高中数学竞赛主要知识与方法概要讲座材料
1(高中竞赛讲座)数学方法选讲(1)
高中数学竞赛讲座11数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。
条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。
谁放入了最后一枚硬币谁获胜。
问:先放的人有没有必定取胜的策略?2.线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。
这时,图中共有1997条互不重叠的线段。
问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?3.1000个学生坐成一圈,依次编号为1,2,3,…,1000。
现在进行1,2报数:1号学生报1后立即离开,2号学生报2并留下,3号学生报1后立即离开,4号学生报2并留下……学生们依次交替报1或2,凡报1的学生立即离开,报2的学生留下,如此进行下去,直到最后还剩下一个人。
问:这个学生的编号是几号?4.在6×6的正方形网格中,把部分小方格涂成红色。
然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。
那么,总共至少要涂红多少小方格?二、从极端情况考虑从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。
极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。
5.新上任的宿舍管理员拿着20把钥匙去开20个房间的门,他知道每把钥匙只能打开其中的一个门,但不知道哪一把钥匙开哪一个门,现在要打开所有关闭的20个门,他最多要开多少次?6.有n名(n≥3)选手参加的一次乒乓球循环赛中,没有一个全胜的。
高中数学竞赛专题讲座---离散极值
离 散 极 值一. 知识与方法所谓离散极值,就是指以整数、集合、点、线、圆等离散对象为背景,求它们满足某些约束条件的极大值或极小值。
这类问题的解法与一般函数(连续变量)极值的解法有很大的差异。
对于这类非常规的极值问题,要针对具体问题,认真分析,细心观察,选用灵活的策略与方法,通常可以从论证与构造两方面予以考虑。
先论证或求得该变量的上界或下界,然后构造一个实例说明此上界或下界可以达到,这样便求得了该离散量的极大值或极小值。
在论证或求解离散量的上界或下界时,通常要对离散量做出估计,在估计的过程中,构造法、分类讨论法、数学归纳法、反证法、极端原理、抽屉原理等起着重要的作用。
二. 范例选讲例1. m 个互不相同的正偶数和n 个互不相同的正奇数的总和为1987,对于所有这样的m 与n ,问3m+4n 的最大值是多少?请证明你的结论。
(1987年第二届全国数学冬令营试题)思路分析:先根据题设条件求得3m+4n 的一个上界,然后举例说明此上界可以达到,从而得到3m+4n 的最大值。
解:设a 1,a 2,…,a m 是互不相同的正偶数,b 1,b 2,…,b n 是互不相同的正奇数,使得a 1+a 2+…+a m +b 1+b 2+… +b n =1987 ①,这时分别有:a 1+a 2+…+a m ≥2+4+…+2m=m(m+1) ②,b 1+b 2+…+b n ≥1+3+…+(2n -1)=n 2 ③,由①,②,③得m²+m+n 2≤1987,因而有(m+21)2+n 2≤119874+ ④,由④及柯西不等式,得3(m+21)+4n≤4119875)21(.432222+≤+++n m ,由于3m+4n 为整数,所以3m+4n 221≤ ⑤,另一方面,当m=27,n=35时,m 2+m+n 2=1981<1987,且3m+4n=221。
故3m+4n 的最大值为221。
评注:在论证过程中用到了柯西不等式与一般二元一次不定方程的求解方法。
高中数学竞赛专题讲座---数学归纳
数学归纳法数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.这种方法的原理简单易懂,在实际生活中都能找到它的影子,多米诺骨牌、蝴蝶效应都可以看做是数学归纳法的一种体现。
而在数学方面的应用上,它更显出了重要的地位,正因如此,在近年的高考试题,特别是压轴大题上,常常运用数学归纳法来解题;在竞赛数学,数学归纳法更是在数列、组合等多方面发挥着重要作用。
