传热学10章(10)

合集下载

第10章传热与换热器资料

第10章传热与换热器资料
第十章 传热与换热器
Heat Exchangers
2020/11/10
传热学 李琼
1
本章的学习目的
分析实际传热问题的能力 传热过程? 综合应用三种基本传热方式及其相关公式 的能力 基本计算式(传热方程式)? kA(t f 1 t f 2 )
了解换热器的基本知识和设计过程
2020/11/10
略; 如果Tam升高或降低1 ℃,qr所占比例增加
或减小4%;
2020/11/10
传热学 李琼
17
例10-2
水平管常壁温条件下自然对流换热,同 时考虑辐射换热。
外壁温度tw2未知,须试算。 计算表明:
用发射率低的材料处理表面,可显著降低散 热损失。
采用好的保温材料并同时降低管道表面辐射 系数,是节能的有效措施。
传热学 李琼
11
§ 2有复合换热时的传热计算
复合换热 :在平壁、圆筒壁、肋壁的传 热中,当壁面上除对流换热外,还同时 存在辐射换热。
当换热流体为气体(自然对流)时,可能要考虑 表面的辐射换热。 分析原则:需要确定复合换热热阻或 复合换热表面传热系数。
2020/11/10
传热学 李琼
12
对流换热热流量: qc hc(tw t f )
2020/11/10
传热学 李琼
4
§ 1通过肋壁的传热
2020/11/10
传热学 李琼
5
一、肋壁总效率η
定义:
ηf和η谁大
h2 A2' (t w2 t f 2 ) h2 A2'' (t w2,m t f 2 )
h2 A2' (t w2 t f 2 ) h2 f A2 (t w2 t f 2 )

传热学第十章

传热学第十章

(2) 管壳式换热器 由管子和外壳构成。
(2) 管壳式换热器 由管子和外壳构成。
2壳程、4管程换热器
管壳式换热器结构牢固可靠、耐高温高压。
列管式冷凝器实例
波纹管换热器
波纹换热管
(3) 肋片管式换热器 由带肋片的管束构成的换热装置。
肋片管式换热器适用于管内液体和管外气体之间 的换热,且两侧表面传热系数相差较大的场合。
(4) 板翅式换热器 由金属板和波纹板形翅片层叠、交错焊接而成。
板翅式换热器结构紧凑、传热系数高。
(5) 板式换热器 由若干片压制成型的波纹状金属板叠加而成。
(5) 板式换热器
1 ,2 介质 3 环行孔道
垫圈 4 板片密封
垫圈 5 激光切焊
焊缝 6 焊接密封
流道
特点:结构紧凑 ,占用空间小;传热系数高 ;端部温差小(可达1℃); 热损失小 ,热效率高(≥98%); 适应性面式,在工程中最常用 混合式—适用于冷热流体为同类介质的场合 回热式(蓄热式) —适用于气体与气体间的换热,
为非稳态过程
2. 按表面的紧凑程度分: 紧凑式与非紧凑式 紧凑程度用当量直径d e (d h) 或传热面积密度 β来衡量 (β---单位体积中的传热面积)
kAo hi Ai 2 l di ho Ao
ri r0
通过肋壁的传热系数
10-2 换热器的类型
换热器:换热器也称热交换器,是把热量从一种 介质传给另一种介质的设备
换热器广泛应用于广泛应用于化工、能源、机械、 交通、制冷空调、航空航天以及日常生活等各个领 域。
换热器不仅是保证某些工艺流程和条件而广泛采用 的设备,也是开发利用工业二次能源,实现余热回 收和节能利用的主要设备。
紧凑式—β≥700m2/m3, 或dh≤6mm 层流换热器—β>3000m2/m3, 或100μm ≤dh≤1mm 微型换热器–β>15000m2/m3, 或100μm≤dh≤1mm

