中考数学统计与概率单元测试
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
中考数学概率统计选择题
中考数学概率统计选择题1. 小明随机从一副扑克牌中抽取一张牌,抽到红桃的概率是多少?2. 抛掷一枚均匀的硬币,正面朝上的概率是多少?3. 在一次考试中,小明做对了80%的题目,那么小明做错题目的概率是多少?4. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
那么抽中二等奖的概率是多少?5. 从1到10这10个数字中随机抽取一个数字,这个数字是5的概率是多少?6. 一次篮球比赛中,双方球队各投篮10次,甲队投篮命中率为60%,乙队投篮命中率为40%。
那么甲队投篮命中的次数多于乙队的概率是多少?7. 一次摸奖活动中,共有10个奖品,其中一等奖1个,二等奖2个,三等奖3个,其余4个为安慰奖。
那么摸到一等奖的概率是多8. 抛掷两枚均匀的硬币,两枚硬币正面朝上的概率是多少?9. 小红随机从一副扑克牌中抽取一张牌,抽到方块的概率是多少?10. 一次考试中,小明做对了80%的题目,那么小明做对题目的概率是多少?11. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
那么抽中三等奖的概率是多少?12. 从1到10这10个数字中随机抽取一个数字,这个数字是偶数的概率是多少?13. 一次篮球比赛中,双方球队各投篮10次,甲队投篮命中率为60%,乙队投篮命中率为40%。
那么甲队投篮命中次数等于乙队的概率是多少?14. 一次摸奖活动中,共有10个奖品,其中一等奖1个,二等奖2个,三等奖3个,其余4个为安慰奖。
那么摸到二等奖的概率是多15. 抛掷两枚均匀的硬币,两枚硬币反面朝上的概率是多少?16. 小红随机从一副扑克牌中抽取一张牌,抽到黑桃的概率是多少?17. 一次考试中,小明做对了80%的题目,那么小明做错题目的概率是多少?18. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
2023年中考数学专题练——10统计和概率
2023年江苏省徐州市中考数学专题练——10统计和概率一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是()A.折线统计图B.扇形统计图C.频数分布直方图D.条形统计图2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是()A.平均数是8B.中位数8.5C.众数是8D.极差是4 3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为()成绩(分)20304050607090100频数(人)13398434 A.60分B.50分C.3人D.9人4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()165170145150一分钟跳绳个数(个)学生人数(名)5212A.平均数是160B.众数是165C.中位数是167.5D.方差是25.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20 6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S甲2=8.6,S乙2=2.6,S丙2=5.0,S丁2=7.2.则这四位同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3 8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨;②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.所有合理推断的序号是.三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A的概率.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A座票后,妈妈购得B座票的概率是;(2)求分给二人相邻座位(过道两侧座位C、D不算相邻)的概率.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A、B、C、D四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩.乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩.丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩.你认为较为合理的是方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图.①这组数据的中位数是分;②请求出这组数据的平均数;③小明的体质健康测试成绩是C等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A、B、C,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩.(1)甲同学选择A通道的概率是.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值为;(2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h的学生人数.16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品.(1)甲抽中冰墩墩的概率是;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I.A课程成绩的频数分布直方图如图(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);II.A课程成绩在70≤x<80这一组的是:70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A,B两门课程成绩的平均数、中位数、众数如下表:课程平均数中位数众数A75.3m84.5B72.27083根据以上信息,回答下列问题:(1)m=;(2)在此次测试中,某学生的A课程成绩为75分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A”或“B”),理由是.(3)假设该年级学生都参加此次测试,估计A课程成绩超过平均分75.3分的人数.21.(2022•邳州市一模)一张圆桌旁设有4个座位,甲先坐在了如图所示的座位上,乙、丙2人等可能地坐到①、②、③中的2个座位上.(1)丙坐在②号座位的概率是;(2)用画树状图或列表的方法,求乙与丙不相邻而坐的概率.22.(2022•徐州一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共 人,补全条形统计图;(2)扇形统计图中“观看微课”对应的扇形圆心角等于 °;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数. 23.(2022•徐州一模)2022年徐州中考体育进行改革,男女考生各有七项可选,每位考生可以任选三项进行测试.某班对学生选项情况进行调查.随机抽取其中一组5名学生的报名情况如下表,这5名学生分别标记为A ,B ,C ,D ,E ,其中“√”表示选报该项. 选项 学生1分钟跳绳立定跳远 50米跑 抛实心球 50米游泳 1000米跑(男) 800米跑(女)引体向上(男) 仰卧起坐(女) A√√√B√√√C√√√D√√√E√√√(1)5名学生中选项是1分钟跳绳、立定跳远、掷实心球的概率是;(2)每组随机抽取选项是“50米游泳”的两人进行测试,用画树状图的方法求该组中抽到的恰好是A、C的概率.24.(2022•鼓楼区校级二模)为响应“双减”政策,提升学生的艺体素养,某校计划开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生,统计他们喜欢的课程(每人只能从中选一项),并将统计结果绘制成如下两幅统计图,请你结合图中信息解答问题.(1)请通过计算,将条形统计图补充完整;(2)本次抽样调查的样本容量是.(3)已知该校有2700名学生,请你根据样本估计全校学生中喜欢剪纸的有多少人?25.(2022•鼓楼区校级三模)为了了解某校七年级体育测试成绩,随机抽取该校七年级一班所有学生的体育测试成绩作为样本,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)直接写出该样本的容量,并将条形统计图补充完整;(2)在扇形统计图中,求出等级C对应的圆心角的度数;(3)若规定达到A、B等级为优秀,该校七年级共有学生850人,通过样本估计该校七年级参加体育测试达到优秀标准的学生有多少人?26.(2022•睢宁县模拟)受疫情影响,很多学校都纷纷响应了“停课不停学”的号召,开展线上教学活动.为了解学生上网课使用的设备类型,某校从“电脑、手机、电视、其它”四种类型的设备对学生做了一次抽样调查.调查结果显示,每个学生只选择了以上四种设备类型中的一种,现将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有1500名学生,估计全校用手机上网课的学生共有名;(3)在上网课时,老师在A、B、C、D四位同学中随机抽取一名学生回答问题,求两次都抽取到同一名学生回答问题的概率.2023年江苏省徐州市中考数学专题练——10统计和概率参考答案与试题解析一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是( ) A .折线统计图 B .扇形统计图 C .频数分布直方图D .条形统计图【解答】解:根据题意可知,为直观介绍空气中各成分的百分比,应选择扇形统计图. 故选:B .2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是( ) A .平均数是8B .中位数8.5C .众数是8D .极差是4【解答】解:A .平均数为7+10+9+8+7+96=813,故本选项不合题意;B .中位数为8+92=8.5,故本选项符合题意;C .众数是7和9,故本选项不合题意;D .极差为10﹣7=3,故本选项不合题意; 故选:B .3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为( ) 成绩(分) 20 30 40 50 60 70 90 100 频数(人) 13398 434 A .60分B .50分C .3人D .9人【解答】解:由表格中的数据可得, 该班数学成绩的众数为50分, 故选:B .4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( ) 一分钟跳绳个165170145150数(个) 学生人数(名) 5 2 1 2A .平均数是160B .众数是165C .中位数是167.5D .方差是2【解答】解:根据题目给出的数据,可得: 平均数为:x =110×(165×5+170×2+145×1+150×2)=161,故A 选项错误,不符合题意;众数是:165,故B 选项正确,符合题意; 中位数是:165+1652=165,故C 选项错误,不符合题意;方差是:S 2=110×[(165−161)2×5+(170﹣161)2×2+(145−161)2×1+(150−161)2×2]]=74,故D 选项错误,不符合题意; 故选:B .5.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为( ) A .6B .14C .5D .20【解答】解:根据题意得: 20×(1﹣0.3) =20×0.7 =14(个),答:估计袋子中红球的个数约为14个; 故选:B .6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S 甲2=8.6,S 乙2=2.6,S 丙2=5.0,S 丁2=7.2.则这四位同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁【解答】解:∵甲、乙、丙、丁四位同学3次数学成绩的平均分相同,又∵2.6<5.0<7.2<8.6,∴S乙2<S丙2<S丁2<S甲2.∴乙同学3次数学成绩最稳定.故选:B.7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3【解答】解:从小到大排列此数据为:1,2,2,3,3,3,5,处在第4位为中位数为3.数据3出现次数最多,所以众数为3,故选:C.8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12【解答】解:根据题意得:25×0.4=10(个),答:估计盒子中白球的个数约为10个;故选:C.二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是12.【解答】解:如图,设每个小正方形的边长为1,整个图形的面积=4×4=16,白色区域的面积=12×16=8,P(白色区域)=816=12,故答案为:12.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨; ②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数. 所有合理推断的序号是 ②③④ .【解答】解:①由折线统计图可得,2021年2月至2022年2月北京居民消费价格同比有涨有跌,故错误,不符合题意;②2021年2月至2022年2月北京居民消费价格环比有涨有跌,故正确,符合题意; ③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的起伏小于2021年9月至2022年1月同比数据的起伏,故方差小,正确,符合题意;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数为15×(0﹣0.1﹣0.4+0.7+0.1)=0.06,2021年9月至2022年1月环比数据的平均数为15×(﹣0.1+1.0+0﹣0.3+0.2)=0.16,故正确,符合题意, 故答案为:②③④. 三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A 的概率. 【解答】解:画树状图如下:由树状图知,共有6种等可能情形,恰好选中医生甲和护士A 只有一种情形, 所以恰好选中医生甲和护士A 的概率为16.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A 座票后,妈妈购得B 座票的概率是14;(2)求分给二人相邻座位(过道两侧座位C 、D 不算相邻)的概率.【解答】解:(1)小明的爸爸购得A 座票后,妈妈购得B 座票的的概率是14;故答案为:14;(2)根据题意画树状图如下:共有20种等可能的结果,其中分给小明的爸妈二人相邻座位(过道两侧座位C 、D 不算相邻)的结果有6种,∴分给小明的爸妈二人相邻座位(过道两侧座位C ,D 不算相邻)的概率是620=310.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A 、B 、C 、D 四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩. 乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩. 丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩. 