积分时刻不断改变;随着积分时刻的增加,输出电压的幅值和峰值不断增大,输出曲线表现为一条上升的直线,如图表一、2(部份);当积分时刻抵达某值后,输出电压幅值和峰值达到最大,在这以后,即便积分时刻继续增大,输出电压也不能够再增大,如图表2(部份)、3、4所示。
传感器认识实验实验报告
传感器认识实验实验报告传感器是一种能够将物理量转换为电信号输出的装置,广泛应用于各种测量和控制系统中。
本次实验旨在通过对传感器的认识与实验来探究其基本原理和应用。
实验一:温度传感器的原理和应用温度传感器是一种将环境温度转换为电信号输出的传感器。
在实验中,我们使用了一种基于热敏电阻的温度传感器,即NTC热敏电阻。
通过实验,我们发现NTC热敏电阻的电阻值与温度呈负相关。
当温度升高时,电阻值下降,反之电阻值上升。
这是因为热敏电阻的材料具有温度敏感性,随着温度的变化,其导电性能也会发生变化,从而导致电阻值的变化。
我们还使用了一个AD转换器将传感器输出的模拟电信号转换为数字信号,以便于计算机进行处理和存储。
通过编写计算机程序,我们可以实现实时监测温度变化并进行数据记录和分析。
除了温度传感器,其他常见的传感器还包括压力传感器、光敏传感器、加速度传感器等。
它们都基于不同的物理原理,但其本质都是将环境信号转换为电信号输出。
实验二:光敏传感器的原理和应用光敏传感器是一种将光信号转换为电信号输出的传感器。
在实验中,我们使用了一种基于硒电池的光敏传感器。
通过实验,我们发现光敏传感器的电阻值与光照强度呈负相关。
当光照强度增加时,电阻值下降,反之电阻值上升。
这是因为硒电池的材料具有光敏感性,随着光照强度的变化,其导电性能也会发生变化,从而导致电阻值的变化。
我们还使用了一个运算放大器将传感器输出的微弱电信号放大,以便于计算机进行处理和存储。
通过编写计算机程序,我们可以实现实时监测光照强度变化并进行数据记录和分析。
结论通过本次实验,我们了解了传感器的基本原理和应用,掌握了使用传感器进行数据采集和处理的方法。
传感器在现代工业、医疗、农业等领域中都有着广泛的应用,对提高生产效率、提高产品质量、保障生命安全等方面都有着重要的作用。
因此,深入研究传感器的原理和应用,将对实现智能化、信息化发展有着重要的意义。
霍尔传感器实验报告
霍尔传感器原理及其应用年级:2009级姓名:彭春华学号:200908063093专业:电子信息工程指导老师:刘刚2012年6月摘要20 世纪末,集成霍尔传感器技术得到了迅猛发展,各种性能的集成霍尔传感器不断涌现,它们已在汽车、纺织、化工、通讯、电机、电信、计算机等各个领域得到广泛的应用,特别是由集成开关型霍尔传感器制成的无刷直流电机(霍尔电机) 已经进入千家万户. 广泛应用于录音机、摄录像设备、VCD 、DVD 、及新型助力自行车等家用电器中. 笔者将集成开关型霍尔传感器及其计时装置应用于力学实验中,同时还可对该传感器的特性参数进行测量. 由于保留了传统的实验方法,所以使实验的内容更具综合性,它一方面能让学生从多角度地了解和掌握一些经典的测量手段和操作技能.另一方面由于加入了用集成开关型霍尔传感器来测量时间或周期的新方法,使学生对这种传感器的特性及在自动测量和自动控制中的作用有进一步的认识,从而真正领略这一最新传感技术的风采. 传统实验与现代化技术相结合对推进素质教育,培养想象能力和创新能力是十分有用的. 而这类实验已在我校的中学物理实验研究课程中开设,教师和学生都很有兴趣,教学效果很好。
霍尔的实验原理当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产 生电位差,如图1所示,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U ,其表达式为U= dB I K **其中K 为霍尔系数,I 为薄片中通过的电流,B 为外加磁场(洛伦慈力Lorrentz )的磁感应强度,d图1 是薄片的厚度。