清华大学热工基础课件工程热力学加传热学第十章-对流换热、单相流体

清华大学热工基础课件工程热力学加传热学第十章-对流换热、单相流体
1)热导率,W/(mK), 愈大,流体导热热阻愈小,
对流换热愈强烈;
2)密度,kg/m3 3)比热容c,J/(kgK)。 c反映单位体积流体热容量
的大小,其数值愈大,通过对流所转移的热量愈多,对 流换热愈强烈;
4)动力粘度,Pas;运动粘度=/,m2/s。流体
的粘度影响速度分布与流态,因此影响对流换热;
u v 0
dy
x y
2)动量微分方程(动量守恒)
微元体
惯性力
压力差 0
dx
x
x方向: u u u xv u y F x x p x 2 u 2 y 2 u 2
D duFxxp2u 体积力
20
局部表面传热系数的变化趋势:
流动边界层厚度 与热边界层厚度t的比较 :
两种边界层厚度的相对大小取决于流体运动粘度 与
热扩散率a的相对大小。令
对于层流边界层:Pr≥1 t ;Pr≤1 t
Pr a
对于湍流边界层: t
普朗特数
一般液体:Pr=0.6~4000;气体:Pr=0.6~0.8。 21
cp
t
uxt vyt



2t x2

2t y2

4个微分方程含有4个未知量(u、v、p、t),方程 组封闭。原则上,方程组对于满足上述假定条件的对 流换热(强迫、自然、层流、湍流换热)都适用。15
(2)对流换热的单值性条件
1) 几何条件
1
10-1 概述
1. 牛顿冷却公式
= A h( tw-tf ) q = h( tw-tf )
h—整个固体表面的平均 表面传热系数;
tw—固体表面的平均温度; tf —流体温度,对于外部绕流,tf 取远离壁面的流体 主流温度;对于内部流动,tf 取流体的平均温度。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

工程热力学与传热学10)水蒸气

工程热力学与传热学10)水蒸气

湿蒸汽的干度和湿度
干度x:湿蒸汽中饱和蒸汽所占的质量百分比。
mV 湿蒸汽中干蒸汽的质量 x 湿蒸汽总质量 mV mW
mv mW
湿度y:湿蒸汽中饱和水所占的质量百分比。
mW 湿蒸汽中饱和水的质量 y 湿蒸汽总质量 mV mW
显然: x+y=1
饱和水的x=0; 干蒸汽的x=1
比容 温度 t (℃) 压力 P (MPa) 0.000611 焓 汽化 潜热 熵
v’
(m3/kg) 0.0010002
v”
(m3/kg) 206.312
h’
(kJ/kg) -0.04
h”
(kJ/kg) 2501.0
r
s’
s”
(kJ/kg) (kJ/kg·K) (kJ/kg·K) 2501.0 -0.0002 9.1565
1、预热阶段
未饱和水(过冷水)
饱和水
p 定值
过冷度
p 定值
t0 t s v 0 v s0 s h0 h
t0 v0 s0 h0
Δ t=t-ts
ts v s h
注意比较v0和v′ 的大小!
这个阶段所需的热量称为液体热 ql
ql h h0
'
2、汽化阶段
p 定值 ts v s h
湿蒸汽区:上、下界限线之间的锺罩形区域
五态
过热蒸汽:一定压力下,温度高于对应饱和温度的蒸汽。 或者说:一定温度下,压力低于饱和蒸汽压的蒸汽。 饱和蒸汽:一定压力下,温度等于对应饱和温度的蒸汽。 或者说:一定温度下,压力等于饱和蒸汽压的蒸汽。 湿蒸汽:饱和蒸汽与饱和液体的机械混合物。 饱和液体:一定压力下,温度等于对应饱和温度的液体。 或者说:一定温度下,压力等于饱和蒸汽压的液体。 未饱和液体:一定压力下,温度低于对应饱和温度的液体。 或者说:一定温度下,压力高于饱和蒸汽压的液体。

传热学(第10章--辐射换热)

传热学(第10章--辐射换热)