(一)数学归纳法的基本形式 (1)第一数学归纳法设)(n P 是一个与正整数有关的命题,如果: ①当0n n =(N n ∈0)时,)(n P 成立;②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整 数0n n ≥时,)(n P 成立.例1 (07江西理22)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+.(1)求1a ,3a ; (2)求数列{}n a 的通项n a . 解:(1)据条件得1111112(1)2n nn n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ① 当1n =时, 由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =.当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭,解得3810a <<,所以39a =. (2)由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明: 1当1n =,2时,由(1)知2n a n =均成立;2假设(2)n k k =≥成立,2k a k =,则1n k =+时由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭, 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+-22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-,因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,.11k -≥,所以(]1011k ∈-,.又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤,故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.此题在证明时应注意,归纳奠基需验证的初始值又两个,即1n =和2n =。
高中数学竞赛专题讲座---竞赛中的数论问题
竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。
1. 大小顺序条件与实数范围不同,若整数x ,y 有大小顺序x <y ,则必有y ≥x +1,也可以写成y =x +t ,其中整数t ≥1。
例1. (IMO-22)设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。
解:易知当m =n 时,222=+n m 不是最大值。
于是不访设n >m ,而令n =m +u 1,n >u 1≥1,得-2(m -1mu 1)22112=--u mu 。
同理,又可令m = u 1+ u 2,m >u 2≥1。
如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。
故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。
例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。
因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b ba ,从而只有a =1,b =2,c =1。
2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ∤y ,则可令y =tx +r ,0<r ≤|x |-1。
这里字母t ,r 都是整数。
进一步,若a q |,b q |且a b >,则q a b +≥。
高中数学竞赛讲义
高中数学竞赛讲义一、数学竞赛概述数学竞赛作为一种普及数学知识、培养学生动手能力和思维能力的形式越来越受到人们的重视。
在学生们的数学学习道路上,参加数学竞赛既可以拓宽数学视野,又可以激发学习兴趣,提高解决问题的能力。
因此,掌握数学竞赛的解题技巧和方法显得尤为重要。
二、常见数学竞赛题型1. 判断题:对错难定,需要严密地逻辑推理,做题时要仔细阅读题目和选项,理清思路,做出准确判断。
2. 选择题:包括单选和多选,需要理解题意,分析选项并选择正确答案。
在解答多选题时,尤其要注意排除干扰项。
3. 填空题:填空题要求对知识点有深入理解,准确地计算并填写答案。
解答填空题时要注意精确计算,不出现大的误差。
4. 解答题:解答题难度较大,需要考生具备深厚的数学基础和解题技巧。
解答题时要逻辑清晰、表述准确,给出详细的解题过程和答案。
5. 证明题:证明题是数学竞赛中的重头戏,要求考生深入理解数学原理,熟练运用推理方法,严密地推演证明过程,确保证明的准确性和完整性。
三、数学竞赛的备考建议1. 熟练掌握基础知识:数学竞赛离不开扎实的基础知识,要多练习经典题目,熟悉各种解题方法,打牢基础。