由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。
霍尔接近开关是用“霍尔效应”的磁感应现象来实现电子开关的开关,工作电压范围5-24V 。
霍尔传感器对磁场感应特别灵敏,所以与他配合工作的是一块小磁铁。
当磁铁与它接近时。
若B 在一定值以上时,霍尔传感器输出高电平,若B 小于一定值时,霍尔传感器会输出低电平。
实验6 差动变面积式电容传感器
电子信息工程系实验报告课程名称: 传感与检测实验项目名称:实验6 差动变面积式电容传感器 实验时间:2012-6-11班级:电信092 姓名:XXX 学号:910706201实 验 目 的:了解差动变面积式电容传感器的原理及其特性。
实 验 环 境:电容传感器、电压放大器、低通滤波器、F/V 表、激振器、示波器实 验 原 理:电容式传感器有多种形式,本仪器中差动变面积式。
传感器由两组定片和一组动片组成。
当安装于振动台上的动片上、下改变位置,与两组静片之间的重叠面积发生变化,极间电容也发生相应变化,成为差动电容。
如将上层定片与动片形成的电容定为Cxl ,下层定片与动片形成的电容定为Cx2,当将Cxl 和Cx2接入桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。
有关旋钮的初始位置:差动放大器增益旋钮置于中间,F/V 表置于2V 档。
实 验 步 骤 及 结 果:(1)根据图接线。
(2)将F/V 表打到20V ,调节测微头,使输出为零。
(3)转动测微头,每次0.1mm ,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片覆盖面积最大为止。
位移初始值为8.0mm ; X(mm) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 V(V)8.718.488.157.997.617.296.966.756.536.275.96退回测微头至初始位置。
并开始以相反方向旋动。
同上法,记下X(mm)及V(mv)值。
位移初始值为9.0mm ; (4)计算系统灵敏度S=△V/△X ,并作出Ⅴ-X 曲线。
输出的灵敏度为:S=(S1+…+S10)/10=2.75V/mm; 运用matlab 软件,绘制V -X 曲线如下所示:X(mm)0.10.20.30.40.50.6 0.7 0.8 0.9 1.0 V(V) 5.94 6.11 6.40 6.65 6.87 7.05 7.287.517.778.068.25成 绩:指导教师(签名):88.18.28.38.48.58.68.78.88.995.566.577.588.59位移x(mm)电压V (v )(5)卸下测微头,断开电压表,接通激振器,用示波器观察输出波形。
医用压力传感器实验报告参考模板
昆明理工大学信息工程与自动化学院学生实验报告(2011 —2012 学年第一学期)课程名称:医用传感器开课实验室:生医系实验室 2011年12 月26 日一、实验目的1.了解压力传感器的基本结构,原理。
2.了解压力传感器的使用范围。
3.利用压力传感器完成对压力的测量。
二、实验原理•将压力转换为电信号输出的传感器。
通常把压力测量仪表中的电测式仪表称为压力传感器。
压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。
弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。
本实验通过压力传感器,握力传感器,把呼吸产生的压力,手握产生的压力转换为电信号,输出到md2000系统,完成对压力的测量。
• MD-2000微机化系统介绍MD-2000微机化生理实验教学系统是一种智能化的四导生物信号采集分析系统,适用于80×86系列微机备示波器、记录仪、放大器和刺激器等传统生理仪器的全部功能。
