高考数学模拟复习试卷试题模拟卷230 19
2019年数学高考模拟试题及答案
2019年数学高考模拟试题及答案一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .233.若43i z =+,则zz=( )A .1B .1-C .4355i + D .4355i - 4.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .10 5.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4 6.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .277.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .328.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭ C .2sin 23x y π⎛⎫=+⎪⎝⎭ D .2sin 23y x π⎛⎫=-⎪⎝⎭9.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 10.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .11.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2512.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 17.函数()lg 12sin y x =-的定义域是________.18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.20.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.三、解答题21.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根. 22.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.23.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=;② (22)0.9545P X μσμσ-<+=;③ (33)0.9973P X μσμσ-<+=.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?24.在ABC △中,BC a =,AC b =,已知a ,b 是方程220x -+=的两个根,且2cos()1A B +=. (1)求角C 的大小; (2)求AB 的长.25.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.3.D解析:D 【解析】 【详解】 由题意可得 :22435z =+=,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.4.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.5.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.6.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.8.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.9.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2), ∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.10.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.11.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.12.B解析:B 【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.8【解析】∵函数(且)的图象恒过定点A ∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.15.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得3,23c c ==- 所以243a c ==113sin 43236 3.222ABC S ac B ∆==⨯=【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z |==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭复数为a bi -.17.【解析】由题意可得函数满足即解得即函数的定义域为 解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x , 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 18.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积解析:2918【解析】 在等腰梯形ABCD 中,由AB DC ,2,1,60,AB BC ABC ==∠=得12AD BC ⋅=,1AB AD ⋅=,12DC AB =,所以()()AE AF AB BE AD DF ⋅=+⋅+22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-= ⎪ ⎪⎝⎭⎝⎭.考点:平面向量的数量积.19.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z 的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.20.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果.【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2p F , 当直线PQ 斜率存在时,设PQ 的方程为()2p y k x =-,1122(,),(,)P x y Q x y , 由2()22p y k x y px⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=, 所以21222k p p x x k++=,2124p x x =, 所以2122222k PQ x x p p p k+=++=>; 当直线PQ 斜率不存在时,易得2PQ p =;综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小; 因此min 24PQ p ==,所求方程为24y x =.故答案为24y x =【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型. 三、解答题21.见解析.【解析】试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证.试题解析:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x a a x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x a x -=+,且001x a <<,所以002011x x -<<+,即0122x <<, 与假设00x <矛盾,故方程()0f x =没有负根.考点:函数单调性的定义及反证法等有关知识的综合运用.22.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】【分析】 (1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离.【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩, 两式两边平方并相加,得()()22314x y -+-=,所以曲线C 表示以()3,1为圆心,2为半径的圆. 将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+=(2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+=因为圆心()3,1C 到直线:l 210x y -+=的距离d ==,所以曲线C 上的点到直线l 的最大距离为25d r +=+. 【点睛】 本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.23.(1)17.4;(2)(i )14.77千元(ii )978位【解析】【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数;(2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解.【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=; (2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈, 所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元;(ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973k k k P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=, 所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.24.120o C =,c =【解析】试题分析:解:(1)()()1cos cos cos 2C A B A B π⎡⎤=-+=-+=-⎣⎦,所以120C =(2)由题意得{2a b ab +==∴222222cos 2cos120AB AC BC AC BC C a b ab =+-⋅⋅=+-=()(2222210a b ab a b ab ++=+-=-= ∴10AB考点:本题考查余弦定理,三角函数的诱导公式的应用点评:解决本题的关键是用一元二次方程根与系数之间关系结合余弦定理来解决问题25.(1)方式一(2)35【解析】【分析】(1)用总的受训时间除以60,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组2人,乙组4人.再利用列举法求得“从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率”.【详解】解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则 1205251010155201060t ⨯+⨯+⨯+⨯==(小时) 2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时) 据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=, 来自乙组的人数为:620430⨯=, 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,b c b d b e b f ,()()(),,,,,c d c e c f ,()()(),,,,,d e d f e f ,共15种,其中至少有1人来自甲组的有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,,b c b d b e b f共9种,故所求的概率93155P ==. 【点睛】本题主要考查平均数的计算,考查分层抽样,考查古典概型的计算方法,属于中档题.。
【精选五套高考模拟卷】2019年山东省高考数学模拟试卷(理科)含答案解析
2019年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2019年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2019年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高: =2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1, =﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11 .【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a<10,故输出11 故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20 .【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为 8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15 .【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1 .【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log [(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1 .【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=, =2,求得M(3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+ =cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有: sin[2(+)﹣]=sin(θ+﹣)=sin(θ+)= cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2019年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,EX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE 与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.【考点】数列的求和;数列递推式.【分析】(1)由于数列{a n}的前n项和S n=a n+,可得a1+a2=a2+﹣2,解得a1.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],化简整理即可得出.(2)b n=,可得b2n﹣1==.b2n=.即可得出.【解答】解:(1)∵数列{a n}的前n项和S n=a n+,∴a1+a2=a2+﹣2,解得a1=3.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],解得a n﹣1=n+1.∴a n=n+2,当n=1时也成立.∴a n=n+2.(2)b n=,∴b2n﹣1===.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2019年7月18日数学高考模拟试卷(理科) 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