你认为较为合理的是 丙 方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图. ①这组数据的中位数是 3 分; ②请求出这组数据的平均数;③小明的体质健康测试成绩是C 等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.【解答】解:(1)甲方案、乙方案选择样本比较片面,不能代表真实情况,抽样调查不具有广泛性和代表性; 具有代表性的方案是丙方案, 故答案为:丙;(2)①这120人的成绩从小到大排列处在中间位置的两个数都是3分,因此中位数是3分,故答案为:3; ②平均数为x =30×4+45×3+30×2+15×1120=2.75(分),答:这组数据的平均数是2.75分;③小明的体质健康测试成绩是C 等级对应分数2分,低于平均成绩,比中位数小,位于中下水平,小明的体质健康水平有待提高.建议小明加强体育锻炼,增强体质(结合数据,言之有理即可).14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A 、B 、C ,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩. (1)甲同学选择A 通道的概率是13.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.【解答】解:(1)甲同学选择A 通道的概率是13;故答案为:13;(2)画树状图如下:共有9种等可能的情况数,甲、丙两位同学从同一通道经过的有3种, 则甲、丙两位同学从同一通道经过的概率是39=13.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 40 ,图①中m 的值为 25 ; (2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h 的学生人数. 【解答】解:(1)本次接受随机抽样调查的学生人数为6÷15%=40(人), 图①中m 的值为1040×100=25,故答案为:40;25;(2)一周的课外阅读时间为7小时的人数为40×20%=8(人), 补全图②统计图如下:(3)估计该校一周的课外阅读时间大于5h的学生人数为1200×10+8+440=660(人).16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量B.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.【解答】解:(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量平均数,故答案为:B;②x甲=16×(1+1.5+2.5+2.5+3.5+4)=2.5(万元),x乙=16×(2+3+2.5+1.5+1.5+1.5)=2(万元);(2)甲书店经营状况较好,甲书店营业额的平均值大于乙书店,且由折线统计图可知甲书店的营业额持续稳定增长,潜力大.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品. (1)甲抽中冰墩墩的概率是23;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率. 【解答】解:(1)甲抽中冰墩墩的概率是23,故答案为:23;(2)把2个冰墩墩卡片分别记为A 、B ,1个雪容融卡片记为C , 列表如下:共有6种等可能的结果,其中甲和乙抽中相同奖品的结果有2种,即(A ,B )、(B 、A ), ∴甲和乙抽中相同奖品的概率为26=13.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为13;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.【解答】解:(1)小宇填报“③”的概率为13;故答案为:13;(2)画树状图为:共有9种等可能的结果,其中小宇和小宁同时选到“③就餐监督岗”的结果数有1种, ∴小宇和小宁同时选到“③就餐监督岗”的概率为19.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题: (1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?【解答】解:(1)本次调查共抽取的学生有4÷10%=40(人).上交作品2件的人数为40﹣4﹣8﹣12﹣6=10(人). 上交作品2件的人数所占的百分比1040×100%=25%,补全两幅统计图如图:(2)所抽取学生上交作品件数的众数为3, 所抽取学生上交作品件数的中位数为2+22=2;(3)所抽取学生上交作品件数的平均数140×(4×0+8×1+10×2+12×3+6×4)=2.2,1200×2.2=2640(件),答:估计上交的作品一共有2640件.20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I .A 课程成绩的频数分布直方图如图(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100); II .A 课程成绩在70≤x <80这一组的是: 70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A ,B 两门课程成绩的平均数、中位数、众数如下表:课程 平均数 中位数 众数 A 75.3 m 84.5 B72.27083。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
2020中考数学总复习单元测试(4):统计与概率
福清市2020年中考数学总复习单元测试(4)----统计与概率一.选择题(本题共10小题,每小题4分,共40分)1.下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2020年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8mC.9.8m,9.7m D.9.8m,9.9m3.尺码/码36 37 38 39 40数量/双15 28 13 9 5 商场经理最关注这组数据的()A.众数B.平均数C.中位数D.方差4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高组别(cm)x<160 160≤x<170 170≤x<180 x≥180 人数 5 38 42 15A.0.85 B.0.57 C.0.42 D.0.155.跳远比赛中,所有19位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前10名,只需要知道所有参赛者成绩的()A.平均数B.众数C.中位数D.方差6.下列样本用以统计某路口在学校放学时不同时段的车流量,其中,合适的样本是()A.抽取两天作为一个样本B.以全年每一天为样本C.选取每周周日作为样本D.从春、夏、秋、冬每个季节中各选两周作为样本7.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球8.□ABCD中,AC、BD是两条对角线,现从以下关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.14B.12C.34D.19.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.14B.13C.12D.2310.某家庭记录了去年12个月的月用水量如表,m 取1≤m ≤3的整数,用水量x /吨 3 4 5 6 7 频数1254-mm下列关于用水量的统计量不会发生变化的统计量是( ) A .平均数、中位数 B .众数、中位数 C .平均数、方差D .众数、方差二.填空题(本题共8小题,每小题4分,共32分)11.要反映我市某一周每天的最高气温的变化趋势,宜采用______统计图.12.一个样本容量为80的抽样数据中,其最大值为157,最小值为76,若确定组距为10,则这80个数据应分成________组.13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是S 甲2=2.83,S 乙2=1.71,S 丙2=3.52,则适合参加决赛的选手是_______. 14.已知一组数据8,3,m ,2的众数为3,则这组数据的极差是________.15.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有________个.16.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为_______. 17. 小明五次数学考试成绩如下:84、88、89、91、x (x 为整数).已知这组数据的平均数等于众数,则这组数据的中位数是________. 18.如图,是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内 的数字之和为4的概率是________.三.解答题:(本题共7小题,共78分)19.(10)15((2)你认为上面哪个统计量较好地反映该公司所有员工的月工资状况。
九年级数学统计与概率单元测试(含答案)
九年级数学统计与概率单元测试(含答案)北师版九下《第4章统计与概率》单元测试一、选择题:(每小题3分,共18分) 1.将100个数据分成8个组,如下表:组号 1 2 3 4] 5 6] 7 8 频数 11 14 12 13 13 x 12 10] 则第六组的频数为() A.12 B.13 C.14 D.15 2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是() A.9.79 B.9.78 C.9.77 D.9.76 3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有() A.4个 B.3个 C.2个 D.1个 (第3题) (第4题) 4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是() A.数据75落在第2小组 B.第4小组的频率为0.1 C.心跳为每分钟75次的人数占该班体检人数的 ; D.数据75一定是中位数[来 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是() A.22.5元 B.42.5元 C.元 D.以上都不对 (第5题) (第9题) 6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是() A. B. C. D.二、填空题(每小题4分,共24分) 7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 那么这20名男生鞋号数据的平均数是,中位数是,在平均数、中位数和众数中,鞋厂最感兴趣的是. 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有人. 9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为. 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,8,8,10,11,12 三个厂家在广告中都称自己产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一个:甲:,乙:,丙. 11.一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是. 12.有四张不透明的卡片分别为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为.三、解答题(本大题共58分) 13.(本题14分)2003年我国遭受到非典型肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成城,抗击“非典”,如图5是根据某校七、八、九年级学生“献爱心,抗非典”自愿捐款活动学生捐款情况制成的条形图和七、八、九年级学生人数扇形分布图.(1)该校七、八、九年级平均每人捐款多少元?(2)若该校共有1 450名学生,试问九年级学生共捐款多少元? 14.(本题14分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,下表是1998年~2002年国民生产总值统计表.年份 1998[ 1999 2000 2001 2002 国民生产总值/亿元 78345 82067 89442 95933 102398 小明根据上表绘制出条形统计图如图:你认为小明绘制的这个统计图会引起人们错误的感觉吗?如果会,你认为应该怎样改?15.(本题15分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,如图是1998年~2002年国民生产总值统计图.(1)从图中可看出1999年国民生产总值是多少?(2)已知2002年国内生产总值比2000年增加12 956亿元,2001 年比2000 年增加6 491亿元,求2002年国民生产总值比2001年增长的百分率(结果保留两个有效数字).16.(本题15分)如图a,某同学用仪器测量校园内的一棵树AB的高度,测得了三组数据,制成了仪器到树的距离BD,测量仪器的高CD的数据情况的条形统计图(如图b(1)所示)和仰角情况的折线统计图(如图b(2)所示). (a) (b) 请你利用两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表中;仪器与树之间距离BD的长测量仪器的高CD 仰角的度数(2)根据测得的样本平均数计算出树高AB(精确到0.1m).17.(做对可得附加分20分)(1)设计一个用样本估计总体的实际问题并解答.(2)利用扑克牌设计一个对双方都公平的游戏并解释公平理由.参考答案一、1~6.DBADAA 二、7. 24.55,24.5,众数 8. 5 9.25% 10.众数,平均数,中位数 11. 12.三、13.(1)6.45元;(2)2 192.4元. 14.会引起人们错误的感觉,为了更直观、清楚地反映国民生产总值的增长情况,纵轴上的数值应从0开始. 15.(1)82 067亿元;(2)2002年国民生产总值比2001年增长6.7%. 16.(1)第一行依次填:19.97,19.70,20.51;第二行依次填:1.21,1.23,1.22;第三行依次填:29°40′,30°,30°20′;(2)由(1)可得,.在Rt△AEC中,tan30°=,CE=BD,所以 AE=×20.06≈11.57,即AB=AE+CD=11.57+1.22≈12.8m.。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 小明从一副52张的扑克牌中随机抽取一张,抽到红桃的概率是多少?2. 某班级共有50名学生,其中有20名喜欢数学,30名喜欢物理,25名同时喜欢数学和物理。
请问喜欢数学或物理的学生人数是多少?3. 抛掷两个公平的六面骰子,两个骰子的点数之和为5的概率是多少?4. 某班级共有30名学生,其中有18名参加了数学竞赛,22名参加了物理竞赛,10名同时参加了数学和物理竞赛。
请问至少参加了一项竞赛的学生人数是多少?5. 小华有3个红球和2个蓝球,他随机取出一个球,取出红球的概率是多少?6. 抛掷一个公平的六面骰子,得到偶数的概率是多少?7. 某班级共有40名学生,其中有20名喜欢篮球,30名喜欢足球,15名同时喜欢篮球和足球。