另外,还具有自动分析、参数预置、操作提示、动画释疑和在线帮助等微机特有的功能,使之使用更灵活,操作更方便。
系统的功能特点包括:图形化界面、Windows风格、键盘与鼠标操作兼容;仿仪器面板式操作界面;项目化参数预置。
实时记录与实验模拟并行,实时无间隙存盘(>24h),自动基线、项目标记、波形编辑等。
•三、所用仪器、材料Md2000微机化实验教学系统,计算机,压力换能器(压力传感器),握力换能器(传感器)Md2000微机化生理实验教学系统系统构成:本系统由微机、采样及程控专用接口、程控生物电放大器、换能器接口、程控刺激器、专用软件和打印机等组成。
通过记录电极或换能器引导出的生物电信号,经放大后通过A/D转换送入微机处理。
同时,微机还可通过专用接口控制放大器的参数和状态。
放大器的输出信号可供其他仪器使用。
四、实验方法、步骤1.在windows系统下启动Md2000微机化实验教学系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 电阻式传感器的全桥性能实验一、实验目的掌握全桥电路的工作原理和性能。
二、实验所用单元同实验一。
三、实验原理及电路将四个应变片电阻分别接入电桥的四个桥臂,两相邻的应变片电阻的受力方向不同,组成全桥形式的测量电路,转换电路的输出灵敏度进一步提高,非线性得到改善。
实验电路图见图3-1,全桥的输出电压U O =4EK ε四、实验步骤1、按实验一的实验步骤1至3进行操作。
2、按图3-1接线,将四个应变片接入电桥中,注意相邻桥臂的应变片电阻受力方向必须相反。
+5VRrRRR 1R 2R 4RP 2OP07R 3R 4RP 1R 5+15V-15V 调零电桥电 阻传感器差动放大器4321876RPRV图3-1 电阻式传感器全桥实验电路3、调节平衡电位器RP ,使数字电压表指示接近零,然后旋动测微器使表头指示为零,此时测微器的读数视为系统零位。
分别上旋和下旋测微器,每次0.4mm,上下各2mm,将位移量X和对应的输出电压值U O记入下表中。
表3-1X(mm) 0U O(mV) 0五、实验报告1、根据表3-1,画出输入/输出特性曲线)X(fU,并且计算灵敏度和O非线性误差。
2、全桥测量时,四个应变片电阻是否必须全部一样?实验二十二涡流式传感器的转速测量实验一、实验目的了解涡流式传感器用于测量转速的方法。
二、实验所用单元涡流传感器探头(内附转换电路)、电机(光电传感器中)、电机调速装备(光电传感器转换电路中)、差动放大器、位移台架、直流稳压电源、数字电压表三、实验原理及电路利用涡流式传感器探头对旋转体材质的明显变化产生脉冲信号,经电路处理即可测量转速。
四、实验步骤1、固定好位移台架,将涡流传感器探头装于传感器支架上,将电机放入位移台架的圆孔中,使探头对准电机转盘磁极。
2、将涡流传感器探头的两根输出信号线接至差动放大器的输入端,差动放大器的输出接至数字电压表的输入端。
3、将数字电压表切换开关拨到频率档,调节电机调速旋钮,使电机转动,观察实验现象。
实验二十三 温度传感器及温度控制实验(AD590)一、实验目的1、熟悉半导体型温度传感器AD590的基本性能。
2、应用AD590实现对温度的检测和简单控制。
二、实验所用单元保温盒(内附温度传感器)、温度传感器转换电路板、温度控制电路板、玻璃管水银温度计、直流稳压电源、低压交流电源、数字电压表、位移台架三、实验原理及电路1、温度传感器电路如图23-1所示。
AD590能把温度信号转变为与绝对温度值成正比的电流信号I 0,比例因子为1μA/K 。
通过运算放大器实现电流运算102I I I -=,在运算放大器输出端得到与温度成线性关系的电压U O 。
通过调节电位器RP 1和RP 2,可以使U O 在被测温度范围内具有合适数值。