(完整版)2019年高考数学模拟试题含答案
FEDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回.一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .513.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则y x z 82⋅=的最大值是A .4B .8C .16D .32 6。
一个棱锥的三视图如右图,则该棱锥的表面积为A .3228516++B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625B .π125C .π6251 D .π25 11。
2019年数学高考模拟试题(含答案)
2019年数学高考模拟试题(含答案)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<03.若圆与圆222:680C x y x y m +--+=外切,则m =( )A .21B .19C .9D .-114.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<5.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .6.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}7.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}9.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁10.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4-B .3-C .2-D .1-11.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3212.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为,则m= _________ .14.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C________.15.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 .16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.19.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫ ⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+=(1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.22.在△ABC 中,a =7,b =8,cos B = –17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.23.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是3,求直线PA 与平面EAC 所成角的正弦值.24.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 25.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M (2)设,a b M ∈,证明:(ab)()()f f a f b >--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .3.C解析:C 【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,半径为25m -,根据圆与圆外切的判定(圆心距离等于半径和)可得()()223040125m -+-=+-9m ⇒=,故选C.考点:圆与圆之间的外切关系与判断4.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.A解析:A 【解析】 【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.6.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.7.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.8.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.9.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.10.B解析:B 【解析】 【分析】 【详解】∵()()m n m n +⊥-,∴()()0m n m n +⋅-=. ∴,即22(1)1[(2)4]0λλ++-++=,∴3λ=-,,故选B. 【考点定位】向量的坐标运算11.B解析:B 【解析】 【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
2019年高考模拟数学试卷(2)及答案
2019年高考模拟数学试卷(2)一、选择题(本大题共18小题,每小题3分,共54分)1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2}D .{x |0<x <1}2.函数y =2-x +ln(x -1)的定义域为( ) A .(1,2] B .[1,2] C .(-∞,1) D .[2,+∞)3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 表示的平面区域是( )4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是( ) A .|a |=|b | B .a ·b =1 C .(a +b )⊥bD .a ∥b5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若α∥γ,β∥γ,则α∥β C .若α⊥β,m ∥α,则m ⊥β D .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 6.不等式x +3>|2x -1|的解集为( ) A.⎝⎛⎭⎫-4,23 B.⎝⎛⎭⎫-23,4 C .(-∞,4)D.⎝⎛⎭⎫-23,+∞ 7.命题p :x ∈R 且满足sin 2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于( )A .-725 B.725 C .-925 D.9259.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40D .(x -1)2+y 2=2010.已知a <0,-1<b <0,则下列结论正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab >ab 2>aD .ab 2>ab >a11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是( )A .(1+2)cm 2B .(3+2)cm 2C .(4+2)cm 2D .(5+2)cm 212.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( ) A.63 B.233 C.433 D.26313.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为( ) A .[-2,2) B .[1,5) C .[1,2)D .[-2,5)14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于( )A.312B.632 C .63D.127215.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .20016.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a的取值范围是( ) A .[-1,1) B .[0,2] C .[-2,2)D .[-1,2)17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是( )A .[2,+∞)B .[3,+∞)C .[2,+∞)D.⎣⎢⎡⎭⎪⎫5+12,+∞18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为( ) A.32B. 2C. 3 D .2 二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________. 20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 017=________. 21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________.22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________. 三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n . 24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.2019年高考模拟数学试卷(2)答案一、选择题(本大题共18小题,每小题3分,共54分)1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}答案 D解析 利用数轴可求得A ∩B ={x |0<x <1},故选D. 2.函数y =2-x +ln(x -1)的定义域为( ) A .(1,2] B .[1,2] C .(-∞,1) D .[2,+∞) 答案 A解析 由⎩⎪⎨⎪⎧2-x ≥0,x -1>0,得1<x ≤2,即函数的定义域为(1,2].故选A.3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 表示的平面区域是( )答案 C解析 由不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x可知不等式组表示的平面区域为x +y =2的下方,直线y =x的上方,故选C.4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是( ) A .|a |=|b | B .a ·b =1 C .(a +b )⊥b D .a ∥b答案 C解析 因为|a |=2,|b |=1,故A 错误; a ·b =-1,故B 错误;(a +b )·b =(1,0)·(0,1)=0,故C 正确; a ,b 不平行,故D 错误.故选C.5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若α∥γ,β∥γ,则α∥β C .若α⊥β,m ∥α,则m ⊥β D .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 答案 B解析 对于选项A ,若m ,n ⊂β,m ∩n =P ,α∥β,则m ∥α,n ∥α,此时m 与n 不平行,故A 错;对于选项B ,由平面平行的传递性可知B 正确;对于选项C ,当α⊥β,α∩β=l ,m ∥l ,m ⊄α时,有m ∥α, 此时m ∥β或m ⊂β,故C 错;对于选项D ,位于两个互相垂直的平面内的两条直线位置关系不确定,故D 错.故选B. 6.不等式x +3>|2x -1|的解集为( ) A.⎝⎛⎭⎫-4,23 B.⎝⎛⎭⎫-23,4 C .(-∞,4) D.⎝⎛⎭⎫-23,+∞ 答案 B解析 不等式x +3>|2x -1|等价于-(x +3)<2x -1<x +3, 由此解得-23<x <4,故选B.7.命题p :x ∈R 且满足sin 2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由sin 2x =1,得2x =π2+2k π,k ∈Z ,即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z ,所以p 是q 的充要条件,故选C.8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于( )A .-725 B.725 C .-925 D.925答案 B解析 ∵A ,B ∈(0,π),∴sin A =45,sin B =35,∴sin(A -B )=sin A cos B -cos A sin B =725.9.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40 D .(x -1)2+y 2=20答案 D解析 设圆C 的圆心坐标为(m,0),则由|CA |=|CB |,得(m -5)2+4=(m +1)2+16,解得m =1,圆的半径为25,所以其方程为(x -1)2+y 2=20,故选D. 10.已知a <0,-1<b <0,则下列结论正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab >ab 2>a D .ab 2>ab >a 答案 C解析 由题意得ab -ab 2=ab (1-b )>0, 所以ab >ab 2,ab 2-a =a (b +1)(b -1)>0, 所以ab 2>a ,故选C.11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是( )A .