1 2
1、强化辐射换热的主要途径有两种: (1) 增加表面黑度; (2) 增加角系数。
2、削弱辐射换热的主要途径有三种: (1) 降低表面黑度; (2) 降低角系数; (3) 加入遮热板。
遮热板:在两辐射换热面之间放置的一黑度很小 的,用于削弱辐射换热的薄板。
22
遮热原理:通过在热路中增加热阻来减少辐射换热量。
)4
式中,Cb=5.67 W/(m2K4) ,为黑体的辐射系数。
实际物体的辐射力------引入修正系数(黑度)
8
黑度ε:实际物体的辐射力与同温度下黑体辐
射力之比。
E
Eb
式中,Eb为黑体的辐射力,E为实际物体的辐射力。
f (物体本身的性质 )
实际物体的辐射力为:E
Eb
Cb
(T 100
)4
1
热辐射穿过气体层时的衰减
30
2.火焰辐射的特点
火焰中含有固体微粒 火焰辐射类似于固体辐射 可视为灰体处理
31
思考题
教材P154.思考题10-2、10-4、10-5
32
本章小结
热辐射的本质及特点; 黑度、黑体及灰体等概念; 四次方定律; 有效辐射的概念;角系数的性质; 两灰体表面间的辐射换热计算(两种特例); 辐射换热的增强与削弱
1 A1 X 1,2
A1 X1,2
A2 X 2,1
黑体间的辐射换热网络图
式中,1/A1X1,2为空间辐射热阻,其大小完全取决于物体表面间的几何 关系,而与物体表面的性质无关,故是所有物体均具有的辐射热阻。
16
三、灰体表面的有效辐射
17
有效辐射 本身辐射反射辐射
表面1的有效辐射:
J1 E1 1G1 1Eb1 (11)G1 表面1与外界的辐射换热:

第十章传热和换热器

第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )

工程热力学与传热学 第十章 气体动力循环

工程热力学与传热学 第十章 气体动力循环

在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;

注册暖通设备工程师专业基础考试公式大全(完整资料).doc

注册暖通设备工程师专业基础考试公式大全(完整资料).doc

此文档下载后即可编辑传热学第1 章传热基本概念1、温度梯度:gradt n t n k m ,指向温度升高的方向;2、傅立叶定律:热流密度qgradt W m2 3、导热系数:g q radt W m k 4、热扩散系数(导温系数): a c m2 s ,表征物体被加热或冷却时,物体温度趋于均匀一致的能力。

第2 章稳态导热2.0 导热方程与边界条件1)导热常微分方程:t t t tc x x y y z z q vt a x2t2 y2t2 z2t2 q v c2)边界条件:第一类:已知任意时刻物体边界上的温度值:t s t w;第二类:已知任意时刻物体边界上的热流密度:q s q w ;第三类:已知边界周围物体的温度t f 和表面传热系数h ,即q t n s ht s t f ;n2.1 平壁稳态导热x1)第一类边界条件:1、温度分布:t t w1tw1 t w2x2、热流密度: q tw1 tw2 tw1 t3、热流量:Aq Atw1 t w2;4、多层平壁热流密度:2、热流密度:3、热流量:qlq l ltw1tw21 ln 2d2d 1q1i2)第三类边界条件:1、热流密度: q 1tf1 t f21h 1h 22、多层平壁热流密度:tf1 tf 2q1 n i1h 1 1 i h 22.2 圆筒壁稳态导热 1)第一类边界条件:1、温度分布: t tw1 t w1 t w2 ln d dd1;ln d2w1 w21 d 2ln22d 14、多层圆筒热流密度:tw1 twn 1n1d 2ln 2 12 l id 12)第三类边界条件:1、热流密度qltf1 t f 21 1d 2 1 ;ln 2h1 d 12 d1 h2 d 22、多层圆筒热流密度:qltf1f21h 1 d 1n 1ln di 1 1 2 id i1h 2 d 22.3 临界热绝缘直径单位管长总热阻:R tl1 1 ln d2 1 lnd x 1 h 1 d 1 2 1 d 1 2 ins d 2 h 2 d xinsh2d c d 2时,有散热作用;dc d2时,有保温作用;2.4 肋片传热 肋高 l ↓ ↑ ↓ 肋的导 热系数↑↑↑5、界面接触热阻: Rc t2A t 2B2、肋端温度(过余温度):t tf1;0 t 0 t fch ml3、肋片表面散热量:hU A 0th ml4、肋片效率:等截面直肋散热影响因素增大t表面换 热系数 h ↓ ↑↓肋厚↑ ↑ ↑第 3 章 非稳态导热 1、非稳态导热中的两个 准则傅里叶准则: Fo a2。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