例如被测温度范围为0~100℃,则可在0℃时,调节RP 1使U O 为0V ;在100℃时,调节RP 2使U O 为5V ,这样被测温度每变化1℃对应U O 变化50mV 。
R 3RP 3+15V-15V4321876C 1+5V -5VC 2VA RP 1R 1R 2AD590I 1I 0I 2RP 2DE -+图23-1 温度传感器实验原理图在本实验中,由于0℃和100℃这两个温度不便得到,因此温度/电压的标定采用理论值推算的方法。
在0℃下AD590的电流理论值为273.2μA ,要使输出电压U O 为0V ,则I 0与I 1相等:A 2.273RP R V 5I I 1101μ=+==,那么Ω=μ=+K 31.18A 2.273V5RP R 11100℃下AD590的电流理论值为373.2μA ,此时要使U O 为5V ,则:A 100I I RP R U I 1022O 2μ=-=+=,那么Ω=μ=+K 50A 100V5RP R 222、如果将转换电路的输出电压连接到加热及温度控制电路中(图23-2)的电压比较器,通过继电器控制保温盒电热元件的通电或断电,这样根据电压比较器调温端的基准电压大小,就能使保温盒内的温度保持在某一数值范围内。
~220V B 1B 2B 3LFU 1K 1LM393+5V Q +-+5VJ VD 2VD 1+15VQ 1RP 4R 4R 5K 2J 电热元件图23-2 加热及温度控制电路图四、实验步骤1、固定好位移台架,将内装温度传感器的保温盒置于位移台架上,将水银温度计插入保温盒内,轻靠在温度传感器上。
2、在此实验中,我们用输出电压U O 反映实测温度,用温度计作为校核标准。
根据上述理论推算方法,在温度传感器转换电路板上,调整好RP 1和RP 2的阻值。
3、按照图23-1和图23-2接线,将实验箱面板、转换电路板和温度传感器小板上的有关点相连,另外连接E点和Q点,将面板上数字电压表置于20V档,转换电路板上K2打在B2(低温)侧。
4、接通电源(加热电源开关K1断开),经过几分钟,等待电路工作稳定,此时实验系统所测量的温度为室温t。
细调RP1使输出电压U O与室温相对应,其数值的关系为t。
U05.0O5、调节电位器RP4,使温度给定电压为2.5V,即表示设定温度为50℃,接通加热电源开关,观察升温过程。
在升温过程中,由于温度计的热惯性比AD590在,因此温度计指示值要慢于U O的变化。
此时转换电路板上的红色指示灯VD1灭,继电器J断开,传感器小板上的绿色指示灯亮,表示处于加热过程。
当U O达到2.5V时,继电器J吸合,断开加热电源,但温度仍会继续稍有上升,然后下降。
当UO降到2.5V是,继电器J断开,接通加热电源,温度仍会继续稍有下降,然后上升。
经过几次这样的循环,温度变化范围会稳定下来。
如果温度计的平均指示值小于50℃,应适当减小RP2的阻值,反之则要增加。
调整RP2,使温度计的平均指示值尽量接近50℃。
6、调节RP4,使给定电压为3V,设定温度为60℃,重复上一步骤。
五、实验报告1、实验内容中所采用的调节方法:先调节室温下的RP1,再调节50℃下的RP2,如果不考虑其它因素,这种方法是否是最合适的?为什么?2、说明本实验中的温度控制原理,这种控制方法有什么优缺点?实验三十二 光纤传感器的位移特性实验一、实验目的1、了解光纤位移传感器的基本结构。
2、掌握光纤传感器及其转换电路的工作原理。
二、实验所用单元光纤传感器、光纤传感器转换电路板、反射面、位移台架、直流稳压电源、数字电压表三、实验原理及电路本实验采用的是导光型多模光纤,它由两束光纤混合成Y 型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束,两光束混合后的端部是工作端即探头。
由光源发出的光通过光纤传到端部射出后再被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压量,该电压的大小取决于反射面与探头的距离。