(1+2)cm 2B .(3+2)cm 2C .(4+2)cm 2D .(5+2)cm 2答案 C解析 由三视图可知该几何体的直观图如图所示,所以侧面积为(4+2)cm 2.故选C.12.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433 D.263答案 C解析 由题意得x 1+x 2=4a ,x 1x 2=3a 2, 则x 1+x 2+a x 1x 2=4a +13a ,因为a >0,所以4a +13a ≥433,当且仅当a =36时等号成立. 所以x 1+x 2+a x 1x 2的最小值是433,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为( ) A .[-2,2) B .[1,5) C .[1,2) D .[-2,5)答案 C解析 函数y =f ()f (x )+a 有四个零点, 则f ()f (x )+a =0有四个解,则方程f (x )+a =-1与f (x )+a =2各有两个解,作出函数f (x )的图象(图略)可得⎩⎪⎨⎪⎧-3<-a -1≤1,-3<2-a ≤1,解得⎩⎪⎨⎪⎧-2≤a <2,1≤a <5,所以1≤a <2.故选C.14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于( )A.312B.632 C .63 D.1272答案 B解析 由题意得S 6=S 3(1+q 3)=72×(1+23)=632,故选B.15.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100 D .200 答案 C解析 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100,故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a的取值范围是( ) A .[-1,1) B .[0,2] C .[-2,2) D .[-1,2)答案 D解析 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2),故选D.17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是( )A .[2,+∞)B .[3,+∞)C .[2,+∞) D.⎣⎢⎡⎭⎪⎫5+12,+∞答案 C解析 设P (x 0,y 0),则PF 1—→·PF 2—→=(-c -x 0)(c -x 0)+y 20=x 20+y 20-c 2, 所以x 20+y 20-c 2=-12c 2. 又x 20a 2-y 20b2=1,所以x 20=a 2⎝⎛⎭⎫1+y 20b 2, 所以a 2⎝⎛⎭⎫1+y 20b 2+y 20-c 2=-12c 2, 整理得c 2y 20b 2=c 22-a 2,所以c 22-a 2≥0,所以c ≥2a ,e ≥2,故选C.18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为( ) A.32 B. 2 C.3 D .2 答案 A解析 P 在对角线AC 1上,Q 在底面ABCD 上,PQ 取最小值时P 在平面ABCD 上的射影落在AC 上,将△AB 1C 1沿AC 1翻折到△AB 1′C 1,使平面AB 1′C 1与平面ACC 1在同一平面内,B 1P =B 1′P , 所以(B 1′P +PQ )min 为B 1′到AC 的距离B 1′Q .由题意知,△ACC 1和△AB 1′C 1为有一个角为30°的直角三角形,∠B 1′AC =60°,AB 1′=3, 所以B 1′Q =3·sin 60°=32.二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________. 答案 ±24(-2,0) 解析 由y 2=-1m 2x ,得准线方程为x =14m 2,∴14m 2=2,∴m 2=18, 即m =±24,∴y 2=-8x , ∴焦点坐标为(-2,0).20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 017=________. 答案 -1 007解析 由a 1=1,a n +1=(-1)n (a n +1), 可得a 2=-2,a 3=-1,a 4=0,a 5=1, 该数列是周期为4的循环数列,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 1=504×(-2)+1=-1 007.21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________. 答案 2解析 由a =(-5,5),b =(-3,4),则a -b =(-2,1),(a -b )·b =(-2)×(-3)+1×4=10,|b |=9+16=5,则a -b 在b 方向上的投影为(a -b ) ·b |b |=105=2. 22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________.答案 3解析 因为函数f (x )=x 2+px -q =⎝⎛⎭⎫x +p 22-p 24-q 的值域为[-1,+∞),所以-p 24-q =-1,即p 2+4q =4.因为不等式f (x )<s 的解集为(t ,t +4),所以方程x 2+px -q -s =0的两根为x 1=t ,x 2=t +4,则x 2-x 1=(x 1+x 2)2-4x 1x 2=(-p )2-4(-q -s ) =p 2+4q +4s =4+4s =4,解得s =3.三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n . 解 (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2.所以a n =2·2n -1=2n (n ∈N *).(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32. 解得⎩⎪⎨⎪⎧b 1=-16,d =12. 所以b n =-16+12(n -1)=12n -28.所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n (n ∈N *).24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解 (1)当P 点在x 轴上时,P (2,0),P A :y =±22(x -2). 联立⎩⎨⎧ y =±22(x -2),x 2a 2+y 2=1,化简得⎝⎛⎭⎫1a 2+12x 2-2x +1=0,由Δ=0,解得a 2=2,所以椭圆的方程为x 22+y 2=1. (2)设切线方程为y =kx +m ,P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2-2=0, 化简得(1+2k 2)x 2+4kmx +2m 2-2=0,由Δ=0,解得m 2=2k 2+1,且x 1=-2km 1+2k 2,y 1=m 1+2k 2,y 0=2k +m , 则|PO |=y 20+4,直线PO 的方程为y =y 02x ,则点A 到直线PO 的距离d =|y 0x 1-2y 1|y 20+4, 设△POA 的面积为S ,则S =12|PO |·d =12|y 0x 1-2y 1| =12⎪⎪⎪⎪⎪⎪(2k +m )-2km 1+2k 2-2m 1+2k 2 =⎪⎪⎪⎪⎪⎪1+2k 2+km 1+2k 2m =|k +m |. 当m =2k 2+1时,S =|k +1+2k 2|.(S -k )2=1+2k 2,则k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0,解得S ≥22,当S =22时k =-22. 同理当m =-2k 2+1时,可得S ≥22, 当S =22时k =22. 所以△POA 面积的最小值为22.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1).(1)若f (0)≤1,求a 的取值范围;(2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数. 解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,0≤1,显然成立;当a >0时,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12. 综上所述,a 的取值范围是⎝⎛⎦⎤-∞,12. (2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a . 对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上, 所以f (x )在(-∞,a )上单调递减.综上所述,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2. ①当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2, 令f (x )+4x =0,即f (x )=-4x(x >0), 因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而g (x )=-4x在(0,2)上单调递增,所以g (x )<g (2)=-2, 所以y =f (x )与g (x )=-4x在(0,2)上无交点; 当x ≥2时,f (x )=x 2-3x =-4x,即x 3-3x 2+4=0, 所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0,因为x ≥2,所以x =2,综上当a =2时,f (x )+4x有一个零点x =2.②当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而g (x )=-4x在(0,a )上单调递增, 当x =a 时,g (x )=-4a ,下面比较f (a )=a -a 2与-4a的大小, 因为a -a 2-⎝⎛⎭⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0, 所以f (a )=a -a 2<-4a. 结合图象不难得到当a >2时,y =f (x )与g (x )=-4x有两个交点.综上所述,当a =2时,f (x )+4x在区间(0,+∞)内有一个零点x =2; 当a >2时,f (x )+4x在区间(0,+∞)内有两个零点.。
2019年山东省高考数学模拟试卷及参考答案
2019年山东省高考数学模拟试卷()副标题题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.命题“∀x>1,x2-x>0”的否定是()A. ,B. ,C. ,D. ,2.椭圆点=1的离心率为()A. B. C. D.3.若函数f(x)=x2-,则f′(1)=()A. 1B. 2C. 3D. 44.已知双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,焦距为8,则C的方程为()A. B. C. D.5.已知向量,平面α的一个法向量,若AB⊥α,则()A. ,B. ,C.D.6.已知函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,则a=()A. 1B.C. eD.7.在三棱柱ABC-A 1B1C1中,若=,=,=,则=()A. B. C. D.8.已知函数f(x)=x+cos(+x),x∈[,],则f(x)的极大值点为()A. B. C. D.9.已知函数f(x)=m ln(x+1)+x2-mx在(1,+∞)上不单调,则m的取值范围是()A. B. C. D.10.已知S n为等差数列{a n}的前n项和,a1=1,公差为d,则“-1<d<0”是“S22+S52<26”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知双曲线=1(a>0,b>0)的离心率为2,F1,F2分别是双曲线的左右焦点,点M(-a,0),N(0,b),点P为线段MN上的动点,当•取得最小值和最大值时,△PF1F2的面积分别为S1,S2,则=()A. 4B. 8C.D.12.已知函数f(x)=x2+2a ln x+3,若∀x1,x2∈[4,+∞)(x1≠x2),∃a∈[2,3],<2m,则m的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数的最小值为______.14.直线l的一个方向向量为,直线n的一个方向向量为,则l与n的夹角为______.15.过焦点为F的抛物线y2=12x上一点M向其准线作垂线,垂足为N,若|NF|=10,则MF|=______.16.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直.若点C到平面AB1D1的距离为,直线B1D与平面AB1D1所成角的余弦值为______.三、解答题(本大题共6小题,共70.0分)17.如图,在正四棱柱ABCD-A1B1C1D1中,E为棱BB1的中点,AB=2,AA1=4.(1)若=x+y+z,求x+y+z;(2)以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,写出A1,C,D1,E 的坐标,并求异面直线DE与CD1所成角的余弦值.18.已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,(1)求E的轨迹方程;(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.19.如图,在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.(1)求异面直线EF与A1B所成角的正弦值;(2)求二面角A-B1F-E的余弦值.20.设函数f(x)=e2x-a(x+1).(1)讨论f(x)的单调性;(2)若f(x)>0对x∈R恒成立,求a的取值范围.21.已知椭圆C:的离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=kx+m(k>0,m2≠4)与椭圆C相交于A,B两点,若|AB|=4,试用m表示k.22.已知函数f(x)=x lnx+ax3-ax2,a∈R.(1)当a=0时,求f(x)的单调区间;(2)若函数g(x)=存在两个极值点x1,x2,求g(x1)+g(x2)的取值范围.答案和解析1.【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题“∀x>1,x2-x>0”的否定是:∃x0>1,x2-x≤0.故选:B.