2. 注重思维训练:数学竞赛考验的不仅是知识面,更重要的是解题思维和方法。
锻炼逻辑思维,注重推理能力的培养。
3. 多做题多练习:多参加数学竞赛训练营、题解讨论会,多做模拟题和历年真题,积累解题经验,提高解题速度和准确度。
4. 态度决定成败:对待数学竞赛要积极认真,保持良好的心态,相信自己的能力,不断学习进步。
四、数学竞赛的意义参加数学竞赛可以拓宽学生的视野,激发学习兴趣,培养学生的自信心和解决问题的能力。
数学竞赛不仅仅是一种知识技能的检验,更是一种学习态度和思维方式的养成。
通过参加数学竞赛,学生可以更深入地了解数学学科,提高自身的综合素质,为未来的学习和发展打下坚实的基础。
五、结语高中数学竞赛虽然挑战性较大,但是只要有充分的准备和信心,相信每一位学生都能在竞赛中取得优异的成绩。
高中数学竞赛讲义
高中数学竞赛讲义(十一)──圆锥曲线一、基础知识1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a (2a>|F1F2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0<e<1)的点的轨迹(其中定点不在定直线上),即(0<e<1).第三定义:在直角坐标平面内给定两圆c1: x2+y2=a2, c2: x2+y2=b2, a, b∈R+且a≠b。
从原点出发的射线交圆c1于P,交圆c2于Q,过P引y轴的平行线,过Q引x轴的平行线,两条线的交点的轨迹即为椭圆。
2.椭圆的方程,如果以椭圆的中心为原点,焦点所在的直线为坐标轴建立坐标系,由定义可求得它的标准方程,若焦点在x轴上,列标准方程为(a>b>0),参数方程为(为参数)。
若焦点在y轴上,列标准方程为(a>b>0)。
3.椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆,a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0<e<1.椭圆有两条对称轴,分别是长轴、短轴。
4.椭圆的焦半径公式:对于椭圆1(a>b>0), F1(-c, 0), F2(c, 0)是它的两焦点。
若P(x, y)是椭圆上的任意一点,则|PF1|=a+ex, |PF2|=a-ex.5.几个常用结论:1)过椭圆上一点P(x0, y0)的切线方程为;2)斜率为k的切线方程为;3)过焦点F2(c, 0)倾斜角为θ的弦的长为。
6.双曲线的定义,第一定义:满足||PF1|-|PF2||=2a(2a<2c=|F1F2|, a>0)的点P的轨迹;第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。
高中数学联赛讲义
高中数学联赛培训讲义全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高。
第一讲 集合、函数、方程例1.集合{x|-1≤log x110<-21,1<x ∈N}的真子集个数为 。
(96年全国高中联赛) 【分析】先求出所给集合的元素个数,那么真子集的个数为2n -1 【解】【小结】运用对数运算法则和解不等式,掌握集合、真子集、换底、同底法、分数性质。
练习①.已知集合A ={y|2<y<3},x =31log 121+31log 151,则x 与A 的关系是 。
(83年)②(93年)若M ={(x,y)||tg πy|+sin 2πx =0},N ={(x,y)|x 2+y 2≤2},则|M ∩N|= 。
A. 4 B. 5 C. 8 D. 9 附:|A|表示A 的元素个数 (93年)③若非空集合A ={x|2a +1≤x ≤3a -5},B ={x|3≤x ≤22},则能使A A ∩B 成立的所有a 的集合是 。
(98年)例2.f(x) (x ∈R )是以2为周期的偶函数,当x ∈[0,1]时,f(x)=x 19981,则:f(1998)、 f(17101)、f(15104)由小到大的排列是 。
(98年全国高中联赛) 【分析】利用周期函数、偶函数的性质,将函数自变量转化到区间[0,1],再比大小。
【解】【小结】周期函数的性质、偶函数性质、幂函数单调性;转化思想。
练习①设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数,已知当x ∈[2,3]时,f(x)=x ,则当x ∈[-2,0]时,f(x)的解析式是 。
(90年)A. f(x)=x +4B. f(x)=2-xC. f(x)=3-|x +1|D. f(x)=2+|x +1|②若a>1,b>1,且lg(a +b)=lga +lgb ,则lg(a -1)+lg(b -1)的值 。
高中数学竞赛讲义
若 C ≠ ∅ ,则1∈ C 或 2 ∈ C ,解得 m = 3.