传热学-第十章

传热学-第十章
24
3. 其它复杂布置时换热器平均温差计算
交叉流及其它形式(简单顺流、逆流除外)换热器的 平均温差算法比较麻烦,有人已经作出了表格,用时可以 直接查表。查法如下: (1). 先按逆ห้องสมุดไป่ตู้方式算出对数平均温差(tm)c;
(2). 将(tm)c乘以一个修正系数,这样问题就归结为求不 同情况下的。
=f (P,R) 而P,R的定义见书P327-329。由图即可查得。注意书上 t’ 和t” 与图的对应关系,不再是我们前面所说的热、冷 流体。 25

l π (70 - 40) do 1 1 ln 2 0.15 0.0051 10 d o
9
计算结果用图线表示于图中。
讨论: 散热量先增后减, 有最大值 最大值的求法
1 1 π l (ti to ) 2 d 2d o ho d o 0 2 dd o 1 do 1 1 ln hi d i 2 d i ho d o
相应的,以光侧表面面积Ai为基准的传热系数为:
kf ' 1 Ai hi hoo Ao 1 1 1 hi hooβ 1
肋化系数 β=Ao/Ai,即加肋后的总表面积与该侧未加肋 时的表面积之比。 一般β>>1,ηo<1, 但ηoβ>1。 hoηoβ----当量对流换热系数,即把肋部分折算到对流中。
若以管内侧面积为基准,则传热系数为:
1 ki do 1 di 1 di ln hi 2 di ho d o
6
三、 通过肋壁的传热
下图是一侧有肋的平壁。在稳态条件下,通过传热过程 各环节的热流量 是一样的,于是可以列出以下方程式:
hi Ai (tfi t wi )

传热学第五版[完整版]答案解析

传热学第五版[完整版]答案解析

1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a、地面向冰雹导热所得热量;b、冰雹与周围的空气对流换热所得到的热量;c、冰雹周围的物体对冰雹辐射所得的热量。

2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。

白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。

4.现在冬季室内供暖可以采用多种方法。

就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算热力学是研究能量转换和能量传递的学科,传热学是热力学的一个重要分支。

传热过程是指热量从一个物体传递到另一个物体的过程,它是通过传导、对流和辐射三种方式进行的。

换热器则是用来实现热量传递的设备。

一、传热过程1.传导:传导是指热量通过物质内部的微观振动和相互碰撞传递的过程。

物体的导热性质取决于其热导率和导热面积。

传导的热流量可用傅里叶传热定律表示。

2.对流:对流是指液体或气体中的分子通过传递热量的方式。

对流的热流量可用牛顿冷却定律表示。

3.辐射:辐射是指热能以电磁波的形式传递的过程。

辐射热量的传递与物体的温度和表面特性有关,可以用斯特藩—玻尔兹曼定律表示。

换热器是用来实现热量传递的设备,广泛应用于工业生产和能源系统中。

换热器的设计和计算需要考虑换热面积、传热系数、传热温差等参数。

1.换热面积:换热面积是换热器的一个重要参数,它表示传热过程中热量通过的表面积。

换热面积可以通过传热方程计算得出。

2.传热系数:传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。

传热系数的大小与换热器的结构、工作条件及流体性质等有关。

3.传热温差:传热温差是指热量在换热过程中的温度差异。

传热温差越大,热量传递越快。

换热器的计算包括两个方面:换热面积计算和传热系数计算。

换热面积计算一般根据传热方程进行。

传热方程可以写成Q=UAΔT,其中Q为热量传递量,U为总传热系数,A为换热面积,ΔT为温度差。

通过已知的换热量和温度差,可以计算出换热面积。

传热系数计算一般需要参考实验数据或者经验公式。

传热系数与换热器的结构和工作条件有关,一般通过实验或者估算得到。

在进行换热器计算时,还需要注意换热器的热损失问题。

热损失会影响换热器的热效率,因此需要进行热损失的计算和控制。

总之,传热过程和换热器计算是传热学中重要的内容,它们在工程实践中有着广泛的应用。

通过对传热过程和换热器的深入理解和计算,可以提高工程设备的热效率,实现能源的节约和利用。

传热学8-10章总结问答题及答案

传热学8-10章总结问答题及答案

第八章 热辐射基本定律和辐射特性一、名词解释黑体:指能吸收投入到其表面上的所有热辐射能量的物体。

其吸收比1=α灰体:在热辐射分析中,把光谱吸收比与波长无关的物体称为灰体漫射体:辐射能按空间分布满足兰贝特定律的物体投入辐射:单位时间内投入到单位表面积上的总辐射能吸收比:投入辐射中被吸收能量的百分比。