请问至少喜欢一种球类运动的学生人数是多少?8. 小王有5本小说和3本教科书,他随机取出一本书,取出教科书的概率是多少?9. 抛掷两个公平的六面骰子,两个骰子的点数之和为7的概率是多少?10. 某班级共有45名学生,其中有25名喜欢语文,30名喜欢英语,18名同时喜欢语文和英语。
请问至少喜欢一门语言的学生人数是多少?11. 小红有4个苹果和3个橙子,她随机取出一颗水果,取到橙子的概率是多少?12. 抛掷一个公平的六面骰子,得到奇数的概率是多少?13. 某班级共有50名学生,其中有25名喜欢历史,30名喜欢地理,18名同时喜欢历史和地理。
请问至少喜欢一门历史的学生人数是多少?14. 小李有6个篮球和4个足球,他随机取出一个球,取出足球的概率是多少?15. 抛掷两个公平的六面骰子,两个骰子的点数之和为6的概率是多少?16. 某班级共有40名学生,其中有20名喜欢美术,30名喜欢音乐,15名同时喜欢美术和音乐。
请问至少喜欢一门艺术的学生人数是多少?17. 小张有5个苹果和2个橙子,他随机取出一颗水果,取到橙子的概率是多少?18. 抛掷一个公平的六面骰子,得到质数的概率是多少?19. 某班级共有50名学生,其中有25名喜欢生物,30名喜欢化学,18名同时喜欢生物和化学。
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,甲2=2,乙2=2.5,则甲组数据较稳定【答案】D【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.【详解】解:A、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B、抛出的篮球会下落是必然事件,故B不符合题意;C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;2=2,乙2=2.5,则甲组数据较稳定,故D符合题意;D、若甲、乙两组数据的平均数相同,甲故选:D.【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【详解】解:样本是从中抽取的150名师生的国家安全知识掌握情况.故选:C.【点睛】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选C.【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.4.【原创题】长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是()A.这周最高气温是32℃B.这组数据的中位数是30C.这组数据的众数是24D.周四与周五的最高气温相差8℃【答案】B【分析】根据折线统计图,可得答案.【详解】解:A、由纵坐标看出,这一天中最高气温是32℃,说法正确,故A不符合题意;B、这组数据的中位数是27,原说法错误,故B符合题意;C、这组数据的众数是24,说法正确,故C不符合题意;D、周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32−24=8(℃),说法正确,故D不符合题意;故选:B.【点睛】此题主要考查了折线统计图,由纵坐标看出气温,横坐标看出时间是解题的关键.5.【创新题】若一组数据1,2,3,⋯,的方差为2,则数据1+3,2+3,3+3,⋯,+3的方差是()A.2B.5C.6D.11【答案】A【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为 ,现在的平均数为 +3,原来的方差12=1(1− )2+(2− )2+…+(− )2=2,现在的方差22=11+3− −32+2+3− −32+…++3− −32,=1− )2+(2− )2+⋯+(− )2,=2.故选:A.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分2和乙2,则甲2与乙2的大小关系是()别记为甲测试次数12345甲510938乙868672>乙2B.甲2<乙2C.甲2=乙2D.无法确定A.甲【答案】A【分析】先分别求出甲、乙的平均数,再求出甲、乙的方差即可得出答案.【详解】解:甲的平均数为5+10+9+3+85=7,2=−72+10−72+9−72+3−72+8−72=6.8,甲的方差为乙的平均数为8+6+8+6+7=7,2=−72+6−72+8−72+6−72+7−72=0.8,乙的方差为∵0.8<6.8,2>乙2.∴甲故选:A.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,1,2,…的平均数为=1+2+⋯,则方差2=1−+2+⋯+−2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:3+2+5=10(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:210=15,摸出“高铁”小球的概率为:510=12,因此摸出“高铁”小球的可能性最大.故选C.【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.8.【原创题】剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A.45B.35C.25D.15【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C.【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:0≤<3,3≤<6,6≤<9,9≤<12,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A.0.6B.0.5C.0.4D.0.32【答案】A【分析】利用概率公式进行计算即可.【详解】解:由题意,得:=10+2010+20+14+6=35=0.6;故选A.【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.10.【原创题】在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是()A.试验次数越多,f越大B.f与P都可能发生变化C.试验次数越多,f越接近于PD.当试验次数很大时,f在P附近摆动,并趋于稳定【答案】D【分析】根据频率的稳定性解答即可.【详解】解:在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定这个性质称为频率的稳定性.【点睛】本题考查了频率与概率,掌握频率的稳定性是关键.二.填空题(共6小题,满分18分,每小题3分)11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命<10001000≤<16001600≤<22002200≤<2800≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则=.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+=25,去分母,得6×5=26+,经检验=9是所列分式方程的根,∴=9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目综合知识工作经验语言表达应聘者甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.【答案】乙【分析】分别计算甲、乙、丙三名应聘者的成绩的加权平均数,比较大小即可求解.【详解】解:甲=75×510+80×210+80×310=77.5,乙=85×510+80×210+70×310=79.5,丙=70×510+78×210+70×310=71.6,∵71.6<77.5<79.5∴被录用的是乙,故答案为:乙.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算方法是解题的关键.14.【原创题】小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是.【答案】72°/72度【分析】根据“新材料”的占比乘以360°,即可求解.【详解】解:“新材料”所对应扇形的圆心角度数是20%×360°=72°,故答案为:72°.【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.【答案】800【分析】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设该湿地约有x只A种候鸟,则200:10=x:40,解得x=800.故答案为:800.【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:Fol⋅m﹣2⋅s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).【答案】乙【分析】分别求甲、乙两品中的方差即可判断;【详解】解:甲2=32−252+30−252+25−252+18−252+20−252=29.6乙2=−252+25−252+26−252+24−252+22−252=4甲2>乙2∴乙更稳定;故答案为:乙.【点睛】本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.【答案】(1)23(2)23【分析】(1)直接由概率公式求解即可;(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,∴从中随机抽取1张,抽得扑克牌上的数字为3的概率为23,故答案为:23;(2)解:画树状图如下:如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,∴抽得2张扑克牌的数字不同的概率为=46=23.【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【答案】34【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34,即两次分数之和不大于3的概率为34.【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.19.【原创题】甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?【答案】(1)14(2)公平.理由见解析【分析】(1)用列表法或画树状图法列举出所有等可能的结果,再用乙选中球拍C的结果数除以总的结果数即可;(2)分别求出甲先发球和乙先发球的概率,再比较大小,如果概率相同则公平,否则不公平.【详解】(1)解:画树状图如下:一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,∴乙选中球拍C的概率=312=14;(2)解:公平.理由如下:画树状图如下:一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,∴甲先发球的概率=24=12,乙先发球的概率=4−24=12,∵12=12,∴这个约定公平.【点睛】本题考查列表法或画树状图法求等可能事件的概率,游戏的公平性,掌握列表法或画树状图法求等可能事件的概率的方法是解题的关键.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4+7+10+14+20=55(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.72−11.52=0.2(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【创新题】如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4∗2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21.0克.【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【详解】(1)解:平均数:15×45.4+48.1+45.1+44.6+45.5=45.74mm;这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,其中2.3mm出现了2次,出现的次数最多,∴这5枚古钱币的厚度的众数为2.3mm;将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,∴这5枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;(2)名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.其余四个盒子质量的平均数为:34.3+34.1+34.3+34.14=34.2g,55.2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;(2)游戏公平,理由见解析【分析】(1)列表列出所有等可能结果即可;(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.【详解】(1)解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)由表格可知,(a,b)所有可能出现的结果总数有8种;(2)解:游戏公平,由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,概率相同,都是48=12,所以游戏公平.【点睛】本题主要考查游戏的公平性及概率的计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)丙【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.【详解】(1)解:丙的平均数:10+10+10+9+9+8+3+9+8+1010=8.6,则=8.6.2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04,(2)甲2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,乙∵甲2<乙2,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625,乙:7+7+7+9+9+10+10+108=8.625,丙:10+10+9+9+8+9+8+108=9.125,∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,故答案为:丙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【详解】(1)从小到大排序,。
人教版九年级数学上册《统计与概率》单元测试卷含答案