利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.【答案】A【解析】解:椭圆点=1,可得a=,b=,c=,可得e===.故选:A.求出椭圆的长半轴以及半焦距的大小,然后求解离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.3.【答案】C【解析】解:∵f(x)=x2-,∴f′(x)=2x+,则f′(1)=2+1=3.故选:C.求出原函数的导函数,取x=1得答案.本题考查导数的计算,关键是熟记初等函数的求导公式,是基础题.4.【答案】D【解析】解:双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,由2c=8,可得c=4由a2+b2=c2=16,可得a2=b2=8,故选:D.根据双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,再根据c=4,即可求出a2=b2=8.本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.5.【答案】A【解析】解:因为⊥α,所以,由,解得x=6,y=2.故选:A.根据空间向量的共线定理列方程组求出x、y的值.本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题.6.【答案】D【解析】解:函数,可得,函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,,所以a=-1.故选:D.求出函数的导数,求出切线的斜率,列出方程求解a即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.7.【答案】B【解析】解:=-=-=--.故选:B.利用=-=-即可得出.本题考查了向量三角形法则,考查了推理能力与计算能力,属于基础题.8.【答案】B【解析】解:f(x)=x+cos(+x)=x-sinx,则f′(x)=-cosx,令f′(x)>0,解得:-<x<-或<x<,令f′(x)<0,解得:-<x<,故f(x)在[-,-)递增,在(-,)递减,在(,]递增,故f(x)的极大值点是-,故选:B.求出函数的导数,求出函数的单调区间,从而求出函数的极大值点即可.本题考查了函数的单调性,极值点问题,考查导数的应用,是一道常规题.9.【答案】A【解析】解:函数的定义域为(0,+∞),函数的导数f′(x)=+2x-m=,若f(x)在(1,+∞)上不单调,即当x>1时f′(x)=0有解,即2x2+(2-m)x=0,则x>1时,有解,由2x2+(2-m)x=0得2x+(2-m)=0,即x=,则>1即可,得m>4,即实数m的取值范围是(4,+∞),故选:A.求函数的导数,结合函数在(1,+∞)上不单调,得当x>1时f′(x)=0有解,结合一元二次方程进行求解即可.本题主要考查函数导数的应用,结合函数单调性与导数之间的关系转化为f′(x)=0,有解是解决本题的关键.10.【答案】B【解析】解:∵S22+S52<26,∴(2+d)2+25(1+2d)2<26,∴(101d+3)(d+1)<0,∴-1<d<-,∵-1<d<0推不出-1<d<-,-1<d<-⇒-1<d<0,∴“-1<d<0”是“S22+S52<26”的必要不充分条件.故选:B.解出关于d的不等式,结合充分必要条件的定义,从而求出答案.本题考查了充分必要条件,考查解不等式问题,考查了等差数列的前n项公式,是一道基础题.11.【答案】A【解析】解:•取==PO2-c2.∵双曲线=1(a>0,b>0)的离心率为2,∴1+=4,即b=a.当PO⊥MN时,PO最小,当P与N重合时PO最大.当PO⊥MN时,由,可得,则=,故选:A.由•==PO2-c2.可得当PO⊥MN时,PO最小,当P与N重合时PO最大.求得面积S1,S2,即可.本题考查双曲线的定义、方程和性质,考查三角形的面积公式的运用,注意运用定义法解题,以及离心率公式,考查运算能力,属于中档题.12.【答案】D【解析】解:设x1>x2,由<2m,得f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,即在[4,+∞)上恒成立,整理得在[4,+∞)上恒成立,∵a∈[2,3],∴函数在[4,+∞)上单调递增,故有,∵∃a∈[2,3],∴,即.故选:D.设x1>x2,把<2m转化为f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,转化为在[4,+∞)上恒成立,求出函数在[4,+∞)上的最大值即可求得m的范围.本题考查利用导数研究函数的单调性,考查数学转化思想方法,训练了利用函数单调性求函数的最值,是中档题.13.【答案】【解析】解:因为,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以.故答案为:.求出函数的导数,利用函数的单调性转化求解函数的最小值.本题考查函数的导数的应用,函数的最值的求法,考查计算能力.14.【答案】【解析】解:∵直线l的一个方向向量为,直线n的一个方向向量为,,∴l与n的夹角为.故答案为:.利用空间向量夹角公式直接求解.本题考查两直线的夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,是基础题.15.【答案】【解析】解:设M(x0,y),F(3,0).∵|NF|=10,∴=102,=12x,解得x=,则MF|=+3=.故答案为:.设M(x0,y),F(3,0).由|NF|=10,可得=102,又=12x,联立解出即可得出.本题考查了抛物线的定义标准方程及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】解:设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,则A(2,0,0),B1(2,2,t),D1(0,0,t),D(0,0,0),C(0,2,0),=(0,2,t),=(-2,0,t),=(2,2,t),=(-2,2,0),设平面AB1D1的法向量=(x,y,z),则,取x=1,得=(1,-1,),∵点C到平面AB1D1的距离为,∴d===,由t>0,解得t=2,∴平面AB1D1的法向量=(1,-1,),=(2,2,2),设直线B1D与平面AB1D1所成角为θ,则sinθ===,∴cosθ==.∴直线B1D与平面AB1D1所成角的余弦值为.故答案为:.设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法求出t=2,从而求出平面AB1D1的法向量,利用向量法能求出直线B1D与平面AB1D1所成角的余弦值.本题考查线面线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)建立如图所示的空间直角坐标系得:D1(0,0,4),D(0,0,0),E(2,2,2),A(2,0,0),C(0,2,0),则=(2,2,2),=(2,0,0),=(0,2,0),=(0,0,4),又=x+y+z,所以,即,故x+y+z=(2)由图可得:A1(2,0,4),C(0,2,0),D1(0,0,4),E(2,2,2),所以=(2,2,2),=(0,-2,4),设,的夹角为θ,则cosθ==,则异面直线DE与CD1所成角的余弦值为,故答案为:.【解析】(1)由空间直角坐标系、空间点的坐标得:=x+y+z,所以,即,故x+y+z=(2)利用向量的数量积求异面直线所成的角得:设,的夹角为θ,则cosθ==,则异面直线DE与CD所成角的余弦值为,1得解.本题考查了空间直角坐标系、空间点的坐标及利用向量的数量积求异面直线所成的角,属中档题.18.【答案】解:(1)由题设知,点C到点F的距离等于它到直线x=-2的距离,所以点C的轨迹是以F为焦点x=-2为基准线的抛物线,所以所求E的轨迹方程为y2=8x.(2)由题意已知,直线l的斜率显然存在,设直线l的斜率为k,P(x1,y1),Q(x2,y2),则有,两式作差得y 12-y22=8(x1-x2)即得,因为线段PQ的中点的坐标为(1,1),所以k=4,则直线l的方程为y-1=4(x-1),即y=4x-3,与y2=8x联立得16x2-32x+9=0,得,.【解析】(1)利用动圆C过定点F(2,0),且与直线l:x=-2相切,所以点C的1轨迹是以F为焦点x=-2为基准线的抛物线,即可求动点C的轨迹方程;(2)先利用点差法求出直线的斜率,再利用韦达定理,结合弦长公式,即可求|PQ|.本题考查轨迹方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题19.【答案】解:(1)∵在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.∴以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,则E(2,0,4),F(0,2,8),A1(0,0,0),B(0,4,8),=(-2,2,4),=(0,4,8),设异面直线EF与A1B所成角为θ,则cosθ==,sinθ==,∴异面直线EF与A1B所成角的正弦值为.(2)A(0,0,8),B 1(0,4,0),=(0,-2,8),=(0,-4,8),=(2,-4,4),设平面AB 1F的法向量=(1,0,0),设平面B 1EF的法向量=(x,y,z),则,取z=1,得=(4,-2,1),设二面角A-B1F-E的平面角为θ,则cosθ===.∴二面角A-B1F-E的余弦值为.【解析】(1)以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与A1B所成角的正弦值.(2)求出平面AB1F的法向量和平面B1EF的法向量,利用向量法能求出二面角A-B1F-E的余弦值.本题考查异面直线所成角的正弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(1)由函数的解析式可得:f′(x)=2e2x-a,当a≤0时,f′(x)>0,f(x)在R上单调递增,当a>0时,由f’(x)=0可得,则单调递减,单调递增.(2)由题意可得:e2x-a(x+1)>0,e2x>a(x+1)恒成立,很明显a<0不合题意,当a≥0时,原问题等价于指数函数y=(e2)x的图象恒在y =a (x+1)的上方,直线y=a(x+1)恒过定点(-1,0),考查函数y=(e2)x过( -1,0)的切线方程:易知切点坐标为,切线斜率为,故切线方程为:,切线过(-1,0),故,解得:,综上可得,实数a的取值范围是.【解析】(1)首先求得导函数,然后分类讨论确定函数的单调性即可;(2)将原问题转化为函数过一点的切线问题,利用导函数研究切线的性质即可确定实数a的取值范围.本题主要考查导函数研究函数的切线方程,导函数研究函数的单调性,分类讨论的数学思想等知识,属于中等题.21.【答案】解:(1)由题意有,解得故椭圆C的方程为.(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-8=0,所以,.因为|AB|=4|,所以,所以,整理得k2(4-m2)=m2-2,显然m2≠4,所以.又k>0,故.【解析】(1)由题意可得,解得a,b即可.(2)利用直线与椭圆方程,利用弦长公式,韦达定理,求得,整理得,即可求解.本题考查椭圆标准方程的求法,考查椭圆的简单性质,训练了直线与椭圆位置关系的应用,属中档题.22.【答案】解:(1)当a=0时,f(x)=x lnx,f′(x)=ln x+1,令f′(x)<0,解得:0<x<,令f′(x)>0,解得:x>,故函数f(x)在(0,)递减,在(,+∞)递增;(2)g(x)==ln x+ax2-ax(x>0),g′(x)=,由题意知:x1,x2是方程g′(x)=0的两个不相等的正实根,即x1,x2是方程ax2-ax+1=0的两个不相等的正实根,故,解得:a>4,∵t(a)=g(x1)+g(x2)=a-ax 1+ln x1+a-ax2+ln x2=a[-2x 1x2]-a(x1+x2)+ln(x1x2)=-a-ln a-1是关于a的减函数,故t(a)<t(4)=-3-ln4,故g(x1)+g(x2)的范围是(-∞,-3-ln4).【解析】(1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出a的范围,得到t(a)=g(x1)+g(x2)的解析式,结合函数的单调性求出其范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.。
2019学年高考数学模拟试卷及详细答案解析23
2019年高考数学模拟试卷及详细答案解析2019.6姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x2.已知a m =2,a n =3,则a 2m -3n=______.3.已知sinα=,则的值为( )A .-B .-C .D .4.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<23 5.以原点O 及点A (5,2)为顶点作等腰直角三角形OAB ,使90=∠A ,则AB 的坐标为( )A 、(2,-5)B 、(-2,5)或(2,-5)C 、(-2,5)D 、(7,-3)或(3,7)6.(08年潍坊市八模) 设a 、b 、c 是任意的非零平面向量,且相互不共线,则( )①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b |;③(b ·c )a -(c ·a )b 不与c 垂直; ④(3a +2b )·(3a -2b )=9|a |-4|b |. 其中的真命题是( )A .②④B .③④C .②③D .①②7.函数()lg(2)f x x =+(A )(20)(0)-+∞,,(B )(2)-+∞, (C )(21]-,(D )(1)+∞,8.数列,…前100项的和等于A .B. C. D.9.某市拟从4个工业项目和6个农业项目中各选2个项目作为本年度启动的项目,则工业项目A 和农业项目B 至少有一个被选中的不同选法种数是( )A .15B .45C .60D .7510.若A(1,2),B(-2,3),C(4,y)在同一条直线上,则y 的值是( )A 、B 、C 、-1D 、111.已知命题P :函数()()1,02log ≠>+=a a a ax y a 的图像必过定点()1,1-;命题()2:-=x f y q 若函数的图像关于y 轴对称,则函数()x f 关于直线2=x 对称,那么 ( ) A 、""q p 且为真 B 、""q p 或为假C 、假真q pD 、真假q p12.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)321111111111,,,,,,,,,2233344449131411131411414314142123二 、填空题(本大题共5小题,每小题4分,共20分)13.某气象员为了掌握一周内天气的变化情况,测量了一周内的气温.下表是一周内气温变化情况(用正数表示比前一日上升数,用负数记下降数字)试分析这个星期气温的总体变化情况.14.(08年杭州市质检一文) 若 | a | =1, | b | = 2, c = a + b, 且 c ⊥ a, 则向量a 与b 的夹角为 _____ 度.15.把110011(2)化为十进制数的结果是16.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有珠宝的颗数为__________17. 过抛物线的焦点作直线,交抛物线于两点,交其准线于 点.若,则直线的斜率为_________.三 、解答题(本大题共7小题,共70分) 18.已知f (x )=a 2x -12x 3,x ∈(-2,2),a 为正常数。