综 所述, a = 2 或 a = 3 m = 3 或 − 2 2 < m < 2 2
4.计数原理的 用
例 4 集合 A,B,C 是 I={1,2,3,4,5,6,7,8,9,0}的子集, 1 若 A U B = I ,
求有序集合对 A,B 的个数 2 求 I 的非空真子集的个数
定理 1 集合的性质 对任意集合 A,B,C,有
1 A I (B U C) = ( A I B) U ( A I C); 2 A U (B I C) = ( A U B) I ( A U C)
3 C1 A U C1 B = C1 ( A I B); 4 C1 A I C1 B = C1 ( A U B).
综合除法 余式定理 因式 解 拆 添 配方 定系数法 对 式和 换对
式 整式
根式的恒等 形 恒等式的证明
3 方程和 等式
含 母系数的一元一次方程 一元 次方程的解法,一元 次方程根的 布 含绝对值
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次
等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组
法原理,子集共有 210 = 1024 个,非空真子集有 1022 个
5.配对方法
例 5 给定集合 I = {1,2,3,L, n} 的 k 个子集 A1 , A2 ,L, Ak ,满足任何 个子集的交集非 空,并且再添加 I 的任何一个 他子集 将 再 有 性质,求 k 的值
解 将 I 的子集作如 配对 个子集和它的补集 一对,共得 2n−1 对, 一对 能 在
4 函数
次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数
(推荐)高中数学竞赛讲义
高中数学竞赛讲义(十五)──复数一、基础知识1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。
便产生形如a+bi(a,b∈R)的数,称为复数。
所有复数构成的集合称复数集。
通常用C来表示。
2.复数的几种形式。
对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos θ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。
若z=r(cosθ+isinθ),则θ称为z的辐角。
若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isinθ,则z=re iθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。
模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2),则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ2),5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ).6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
高中数学竞赛专题讲座之基本知识
不等式。而且使用柯西不等式不受-7c这项的影响。使用时,注意写明 等号成立条件,检验最小值能否取到。
柯西不等式推广——赫尔德不等式 若(i=1,2,…,n),p>1,q>1且则 注:这个式子成立的前提挺多,不难看出当p=q=2时,这个式子即为柯 西不等式。
3排序不等式
4琴生不等式 首先来了解凸函数的定义 一般的,设f(x)是定义在(a,b)内的函数如果对于定义域内的任意两数 x1,x2都有 则称f(x)是(a,b)内的下凸函数,一般说的凸函数,也就是下凸函数,例 如y=x2,从图像上即可看出是下凸函数,也不难证明其满足上述不等 式。如果对于某一函数上述不等式的等号总是不能成立,则称此函数为 严格凸函数。 注:凸函数的定义为我们提供了极为方便地证明一个函数为凸函数的方 法。这个方法经常使用。此外利用二阶求导也可以判断一个函数为凸函 数,凸函数的二阶导数是非负数。 凸函数具有的常用性质 性质一: 对于(a,b)内的凸函数f(x),有 注:此即常说的琴生不等式
来个复杂的 设n为正整数,求证 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲
四、三角不等式证明 最常用的公式一般就是:x为锐角,则;还有就是正余弦的有界性。
例 求证:x为锐角,sinx+tanx<2x
设,且,求乘积的最大值和最小值。 注:这个题目比较难 数列 关于数列的知识可以说怎么学怎么有,还好我们只是来了解竞赛中最基 本的一些东西,不然我可写不完了。
练习 ,试求数列的通项公式。 注:此题比较综合,需熟练掌握各种求通项公式的常用方法。
下面是我的一个原创题目 已知数列满足,,求该数列的通项公式。
2数列求和 求和的方法很多,像裂项求和,错位相减等等,这些知识就算单纯应付 高考也应该都掌握了,这里不再赘述。主要写竞赛中应当掌握的方法 ——阿贝尔恒等式。 阿贝尔(Abel)恒等式 有多种形式,最一般的是 其中 注:个人认为,掌握这一个就够了,当然还有更为一般的形式,但是不 容易记,也不常用。Abel恒等式就是给出了一个新的求和方法。很多时 候能简化不少。
高中数学竞赛标准讲义
高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。
在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。
本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。
一、高中数学竞赛题型。
高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。
选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。
在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。
二、高中数学竞赛考点。