人教版九年级上册《统计与概率》单元测试卷含答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列调查中最适合采用全面调查的是( ) A .调查某批次汽车的抗撞击能力B .端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C .调查某班40名同学的视力情况D .调查某池塘中现有鱼的数量 2.下列事件为必然事件的是( )A .小王参加本次数学考试,成绩是150分B .某射击运动员射靶一次,正中靶心C .打开电视机,CCTV 第一套节目正在播放新闻D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球3.某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周A .19,13B .19,19C .2,3D .2,24.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为( )A .15B .25C .35D .455.为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是( ) A .全区所有参加中考的学生 B .被抽查的1000名学生C .全区所有参加中考的学生的数学成绩D .被抽查的1000名学生的中考数学成绩 6.下列说法中正确的有( )①描述一组数据的平均数只有一个; ②描述一组数据的中位数只有一个; ③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A .1个B .2个C .3个D .4个7.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( ) A .150人B .300人C .600人D .900人8.如图,小明向正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( ) A.12B .14C .13D .189.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数xy 12=图象上的概率是( )A .12B .13C .14D .10.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%D .扇形图中公务员部分所对应的圆心角为72°二、填空题(本题共6小题,每小题4分,共24分)11.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.12.从-2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是. 13.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分) 15~19 20~24 25~29 30人数 1 5 9 2516从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.14.在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.15.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.9 8.216学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为________.三、解答题(第17题8分,第18题10分,共18分)17数与代数空间与图形统计与概率综合与实践学生甲90 93 89 90学生乙94 92 94 86(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.某数学兴趣小组在本校九年级学生中以你“最喜欢的一项体育运动”为主题进行了抽样调查,并将调查结果绘制成两幅不完整的统计图:项目篮球乒乓球羽毛球跳绳其他人数 a 12 10 5 8请根据图表中的信息完成下列各题: (1)本次共调查学生________名;(2)a=________,表格中五个数据的中位数是________; (3)在扇形图中,“跳绳”对应的扇形圆心角是________;(4)如果该年级有450名学生,那么据此估计大约有________人最喜欢“乒乓球”.四、解答题(第19题10分,第20题10分,共20分)19.在“5·12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整): 频数分布表请根据上述图表提供的信息,完成下列问题: (1)分别补全频数分布表和频数分布直方图; (2)若从该校随机抽取1名学生进行这项测验,估计其成绩不低于80分的概率 约为.20.已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b. (1)请你用树状图或列表法列出所有可能的结果;分组 频数 频率 60≤x <70 2 0.05 70≤x <80 1080≤x <90 0.40 90≤x ≤100 12 0.30 合计 1.00(2)现制定这样一个游戏规则:若所选出的a ,b 能使得方程012=++bx ax 有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.五、解答题(第21题10分,第22题10分,共20分)21.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?22.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;类别 儿童玩具 童车 童装 抽查件数 90(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.六、解答题(满分12分)23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.七、解答题(满分12分)24.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图.请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有________名,D类男生有________名,将条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.八、解答题(满分14分)25.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的学生人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18《统计与概率》参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项12345678910C D D C D B B B D C11.80012.3213.8514.815.甲16.61 三、解答题(第17题8分,第18题10分,共18分)17.解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90; 乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93. 答:甲成绩的中位数是90分,乙成绩的中位数是93分.2332210332290938990101010102727.917.81890.7+++=⨯+⨯+⨯+⨯=+++=()甲:(分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分 18.【答案】(1)50(2)15;10(3)36°(4)108 解:(1)本次共调查的学生总数为10÷20%=50(人);(2)喜欢篮球的人数为50×30%=15(人);这五个数据的中位数是:10;(3)5“”36036.3650⨯︒=︒︒跳绳对应的扇形圆心角的度数故答案为;(4)12“”45010850⨯=最喜欢乒乓球的人数大约有:(人).故答案为108人.四、解答题(第19题10分,第20题10分,共20分)719.10【答案】(1)0.25;16;40(2)解:(1)调查的总人数:2÷0.05=40(人);70~80组的频率:10÷40=0.25; 80~90组的频数:40×0.4=16.据此补全频数分布表和频数分布直方图: 分组 频数 频率3322949294861010101028.227.618.817.291.8⨯+⨯+⨯+⨯=+++=乙:(分)60≤x<7020.0570≤x<80100.2580≤x<90160.4090≤x≤100120.30合计40 1.00(2)成绩不低于80分的概率70.400.300.70.10=+==20.解:(1)画树状图:1111,22241111144a b由图可知()的所有结果为:(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(,1)、(,3)、(,2);(以上解法仅供参考,其他方法答对可酌情得分)(2)游戏不公平由(1)可知(a,b)取值共有9种等可能结果.∵Δ=b2-4a与对应(1)中的结果为:-1,7,2,0,8,3,-3,5,05540=9()()(99)P P P=∆==∴甲获胜>,乙获胜1-∴P(甲获胜)>P(乙获胜).∴这样的游戏规则对甲有利,不公平.五、解答题(第21题10分,第22题10分,共20分)21.解:(1)童车的数量是300×25%=75(件),童装的数量是300-75-90=135(件);儿童玩具占得百分比是(90÷300)×100%=30%;童装占得百分比1-30%-25%=45%.补全统计表和统计图如下:9090%7585%13580%8163.5108337(2)300300400⨯+⨯+⨯++==337.400答:估计购买到合格品的概率是22.解:(1)画树状图得:类别儿童玩具童车童装抽查件数9075135126∵共有种等可能的结果,其中小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共种情况61=.122P ∴(小明获胜)= (以上解法仅供参考,其他方法答对可酌情得分)(4,1),(4,2),(4,3)6335 1=.16888P P ===-∴(小明获胜),(小强获胜) ∵P (小明获胜)≠P (小强获胜)∴他们制定的游戏规则不公平。
九年级下册数学单元测试卷-第8章 统计和概率的简单应用-苏科版(含答案)
九年级下册数学单元测试卷-第8章统计和概率的简单应用-苏科版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力 B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖 C.了解无锡市每天的流动人口数,采用抽查方式 D.“掷一枚硬币,正面朝上”是必然事件2、一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点()落在直线上的概率为:A. B. C. D.3、某校进行学生睡眠时间调查,将所得数据分成5组.已知第一组的频率是0.18,第二、三、四小组的频率和为0.62,故第五组的频率是()A.0.20B.0.09C.0.31D.不能确定4、下列说法正确的是()A.“买一张电影票,座位号为偶数”是必然事件B.若甲、乙两组数据的方差分别为s =0.3、s =0.1,则甲组数据比乙组数据稳定 C.一组数据2,4,5,5,3,6的众数是5 D.若某抽奖活动的中奖率为,则参加6次抽奖一定有1次能中奖5、某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人6、在1∼100这些自然数中,4的倍数出现的频率为()A.0.25B.0.33C.0.35D.0.27、小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.8、小慧将今年五月深圳每天的最高气温情况绘制成条形统计图,根据图中信息,五月最高气温的众数与中位数分别为()A.33,30B.31,30C.31,31D.31,339、下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放新闻联播10、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只11、已知实数a<0,则下列事件中是必然事件的是()A.3a>0B.a﹣3<0C.a+3<0D.a 3>012、为了了解某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图2所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于( ).A.50%B.55%C.60%D.65%13、、、、四个人玩扑g牌游戏,他们先取出两张红桃和两张黑桃共四张扑g 牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑g牌的两个人为游戏搭档,若、两人各抽取了一张扑g牌,则两人恰好成为游戏搭档的概率为()A. B. C. D.14、学校测量了全校1 200名女生的身高,并进行了分组.已知身高在1.60~1.65(单位:m)这一组的频率为0.25,则该组共有女生()A.150名B.300名C.600名D.900名15、中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A. B. C. D.二、填空题(共10题,共计30分)16、从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是________.17、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为________.18、如图是一,二两组同学将本组最近次数学平均成绩.分别绘制成的折线统计图.由统计图可知________组进步更大.(选填“一"或"二”)19、口袋中装有二黄三蓝共5个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是________.20、同时抛掷三枚质地均匀的硬币,三枚硬币全部正面向上的概率是________.21、小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.22、根据环保公布的重庆市至PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是________ (观察图形填主要来源的名称).23、标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.24、在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数________.25、如图,一只小猫被关在正方形ABCD区域内,点O是对角线的交点,∠MON=90°,OM、ON分别交线段AB、BC于M、N两点,则小猫停留在阴影区域的概率为________.三、解答题(共5题,共计25分)26、一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.27、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上.(1)若随机地抽取一张,则抽到数字恰好为1的概率是;(2)请你通过列表或画树状图分析:先随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求组成的两位数能被4整除的概率.28、小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.掷石子次数石子落在的区域50次150次300次石子落在⊙O内(含⊙O上)的次数m 14 43 93 石子落在阴影内的次数n 19 85 18629、一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.30、小丽为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.参考答案一、单选题(共15题,共计45分)2、C3、A4、C5、C6、A7、B8、C9、B10、B11、B12、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