2019年高考数学模拟试题2版带有答案
1 V= (S1+ S1 S2 +S2) h
3
其中 S1、 S2 表示台体的上、下底面积,
V= 4 πR3
3
其中 R 表示球的半径
h 表示棱台的高 .
选择题部分 (共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目
要求的 .
1.( 原创题 ) 已知集合 P
bn . 3 2n
【命题意图】 本题考查数列的概念及通项公式的求解,前
n 项求和问题,同时考查转化与化归、整体思想
的能力 .
21.( 原创题 ) (本题满分 15 分)已知抛物线高三数C学:试y题2 卷第8 x 的5焦页点,共为 6F页,过 F 作直线 l 与抛物线 C 交于 A, B 两点,分别过 A, B 作抛物线 C 的切线,交 y 轴于 M , N 两点,且两切线相交于点 E .
11.
12.
13.
14.
15.
16.
17.
18.(本小题满分 14 分)
高三数学答题卷第 1 页,共 4 页
19.(本小题满分 15 分)
D1
A1
A B1
B
C1 D
C
20.(本小题满分 15 分)
ቤተ መጻሕፍቲ ባይዱ
高三数学答题卷第 2 页,共 4 页
21.(本小题满分 15 分)
22.(本小题满分 15 分)
高三数学答题卷第 3 页,共 4 页
x ym
区域的面积为 1 ,则 m 6
A. 13 6
B. 13 3
C. 3
D. 6
【命题意图】 本题主要考查数形结合的思想,以及综合运用函数思想解题的能力
2019年高考数学模拟试卷附答案
2019年高考数学模拟试卷附答案一、选择题1.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形2.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .54钱B .43钱C .32钱 D .53钱 4.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .55.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .6.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .7.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .108.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直9.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .210.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->11.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C.3 D .212.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.16.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.17.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 18.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.19.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.20.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为25,求直线l 的普通方程. 22.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.如图:在ABC ∆中,10a=,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.25.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b by t =+∈=+为参数求的值 26.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==.所以180454590A =--=. 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.2.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C.【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴 在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和 答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
目要求的.C . 1兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取 礼物都满意,则选法有( )、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题a i1. [2019南昌一模]已知复数za R 的实部等于虚部,则xx 3n 1,n N , B6,8,10,12,14,则集合AI B 中元素的个数为()A .2B . 33. [2019菏泽一模 ]已知向量 a 1, 1 , b22AB .554. [2019 •州期末 ]已知圆C 2x 1 y A. x y 3 0B . x y 3 0C . 4D . 52,3 ,且a a mb ,则 m ( )5,则过P 3,0 的C 的切线方程为( )又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、A . 30 种B . 50 种C . 60 种D . 90 种2. [2019梅州质检]已知集合A6. [2019汕尾质检]某空间几何体的三视图如图所示,正视图是底边长为边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为(3的等腰三角形,侧视图是直角)函数g x 的图象,则下列说法正确的是()A •函数g x 的图象关于点 -,0对称 12B •函数g x 的周期是上2C .函数g x 在0, n上单调递增6 D .函数g x 在0, n上最大值是16& [2019临沂质检]执行如图所示的程序框图,输出的值为()开始/输出s/ 结束A.B .2C . 1D . 19. [2019重庆 中严门80 COS70cos20( )A .3B.1 C.3 D . 2 10..[2019揭阳一模]函数 f x 在 0, 单调递减,且为偶函数.若f 2 1,则满足f x 3 1的x的取值范围是( )A C7. [2019合肥质检]将函数f x2sin才 ------- 、\zWK'SC . n6n D .—181的图象上各点横坐标缩短到原来的 -(纵坐标不变)得到 2S=O, k=【页2第2 211. [2019陕西联考]已知双曲线C:£ 召数为(C . 3、填空题:本大题共 4小题,每小题 5分,共20 分.13. [2019江门一模]已知a 、b 、c 是锐角△ ABC 内角A 、B 、C 的对边,S 是厶ABC 的面积,若 a 8 , b 5, S 10丽,则 c _____________ . 14. [2019景山中学]已知a , b 表示直线, , , 表示不重合平面①若1 a , b , a b ,贝U;②若a ,a 垂直于 内任意一条直线,则;③若 ,I a , I b ,则 a b ;④若a ,b, a // b ,则//.上述命题中, 正确命题的序号是15. [2019林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音 主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同 学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学 不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的 课程是 (填影视配音、广播电视、公共演讲、播音主持)216. ____________________________________________________________________________________ [2019河南联考]若一直线与曲线 y elnx 和曲线y mx 相切于同一点P ,则实数m _____________________三、解答题:本大题共 6大题,共 70分,解答应写出文字说明、证明过程或演算步骤.17. (12分)[2019长郡中学]设正项数列 务 的前n 项和为S n ,且.盘 是a n 与a n 1的等比中项,其中 *n N .1 a 0,b 0的右焦点为F 2,若C 的左支上存在点M ,使得直线bx ay 0是线段MF 2的垂直平分线,则C 的离心率为( C . 512. [2019临川一中]若函数f x 在其图象上存在不同的两点A x i ,y i ,B X 2,y 2,其坐标满足条件: XX 2-2 2 %■ X 2忌的最大值为0,则称fx 为柯西函数 ”,则下列函数:①:②f Xln x 0 xe :③f xcosx ;2X 1•其中为柯西函数”的个(1)求数列a n的通项公式;18. ( 12分)[2019维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项 目,大桥建设需要许多桥梁构件•从某企业生产的桥梁构件中抽取 100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间55,65 , 65,75 , 75,85内的频率之比为4: 2:1 .(1) 求这些桥梁构件质量指标值落在区间 75,85内的频率; (2) 若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取 3件,记这3件桥梁构件中质量指标值 位于区间45,75内的桥梁构件件数为 X ,求X 的分布列与数学期望.⑵设b n n 12a n 1,记数列b n 的前n 项和为T n ,求证:T 2n 1 .a n an 119. (12 分)[2019 淄博模拟]如图,在四棱锥P ABCD 中,AB// CD , AB 1 , CD 3 , AP 2 , DP 2.3 , PAD 60 , AB 平面PAD,点M 在棱PC 上.(1)求证:平面PAB 平面PCD ;(2)若直线PA//平面MBD,求此时直线BP与平面MBD所成角的正弦值.线被椭圆C i截得的线段长为.2 .(1)求椭圆C i的方程;2 2 X y20. ( 12分)[2019泰安期末]已知椭圆G:2 2a b 1 a b 0的离心率为2,抛物线C2: y22 4x的准(2)如图,点A、F分别是椭圆G的左顶点、左焦点直线I与椭圆G交于不同的两点M、N ( M、N都在x轴上方).且AFM OFN .证明:直线I过定点,并求出该定点的坐标.21. (12分)[2019衡水中学]已知函数f x x2 3ax lnx, a R .1(1) 当a 时,求函数f x的单调区间;33(2) 令函数x x2 f x,若函数x的最小值为,求实数a的值.2请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22. (10分)【选修4-4:坐标系与参数方程】[2019揭阳一模]以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为2COS2 a2(a R , a为常数)),过点P 2,1、倾斜角为30的直线I的参数方程满足x 2 邑 ,(t2为参数).(1)求曲线C的普通方程和直线I的参数方程;(2)若直线I与曲线C相交于A、B两点(点P在A、B之间),且PA PB 2,求a和|| PA PB||的值.23. (10分)【选修4-5:不等式选讲】[2019汕尾质检]已知f x 2x 2 x 1的最小值为t .行::求t的值;1 '若实数a , b满足2a2 2b2 t,求J J 的最小值.a2 1 b222019届高三第三次模拟考试卷理科数学(二)答案12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C2.【答案】A3.【答案】A4.【答案】B【解析】•/ z L2ii a i T~2i-a i 的实部等于虚部,•-2 2 2-,即a 1 .故选C . 2【解析】由题意, 集合A3n 1,n N , B 6,8,10,12,14 • AI B 8,14•••集合 AI B 中元素的个数为2 .故选A .【解析】a mb 1,12m,3m2m,3m 结合向量垂直判定,建立方程, 可得2m 3m0 ,解得m2-,故选A . 5【解析】根据题意,圆 P 的坐标为 3,0 ,2 2 则有3 1 0 2 8,则P 在圆C 上,此时K CP 1,则切线的斜率k 1,则切线的方程为y x3,即x y 3 0,故选B .5.【答案】B 【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的 10中任意选,二共有 C ; 20 , 若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的 10中任意选,•共有 C 3 C 10 30 , •共有20 30 50种.故选B . 6.【答案】A【解析】由三视图可知,该几何体是圆锥的一部分,正视图是底边长为3的等腰三角形,侧视图是直角边长为 1的等腰直角三角形,圆锥的高为 1,底面半径为俯视图是扇形,圆心角为2n,3、选择题:本大题共11.【答案】C几何体的体积为1 11 2n1 n.故选A .3 2397.【答案】C【解析】将函数f x 横坐标缩短到原来的—后,得到g x 2sin 2x —1,2 6 当x上时, f 上1,即函数 gx的图象关于点-,1对称,故选项A 错误;121212周期T 2n2n ,故选项 B 错误;当x0, n 时,2x nn n函数g x 在 0,n上单调递增,故选项 C 正确;6 66 26.