高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。
这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。
在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。
三、高中数学竞赛解题技巧。
在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。
首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。
通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。
四、高中数学竞赛备考建议。
在备战高中数学竞赛时,学生需要有计划地进行复习和练习。
首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。
通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。
高中数学竞赛讲义十
高中数学竞赛讲义(十)──直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。
解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。
如x2+y2=1是以原点为圆心的单位圆的方程。
2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。
3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。
规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。
根据直线上一点及斜率可求直线方程。
4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcosθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。
5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。
若记到角为θ,夹角为α,则tanθ=,tanα=.6.平行与垂直:若直线l1与l2的斜率分别为k1, k2。
且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。
7.两点P1(x1, y1)与P2(x2, y2)间的距离公式:|P1P2|=。
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
最新高中数学竞赛讲义
高中数学竞赛讲义(十五)1──复数2一、基础知识31.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行4加、减、乘、除等运算。
便产生形如a+bi(a,b∈R)的数,称为复数。
所有复5数构成的集合称复数集。
通常用C来表示。
62.复数的几种形式。
对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b 7称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b) 8作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建9立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用10点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,11点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个12向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外13设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos 14θ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。
若z=r(cosθ15+isinθ),则θ称为z的辐角。
若0≤θ<2π,则θ称为z的辐角主值,记作θ16=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ17表示cosθ+isinθ,则z=re iθ,称为复数的指数形式。
183.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。
模与19共轭的性质有:(1);(2);(3);20(4);(5);(6);(7)||z1|-|z2||21≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,22则。
234.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数24范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形25式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cos26θ1+isinθ1), z2=r2(cosθ2+isinθ2),则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ272)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为28z1z2=r1r2e i(θ1+θ2),295.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ).306.开方:若r(cosθ+isinθ),则,31k=0,1,2,…,n-1。
高中数学竞赛专题讲座竞赛讲座17数学归纳法