光纤传感器转换电路如图32-1所示。
Q 1R 2R 1R 3R 4R 5+5V+5V -5V+15V-15VC 4DWR 6R 8R 11C 2R 9R 7RPR 10VOUT+-+-+-图32-1 光纤传感器转换电路图四、实验步骤1、固定好位移台架,将测微器测杆与反射面连接在一起。
2、按照图32-2安装光纤位移传感器,将传感器的插头与转换电路板上的插座相连,并将转换电路板的输出连接至数字电压表上。
光纤探头反射面测微器光纤位移台架图32-2 光纤传感器安装示意图3、调节测微器,使探头与反射面平板接触。
接通电源,调节转换电路板上的RP使数字电压表指示为零,并记录此时的测微器读数。
4、旋转测微器,反射面离开探头,每隔0.1mm读取一次输出电压值,将电压与位移记入下表中,共记10组数据。
表32-1X(mm)U O(V)五、实验报告1、根据表32-1中的实验数据,画出光纤位移传感器的位移特性,并求出拟合曲线的方程。
2、本实验中光纤位移实验系统的灵敏度与哪些因素有关?实验三十五 压阻式压力传感器的特性实验一、实验目的1、了解扩散硅压阻式传感器测量压力的方法。
2、掌握扩散硅压阻式传感器及其转换电路的工作原理。
二、实验所用单元压阻式压力传感器、压阻式压力传感器转换电路板、橡皮气囊、储气箱、三通连接导管、压力表、位移台架、直流稳压电源、数字电压表三、实验原理及电路扩散硅式压阻式压力传感器,在单晶硅的基片扩散出P 型或N 型电阻条,接成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生变化,引起电阻的变化,将这一变化引入测量电路,通过输出电压可以测量出其所受的压力大小。
测量电路图35-1所示,其中RP 1用于调节放大倍数,RP 2用于调节零点。
+15V-15VR 9R 7R 10OUT+5V3214R 1RP 1RP 2R 8R 11R 5R 3R 6R 4R 2+-+-+-+-V图35-1 压力传感器实验电路图四、实验步骤1、固定好位移台架,将压力传感器放在台架的圆孔中。
2、将压力传感器上的插头连接至转换电路板上的插座。
转换电路板的输出连接至数字电压表。
3、按照图35-2连接管路。
储气箱传感器处理电路电压表图35-2 压力传感器实验系统示意图4、打开橡皮囊上的单向阀,接通电源,调节转换电路板上的RP 2使输出电压为零。
5、拧紧单向阀,轻按加压皮囊,注意不要用力过大,使压力表显示100mmHg ,调节RP 1使输出电压为10V 。
6、重复步骤4和步骤5,使得压力为0时输出电压为0V ,压力为100mmHg 时,输出电压为10V 。
7、打开单向阀,开始加压,每上升10mmHg 读取输出电压,并记入下表中。
表 35-1P(mmHg) U O (V)五、实验报告1、根据表35-1的实验数据,画出压力传感器的特性曲线,并计算精度与非线性误差。
2、如果测量真空度,需要对本实验装置进行怎样的改进?11实验三十七 超声波传感器的位移特性实验一、实验目的1、了解超声波在介质中的传播特性。
2、了解超声波传感器测量距离的原理与结构。
3、掌握超声波传感器及其转换电路的工作原理。
二、实验所用单元超声波发射探头、超声波接收传感器、超声波传感器转换电路板、反射挡板、振动台、直流稳压电源、数字电压表三、实验原理及电路超声波传感器由发射探头与接收传感器及相应的测量电路组成。
超声波是在听觉阈值以外的声波,其频率范围在20KHz 至60KHz 之间,超声波在介质中可以产生三种形式的振荡波:横波、纵波和表面波。
本实验以空气为介质,用纵波测量距离。
发射探头发出40KHz 的超声波,在空气中传播速度为344m/s ,当超声波在空气中碰到不同介面时会产生一个反射波和折射波,其中反射由接收传感器输入测量电路,测量电路可以计算机超声波从发射到接收之间的时间差,从而得到传感器与反射面的距离。
本实验原理图如图37-1所示。