•函数g x 在 0,n上单调递增,• g xn dg66即函数g x 在0,n上没有最大值,故选项 D 错误.故选C .6&【答案】A【解析】第一次循环,k 1 , S cosO 1 , k 1 1 2, k 4不成立; 第二次循环, k 2 , S 1n . cos 1 1-,k 2 13 , k 4不成立;3 2 2第三次循环, k 3 , S 3 2 n cos — 3 11 , k 31 4 , k 4不成立;2 3 2 2第四次循环, k 4 , S 1 cos n 11 0 , k 4 15 , k 4成立,退出循环,输出S 0,故选A .9.【答案】C10.【答案】Ax 31 f2 等价于 f X3 f 2 , .•函数f x 在0, 单调递减,••• x 32 , 2 x3 2 , 1 x 5,故选A .【解析】..2sin80 cos70cos202sin 60 20 cos70cos202sin 60 cos20 2cos60 sin 20 cos702sin 60 cos20 sin 20 cos70cos20cos202sin 60 cos20cos202sin 603 .故选 C . 【解析】.•函数f x 为偶函数,【解析】F2 C,0,直线bx ay 0是线段MF?的垂直平分线,可得F?到渐近线的距离为|F?Pbe b,即有|OP ■. e2b a ,由0P MF1F2的中位线,可得|MF i 2 OP 2a,MF2 2b,可得|MF^ |MF i 2a,即为2b 2a 2a,即b 2a,可得e eai :2 i 4 5 •故选C.12.【答案】B【解析】由柯西不等式得:对任意实数X i , y i , X2 , y2, XX2 2y i y220恒成立, (当且仅当X i y2 X2 y i取等号)若函数f x在其图象上存在不同的两点x i,y i ,冷,y2,其坐标满足条件: XX2 y i y2 * y i2X22y22的最大值为0,则函数f x在其图象上存在不同的两点 A x i, y i , 冷,y2uuu UUU,使得OA , OB共线,即存在过原点的直线y kx与y f x的图象有两个不同的交点:对于①,方程kx x ix 0,即k ix2X i,不可能有两个正根,故不存在;由图可知不存在;,由图可知存在;,由图可知存在,柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分.13. 【答案】7【解析】根据三角形面积公式得到1S abs inC si nC22•••三角形为锐角三角形,故得到角C为丄,31 2再由余弦疋理得到cos —---- ------- .2 2b cc 7 .故答案为73 2 2ab14. 【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确,对于②,a , a垂直于内任意一条直线,满足线面垂直的定理,即可得到又a ,则,故正确,对于③,,I a , I b,则a b或a// b,或相交,故不正确,对于④,可以证明/ ,故正确.故答案为②④.15. 【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视;由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音,故答案为影视配音.116. 【答案】丄2e 2【解析】曲线y elnx的导数为y',曲线y mx2的导数为y 2mx ,x由2mx, x 0且m 0,得x ,即切点坐标应为玉,代入y e|n x得eln J e,解得m丄,故答案为—•V2m 2 2 2三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 【答案】(1) a n n ; (2)见解析.【解析】(1)^ . 2S?是a n 与a n 1的等比中项,••• 2S n a n a n 1 a n 2 a n ,当 n 1 时,2a i a i Q ,…a 1 .【解析】(1)设区间75,85内的频率为x ,则区间55,65 ,依题意得 0.004 0.012 0.019 0.03 10 4x 2x x 1,解得 x•这些桥梁构件质量指标值落在区间75,85内的频率为0.05 .(2)从该企业生产的该种桥梁构件中随机抽取 3件,相当于进行了 3次独立重复实验,• X 服从二项分布B n, p ,其中n 3 . 由(1 )得,区间 45,75内的频率为0.3 0.2 0.1 0.6 ,将频率视为概率得 p 0.6 .v X 的所有可能取值为 0, 1 , 2, 3, 且 P X 0C 0 0.60 0.430.064 , P X 1 C ; 0.61 0.420.288 ,22133P X 2C 3 0.6 0.4 0.432 , P X 3 C 3 0.6 0.4 0.216 .• X 的分布列为:X 服从二项分布B n, p , • X 的数学期望为EX 3 0.6 1.8 .当n 2时,2a n a n 1,整理得 a n a n 1a n a n 1 1又a n 0 anan 11 n2,即数列 an…ana 1n 1 d 1n 1 n .n 12n 1n 111(2) b n11n n 1n n 1 --T 2nb 1 b 2 b 3 Lb 2n1 1 1 1223111 .2n 1是首项为1,公差为1的等差数列.1 1 L 4 1 1 1 1 3 2n 1 2n 2n 2n 165,75内的频率分别为4x 和2x .0.05 .2S n 2S n 1 2a n a n2 an 118.【答案】(1)19.【答案】(1)见解析;(2) —V195 .65 【解析】(1)v AB平面PAD , • AB DP ,1,①2又••• DP 2.3 , AP 2 , PAD 60 ,由—PDsin PADPA sin PDA 可得 sin PDA2, PDA 30 , APD 90 DP AP ,••• AB I AP A ,二DP 平面PAB , ••• DP 平面 PCD ,•••平面 PAB 平面 PCD ; (2)以点A 为坐标原点,AD 所在的直线为y 轴,AB 所在的直线为z 轴, 如图所示,建立空间直角坐标系, 其中 A 0,0,0 , B 0,0,1 , C 0,4,3uu r uuu从而BD 0,4, 1 , AP 3,1,0uuuu uuiu设PM PC ,从而得M .3 3 设平面MBD 的法向量为n x, y,z,3uu u PC 若直线 PA//平面MBD ,满足 nCBAvITD,D 0,4,0 , P 3,1,0 3,3,3 , 1,3uuu u ,BM,31,3uju u BMUJL TBDuuu AP uuuA得 —,取 n .3, 3, 12,且 BP 4 0,即 3,1, 直线BP 与平面MBD 所成角的正弦值等于 sin 4y 3x 2X 220.【答案】(1) — y 1 ; (2)直线l 过定点 【解析】(1)由题意可知,抛物线 又椭圆G 被准线截得弦长为 2 ,讨2 2,…e 2由①②联立,解得a 22 , b 2uuu BPj-tuu nBp2156 12,52195.65C 2的准线方程为x 1 •••点详在椭圆上, •椭圆2b 2,②, C 1的标准方程为1 2b 2y 2 1.1 ,21.【答案】(1)见解析;(2)(2)设直线 I : y kx m ,设M x, y ,N X 2,y 2 ,把直线1代入椭圆方程, 整理可得2k 2 1 x 24 km2m 22 0,2 2 16k m 4 2k 21 2m22 16k 2 8m 28 0 , 即 2k 2 m 24km2m 2 2…X 1 X 2 2 , X 122k 12k 1y 1 • K FM ,K FNy 2 -,M 、N 都在x 轴上方,且 AFMOFN1 0,x 1 1 X 2 1kFN,y 1 X 1 1 ~^y-,即 x 2 1 kx i kx 2 m x i1 ,整理可得 2kx 1x 2 k m x 1 X 22m 2m 2 20 ,• 2k 厂 2 k 2 14km 2k 2 12m即 4 km 2 2 24k 4k m 4km 4k2m2k ,•直线I 为y kx 2k k x,•直线 l 过定点2,0 .令f ''x 0 ,解得X-或 x 1,而 X 0,故x1,2则当 x 0,1 时,f X 0, 即f X在区1 间内递减, 当x1,时,f X, 即f X 在区间'可内递增.(2) 由f X2x 3axln x ,f X 2x 13a —X则 2X X f x 2x 33ax 2X ,故X 6x 26 ax 1 ,又26a4 6 1,故方程 X0有2个不同的实根,不妨记 己为石,,X 2,且儿 X2,又• X^-0 ,故 X 06 X 2 ,当X 0,X 2 时,x 0X 递减,当X X 2,时,x 0,X 递增,故 Xminx 22x 233a x :22X 2 , ①又 X 20 ,• 6X226ax21 0 , 即a1 6X 22 ,②xx6x 222x x2x 11【解析】(1) a -时,f x3 lnx ,贝U f将a宜6x22代入—式,得2X2 321 6x2 2X26x2X2 31 32x2 x? 3x22X2由题意得 3 1X2 X22 专,即2x23X2即x21 2x222x23 0,解得X25将X2 1代入■式中,得a6X2请考生在22、23两题中任选一题作答, 如果多做, 则按所做的第一题记分2 2 22.【答案】(1)x y 3t2( t为参数);(2) t2【解析】(1)由2cos2a2得2 2 . 2 2cos sin a ,又x cos , y sin ,得x2 y2a2,••• C的普通方程为•••过点P 2,1、倾斜角为30的直线I的普通方程为y——X3y12t「直线1的参数方程为32t2(t为参数).(2)将2代入x2£2a2,得t2 2 2.3 a20,依题意知a20,则上方程的根1、t2就是交点A、V t1 t2 a2,由参数t的几何意义知PA PB b| |t2| |t1 t2 ,得t1 对应的参数,2 ,•••点P在A、B之间,「• 1t2 0 ,…t1t22,9即2 3a22,解得a 4 (满足0 ),二a 2 ,•- p A PB t1 t2 t1 t2,又t1 t24.323.【答案】(1)2; (2)3x 【解析】(1) f x2x 1,xx 3, 13x 1,x1 ,故当x 1时,函数f x 有最小值2,.・.t 2 .(2)由( 1)可知2 2 222a 2b 2,故 a 1 b 24,2 2 212 22b a 1 1 1 1 a 1 b 22 a 1 b 22 1a 2 1b 2 22 2a 1b 2441?当且仅当a 2 1 b 2 2 2,即a 2 1 , b 20时等号成立,故1a 21 2的最小值为1 .b 2。
2019年数学高考模拟试卷(带答案)
2019年数学高考模拟试卷(带答案)一、选择题1.2532()x x-展开式中的常数项为( )A .80B .-80C .40D .-40 2.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i3.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形4.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称5.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确6.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .丁可以知道四人的成绩7.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )A .1123AB AD - B .1142AB AD + C .1132AB DA + D .1223AB AD -. 9.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4-B .3-C .2-D .1-10.水平放置的ABC 的斜二测直观图如图所示,已知4B C ''=,3AC ''=,//'''B C y 轴,则ABC 中AB 边上的中线的长度为( )A 73B 73C .5D .5211.若双曲线22221x y a b-=3,则其渐近线方程为( )A .y=±2xB .y=2xC .12y x =±D .2y x = 12.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)15.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.16.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.23.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.24.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.25.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r ,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.2.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.3.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==.所以180454590A =--=. 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.4.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x =0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.5.C解析:C【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .6.A解析:A 【解析】 【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果. 【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.7.A解析:A 【解析】 【分析】根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 【详解】根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件. 故选:A 【点睛】本题考查充分条件与必要条件的判断,属于基础题.8.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。
2019年浙江省全国高考高三数学模拟试卷