比赛讲座 17-数学概括法基础知识数学概括法是用于证明与正整数n 相关的数学命题的正确性的一种严格的推理方法.在数学比赛中据有很重要的地位.1.数学概括法的基本形式( 1)第一数学概括法设 P(n) 是一个与正整数相关的命题,假如①当 n n0( n0N )时, P( n) 建立;②假定 n k (k n0 , k N ) 建立,由此推得n k 1时,P(n)也建立,那么,依据①②对全部正整数n n0时, P(n) 建立.( 2)第二数学概括法设 P(n) 是一个与正整数相关的命题,假如①当 n n0( n0N )时, P( n) 建立;②假定 n k (k n0 , k N ) 建立,由此推得n k 1时,P( n)也建立,那么,依据①②对全部正整数n n0时, P(n) 建立.2.数学概括法的其余形式( 1)跳跃数学概括法①当 n1,2,3,, l 时, P(1), P( 2), P(3),, P(l ) 建立,②假定 n k 时P( k)建立,由此推得 n k l 时,P( n)也建立,那么,依据①②对一切正整数 n 1 时,P(n)建立.( 2)反向数学概括法设 P(n) 是一个与正整数相关的命题,假如① P(n) 对无穷多个正整数n 建立;②假定 n k 时,命题P(k)建立,则当 n k 1时命题P(k 1)也建立,那么依据①②对全部正整数 n 1时, P(n) 建立.3.应用数学概括法的技巧( 1)起点前移:有些命题对全部大于等于1 的正整数正整数n 都建立,但命题自己对n 0也建立,并且考证起来比考证n 1时简单,所以用考证n 0建立取代考证n1,同理,其余起点也能够前移,只需前移的起点建立且简单考证就能够.因此为了便于起步,存心前移起点.( 2)起点增加:有些命题在由 n k 向 n k 1跨进时,需要经其余特别情况作为基础,此时常常需要增补考证某些特别情况,所以需要适合增加起点.( 3)加大跨度:有些命题为了减少概括中的困难,适合能够改变跨度,但注意起点也应相应增加.( 4)选择适合的假定方式:概括假定为必定要拘泥于“假定n k 时命题建立”不行,需要依据题意采纳第一、第二、跳跃、反向数学概括法中的某一形式,灵巧选择使用.( 5)变换命题:有些命题在用数学概括证明时,需要引进一个协助命题帮助证明,或许需要改变命题马上命题一般化或增强命题才能知足概括的需要,才能顺利进行证明.5.概括、猜想和证明在数学中常常经过特例或依据一部分对象得出的结论可能是正确的,也可能是错误的,这类不严格的推理方法称为不完整概括法. 不完整概括法得出的结论, 只好是一种猜想, 其正确与否,一定进一步查验或证明,常常采纳数学概括法证明.不完整概括法是发现规律、解决问题极好的方法.例题剖析例 1.用数学概括法证明:(1 1)(11)(1 1 )(11 ) 33n 1 ( n N * ,n1 )473n 2例 2.已知对随意 nN * ,n 1,a n 0 且 a 13a 23a n 3(a 1 a 2a n )2 ,求证: a nn .例 3.假如正整数 n 不是 6 的倍数,则 1986n1 不是 7 的倍数.例 4.设 a 1 , a 2 , , a n 都是正数,证明a 1a 2 a nna 1 a 2 a n .n例 5 .已知函数f (x) 的定义域为 [a,b] ,对于区间 [ a, b] 内的随意两数c, d 均有c d1[ f (c) f (d )] .求证:对于随意 x 1, x 2 ,, x n[a,b] ,均有f ()2 2x 1x 2x n)1f ( x 2 ) f ( x n )] .f (n[ f ( x 1 )n例 6 试证:对全部大于等于1 的自然数 n 都有1sin2n1cos cos2cosn2.22 sin2例 7 试证:对全部自然数n ( n 1)都有 2n2 n 2 .例 8.证明:任一正方形能够剖分红随意个数多于 5 个的正方形.例9.设0a 1 ,a11 a , a n 11a ,求证:对全部n N 均有a n1 a n例 10.已知a1a2 1 ,aa n21(1) n1N,a n都是整数.2,求证:对全部 nn a n例 11.设 f ( n)1111,能否存在对于正整数n 的函数 g(n) 使等式23nf (1) f (2) f (n1)g(n)[ f ( n)1] 对于n 2 的全部自然数都建立?并证明你的结论.例 12 .设整数数列{ a n}满足 a1 1 , a212 , a3 20,且a n32a n 22a n 1a n.证明:随意正整数n ,14a n a n 1是一个整数的平方.例13.设x1 , x2 ,, x n为正数(n2),证明:x12x22x n21x n2n1.x12x2 x3x22x3 x4x n2x n x1x n2x1 x21例 14.已知a1 1 , a n 1a n1( n N * , n1),求证: a900030 .a n2例 15.整数列{ a n}(n*, n1)知足 a12, a27 ,且有1a na n22 .求N21an 1证: n2时, a n是奇数.训练题1.证明n N时,12222325 n1能被 31 整除.2.设n不小于 6 的自然数,证明:能够将一个正三角形分红n 个较小的正三角形.3.用数学概括法证明:11112242n14n 为自然数,求证:11112..设2232n25(n3),求证:n n1(n1)n..对于自然数 n6.已知a1a2 1 ,a n2a n21(1)n1,求证:对于全部n N *, a n是整数.a n7.设有2n个球分红了很多堆,我们能够随意选甲、乙两堆来依据以下规则搬动:若甲戴盆望天的球数 p 不小于乙堆的球数 q ,则从甲堆拿 q 个球放堆乙堆,这样算是搬动一次.证明:能够经过有限次搬动把全部的球归并成一堆.8.已知数列n}知足:13,a28, 4(a n 1 a n 2 ) 3a n 5n224n 20{ a a ( n3),试证:a n n22n.。
高中数学竞赛主要知识与方法概要讲座材料
数学竞赛讲座1抽屉原则抽屉原则的常见形式一,把n+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。
二,把mn+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有m+1个物体。