穿透比:投入辐射中穿透过物体能量的百分比。

反射比:投入辐射中被反射能量的百分比。

发射率: 物体的辐射力与同温度下黑体辐射力之比,为ε辐射力:单位辐射面积向半球空间辐射出去的各种波长能量的总和,E ,单位是2/m W 。

光谱辐射力:单位辐射面积向半球空间辐射出去的包括波长λ在内的单位波长间隔内的辐射能λE 定向辐射强度:单位可见辐射面积向半球空间θ方向的单位立体角中辐射出去的各种波长能量的总和。

二、解答题和分析题1、四次方定律、普朗克定律、兰贝特定律及维恩位移定律和基尔霍夫定律分别描述了什么内容? 答案: 看书362页公式8-16下面有详细的总结。

2、影响实际物体吸收比和发射率的因素各有哪些?答:实际物体的吸收比取决于两方面的因素:1)吸收物体本身的情况。

系指物质的种类、物体的温度以及表面状况。

2)投入辐射的特性。

实际物体表面的发射率取决于物质的种类、表面温度和表面状况。

只与发射辐射的物体本身有关,而不涉及外界条件第九章 辐射传热的计算一、名词解释角系数:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为2,1X 。

有效辐射:是指单位时间内离开表面单位面积的总辐射能。

二、解答题和分析题1、简述角系数的定义及其性质。

答:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为X。

2,11)角系数的相对性 2)角系数的完整性 3)角系数的可加性2、分析气体辐射的基本特点?(1) 气体辐射对波长具有选择性。

它只在某些波长区段内具有发射和吸收辐射的本领,而对于其他光带则呈现透明状态。

第10章 对流换热(中文课件)

第10章 对流换热(中文课件)
郭煜《工程热力学与传热学 》
工程热力学与传热学
传热学 第十章 对流换热
郭煜 中国石油大学(北京)机械与储运工程学院
郭煜《工程热力学与传热学 》
第十章 对流换热
内容要求
掌握对流换热问题的机理和影响因素 了解对流换热的数学描述 边界层理论概述与边界层内对流换热微分方程组的简化 外掠等壁温平板层流换热分析解简介 掌握对流换热的实验研究方法,相似原理 各种典型对流换热的基本特点和计算方法
tw — 固体表面的平均温度。 tf — 流体温度。
• 外部绕流(外掠平板,圆管): tf 为流体的主流温度。
• 内部流动(各种形状槽道内的流动): tf 为流体的平均温度。
tf
d
外部绕流
管内流动
郭煜《工程热力学与传热学 》
4. 局部表面传热系数与平均表面传热系数
局部对流换热时,局部热流密度:
郭煜《工程热力学与传热学 》
2. 流动的状态 —— 层流流动与湍流流动
层流(Laminar flow)
流速缓慢 沿轴线或平行于壁面作规则分层运动 热量传递:主要靠导热(垂直于流动方向)
u∞ tf
u∞ uq
导热
u∞
u
导热qBiblioteka 0 层流边界层x管内层流流动
Example Oils-- the flow of high-viscosity fluid at
(管内强制对流换热,外掠壁温强制对流换热, 自然对流换热等)
郭煜《工程热力学与传热学 》
10-1 对流换热概述
10-1-1 基本概念和计算公式
1. 对流换热(Convection heat transfer)
流体流过另一个物体表面时,对流和导热联合起作用 的热量传递现象。

传热学-第十章

传热学-第十章
(c) 板翅式交叉流换热器
把单位体积内所包含的换热面积作为衡量换热器紧凑程度的 衡量指标,一般将大于700m2/m3的换热器称为紧凑式换热器, 板翅式换热器多属于紧凑式,因此,日益受到重视。
(4) 板式换热器:由一组几何结构相同的平行薄平板叠加所 组成,冷热流体间隔地在每个通道中流动,其特点是拆卸清 洗方便,故适用于含有易结垢物的流体。
1 通过平壁的传热
k K的计算1
1