x1
x2
0
,
x1 x3 0 , x2 x3 0 ,则 f (x1) f (x2 ) f (x3 ) 的值的符号为
A.一定为负
B.一定为正
C. 0
D.可以为正,也可以为负
7.篮球运动员在比赛中每次罚球命中得1分,罚不中得 0 分.已知某运动员罚球命中的概率 为 0.7 ,他罚球 2 次的得分 的数学期望为
A. a 7 ,b 1 28
B. a 7 ,b 1 28
C. a 7 ,b 1
2
8
D. a 7 ,b 1
2
8
非选择题部分(共 110 分)
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
11. (2x x)8 的展开式中 x6 的系数为
Hale Waihona Puke A.1.3B. 1.5
C. 1.4
D.1.6
8.在正方体 ABCD A1B1C1D1 中, E 是侧面 ADD1 A1 内的动点,
且 B1E// 平面 BDC1 ,则直线 B1E 与直线 AB 所成角的正弦值
的最小值是
A. 1
B. 3
C. 1
D. 2
3
3
2
2
9.设 为两个非零向量 a,b 的夹角,已知对任意实数 t , b ta 的最小值为1.则
A.3, 4,5
B. 3, 4,5, 6
C. 1, 2,3, 4,5, 6
2.复数 i 的模等于 2+i
A. 5
B. 1
C. 1
D. 5
5
5
25
2019年高考数学模拟试题含答案
---- 专业文档 - 可编辑 --2019 年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12 个小题,每小题 5 分,共60 分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合 A { x x 2 2x 3 0} , B { 2,3,4} ,则 (C R A) B = A. { 2,3} B. { 2,3,4} C. { 2} D.2.已知 i 是虚数单位,z 1 ,则 z z =3 i1 1A. 5 B. 10 C.D.10 5 3.执行如图所示的程序框图,若输入的点为P(1,1) ,则输出的n 值为A. 3 B.4 C. 5 D. 6ED C--FA B(第 3 题)(第 4 题)4.如图,ABCD 是边长为8 的正方形,若DE 1 EC ,且 F 为 BC 的中点,则 EA EF3高三数学(理)科试题(第 1 页共 6 页)------ 专业文档 - 可编辑 --A. 10 B.12 C.16 D. 20x y 25.若实数 x, y 满足 y x 1 ,则 z 2 x 8 y的最大值是y 0A. 4 B.8 C.16 D. 326.一个棱锥的三视图如右图,则该棱锥的表面积为A. 16 5 8 2 32B. 32 5 32C. 16 2 32D. 16 5 16 2 327. 5 张卡片上分别写有0, 1, 2, 3 , 4,若从这 5 张卡片中随机取出 2 张,则取出的 2 张卡片上的数字之和大于 5 的概率是1 1 3 4A.B. C . D .10 5 10 58.设 Sn 是数列 { an } 的前 n 项和,且 a1 1, an 1 S n Sn 1 ,则 a5 =A.9.函数1 1B.1 C . D .1 30 30 20 201 xf x ln 的大致图像为1 x--10. 底面为矩形的四棱锥P ABCD 的体积为8,若 PA 平面 ABCD , 且 PA 3 ,则四棱锥P ABCD 的外接球体积最小值是高三数学(理)科试题(第 2 页共 6 页)------ 专业文档 - 可编辑 --25A. B . 125 C . 125 D . 256 611. 已知抛物线 y2 2 px p 0 , 过焦点且倾斜角为30 °的直线交抛物线于A,B 两点,以 AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为3 3A. x 1 B . x C. x D . x 32 312. 已知函数 f ( x) x2ln x ( x 2 ),函数g( x) x 1 ,直线y t 分别与两函数交于2 2A, B 两点,则AB 的最小值为1 3A.B. 1 C .D. 22 2二.填空题:本大题共 4 小题,每小题 5 分,共20 分.13. 设样本数据 x1,x2,... ,x2018的方差是 5,若 y i3x i1( i 1,2,...,2018 ),则 y1,y2, ... ,y2018的方差是 ________14.已知函数 f ( x) sin x3 cos x (0 ),若 3 ,则方程 f (x)1 在 (0, ) 的实数根个数是 _____15.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,... , 9 填入 3 3 的方格内,使三行、三列、两对角线的三个数之和都等于15 ( 如图) . 一般地,将连续的正整数1, 2,3,?,n2填入 n n 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方 . 记 n 阶幻方的一条对角线上数的和为N n ( 如:在 3 阶幻方中,N315 ) ,则 N5 =_______--ABC 中,内角A, B, C 所对的边分别π16. 已知为 a , b , c,且 c 1 , C .3高三数学(理)科试题(第 3 页共 6 页)------ 专业文档 - 可编辑 --若 sin C sin( A B ) sin 2B ,则ABC 的面积为三、解答题:本大题共 6 小题,其中17-21 小题为必考题,每小题12 分,第 22 — 23 题为选考题,考生根据要求做答,每题10 分.17.( 本小题满分12 分)设数列 { a n } 是公差为 d 的等差数列.( Ⅰ ) 推导数列{ a n } 的通项公式;( Ⅱ ) 设 d 0 ,证明数列{ a n1} 不是等比数列.18. ( 本小题满分12 分)某中学为了解全校学生的上网情况,在全校随机抽取了40 名学生 ( 其中男、女生各占一半) 进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为 5 组: [0 ,5), [5 , 10) , [10 , 15) , [15 ,20) , [20 , 25] ,得到如图所示的频率分布直方图.--( Ⅰ ) 写出女生组频率分布直方图中 a 的值;( Ⅱ ) 在抽取的40 名学生中从月上网次数不少于20 的学生中随机抽取 2 人,并用X 表示随机抽取的 2 人中男生的人数,求X 的分布列和数学期望.19.( 本小题满分12 分)在直三棱柱ABC A1B1C1中, AB AC AA1 2 , BA CA 。
高考数学模拟复习试卷试题模拟卷230
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1) (2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】 已知函数f(x)=x +px -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .83.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .24.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b25.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.9.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 变量间的相关性一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.对于给定的两个变量的统计数据,下列说法正确的是( ) (A)都可以分析出两个变量的关系(B)都可以用一条直线近似地表示两者的关系 (C)都可以作出散点图(D)都可以用确定的表达式表示两者的关系 2.下面两个变量间的关系不是函数关系的是( ) (A)正方体的棱长与体积 (B)角的度数与它的正弦值(C)单位产量为常数时,土地面积与粮食总产量 (D)日照时间与水稻亩产量3.【高考数学复习二轮】根据一组样本数据(x1,y1),(x2,y2),…,(xn ,yn)的散点图分析存在线性相关关系,求得其回归方程y =0.85x -85.7,则在样本点(165,57)处的残差为( ) A .54.55 B .2.45 C .3.45 D .111.554. 【高考前30天数学保温训练】对于相关系数r 下列描述正确的是( ) A .r >0表明两个变量线性相关性很强 B .r <0表明两个变量无关C .|r|越接近1,表明两个变量线性相关性越强D .r 越小,表明两个变量线性相关性越弱5.对有线性相关关系的两个变量建立的回归直线方程=+x 中,回归系数( ) (A)不能小于0 (B)不能大于0 (C)不能等于0 (D)只能小于06.【改编自高三十三校第二次联考】已知下列表格所示的数据的回归直线方程为ˆ4yx a =+,则a 的值为( ).A .240B .246C .274D .2787.【教学合作高三10月联考】某车间加工零件的数量x 与加工时间y 的统计数据如下表:现已求得上表数据的回归方程^^^y b x a =+中的^b 的值为0.9,则据此回归模型可以预测,加工90个零件所需要的加工时间约为( )A .93分钟B .94分钟C .95分钟D .96分钟8.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(,)(1,2,)i i x y i n =…,,用最小二乘法建立的回归方程为ˆ10200,yx =-+则下列结论正确的是( ) (A )y 与x 具有正的线性相关关系(B )若r 表示变量y 与x 之间的线性相关系数,则10r =- (C )当销售价格为10元时,销售量为100件 (D )当销售价格为10元时,销售量为100件左右9. 小明同学根据右表记录的产量x (吨)与能耗y (吨标准煤)对应的四组数据,用最小二乘法求出了y关于x 的线性回归方程a x y+=7.0ˆ,据此模型预报产量为7万吨时能耗为( ) A. 5 B. 25.5 C . 5.5 D. 75.510.【龙岩市高三上学期期末】已知变量x ,y 之间具有线性相关关系,其回归方程为^y =-3+bx ,若10101117,4,ii i i xy ====∑∑则b 的值为( )A. 2B. 1C. -2D.-111.【江西新余市高三上学期期末质量检测】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程,表中有一个数据模糊不清,请你推断出该数据的值为( )A .75B .62C .68D .8112.【高考数学(二轮专题复习)假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:x 74 71 72 68 76 73 67 70 65 74 y76757170767965776272则初一和初二数学分数间的回归方程是 ( ). A. y =1.218 2x -14.192 B. y =14.192x +1.218 2 C. y =1.218 2x +14.192D. y =14.192x -1.218 2二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【烟台市高三5月适应性训练一】如果在一次试验中,测得(,x y )的四组数值分别是x1 2 3 4 y33.85.26根据上表可得回归方程ˆˆ1.04yx a =+,据此模型预报当x 为5时,y 的值为( ) A .6.9 B .7.1 C .7.04 D .7.214.【高考数学人教版评估检测】在元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如表所示: 价格x 9 9.5 10 10.5 11 销售量y 1110865通过分析,发现销售量y 与商品的价格x 具有线性相关关系,则销售量y 关于商品的价格x 的线性回归方程为__________.15.【高考数学全程总复习课时提升】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为. 16.【揭阳市高三4月第二次模拟】某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:x 6 8 10 12y2356根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+中的b 的值为0.7,则记忆力为14的同学的判断力约为.(附:线性回归方程y bx a =+中,a y bx =-,其中x 、y 为样本平均值)三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【宽甸二中高三最后一模】在一段时间内,某种商品价格x (万元)和需求量)(t y 之间的一组数据为: 价格x1.4 1.6 1.8 22.2 需求量y1210753(1)进行相关性检验;(2)如果x 与y 之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01t )参考公式及数据:2121ˆxn xy x n yx bni ini ii -⋅-=∑∑==,))((2122121y n y x n x yx n yx r ni i ni i ni ii --⋅-=∑∑∑===,61.428.21≈相关性检验的临界值表: n2 12345678910小概率0.011.000 0.990 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.70818.改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到五年间每年考入大学的人数,为了方便计算,编号为1,编号为2,……,编号为5,数据如下: 年份(x ) 1 2 3 4 5 人数(y )3581113(1)从这5年中随机抽取两年,求考入大学的人数至少有1年多于10人的概率.(2)根据这5年的数据,利用最小二乘法求出y 关于x 的回归方程∧∧∧+=a x b y ,并计算第8年的估计值。
2019年最新高考数学模拟试题及答案共五套