三,把m 1+m 2+…+m n +k (k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了m n +1个物体四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当n|m 时(n|m 表示n 整除m ),一定存在一个抽屉中至少放入了nm个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数) 五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。
注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。
理解它们的含义最重要。
在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。
一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。
2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。
对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。
容斥原理基本形式:()n n nk j i k j ini nj i jii n A A A A AA AA A A A A ⋂⋂-+-⋂⋂+⋂-=⋃⋃+≤<<≤=≤<≤∑∑∑211111211||其中|A|表示集合A 中元素的个数。
3递推方法许多竞赛题目正面计算十分困难,于是我们避开正面计算,先考虑n-1时的情况,在计算n 时的情况比n-1时的情况增添了多少,然后写出一个递推式,这样就可以利用数列的知识进行解决,但一般要求根据递推式求通项的能力要比较强,是和擅长数列的同学使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学竞赛讲座1抽屉原则抽屉原则的常见形式一,把n+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。
二,把mn+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有m+1个物体。
三,把m 1+m 2+…+m n +k (k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了m n +1个物体四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当n|m 时(n|m 表示n 整除m ),一定存在一个抽屉中至少放入了nm个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数) 五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。
注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。
理解它们的含义最重要。
在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。
一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。
2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。
对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。
容斥原理基本形式:()n n nk j i k jini nj i jii n A A A A AA AA A A A A ⋂⋂-+-⋂⋂+⋂-=⋃⋃+≤<<≤=≤<≤∑∑∑211111211||其中|A|表示集合A 中元素的个数。
3递推方法许多竞赛题目正面计算十分困难,于是我们避开正面计算,先考虑n-1时的情况,在计算n 时的情况比n-1时的情况增添了多少,然后写出一个递推式,这样就可以利用数列的知识进行解决,但一般要求根据递推式求通项的能力要比较强,是和擅长数列的同学使用。
没什么具体解释,多多练习吧 4映射计数个人认为映射计数绝对是计数方法中最经典的一种,常常能将复杂至极的问题简单化,变成人人都会做的普通题目。
但是想熟练掌握往往是不容易的,要求有大量的习题积累,才能形成建立映射的能力。
明确概念:对于y=f(x)单射:不同的x 对应不同的y ,即|x|≤|y| 满射:每个y 至少有一个x 映射,即|x|≥|y| 双射:即是单射又是满射,即|x|=|y| 倍数映射:|x|=m|y| 1,≠∈+m N m注:双射即通常说的一一映射,有的人将双射理解为m=2的倍数映射或其他映射,这是不对的。
不要从感觉上去理解。
双射应当是“单射”“满射”的综合。
利用映射解题,一般是建立双射,将要证明的问题转化为其他的问题,但是计算总数不变。
而我们不仅要会建立双射,也应会建立单射和满射,因为显然建立单射和满射是证明不等关系的极好方法,不可以忽略。
利用倍数映射解决的题目,我目前还没遇到多少,但还是要时刻记着有这样一种方法。
一,建立双射集合{1,2,……,2004}有多少个元素和为奇数的子集?将正整数n 写成若干个1与若干个2之和,和项的顺序不同认为是不同的写法,所有写法的种数记为A(n);将正整数n 写成若干个大于1的正整数之和,和项顺序不同认为是不同的写法,所有写法的种数记为B(n),求证:A(n)=B(n+2)注:此题即为很好的映射计数例子。
因为即便不用映射我们可以把A(n)求出来,再把B(n+2)求出来,然后比较后会发现两者相等,但这显然是超大工作量,如果使用了映射计数,我们只需用一些技巧,在A(n)和B(n+2)中建立双射,此题即得到证明。
二,建立单射或满射注:映射计数可能会有一定难度,如果觉得掌握不了也不要灰心,只要多练,时间一长自然就会了。
不等式与最值1平均不等式n n n n G A G H ≤≤≤等号成立当且仅当n a a a === 21注意:运用平均不等式需注意各项均为正数! 题外话:有很多同学十分“痛恨”∏∑这两个符号,总是看不懂,其实这两个符号是绝对好用的,并且以后会常常遇到,在大学课本中更是家常便饭,多看几次自然也就习惯了。