1
公式?h1 h2
说明: (1) h1和h2的计算;(2)如果计及辐射时对流 换热系数应该采用等效换热系数(总表面传热系数)
单相对流:ht hc hr
(8-24)
膜态沸腾:ht43hc43hr43 (6-23)
hr
(T14 T24)
T1 T2
由于平壁两侧的面积是相等的,因此传热系数的数值无论 对哪一侧来说都是相等的。
2 通过圆管的传热
园管内外侧表面积不等,所以对内侧
而言和对外侧而言的传热系数在数值上不同的。先分析管长为L
的一段园管:见图(9-1)
传热过程包括管内流体到管内侧壁面, 管内侧壁面到管外侧壁面,管外侧壁面 到管外流体三个环节。
)dAx
t exp(kA)-1
(1)
k A
lntx t
kAx
Ax A
lnt kA
t
(2)
t exp(kA)
(3)
t
(1)+(2)+(3)
在固体微元面dA内,两种流体的换热量为:
d kd A t
对于热流体和冷流体:
dqmch hdth dthqm 1ch hd
dqmcccdtc dtcqm 1cccd

传热学(期末复习专用)总结

传热学(期末复习专用)总结

膜状凝结

x
hx x

5.0 Re x
1 2 x 1 3
12 c f 0.664Re x

Nux 0.332 Re Pr Nu
cf 2 Re x
hl

0.664 Re Pr1 2Fra bibliotek1 3
Nu x
t Pr1 3 5x Re1/2
斯坦顿(Stanton)数
3 l 2
1 4
rg l hV 1.13 l l (ts tw )
3 l 2
1 4

l
s
w

1 4
水平管 球表面
2 rg3 l l hH 0.729 d ( t t ) s w l
2 rg3 l l hS 0.826 d ( t t ) s w l
1 2 1 3 1 3
St
Nu Re Pr
x xc时, 层流, Nux 0.332 Re Pr
4 5
x xc时, 湍流, Nux 0.0296 Re Pr
第六章 相似原理及量纲分析
同类现象:用相同形式且具有相同内容的微分方程式所描述的现象。 相似的概念:对于两个同类的物理现象,如果在相应的时刻及相应的 地点与现象有关的物理量一一对应成比例,则称此两现象彼此相似。 判别两现象相似的条件: ①只有同类现象才能谈相似。 ②单值性条件相似:初始条件、边界条件、几何条件、物理条件。 ③同名的已定特征数相等。 获得相似准则数的方法:相似分析法和量纲分析法。 相似分析法:在已知物理现象数学描述的基础上,建立两现象之间 的一些列比例系数,尺寸相似倍数,并导出这些相似系数之间的关 系,从而获得无量纲量。 量纲分析法:在已知相关物理量的前提下,采用量纲分析获得无量 纲量。