高考模拟考数学试题参考公式:球的表面积公式: 24R S π=,其中R 表示球的半径;球的体积公式:,343R Vπ=其中R 表示球的半径; 柱体的体积公式:Sh V =,其中S 表示柱体的底面积,h 表示柱体的高;锥体的积公式:Sh V31=,其中S 表示椎体的底面积,h 表示椎体的高; 台体的体积公式:)(312211S S S S h V ++=,其中1S 、2S 分别表示台体的上、下底面积,h 表示台体的高如果事件A 、B 互斥,那么)()()(B P A P B A P +=+第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{|2}M x x =<,集合{|01}N x x =<<,则下列关系中正确的是 ( ) (A )M N R =U (B ){}01M N x x =<<I (C )N M ∈ (D )M N φ=I 2、已知复数122,3z i z i =+=-,其中i 是虚数单位,则复数12z z 的实部与虚部之和为( ) (A )0 (B )12(C )1 (D )2 3、设p :1-<x ,q ⌝:022>--x x ,则下列命题为真的是( ) (A )若q 则p ⌝(B )若q ⌝则p(C )若p 则q (D )若p ⌝则q4、若k∈R,,则“k >4”是“方程14422=+--k y k x 表示双曲线”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 5、数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a a n a a a a -+-+--=≥⋅⋅,则数列{}n a 的第100项为( ) (A )10012 (B )5012 (C )1100 (D )1506、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体 的体积是 ( )(A )383cm (B )343cm(C )323cm (D )313cm7、已知双曲线)0,0(12222>>=-b a by a x 的离心率为6,则双曲线的渐近线方程为( )(A )2y x =± (B )x y 2±= (C )x y 22±= (D )12y x =± 8、定义式子运算为12142334a a a a a a a a =-,将函数sin 3()cos 1xf x x =的图像向左平移(0)n n >个单位,所得图像对应的函数为偶函数,则n 的最小值为 ( )(A )6π (B )3π(C ) 56π (D )23π9、已知点P 为ABC ∆所在平面上的一点,且13AP AB t AC =+u u u r u u u r u u u r,其中t 为实数,若点P 落在ABC ∆的内部,则t 的取值范围是( ) (A )104t << (B )103t << (C )102t << (D )203t <<10、已知()f x 是偶函数,且()f x 在[)+∞,0上是增函数,如果(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是 ( ) (A )[2,1]- (B )[5,0]-(C )[5,1]- (D )[2,0]-第二卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2019年高考理科数学模拟卷(全国新课标Ⅱ卷)
高考理科数学模拟卷(全国新课标Ⅱ卷)一.选择题(每小题5分,共60分)1.集合A={x|x 2-2x>0},B={y|y= 2 x ,x>0},R 是实数集,则(C R B)∪A 等于( ) A .R B .(-∞,0)∪1,+∞) C .(0,1 D .(-∞,1∪(2,+∞)2. 已知z 是复数z 的共轭复数, z+z + z ·z =0,则复数z 在复平面内对应的点的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 3.设公比 的等比数列{}的前项和为,则 ( ) A .B .C .D .4.命题p :∀x ∈R,sinx -cosx< 2命题q :“a=1”是“直线l 1:ax+2y -1=0与直线l 2:x+(a+1)y+4=0平行”的充分条件 则下列命题中,真命题是A .(⌝q)∨pB .p ∧qC .(⌝p)∧(⌝q)D .(⌝p)∨ (⌝q) 5.某一个班全体学生参加物理测试,成绩的频率分布直方图如图,则该班的平均分估计是 A .70 B .75 C .68 D .666.在长为8的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC 、BC 的长,则该矩形面积大于15的概率 ( )A .16B .14C .23D .457.右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有 ( ) A .1个 B .2个 C .3个 D .4个8.把函数f(x)=sin 2x -2sinxcosx+3cos 2x 的图像沿轴向左平移m(m>0)个单位,所得函数g(x)的图像关于直线x= π8对称,则m 的最小值为 ( )A. B. C. D.12q =n a n n S 43S a =1521547274x 4π3π2π43π结束y=x 3输出yy=1xy=lnx+5否 x>2?是开x>5? 输入x否 是20 100 80 60 40 0.020.0050.0150.01成绩/频率组距9.已知一个几何体的三视图如图所示,则这个几何体的体积是( )A .233B .236C .113D .10310.已知四边形ABCD ,∠BAD=120º,∠BCD=60º,AB =AD =2,则AC 的最大值为( ) A .433 B .4 C .833D .811.已知双曲线x 2a 2 − y 2b 2=1(a>0,b>0),右焦点F 到渐近线的距离小于等于a ,则该双曲线离心率的取值范围为( ) A .B .C .D .12.若f(x)满足x 2f '(x)—2xf(x)=x 3e x ,f(2)= —2e 2.则x>0时,f(x) ( )A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值,又有极小值 D.既无极大值,也无极小值二.填空题:(每小题5分,共20分)13.(2x+1x )6展开式中的常数项等于________14.∆ABC 中,|CB →|cos ∠ACB=|BA →|cos ∠CAB=3,且AB →·BC →=0,则AB 长为 _ 15.已知直线x+y+2a-b=0(b ∈R,0≤a ≤2)与圆x 2+y 2=2有交点,则a+b 的最大值为 16.四棱锥P -ABCD 底面是一个棱长为2的菱形,且∠DAB=60º,各侧面和底面所成角均为60º,则此棱锥内切球体积为 三.解答题(本大题6小题,共70分)17.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12, q=S 2b 2.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的取值范围.18.为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽()2,+∞)2,⎡+∞⎣(1,2]()1,211 22 22 2 正视侧视俯视取50人参加环保知识测试⑴ 根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关优秀 非优秀 总计 甲班 乙班 30 总计60⑵为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为12,得80分以上的概率为13,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X 表示甲班通过预选的人数,求X 的分布列及期望E (X ). 附: k 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d), n=a+b+c+dP(K 2>k 0) 0.100 0.050 0.025 0.010 0.005 k 02.7063.841 5.0246.6357.87919.(本题满分12分)如图,四棱锥P -ABCD 的底面是矩形,侧面PAD ⊥底面ABCD ,在∆PAD 中PA →+PD →=2PE →,且AD=2PE(1)求证:平面PAB ⊥平面PCD ;(2)如果AB=BC,∠PAD=60º,求DC 与平面PBE 的正弦值20.已知点P 在圆x 2+y 2=1上运动,DP⊥y 轴,垂足为D,点M 在线段DP 上,且|DM||DP|=22 (Ⅰ)求点M 的轨迹方程;(Ⅱ)直线l 与y 轴交于点Q(0,m)(m≠0),与点M 的轨迹交于相异的两点A,B ,且AQ →=λQB →,若OA →+λOB →=4OQ →.求m 的取值范围.21.已知函数(为自然对数的底),(为常数),是实数集上的奇函数.⑴ 求证:;⑵ 讨论关于的方程:的根的个数;请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作()xf x e =e ()ln(())g x f x a =+a ()g x R ()1f x x ≥+()x R ∈x 2ln ()()(2)g x g x x ex m =⋅-+()m R ∈BPACDE答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,∠APC 的平分线分别交AB 、AC 于点D 、E , (Ⅰ)证明:∠ADE=∠AED ; (Ⅱ)若AC=AP ,求PCPA的值。
(6套)2019年高考数学复习章节练习模拟试卷汇总.doc
(6套)2019年高考数学复习模拟试卷附答案汇总岂2019年高考数学概率、统计、算法、真数、推理与证明模拟试题训练6正文.doc 哲2019年高考数学集合、常用逻辑用语、函数与导数模J 以试题训练[正文.doc 岂2019年高考数学立体几何模拟试题训练4正文doc 勺2019年高考数学平面解析几何模拟试题训练5正文.doc 岂2019年高考数学三角函数、解三角形、平面向量模拟试题训练2正文.doc 巴2019年高考数学数列、不等式模拟试题训练3正文.doc阶段检测一集合、常用逻辑用语、函数与导数(时间:120分钟 总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 .集合 A={XG N|X <6},B={X €R|X 2-3X >0},则 AnB=( ) 4.已知定义在R 上的偶函数f(x),且当xw[0,+co)时,f(x)是增函数,则f(・2), f(TT ), f(・3)的大小关系是() A.f (Tr)>f(-3)>f(-2) B.f(n)>f(-2)>f(-3)C.f (Tr)<f(-3)<f(-2)D.f (Tr)<f(-2)<f(-3)5. 已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2, f(1)+g(-1)=4,M g ⑴等于() A.4B.3C.2D.16 .函数f(x)二2“収2的图象为()A.6B.12C.24D.368. 曲线y=ln x 上的点到直线2x-y+3=0的最短距离是()9. 下列函数中,既是奇函数又在区间单调递减的函数是() A.f(x)二sin xB.f(x)=2cos x+1C.f(x)=2x -1D.f(x)=ln 存A.{3,4,5}B.{4,5,6}C.{x|3<x^6}2.已知命题p:M Va>0,W e->1成立”,则「p 为( )A.3a<0,有 e a ^1 成立B.3a<0,有 e a ^1 成立3. 已知a=0.203,b=logo.23,c=logo.24,则( )D.{x|3<x<6}C. 3a>0,有 e a <1 成立D.3a>0,有 e a ^1 成立D. c>b>a 7.已知函数 f(x)二{;[ + ]) A. 4-ln2 5B. 4+ln2 5c 4-ln2 D.4+ln2X > % <10. 若函数f(x)在R上可导,且满足f(x)-xf '(x)>0,则()A.3f(1)=f(3)B.3f(1)>f(3)C.3f(1)<f(3)D.f(1 )=f(3)门.已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)二x,若关于x的方程f(x)=log a x有三个不同的根,则a 的取值范围为()A.(2,4)B.(2,2x/2)C.(V6,2V2)D.(V6,VTo)12.若函数f(x)=log m(x-a)+c-1 (m>0,且nr")的图象过定点(2,1),且函数g(x)=2aln x+-c在[1,e]±为单调函数,则实数b的取X值范围是()A.H,2]B.(o,2)u(2e,+QC. (-co, 2] u [2e,+<x>)D.[2e,+co)二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13•已知函数f(x)彳爲咒<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1) (2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】 已知函数f(x)=x +px -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .83.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .24.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b25.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.9.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值.【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.【答案】(1)A (2)252 (3)9 考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2B 、2 C 、22 D 、4 【答案】C2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________.【答案】26.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【答案】B【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5【答案】C3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.54【答案】C4.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .6【答案】B5.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.12【答案】C6.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .3【答案】B7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】68.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.【答案】2+311.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。