2023年九年级中考数学专题练——统计和概率(含解析)
2023年浙江省温州市中考数学专题练——10统计和概率一.选择题(共15小题)1.(2022•温州校级模拟)在一个不透明的口袋中装有3个白球和4个黄球这些球除颜色不同外其他完全相同,从袋子中随机摸出一个球,摸到白球的概率为( )A.34B.43C.37D.472.(2022•鹿城区校级三模)如图是某校七年级学生参加课外兴趣小组的扇形统计图(每人只参加一项),若参加书法兴趣小组的人数是30人,则参加绘画兴趣小组的人数是( )A.36人B.40人C.60人D.200人3.(2022•永嘉县三模)如图是某社区针对5月30日前该社区居民接种新冠疫苗的人数统计图.若接种第1针和第2针有1200人,则接种第0针的还有( )A.100人B.440人C.700人D.2000人4.(2022•瑞安市校级三模)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最少的一组是( )A.5~10元B.10~15元C.15~20元D.20~25元5.(2022•鹿城区校级三模)如图是某校九年级(1)班50名同学体育模拟测试成绩统计图(满分为40分,成绩均为整数),若不低于35分的成绩为合格,则该班此次成绩的合格率是( )A.60%B.80%C.44%D.72% 6.(2022•乐清市三模)小明参加学校“我爱我校”演讲比赛,记录员将五位评委的给分记录如下(单位:分):78,85,85,90,93.已知记录员将其中一个数据记少了5分,使得这组数据的中位数和众数都发生了改变,则记错的数据是( )A.78B.85C.90D.93 7.(2022•鹿城区二模)为了吸引广大消费者的积极性,某公司推出一款盲盒产品(所有盲盒的外观重量等均相同).其中有常规款及隐藏款(“大隐藏”、“小隐藏”).已知每1000个盲盒中常规款有960个,“小隐藏”30个,“大隐藏”10个.现随机抽取1盒,抽取到的是“大隐藏”的概率为( )A.225B.1100C.3100D.1258.(2022•鹿城区校级二模)在一个不透明的袋中装有10个只有颜色不同的球,其中有1个红球、2个黄球、3个蓝球和4个白球,从袋中任意摸出一个球,是蓝球的概率为( )A.110B.310C.15D.259.(2022•龙港市模拟)如图是某社区针对2022年4月20日前该社区居民接种新冠疫苗人数统计图.若接种2针有760人,则接种3针有( )A.100人B.440人C.700人D.2000人10.(2022•瓯海区模拟)如图为小王同学周末复习各学科投入时间扇形统计图,其中在语文学科投入时间为1小时,则她在数学学科投入时间为( )A.0.5小时B.1小时C.1.25小时D.1.5小时11.(2022•乐清市一模)甲、乙、丙、丁四位射击运动员参加射击训练,获得如下数据:甲乙丙丁平均数(环)9988方差(环) 1.20.9 1.30.95根据以上数据,哪位射击运动员射击成绩最好( )A.甲B.乙C.丙D.丁12.(2022•苍南县二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A.8.75B.13.86C.18.28D.18.91 13.(2022•瑞安市二模)在一个不透明的袋中装有5个只有颜色不同的球,其中2个红球,3个白球.从中任意摸出1个球是红球的概率是( )A.12B.13C.25D.3514.(2022•温州模拟)如图是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间在6小时及以上的人数有( )A.36人B.14人C.8人D.6人15.(2022•瓯海区一模)有甲、乙两组数据,已知甲组数据的方差为0.5,乙组数据的方差为0.2,那么甲、乙两组数据的波动程度是( )A.甲组数据的波动比较大B.乙组数据的波动比较大C.甲、乙两组数据的波动程度相同D.甲、乙两组数据的波动程度无法比较二.填空题(共8小题)16.(2022•温州校级模拟)如图是某班数学成绩的频数分布直方图(每一组含前一个边界值不含后一个边界值),则由图可知,得分在70分以上的人数占总人数的百分比为 .17.(2022•永嘉县三模)一个不透明的袋中装有12个只有颜色不同的球,其中2个红球,4个白球,6个黄球.从中任意摸出1个球是红球的概率为 .18.(2022•鹿城区校级三模)某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000残次品的频数m139163879121154残次品的频率mn0.0500.0600.0900.0800.0760.0790.0810.077估计从这批玩具中,任意抽取的一个毛绒玩具是残次品的概率是 .(精确到0.01)19.(2022•龙港市模拟)数据1,2,2,2,3的方差是 .20.(2022•鹿城区校级二模)小明调查了班级50人的毕业升学体育测试成绩如下表,中位数是 分.分数263235383940人数26812166 21.(2022•乐清市一模)为了解某校1000名学生对禁毒知识的掌握情况,随机抽取100名学生参加问卷测试,成绩进行整理得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,则该校成绩为80分及以上的学生约有 人.22.(2022•龙湾区模拟)温州2022年5月1至7日气温折线统计图如图所示,由图可知,这七天中温差最大那天的温度相差 度.23.(2022•瑞安市二模)如图是某校七年级学生参加课外兴趣小组人数的扇形统计图.若参加书法兴趣小组的人数是30人,则参加绘画兴趣小组的人数是 人.三.解答题(共7小题)24.(2022•温州校级模拟)为了了解本校学生对消防安全知识的掌握情况,陈老师随机抽取了50名学生进行消防安全知识测试(满分100分),经过数据整理得到以下信息:信息一:成绩(分)0≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数(人)151615a 信息二:成绩在70≤x<80这一组的具体数据为:72,78,75,79,78,77,75,76,73,71.(1)表格中a= ,抽取的50名学生测试成绩的中位数是 分;(2)若该校共有2000名学生,请估计该校消防安全知识测试成绩不低于80分的人数.25.(2022•鹿城区校级三模)爱民商贸公司有10名销售员,调查他们去年完成的销售额情况如下:销售额(万元)34567810销售员人数(人)1321111(1)求销售额的中位数、众数,以及平均每人完成的销售额.(2)根据第(1)题的结果评价该公司销售员的销售能力.26.(2022•永嘉县三模)在为期一个月的训练过程中,A,B,C,D,E,F同学经历了5次跳绳测试(每次1分钟),测试成绩如表一(单位:个):表一12345次数同学A152161162170175B155170163160167C170175162163150D170160180185155E180185160175160F155156154153157根据表一的数据,计算了大部分同学的平均数(单位:个)及方差(单位:平方个),计算结果如表二:表二:A B C D E F同学统计量平均数164163m170172155方差62.827.671.6n1062(1)求同学C跳绳项目的平均成绩m及同学D跳绳成绩的方差n.(2)根据你在(1)中所求的统计量,结合表一、表二数据分析,你认为选哪三位同学参赛?请简述理由.27.(2022•瑞安市校级三模)某村深入贯彻落实习近平新时代中国特色社会主义思想,认真践行“绿水青山就是金山银山”理念.在外打工的王大叔返回家乡创业,承包了甲、乙两座荒山,各栽100棵小枣树,发现成活率均为97%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两座山上随意各采摘了4棵树上的小枣,每棵的产量如折线统计图所示.(1)直接写出甲山4棵小枣树产量的中位数 ;(2)分别计算甲、乙两座山小枣样本的平均数,并判断哪座山的样本的产量高;(3)用样本平均数估计甲乙两座山小枣的产量总和.28.(2022•鹿城区二模)为了解某校学生对“新冠病毒预防知识”的了解情况,对学生进行了随机抽样的问卷调查,调查结果分为A表示“非常了解”、B表示“了解”、C表示“基本了解”、D表示“不太了解”四个等级进行统计,并将统计结果绘制成了如图所示的条形统计图.根据图中提供的信息,回答下列问题:(1)本次调查的学生共有 人,若了解等级属于C和D的需要进行科普学习,求科普学习对象所占的百分比.(2)“不太了解”的甲、乙、丙、丁四位同学坐在同一排(座位号1,2,3,4号,1号与4号不相邻)通过观看视频学习.现在甲乙两人先坐,请用列表或画树状图的方法,求甲,乙两人位置恰好相邻的概率.29.(2022•鹿城区校级二模)一个不透明的袋子里有1个红球,3个黄球,它们除颜色外其余都一样.(1)若同时摸出2个球,请用画树状图或列表法求摸出的2个球恰好颜色相同的概率.(2)现在往袋子里再放入a个红球,b个黄球(a,b均为正整数),这些球与原来袋子里的球型号完全相同.结果发现任意从袋子里摸出一个球,摸到黄球的概率与原来一样,请你写出一组a,b的值:a= ,b= .30.(2022•乐清市三模)为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班45名学生进行1min跳绳次数测试,以测试数据为样本,绘制频数分布直方图如图所示.已知七年级学生1min跳绳次数(x)达标要求是:x<120为不合格,120≤x<140为合格,140≤x<160为良好,x≥160为优秀.(1)求80≤x<100这一组数据的频率及七年级(1)班1min跳绳的优良率(包括良好和优秀).(2)求出这45名学生1min跳绳次数的中位数所在组的组中值,并结合各数据段分布情况对七年级(1)班的同学提出一些合理的建议.2023年浙江省温州市中考数学专题练——10统计和概率参考答案与试题解析一.选择题(共15小题)1.(2022•温州校级模拟)在一个不透明的口袋中装有3个白球和4个黄球这些球除颜色不同外其他完全相同,从袋子中随机摸出一个球,摸到白球的概率为( )A.34B.43C.37D.47【解答】解:∵一个不透明的袋子中有3个白球、4个黄球,∴球的总数=3+4=7,∴从袋子中随机摸出一个球,则它是白球的概率为3 7.故选:C.2.(2022•鹿城区校级三模)如图是某校七年级学生参加课外兴趣小组的扇形统计图(每人只参加一项),若参加书法兴趣小组的人数是30人,则参加绘画兴趣小组的人数是( )A.36人B.40人C.60人D.200人【解答】解:∵参加书法兴趣小组的人数是30人,占参加课外兴趣小组人数的1﹣35%﹣30%﹣20%=15%,∴参加课外兴趣小组人数的人数共有:30÷15%=200(人),∴参加绘画兴趣小组的人数是200×30%=60(人).故选:C.3.(2022•永嘉县三模)如图是某社区针对5月30日前该社区居民接种新冠疫苗的人数统计图.若接种第1针和第2针有1200人,则接种第0针的还有( )A .100人B .440人C .700人D .2000人【解答】解:根据题意,接种第1针和第2针人数占比为:38%+22%=60%,∴该社区居民接种新冠疫苗人数为:1200÷60%=2000(人),∴接种3针的人数为:2000×35%=700(人),故选:C .4.(2022•瑞安市校级三模)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最少的一组是( )A .5~10元B .10~15元C .15~20元D .20~25元【解答】解:由直方图可得,捐款人数最少的一组是5~10元,只有5个人,故选:A .5.(2022•鹿城区校级三模)如图是某校九年级(1)班50名同学体育模拟测试成绩统计图(满分为40分,成绩均为整数),若不低于35分的成绩为合格,则该班此次成绩的合格率是( )A .60%B .80%C .44%D .72%【解答】解:由统计图知,合格的人数为4+14+22=40(人),∴该班此次成绩的合格率是4050×100%=80%,故选:B .6.(2022•乐清市三模)小明参加学校“我爱我校”演讲比赛,记录员将五位评委的给分记录如下(单位:分):78,85,85,90,93.已知记录员将其中一个数据记少了5分,使得这组数据的中位数和众数都发生了改变,则记错的数据是( )A.78B.85C.90D.93【解答】解:当78少记了5分时,应是83分,这样中位数和众数都不发生了改变,当85少记了5分时,应是90分,这样中位数和众数都发生了改变,当90和93少了5分时,分别是95和98分,这样中位数和众数都不发生了改变,所以记错的数据是85分;故选:B.7.(2022•鹿城区二模)为了吸引广大消费者的积极性,某公司推出一款盲盒产品(所有盲盒的外观重量等均相同).其中有常规款及隐藏款(“大隐藏”、“小隐藏”).已知每1000个盲盒中常规款有960个,“小隐藏”30个,“大隐藏”10个.现随机抽取1盒,抽取到的是“大隐藏”的概率为( )A.225B.1100C.3100D.125【解答】解:根据题意知,随机抽取1盒共有1000种等可能结果,其中抽取到的是“大隐藏”的有10种结果,所以抽取到的是“大隐藏”的概率为101000=1100,故选:B.8.(2022•鹿城区校级二模)在一个不透明的袋中装有10个只有颜色不同的球,其中有1个红球、2个黄球、3个蓝球和4个白球,从袋中任意摸出一个球,是蓝球的概率为( )A.110B.310C.15D.25【解答】解:∵袋子中共有10个只有颜色不同的球,其中蓝球有3个,∴从袋中任意摸出一个球,是蓝球的概率为3 10.故选:B.9.(2022•龙港市模拟)如图是某社区针对2022年4月20日前该社区居民接种新冠疫苗人数统计图.若接种2针有760人,则接种3针有( )A.100人B.440人C.700人D.2000人【解答】解:根据题意得:760÷38%×22%=440(人),答:接种3针有440人;故选:B.10.(2022•瓯海区模拟)如图为小王同学周末复习各学科投入时间扇形统计图,其中在语文学科投入时间为1小时,则她在数学学科投入时间为( )A.0.5小时B.1小时C.1.25小时D.1.5小时【解答】解:由题意得,她在数学学科投入时间为:1÷20%×(1﹣20%﹣15%﹣10%﹣30%)=1.25(小时),故选:C.11.(2022•乐清市一模)甲、乙、丙、丁四位射击运动员参加射击训练,获得如下数据:甲乙丙丁平均数(环)9988方差(环) 1.20.9 1.30.95根据以上数据,哪位射击运动员射击成绩最好( )A.甲B.乙C.丙D.丁【解答】解:∵甲和乙的平均数较大,而乙的方差比甲小,∴乙运动员射击成绩最好,故选:B.12.(2022•苍南县二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A.8.75B.13.86C.18.28D.18.91【解答】解:各节气的平均气温最大值与最小值的差是13.86﹣(﹣5.05)=13.86+5.05=18.91(°C),故选:D.13.(2022•瑞安市二模)在一个不透明的袋中装有5个只有颜色不同的球,其中2个红球,3个白球.从中任意摸出1个球是红球的概率是( )A.12B.13C.25D.35【解答】解:∵一共有5个只有颜色不同的球,其中红球有2个,∴从中任意摸出1个球是红球的概率为2 5,故选:C.14.(2022•温州模拟)如图是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间在6小时及以上的人数有( )A.36人B.14人C.8人D.6人【解答】解:由频数分布直方图知,每周课外阅读时间不小于6小时的人数是8+6=14(人),故选:B.15.