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案(陶文铨第四版)
9、物质的变化一般分为物理变化和化学变化。化学变化伴随的现象很多,最重要的特点是产生了新物质。物质发生化学变化的过程中一定发生了物理变化。
答:放大镜的中间厚,边缘薄,光线在透过放大镜时会产生折射,因此会把物图像放大。要点: 值越大则温度变化率越小,在图上标示出来就是斜率越小(具体可参考换热器原理一书)。当相等时,顺流为对称的两曲线,而逆流时则为平行线。
答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。
答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。
第八章:
1、选择太阳能集热器的表面涂层时,该涂层表面吸收率随波长的变化最佳曲线是什么?有人认为取暖用的辐射采暖片也需要涂上这种材料,你认为合适吗?
分析:太阳辐射的主要能量集中在0.2~2μm,该涂层表面吸收率随波长的变化最佳曲线是当波长小于2μm时,吸收率大,当波长大于2μm时,吸收率要小。
不合适。因为如果暖片在高温(波长小)时有很大的吸收比,那么暖片将有很大的辐射换热量,减小了对流换热量,因此不适合。
答:虽然黑体表面与重辐射面均具有J=Eb的特点,但二者具有不同的性质。黑体表面的温度不依赖于其他参与辐射的表面,相当于源热势。而重辐射面的温度则是浮动的,取决于参与辐射的其他表面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)
将(2)代入(5), 得 : d (t ) ktdA d (t ) 分离变量得 : k dA t t x d ( t ) Ax 积分得 : ' k dA t 0 t
(6)
t '和t x 分别表示A 0和A Ax处的温差。积分得:
• 当以肋表面Ao为计算依据时,虽然式(10-6a)的ko有所 降低,但肋化面积Ao大大增加;
• 若以光侧面积Ai为计算依据时,由式(10-6b)所确定的 传热系数ki比原先光表面的大大增加; • 因此,无论是以Ao还是以Ai为面积依据,通过肋壁的传 热量Φ比通过光壁面的传热量都大大增加,这说明
加肋之后可以强化传热。 • 由式(10-6a),(10-6b)还可看出,当表面不加肋时, Ao=Ai,此时η o=1,β =1,则: 1 圆筒肋壁(圆管外加肋片)
再次强调指出,引入传热过程及传热系数的目的是因为 在工业换热器中一般壁温的测量比较困难,而流体平均温 度tf则较容易测量。 10.1.2.通过圆筒壁的传热过程计算 单根圆管,计算式为 t fi t fo (10-2) Ao ko (t fi t fo ) d 1 1 1 ห้องสมุดไป่ตู้ln o hid i l 2 l d i hod ol 其中ko为以圆管外表面面积Ao=πdol 为计算依据的传热系数
⑥ 对同种流体(热流体或冷流体)而言,不能既有相变换热 又有单相介质换热
对数平均温差的推导: ① Δtm的定义及物理意义:以顺流换热器为例,如图10-20。 微元面积dAx处的换热量为:
图10-20b顺流时平均温差的推导
微元面积dAx处的换热量如下计算:
d x kt x dAx
总换热量
t ” t ” kA (10) Ax A时t x t 则: ’ k A即 ’ e ln t (9) t t ’ t ” t ” t ’ 将(9),( )代入(8)得:t m 10 ( ’ 1 ) ” t t t ” ln ’ ln ’ t t
第10章 传热过程分析与换热器热计算
10.1 传热过程的分析与计算 10.1.1.通过平壁的传热过程计算 传热过程是热量由壁面一侧的流体通过壁面传热到壁 面另一侧流体的过程,其热量可由传热方程式来计算,以 其中 平壁为例,Φ=kA(tfi-tfo) 1 k (10-1) 1 1 hi ho • 注意上式中当一侧流体是含有二氧化碳、水蒸气等三原 子气体的烟气时,同时考虑对流换热和辐射换热,则hi和h0 应为复合换热表面传热系数。在复合换热中,通常认为相 互并联的几种换热方式独立起用,其换热量可迭加。对于 稳态过程,通过串联着的每个环节的热流量应该是相同的。
注意以下几点: a) 壁面内的温度分布,其曲线凹向与第二章通过圆筒壁的 导热分析方法一样; b) 当沿热量传递方向上面积发生变化时,k的计算应与传 热面积相对应,一般以管外表面积为基准;
c) 关于管壁导热热阻,由两种处理方法:
• 一种是忽略其导热热阻(尤其是对气-气或气-液换热器);
• 另一种是以平壁导热热阻δ/λA代替,此时 1 1 (d o di ), A d ml l (d o di ) 2 2 一般导热热阻约占总热阻的5%左右。 10.1.3.通过肋壁的传热过程计算 平肋壁(平壁外加肋片) 传热过程热流量:
ko 1 1 do do do 1 ln hi d i 2 d i ho
(10-3)
n根长为l的圆管
t fi t fo (10-4) do 1 1 1 ln hid i nl 2 nl d i hod o nl 比较式(10-2)和(10-4),可以将n根长为l 的圆管等效成一 根长为nl的圆管。
1 1 hi Ai Ai ho o Ao t fi t fo Ao ko t Ai ki t
(10-5)
其中o
Ao Ao Ai η0—称为肋面总效率;β —称为肋化系数;(见书图10-2) , Ao A1 A2 , t t fi t fo , 并令