例,,且1,,,=+++∈+d c b a R d c b a 求证:614141414<+++++++d c b a 分析:为了凑出a+b+c+d ,以便充分利用条件,将4a+1,4b+1,4c+1,4d+1视作整体,利用平均不等式。
2柯西不等式及其变形设R b a i i ∈,(i=1,2,…,n),则 ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑===n i i n i i n i i i b a b a 121221其中等号成立,当且仅当iib a 为定值 注:这个式子在竞赛中极为常用,只需简记为“积和方小于方和积”。
等号成立条件比较特殊,要牢记。
此外应注意在这个式子里不要求各项均是正数,因此应用范围较广。
常用变形一:+∈∈R b R a i i ,若(i=1,2,…,n),则∑∑∑===⎪⎭⎫ ⎝⎛≥ni ni in i i ii b a b a 11212 注:要求b i 为正数常用变形二:若+∈R b a i i ,(i=1,2,…,n),则 ∑∑∑===⎪⎭⎫ ⎝⎛≥ni ii n i i ni ii b a a b a 1211注:要求a i ,b i 均为正数。
当然,这两个式子虽常用,但是记不记并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用。
例:若222252314765d c b a d c b a +++=+-+,求的最小值。
并指出等号成立的条件。
分析:由于a,b,c,d 各项系数不同,而且既有1次项,又有2次项,显然要用柯西不等式。
而且使用柯西不等式不受-7c 这项的影响。
使用时,注意写明等号成立条件,检验最小值能否取到。
柯西不等式推广——赫尔德不等式若+∈R b a i i ,(i=1,2,…,n),p>1,q>1且111=+qp 则 qni q i pn i p i n i i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===注:这个式子成立的前提挺多,不难看出当p=q=2时,这个式子即为柯西不等式。
3排序不等式 4琴生不等式首先来了解凸函数的定义一般的,设f(x)是定义在(a,b)内的函数如果对于定义域内的任意两数x 1,x 2都有()()222121x f x f x x f +≤⎪⎭⎫ ⎝⎛+ 则称f(x)是(a,b)内的下凸函数,一般说的凸函数,也就是下凸函数,例如y=x 2,从图像上即可看出是下凸函数,也不难证明其满足上述不等式。
如果对于某一函数上述不等式的等号总是不能成立,则称此函数为严格凸函数。
注:凸函数的定义为我们提供了极为方便地证明一个函数为凸函数的方法。
这个方法经常使用。
此外利用二阶求导也可以判断一个函数为凸函数,凸函数的二阶导数是非负数。
凸函数具有的常用性质 性质一:对于(a,b)内的凸函数f(x),有()nx f n x f ni ini i ∑∑==≤⎪⎪⎪⎪⎭⎫ ⎝⎛11 注:此即常说的琴生不等式性质二:加权的琴生不等式 对于(a,b)内的凸函数,若11=∑=ni ia,则()∑∑==≤⎪⎭⎫ ⎝⎛ni i i n i i i x f a x a f 11 注:加权琴生不等式很重要,当na i 1=时,即为原始的琴生不等式。
注:另外,对于上面有关凸函数和琴生不等式的部分,如果将不等号全部反向,则得到的便是凹函数,以及凹函数的琴生不等式。
例设x i >0(i=1,2,…,n ),∑==ni ix11,求证:∑∑==-≥-ni ni iii n x x x 1111注:不仅要用琴生不等式,注意知识综合利用。
5利用二次函数的性质一般来说,许多题目是涉及x ,y ,z 三个量的证明题,由于二次函数的性质十分好用,因此凑出一个关于其中一个字母的二次函数,进而利用二次函数的性质可以解决最值问题。
例设x,y,z ≥0,且x+y+z=1,求xy+yz+zx-3xyz 的最大最小值。
提示:将x=1-y-z 代入,整理成关于y 的二次函数,最值即为()()()()134341134222-+----z z z z z z ,整理后不难得到z=0和z=1式分别取到最大值41和最小值0,然后只需举一例证明能够取到即可。
求证:且 .1 ,0,, 1.=>xyz z y x )1(43)1)(1()1)(1()1)(1(333 ≥++++++++y x z x z y z y x2.,xyz z y x f -++=设 .1,0,,222=++≥z y x z y x 且其中求f .的最大值与最小值.10,,,.3010=≥a a a a n 且设 .2,2,2,1,0,21≥-=+≤++n n i a a a i i i 其中的最小值。
求n a a a +++ 10 4.对于给定的正整数n ,求最小的正整数λ,使得:如果 []2,1,,,21∈n a a a ,的一个排列是n n a a a b b b ,,,,,,2121 。
就有 ∑∑==≤ni ni i i i a b a 1123λ.5.设,411=a .2,)1(4121≥+=-n a a n n 求最小的实数λ使得.0,,,200221≥∀x x x 200220021a A k k ⋅≤∑=λ,其中2200211)1(21⎪⎭⎫⎝⎛+-++++-=+k k x x x kx A k k k k6.设.021≥≥≥≥n a a a 且112=∑=ni i a . 求证:.111≥-+∑=ni i i i a 7.设.,,2,1,0n i x i =>且.11=∑=ni ix00=x 设.求证:∑=-<++⋅++++≤ni ni i ix x x x x x 1121.211π8.求证:.0,,>∀z y x .1888),,(222≥+++++=xy z z xz y yyz x x z y x f 9.求证:,0,,>∀z y x .2888),,(222<+++++=xyz z xzy y yzx x z y x f对原命题加强,证明:.1,0,,=>∀abc c b a 且.2211211211<+++++cba 10.设,0,,>z y x .1222=++z y x 求xyzxz y yz x f +++++=111的最大、最小值。