(2022•瓯海区一模)有甲、乙两组数据,已知甲组数据的方差为0.5,乙组数据的方差为0.2,那么甲、乙两组数据的波动程度是( )A.甲组数据的波动比较大B.乙组数据的波动比较大C.甲、乙两组数据的波动程度相同D.甲、乙两组数据的波动程度无法比较【解答】解:∵甲组数据的方差为0.5,乙组数据的方差为0.2,∴甲组数据的方差大于乙组数据的方差,∴甲组数据的波动比较大,故选:A.二.填空题(共8小题)16.(2022•温州校级模拟)如图是某班数学成绩的频数分布直方图(每一组含前一个边界值不含后一个边界值),则由图可知,得分在70分以上的人数占总人数的百分比为 60% .【解答】解:得分在70分以上(包括70分)的人数占总人数的百分比为14+8+24+12+14+8+2×100%=60%,故答案为:60%.17.(2022•永嘉县三模)一个不透明的袋中装有12个只有颜色不同的球,其中2个红球,4个白球,6个黄球.从中任意摸出1个球是红球的概率为 16 .【解答】解:∵袋子中共有12个小球,其中红球有2个,∴摸出一个球是红球的概率是212=16,故答案为:1 6.18.(2022•鹿城区校级三模)某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000残次品的频数m139163879121154残次品的频率mn0.0500.0600.0900.0800.0760.0790.0810.077估计从这批玩具中,任意抽取的一个毛绒玩具是残次品的概率是 0.08 .(精确到0.01)【解答】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是残次品的概率为0.08.故答案为:0.08.19.(2022•龙港市模拟)数据1,2,2,2,3的方差是 25 .【解答】解:∵这组数据的平均数为1+2+2+2+35=2,∴这组数据的方差为15×[(2﹣1)+3×(2﹣2)+(2﹣3)]=25.故答案为:2 5.20.(2022•鹿城区校级二模)小明调查了班级50人的毕业升学体育测试成绩如下表,中位数是 38 分.分数263235383940人数26812166【解答】解:把这些数从小到大排列,中位数是第25、26个数的平均数,则中位数是38+382=38(分);故答案为:38.21.(2022•乐清市一模)为了解某校1000名学生对禁毒知识的掌握情况,随机抽取100名学生参加问卷测试,成绩进行整理得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,则该校成绩为80分及以上的学生约有 520 人.【解答】解:由题意知该校成绩为80分及以上的学生约有1000×32+20100=520(人),故答案为:520.22.(2022•龙湾区模拟)温州2022年5月1至7日气温折线统计图如图所示,由图可知,这七天中温差最大那天的温度相差 16 度.【解答】解:由图形直观可以得出5月4日温差最大,是27﹣11=16(℃),故答案为:16.23.(2022•瑞安市二模)如图是某校七年级学生参加课外兴趣小组人数的扇形统计图.若参加书法兴趣小组的人数是30人,则参加绘画兴趣小组的人数是 60 人.【解答】解:∵参加书法兴趣小组的人数是30人,占参加课外兴趣小组人数的1﹣35%﹣30%﹣20%=15%,∴参加课外兴趣小组人数的人数共有:30÷15%=200(人),∴参加绘画兴趣小组的人数是200×30%=60(人).故答案为:60.三.解答题(共7小题)24.(2022•温州校级模拟)为了了解本校学生对消防安全知识的掌握情况,陈老师随机抽取了50名学生进行消防安全知识测试(满分100分),经过数据整理得到以下信息:信息一:成绩(分)0≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数(人)151615a 信息二:成绩在70≤x<80这一组的具体数据为:72,78,75,79,78,77,75,76,73,71.(1)表格中a= 3 ,抽取的50名学生测试成绩的中位数是 74 分;(2)若该校共有2000名学生,请估计该校消防安全知识测试成绩不低于80分的人数.【解答】解:(1)成绩在70≤x<80这一组的具体数据有10个,故表格中a=50﹣1﹣5﹣16﹣10﹣15=3,成绩在70≤x<80这一组的具体数据从小到大排列为:71,72,73,75,75,76,77,78,78,79,故抽取的50名学生测试成绩的中位数是(73+75)÷2=74分.故答案为:13,74;(2)2000×15+350=720(人).故估计该校消防安全知识测试成绩不低于80分的人数为720人.25.(2022•鹿城区校级三模)爱民商贸公司有10名销售员,调查他们去年完成的销售额情况如下:销售额(万元)34567810销售员人数(人)1321111(1)求销售额的中位数、众数,以及平均每人完成的销售额.(2)根据第(1)题的结果评价该公司销售员的销售能力.【解答】解:(1)中位数是5万元;众数是4万元;平均数是110×(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元).(2)根据平均数为5.6万元,该公司的销售员有一半多没有达到平均销售额,大多数销售能力为4万元,销售额的中间水平为5万元,销售员之间能力差距较大.26.(2022•永嘉县三模)在为期一个月的训练过程中,A,B,C,D,E,F同学经历了5次跳绳测试(每次1分钟),测试成绩如表一(单位:个):表一次数同学12345A152161162170175B155170163160167C170175162163150D170160180185155E180185160175160F155156154153157根据表一的数据,计算了大部分同学的平均数(单位:个)及方差(单位:平方个),计算结果如表二:表二:同学统计量A B C D E F平均数164163m170172155方差62.827.671.6n1062(1)求同学C跳绳项目的平均成绩m及同学D跳绳成绩的方差n.(2)根据你在(1)中所求的统计量,结合表一、表二数据分析,你认为选哪三位同学参赛?请简述理由.【解答】解:(1)根据题意得:同学C跳绳项目的平均成绩为m=170+175+162+163+1505=164,同学D跳绳成绩的方差为n=15×[(170﹣170)+(160﹣170)+(180﹣170)+(185﹣170)+(155﹣170)]=130.(2)选E,D,A三位同学参赛,理由如下:从平均分来看,E,D,A三为同学的平均分高,F,B两位同学的方差虽然更小,相对来说成绩更稳定,但他们的平均数更少,成绩没E,D,A三位同学理想.故选:选E,D,A三位同学参赛.27.(2022•瑞安市校级三模)某村深入贯彻落实习近平新时代中国特色社会主义思想,认真践行“绿水青山就是金山银山”理念.在外打工的王大叔返回家乡创业,承包了甲、乙两座荒山,各栽100棵小枣树,发现成活率均为97%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两座山上随意各采摘了4棵树上的小枣,每棵的产量如折线统计图所示.(1)直接写出甲山4棵小枣树产量的中位数 38 ;(2)分别计算甲、乙两座山小枣样本的平均数,并判断哪座山的样本的产量高;(3)用样本平均数估计甲乙两座山小枣的产量总和.【解答】解:(1)∵甲山4棵枣树产量为34、36、40、50,∴甲山4棵小枣树产量的中位数为36+402=38(千克).故答案为:38;(2)x甲=50+36+40+344=40(千克),x乙=36+40+48+364=40(千克),∴两山的样本产量相同;(3)(40×100+39×100)×0.97=7663(千克),答:用样本平均数估计甲乙两座山小枣产量总和为7663千克.28.(2022•鹿城区二模)为了解某校学生对“新冠病毒预防知识”的了解情况,对学生进行了随机抽样的问卷调查,调查结果分为A表示“非常了解”、B表示“了解”、C表示“基本了解”、D表示“不太了解”四个等级进行统计,并将统计结果绘制成了如图所示的条形统计图.根据图中提供的信息,回答下列问题:(1)本次调查的学生共有 200 人,若了解等级属于C和D的需要进行科普学习,求科普学习对象所占的百分比.(2)“不太了解”的甲、乙、丙、丁四位同学坐在同一排(座位号1,2,3,4号,1号与4号不相邻)通过观看视频学习.现在甲乙两人先坐,请用列表或画树状图的方法,求甲,乙两人位置恰好相邻的概率.【解答】解:(1)本次调查的学生人数为60+80+56+4=200(人),科普学习对象所占的百分比为56+4200×100%=30%;故答案为:200;(2)列表如下:12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由表知共有12种等可能结果,其中甲,乙两人位置恰好相邻的有6种结果,所以甲,乙两人位置恰好相邻的概率为612=12.29.(2022•鹿城区校级二模)一个不透明的袋子里有1个红球,3个黄球,它们除颜色外其余都一样.(1)若同时摸出2个球,请用画树状图或列表法求摸出的2个球恰好颜色相同的概率.(2)现在往袋子里再放入a个红球,b个黄球(a,b均为正整数),这些球与原来袋子里的球型号完全相同.结果发现任意从袋子里摸出一个球,摸到黄球的概率与原来一样,请你写出一组a,b的值:a= 1(答案不唯一) ,b= 3(答案不唯一) .【解答】解:(1)画树状图如下:共有12种等可能的结果,其中摸出的2个球恰好颜色相同的结果有6种,∴摸出的2个球恰好颜色相同的概率为612=12;(2)在(1)中,摸到黄球的概率为3 4,由题意得:b+4a+b+4=34,整理得:b=3a,设a=1,则b=3,故答案为:1(答案不唯一),3(答案不唯一).30.(2022•乐清市三模)为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班45名学生进行1min跳绳次数测试,以测试数据为样本,绘制频数分布直方图如图所示.已知七年级学生1min跳绳次数(x)达标要求是:x<120为不合格,120≤x<140为合格,140≤x<160为良好,x≥160为优秀.(1)求80≤x<100这一组数据的频率及七年级(1)班1min跳绳的优良率(包括良好和优秀).(2)求出这45名学生1min跳绳次数的中位数所在组的组中值,并结合各数据段分布情况对七年级(1)班的同学提出一些合理的建议.【解答】解:(1)80≤x<100这一组数据的频率为:945=0.2,七年级(1)班1min 跳绳的优良率为:13+545×100%=45%;(2)这45名学生1min 跳绳次数从小到大排列,排在中间的数位于120≤x <140;建议加强锻炼,增强体质(答案不唯一,合情合理即可).。
统计与概率初三练习题
统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。
通过做题,我们可以巩固所学知识,提高解决问题的能力。
本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。
一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。
解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。
平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。
全国通用版中考数学复习单元测试八统计与概率含答案
单元测试(八) 统计与概率(时间:45分钟满分:100分)一、选择题(每小题5分,共30分)1.下列成语描述的事件为随机事件的是(B)A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼2.某校有35名同学参加文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(B)A.众数 B.中位数 C.平均数 D.方差3.下表是某位男子马拉松长跑运动员近6次的比赛成绩:(单位:分钟)第几次 1 2 3 4 5 6比赛成绩145 147 140 129 136 125则这组成绩的中位数和平均数分别为(B)A.137,138 B.138,137 C.138,138 D.137,1394.下列说法正确的是(D)A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(D)A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市6.袋内装有标号分别为1,2,3,4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为(B)A.14B.516C.716D.12二、填空题(每小题5分,共20分)7.一个不透明的口袋里装有红、蓝、黄三种颜色的球共20个,除颜色外完全相同,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球、蓝球的频率稳定在30%,20%,由此估计口袋中共有红色小球10个.8.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是乙.9.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A”的学生约为16__000人.10.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是49.三、解答题(共50分)11.(12分)今年我市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,绘制了如图所示的两个不完整的统计图.(1)求该校的班级总数; (2)将条形统计图补充完整;(3)求该校各班在这一活动中植树的平均数. 解:(1)该校的班级总数是3÷25%=12. 答:该校的班级总数是12.(2)植树11棵的班级数是12-1-2-3-4=2,补全条形统计图如图. (3)(1×8+2×9+2×11+3×12+4×15)÷12=12(棵). 答:该校各班在这一活动中植树的平均数是12棵.12.(12分)车辆经过润扬大桥收费站时,A ,B ,C ,D 四个通道中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择Α通道通过的概率是14;(2)求两辆车经过此收费站时,选择不同通道通过的概率. 解:设两辆车为甲、乙. 画树状图如下:由图可知,两辆车经过此收费站时,会有16种等可能的结果,其中选择不同通道通过的有12种结果, ∴选择不同通道通过的概率为1216=34.13.(12分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题: (1)写出扇形图中a =25%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是5 个,5个;(3)该区体育中考选报引体向上的男生共有1 800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?解:(1)补全条形图如图.(3)50+40200×1 800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.14.(14分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:75≤x<80;B 组:80≤x<85;C 组:85≤x<90;D 组:90≤x<95;E 组:95≤x<100,并绘制出如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.解:(1)频数分布直方图如图所示. (2)108 °,15%.(3)两名男生分别用A 1,A 2表示,两名女生分别用B 1,B 2表示.根据题意可画出如下树状图:或列表法:第1人第2人A1A2B1B2A1A2A1B1A1B2A1A2A1A2B1A2B2A2B1A1B1A2B1B2B1B2A1B2A2B2B1B2由上图可以看出,所有可能出现的结果有12种,这些结果出现的可能性相等.选中一名男生和一名女生的结果有8种.∴恰好选中一名男生和一名女生的概率为812=32.。