2、 顺流和逆流换热器的对数平均温差: 即 t x t e
' ( 1 q m1 c 1 q m 2 c 2 1 ) kAx
t 'e kAx
t ' t '' t max t min t m ' t max t ln ln '' t min t t max t min 同理,可以证明,无论对 t m 顺流和逆流,均可按下式 t max ln 计算对数平均温差: t min
k o ki
若在圆管外表面加肋,此时有:
1 1 hi ho
t fi t fo do 1 1 1 ln hi Ad i 2 l d i ho Ao o 式中Ai d i l , Ao A1 A2 , o A1 f A2 Ao
(10-7)
(10-12)
(10-13)
(10-14)
3、算术平均与对数平均
所谓算术平均温差则是指 (tmax tmin ) / 2 相当于假定冷热流体的温度都按照线性变化时的平均温差, 见图10-22,算数平均温差总是大于对数平均温差。
当tmax / tmin 1时,
两者差别才不断缩小。
注意,对顺流而言,Δtmax和Δtmin分别对应冷、热 流体进口出口,但对逆流来说,Δtmax则可 能位于换热器同种流体的进口或出口,这取决于冷、 热流体热容量qm2c2和qm1c1的相对大小。 10.3.2 其他复杂流动型布置时平均温差的计算 其他流动型式换热器的对数平均温差可按如下的统 一形式来表示:
9.1.2 换热器的类型
10.2.1.换热器的分类(按工作原理来分) 1、混合式(如电站冷却塔,喷淋室)
特点:①冷、热流体直接混合,互相接触; ②热量传递与质量传递同时进行;
③要求冷、热流体互不相溶,易分离。
2、 蓄热式或称回热式(如回转式空气预热器,蓄冷器)
特点:①冷、热流体交替流过换热面; ②传热过程呈现出非稳态形式; ③一般适用于气体介质。 3、间壁式:特点: ①冷、热流体被壁面隔开,互不接触; ②根据冷、热流体的流动方向可分为顺流、逆流、交叉流等; ③主要型式有套管式、壳管式、交叉流式、板式、螺旋板式等。
换热器按表面的紧凑程度分为紧凑式与非紧凑式。紧 凑程度可用水力直径或当量直径区分,或用每立方米体积 中的传热面积即传热面积密度β来衡量。
700 m 2 / m3
或d h 6mm时, 称为紧凑式;
3000 m 2 / m 3 或100 m d h 1mm时,
称为层流换热器;
(7)
A
t x ln ' kAx,即为:t x t 'e kAx t
整个换热面的平均温差为: kAtm k t x dA
0
1 A t’ A kA t’ kA tm t x dA ( 0 e dA kA e 1) (8) 0 A A
l (ti to )(
2 由此得:d o 时,达到极值点。 ho 同时改为:Bi ho d o


ho d cr

2
(10-9)
即以dcr为分界点,如圆管外径小于dcr时,随着直径do 的增加,散热量增加;若圆管外径大于dcr,则散热量随 do增加而减小。直径dcr即称为临界热绝缘直径。 Bi是管道外表面的毕渥数。当 保温层管道外表面的Bi数大于 2时,增加保温层厚度可进一 步减少热损失;若Bi数小于2 时,则增加保温层厚度反而起 到强化换热作用。
A1 A2 f .
1 1 ko 1 Ao Ao 1 1 1 ho o hi Ai Ai ho o hi 则 1 k 1 i 1 hi ho o
(10-6a)
(10-6b)
与未加肋时平壁传热系数公式(10-1)相比,可以看出:
10.1.4.临界热绝缘直径
在平壁外加保温层总是散热量减少,而在圆管外径加 保温层却可能会增加散热量,这是因为保温层的加入一方 面使导热热阻增加,另一方面可使对流热阻减小。
若直径为di的圆管外包以绝缘层使直径为do(do>di), 圆管外表面温度为twi、绝缘层表面外侧流体温度和表面 传热系数分别为tfo和ho,则:
冷、热流体的温差为:t t1 t 2 通过微元面dA的热流量为:d ktdA 热流体放出的热流量为:d qm1c1dt1
(1) (2) (3) (4)
同理,冷流体则有:d qm 2c2 dt2
将(1)微分, 可得 : d (t ) dt1 dt2 ( 1 1 )d d qm1c1 qm 2 c2
t m t m,ctf
(10-15)
其中,φ表示某种流动型式在给定冷、热流体进、出 口温度下接近逆流的程度。一般要求φ>0.8。Δtm,ctf表 示按纯逆流布置时的对数平均温差。且φ可表示成:
f ( P, R, 流动型式) ' / t 2' t 2 P ' ' t1 t 2 t1' t1'' R '' ' t2 t2
10.3.1 简单顺、 逆流换热器平均 温差的计算
见图10-19和图 10-20
1、顺流换热器
推导对数平均温差时所作的假设:
① 在整个换热面上冷、热流体的质量流量和比热容保持 为常数,即qm2,qm1,c2,c1为常量;
② 传热系数k在整个换热面上为常数;
③ 不计散热损失,即认为热流体放出的热量等于冷流体 吸收的热量; ④ 不计换热面的轴向导热; ⑤ 不计流体的动、位能变化;
相关文档
最新文档