(北京专版)中考数学 第4单元 统计与概率单元综合测试-人教版初中九年级全册数学试题
统计与概率一、选择题(每题6分,共42分)1.下列说法中错误的是( )A.“多边形的外角和等于360°”是一个必然事件B.1,2,3,4C.一组数据的方差越小,这组数据的稳定性就越差D.要了解某种灯管的使用寿命,一般采用抽样调查2.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是( )A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况3.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( )C.1.70,1.65 D.3,44.甲、乙两人在相同的条件下各射靶10次,经过计算,甲、乙射击成绩的平均数都是8环,,正确的是( )A.甲、乙的众数相同B.甲的成绩比乙稳定C.乙的成绩波动较大D.甲、乙射中的总环数相同5.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( ) A.12 B.16 C.13 D.236.小兰和小谭分别用掷A ,B 两枚骰子的方法来确定点P (x ,y )的位置,她们规定:小兰掷得的点数为x ,小谭掷得的点数为y ,那么,她们各掷一次所确定的点P 落在已知直线y =-2x +6上的概率为( ) A.16 B.118 C.112 D.197.为积极响应某某市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是( )图D4-1A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的大约有900人 二、填空题(每题6分,共18分)8.一个不透明的盒子里有n 个除颜色外其他都相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是________.9.有6X 背面完全相同的卡片,每X 正面分别画有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀并从中任取一X 卡片,抽中正面画的图形是中心对称图形的概率为________.10.在中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图D4-2所示,则这10名学生成绩的中位数是________分,众数是________分.图D4-2三、解答题(共40分)11.(20分)如图D4-3是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图某某息解答下列问题:(%)(2)2013年全国普通高校毕业生人数约是多少万人?(结果取整数)(3)补全折线统计图和条形统计图.图D4-312.(20分)某校在推进新课改的过程中,开设的体育选修课有A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选修一门.学校李老师对某班全体同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图D4-4).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.图D4-4 参考答案1.C 2.B 3.C 4.A5.C [解析] 向上一面的数字小于3的有1,2,故其概率为26=13.6.B 7.B8.20 9.23 10.90 9011.解:(1)(749-727)÷%. %.%)≈699(万人).答:2013年全国普通高校毕业人数约是699万人. (3)图略.12.解:(1)12÷24%=50,所以该班的总人数为50人.“E ”对应的人数为50×10%=5(人),“A ”对应的人数为50-7-12-9-5=17(人). 补全频数分布直方图如图所示:(2)选出的2人情况列表如下:所以,选出的2人恰好1人选修篮球,1人选修足球的概率P (AB )=412=13.或画树状图如下:可见,P (AB )=412=13.。
苏科版初三数学下册《统计和概率的简单应用》单元测试卷及答案解析
苏科版初三数学下册《统计和概率的简单应用》单元测试卷及答案解析一、选择题1、凤江镇有10万人口,随机调查了1000人,其中有20人喜欢看晚间新闻联播,则该镇中喜欢看晚间新闻联播的人数大约有()人.A.1000 B.2000 C.3000 D.40002、想了解建昌一中七年级学生的视力情况,抽出400名学生进行测试,应该( )A.从戴眼镜的同学中抽取样本进行视力状况随机测试B.从不戴眼镜的同学中抽取样本进行视力状况随机测试C.中午的时候,随机测试一些从事体育运动的七年级学生的视力状况D.到几个班级,在学校放学时,对出教室的七年级学生的视力状况随机测试3、下列信息中,适合用折线统计图表示的是()。
A. 学校各年级的人数;B. 六年级各班做好事的人数;C. 4月份气温变化的情况4、下列调查中,适合普查的事件是()A.调查华为手机的使用寿命 B.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况 D.调查中央电视台《中国舆论场》的节目收视率5、要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是()A.选取七年级一个班级的学生 B.选取50名七年级男生C.选取50名七年级女生 D.随机选取50名七年级学生6、某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()只A.2000 B.14000 C.21000 D.980007、在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.68、为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A.5 B.18 C.10 D.4二、填空题9、某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有______万人。
中考数学总温习第八单元统计与概率单元测试八统计与概率试题
单元测试(八) 统计与概率(时刻:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列说法中正确的是( D )A.“打开电视机,正在播《动物世界》”是必然事件B.某种彩票的中奖概率为千分之一,说明每买1 000张彩票,必然有一张中奖C.抛掷一枚质地均匀的硬币一次,显现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采纳抽样调查2.要估量鱼塘中的鱼数,养鱼者第一从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发觉只有两条鱼是适才做了记号的鱼.假设鱼在鱼塘内均匀散布,那么估量那个鱼塘的鱼数约为( B )A.5 000条 B.2 500条 C.1 750条 D.1 250条3.某校要从四名学生当选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩x及其方差s2如表所示.若是要选择一名成绩高且发挥稳固的学生参赛,那么应选择的学生是( B )甲乙丙丁x 8998s211A.甲 B.乙 C.丙 D.丁4.(2014·娄底)实施新课改以来,某班学生常常采纳“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情形进行综合评分.下表是其中一周的评分结果:组别一二三四五六七分值90 96 89 90 91 85 90“分值”这组数据的中位数和众数别离是( B )A.89、90 B.90、90 C.88、95 D.90、955.(2016·贺州)从别离标有数-3、-二、-一、0、一、二、3的七张没有明显不同的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( D )6.(2014·天津)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92和4的权.依照四人各自的平均成绩,公司将录取( B )A.甲 B.乙 C.丙 D.丁7.如图是从一副扑克牌中掏出的两组牌,别离是黑桃一、二、3、4,红桃一、二、3、4,将它们背面朝上别离从头洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是( B )8.(2016·达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所组成的三角形恰好是直角三角形的概率为( D )二、填空题(每小题5分,共20分)9.(2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发觉,摸到黄球的频率稳固在30%,由此估量口袋中共有小球20个.10.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生别离选了一项球类运动),并依照调查结果绘制了如图所示的扇形统计图.已知其中最喜爱羽毛球的人数比最喜爱乒乓球的人数少6人,则该校被调查的学生总人数为60名.11.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为9.12.小明和小亮用如图所示的两个转盘(每一个转盘被分成四个面积相等的扇形)做游戏,转动两个转盘各一次,若是两次数字之和为奇数,则小明胜,不然,小亮胜,那个游戏公平吗?答:公平(填“公平”或“不公平”).三、解答题(共48分)13.(10分)作为宁波市政府民生实事之一的公共自行车建设工作大体完成,某部门对今年4月份中的7天进行了公共自行车租车量的统计,结果如下:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估量4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估量2014年共租车3 200万车次,每车次平均收入租车费元,求2014年租车费收入占总投入的百分率(精准到%).解:(1)8,8,.(2)30×=255(万车次).(3)3 200×÷9 600×100%≈%.14.(12分)(2016·黄冈)望江中学为了了解学生平均天天“朗诵经典”的时刻,在全校范围内随机抽查了部份学生进行调查统计,并将调查统计的结果分为:天天朗诵时刻t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将搜集的数据绘制成如下两幅不完整的统计图,请依照图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)若是该校共有1 200名学生,请你估量该校C类学生约有多少人?解:(2)补图如图所示.(3)1 200×20%=240(人).答:该校C类学生约有240人.15.(12分)(2016·衡阳)在四张背面完全相同的纸牌A,B,C,D,其中正面别离有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能显现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.解:(1)画树状图得:则共有16种等可能的结果.(2)∵既是中心对称又是轴对称图形的只有B,C,∴既是轴对称图形又是中心对称图形的有4种情形.∴既是轴对称图形又是中心对称图形的概率为:416=14.16.(14分)(2015·钦州)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜爱的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),依照调查统计结果,绘制了如下两种不完整的统计图表:选项方式百分比A 唱歌35%B 舞蹈 aC 绘画25%D 演讲10%请结合统计图表,回答下列问题:(1)本次抽查的学生共300人,a=30%,并将条形统计图补充完整;(2)若是该校学生有1 800人,请你估量该校喜爱“唱歌”这项宣传方式的学生约有多少人?(3)学校采纳抽签方式让每班在A,B,C,D四项宣传方式中随机抽取两项进行展现,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.解:(1)补充条形图如图.(2)1 800×35%=630(人).答:该校喜爱“唱歌”这项宣传方式的学生约有630人.(3)画出树状图如下:共有12种等可能的结果数,其中含A和B的结果数为2.因此某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率=212=16.。
九年级初中数学《概率与统计》单元测试卷含答案
九年级《概率与统计》单元测试卷含答案(试卷满分:150分)一、选择题(每小题3分、共30分)1.在一个不透明的袋子里共有2个黄球和3个白球、每个球除颜色外都相同、小亮从袋子中任意摸出一个球、结果是白球、则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是().A.小亮从袋中任意摸出一个球、摸出白球的概率是1B.小亮从袋中任意摸出一个球、摸出白球的概率是0C.在这次实验中、小亮摸出白球的频率是1D.由这次实验的频率去估计小亮从袋中任意摸出一个球、摸出白球的概率是12.下列说法不正确的是().A.“抛掷一枚硬币、硬币落地时正面朝上”是随机事件B.“任意打开数学教科书八年级下册、正好是第50页”是不可能事件C.“把4个球放入三个抽屉中、其中必有一个抽屉中至少有2个球”是必然事件D.“在一个不透明的袋子中、有5个除颜色外完全一样的小球、其中2个红球、3个白球、从中任意摸出1个小球、正好是红球”是随机事件3.为了解全校学生的上学方式、在全校1000名学生中随机抽取了150名学生进行调查,下列说法中正确的是( ).A.总体是全校学生B.样本容量是1000C.个体是每名学生的上学时间D.样本是随机抽取的150名学生的上学方式4.某时段有50辆车通过一个雷达测速点、工作人员将测得的车速绘制成如图1所示的条形统计图、则这50辆车的车速的众数(单位:km/h)为( ).图 1A.15 B.40 C.50 D.605.在一个不透明的布袋中、有黄色、白色的玻璃球共有10个、除颜色外、形状、大小、质地等完全相同.小博通过多次摸球试验后发现摸到黄色球的频率稳定在40%、则布袋中白色球的个数很可能是().A.4个 B.5个 C.6个 D.7个6.佳佳为了估计水塘中的鱼数、养鱼者首先从鱼塘中捕获30条鱼、在每条鱼身上做好记号后、把这些鱼放归鱼塘、再从鱼塘中打捞200条鱼、如果在这200条鱼中有5条鱼是有记号的、则鱼塘中鱼的可估计为().条条条条7.小马将如图2所示的转盘分成n(n是正整数)个扇形、并使得各个扇形的面积都相等、然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n(每个区域内标注1个数字、且各区域内标注的数字互不相同)、转动转盘1次、当转盘停止转动时、若事件“指针所落区域标注的数字大于8”的概率是5/6、则n的取值为().8.自来水公司为了了解居民某月用水情况、随机抽取了20户居民的月用水量x(单位:立方米)、绘制出如图3表格、则月用水量x<3的频率是( ).B. C. D.图 2 图 39.2019年5月26日第5届中国国际大数据产业博览会召开。
九年级初中数学《统计与概率》单元试卷含答案
九年级数学《统计与概率》单元试卷含答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列调查方式,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对市场上一批LED节能灯使用寿命的调查C.对我市中学生观看电影《我和我的祖国》情况的调查D.对我国首艘国产航母山东舰各零部件质量情况的调查2.下列事件为确定事件的是()A.一个不透明的口袋中装有除颜色以外完全相同的3个红球和1个白球,均匀混合后,从中任意摸出一个球是红球B.掷两枚质地均匀的正方体骰子,点数之和一定大于7C.长度分别是4,6,9的三条线段能围成一个三角形D.掷一枚质地均匀的硬币,落地时正面朝上3日练字页数23456人数26543)A.3页,4页B.4页,4页C.3页,5页D.4页,5页4.为了解某市参加中考的26000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.26000名学生是总体B.每名学生是总体的一个个体C.1200名学生的身高是总体的一个样本D.以上调查是全面调查5.从-1,2,3,-6这四个数中任取两数,分别记为m,n,那么点(m,n)在函数y =6x图象上的概率是()A.12B.13C.14D.186.某市青少年科技创新大赛中,有9名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前5名,他除了知道自己成绩外还要知道这9名学生成绩的()A.中位数B.众数C.平均数D.方差7.在“经典诵读”比赛的活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.中位数是95分B.方差是15C.平均数是95分D.众数是90分8.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1 9.在甲、乙两班进行的定点投篮中,每班选八名选手,每人投篮10次,甲、乙两班的比赛成绩(投中次数)统计如下表.甲、乙两班投中次数的平均数都是5,且s2甲=1.5.请你通过计算,选择正确的答案为()甲34455667乙33456667A.s2乙=1.4,甲班成绩比乙班更稳定B.s2乙=2,甲班成绩比乙班更稳定C.s2乙=1.5,甲、乙两班成绩一样稳定D.不能确定甲、乙两班成绩哪一个更稳定10.一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球编号的积小于4的概率是()A.16B.516C.13D.12二、填空题(本大题共6小题,每小题4分,共24分)11.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复试验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球个.12.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是.13.一个不透明布袋里有3个红球,4个白球和m个蓝球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为13,则m的值为.14.已知一个样本-1,0,2,x,3,它们的平均数是2,则这个样本的方差s2 = .15.小华买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,其中恰好摆成“上、中、下”顺序的概率是.16.如图,△ABC三边的中点D,E,F组成△DEF,△DEF的三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.三、解答题(本大题共3小题,共28分)17.(8分)4张相同的卡片上分别写有数字-1,-3,4,6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=k x+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=k x+b中的b,利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.18.(10分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是;(2)请根据以上信息补全条形统计图;(3)扇形统计图中“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.19.(10分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:学生每月零花钱数额统计表零花钱数额x/元人数(频数)频率0≤x<3060.1530≤x<60120.3060≤x<90160.4090≤x<120b0.10120≤x<1502a请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a﹦;(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,共20分)20.(10分)甲、乙两人进行摸牌游戏,现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.21.(10分)某校为了解学生的阅读情况,对学生在2019年读课外书的数量进行了调查.下面是根据随机抽取的部分学生的读书数量情况整理的表格和两幅不完整的统计图:A B C D E01~3本4~7本8~12本超过12本请根据图中提供的信息,解答下列问题.(1)此次抽样调查共调查了名学生;(2)请将条形统计图补充完整;(3)请说明样本数据中,学生读书数量的中位数落在哪个范围内;(4)该校共有900名学生,估计在2019年读课外书的数量超过12本的学生有多少名.22.如图,有四张背面完全相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A ,B ,C ,D 表示).六、解答题(本大题共1小题,共12分)23.为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生、2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰 好是男生的概率为 ;(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用 画树状图法或列表法,求出恰好是一名男生、一名女生的概率.正三角形 A 正方形 B 平行四边形 C 矩形D22题图24.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每名被调查的学生必选且只选一项):A.非常了解,B.了解,C.知道一点,D.完全不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少名学生;(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名;(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣讲员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.25.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040﹪C m16﹪D48﹪合计b100﹪请你根据以上信息,解答下列问题:(1)a= ,b = ;(2)请求出m的值并将条形统计图补充完整;(3)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(4)“朗读”活动中,七年一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.统计与概率参考答案一、选择题1.D 2.C 3.B 4.C 5.B 6.A 7.D 8.C 9.B 10.C 二、填空题11.3 12.31013.2 14.6 15.1616.516三、解答题17.(1)12;(2)画树状图或列表略,P(图象经过第一、二、四象限)=412=13.18.(1)50,18;(2)对数学感兴趣的人数为15名,补全条形统计图略;(3)108;(4)估计该校九年级学生中大约有300名学生对数学感兴趣.19.(1)40,0.05;(2)零花钱数额在90≤x<120的元人数为:40×0.10=4人,补全频数分布直方图略;(3)估计该校学生每月零花钱数额低于90元的有1275人.四、解答题20.(1)列表或画树状图略,P(两人抽取相同数字)=13;(2)不公平,P(甲获胜)=59,P(乙获胜)=39=13,△59>13,△甲获胜的概率大,游戏不公平.21.(1)100;(2)C组学生有25名,补全条形统计图略;(3)学生读书数量的中位数落在8~12本(或D组)内;(4)在2019年读课外书的数量超过12本的学生约为315名.五、解答题22.(1)34;(2)公平,列表或画树状图略,P(小明获胜)=12,则P(小亮获胜)=12,△P(小明获胜)=P(小亮获胜),△游戏对双方公平.六、解答题23.(1)35;(2)画树状图或列表略,P(恰好是一男一女)=35.七、解答题24.(1)6÷20﹪=30(名),答:本次共调查了30名学生.(2)选B的学生有12名,补全条形统计图略;(3)600×1230=240(名),答:估计“了解”的学生约有240名; (4)列表或画树状图略,P (一男生一女生)=46 =23.八、解答题25.(1)36﹪,50;(2)m =50×16﹪=8,补全条形统计图略;(3)△1500人中,不参与的人数约1500×8﹪=120(人)<150(人),△“朗读”活动可以顺利开展;(4)画树状图或列表略,P (所选两人都是女生)=212 =16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率单元测试
1.将100个数据分成8个组,如下表:
则第六组的频数为()
A.12 B.13 C.14 D.15
2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,
9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是()
A.9.79 B.9.78 C.9.77 D.9.76
3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有()
A.4个B.3个C.2个D.1个
(第3题) (第4题)
4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是()
A.数据75落在第2小组 B.第4小组的频率为0.1
C .心跳为每分钟75次的人数占该班体检人数的
1
12
; D .数据75一定是中位数 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是( ) A .22.5元
B .42.5元
C .2
56
3
元 D .以上都不对
(第5题) (第9题)
6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( ) A .
78
B .
67
C .
17
D .
18
7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:
那么这20名男生鞋号数据的平均数是 ,中位数是 ,在平均数、中位数和众数中,鞋厂最感兴趣的是 .
8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有 人.
9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为 . 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,
结果如下(单位:年):
甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,8,8,10,11,12
三个厂家在广告中都称自己产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一个:甲: ,乙: ,丙 . 11.一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是 .
12.有四张不透明的卡片分别为
,除正面的数不同
外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为
.
13.(本题14分)2003年我国遭受到非典型肺炎传染性疾病(SARS )的巨大灾难,全国人民万众一心,众志成城,抗击“非典”,如图5是根据某校七、八、九年级学生“献爱心,抗非典”自愿捐款活动学生捐款情况制成的条形图和七、八、九年级学生人数扇形分布图.(1)该校七、八、九年级平均每人捐款多少元?(2)若该校共有1 450名学生,试问九年级学生共捐款多少元?
14.(本题14分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,下表是1998年~2002年国民生产总值统计表.
小明根据上表绘制出条形统计图如图:
你认为小明绘制的这个统计图会引起人们错误的感觉吗?如果会,你认为应该怎样改?
15.(本题15分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,如图是1998年~2002年国民生产总值统计图.
(1)从图中可看出1999年国民生产总值是多少?
(2)已知2002年国内生产总值比2000年增加12 956亿元,2001 年比2000 年增加6 491亿元,求2002年国民生产总值比2001年增长的百分率(结果保留两个有效数字).
16.(本题15分)如图a,某同学用仪器测量校园内的一棵树AB的高度,测得了三组数据,制成了仪器到树的距离BD,测量仪器的高CD的数据情况的条形统计图(如图b(1)所示)和仰角情况的折线统计图(如图b(2)所示).
(a) (b)
请你利用两个统计图提供的信息,完成以下任务:
(1)把统计图中的相关数据填入相应的表中;
(2)根据测得的样本平均数计算出树高AB(精确到0.1m).
17.(做对可得附加分20分)(1)设计一个用样本估计总体的实际问题并解答.(2)利用扑克牌设计一个对双方都公平的游戏并解释公平理由.
参考答案
一、1~6.DBADAA
二、7. 24.55,24.5,众数 8. 5 9.25% 10.众数,平均数,中位数 11.
13 12.12
三、13.(1)6.45元;(2)2 192.4元.
14.会引起人们错误的感觉,为了更直观、清楚地反映国民生产总值的增长情况,纵轴上的数值应从0开始. 15.(1)82 067亿元;
(2)2002年国民生产总值比2001年增长6.7%. 16.(1)第一行依次填:19.97,19.70,20.51;
第二行依次填:1.21,1.23,1.22; 第三行依次填:29°40′,30°,30°20′; (2)由(1)可得20.06BD =, 1.2230CD α==,.
在Rt △AEC 中,tan30°=
AE
CE
,CE =BD ,
所以 AE =
3
×20.06≈11.57, 即AB =AE +CD =11.57+1.22≈12.8m .。