三极管共射放大电路实验报告

合集下载

三极管共射极放大电路实验报告

三极管共射极放大电路实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。

二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。

(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。

(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。

然后,开启电源。

此时,放大器处于工作状态。

(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。

为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。

(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。

2.测量电压放大倍数(R L =∞、R L =1k Ω)专业: 姓名:学号: 日期: 地点:学生序号6实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。

三极管放大电路实验结论

三极管放大电路实验结论

三极管放大电路实验结论三极管放大电路实验结论在电子学中,三极管是一种重要的电子元件,常用于放大电路中。

三极管放大电路的实验是电子学教学中的基础实验之一。

通过该实验,我们可以深入了解三极管的工作原理以及其在放大电路中的应用。

本次实验中,我们使用了一种常见的三极管放大电路——共射极放大电路。

该电路由三极管、输入电阻、输出电阻、耦合电容等元件组成。

实验中,我们通过改变输入信号的幅度和频率,观察输出信号的变化,从而得出以下结论。

首先,三极管放大电路具有放大功能。

当输入信号的幅度较小时,输出信号的幅度也较小,但是随着输入信号幅度的增大,输出信号的幅度也随之增大,呈线性关系。

这表明三极管放大电路能够将输入信号放大到更大的幅度,实现信号的放大功能。

其次,三极管放大电路具有频率选择性。

在实验中,我们改变了输入信号的频率,观察到输出信号的变化。

当输入信号的频率较低时,输出信号的幅度较大;而当输入信号的频率超过一定范围时,输出信号的幅度会显著减小。

这说明三极管放大电路对于不同频率的输入信号有不同的放大效果,具有一定的频率选择性。

此外,三极管放大电路还具有非线性失真现象。

在实验中,我们观察到当输入信号的幅度较大时,输出信号会出现失真现象,即输出信号的波形发生畸变。

这是由于三极管工作在非线性区域时,引起了非线性失真。

因此,在实际应用中,我们需要注意控制输入信号的幅度,避免出现过大的失真。

此外,在本次实验中我们还发现了一些其他现象。

例如,当输入信号的幅度较小时,输出信号存在一定的噪声;而当输入信号的频率较高时,输出信号存在一定的畸变。

这些现象可能与实验条件、元件参数等因素有关,需要进一步研究和分析。

综上所述,通过本次三极管放大电路实验,我们深入了解了三极管的工作原理以及其在放大电路中的应用。

我们得出了三极管放大电路具有放大功能、频率选择性和非线性失真等特点的结论。

这些结论对于我们理解和应用三极管放大电路具有重要意义,并为进一步研究和应用提供了基础。

三极管共射放大电路实验

三极管共射放大电路实验

实验10 三极管共射放大电路一、实验目的和要求1.学习共射放大电路的参数选取方法、安装与调试技术。

2.学习放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。

3.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。

4.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。

5.进一步掌握示波器、函数信号发生器、万用表的使用。

二、实验原理放大电路的最佳静态工作点•初选静态工作点时,可以选取直流负载线的中点,即V CE=1/2×V CC或I C=1/2×I CS(I CS为集电极饱和电流,I CS≈V CC/R c)这样便可获得较大的输出动态范围。

•当放大电路输出端接有负载R L时,因交流负载线比直流负载线要陡,所以放大电路的动态范围要变小,如前图所示。

当发射极接有电阻时,也会使信号动态范围变小。

•要得到最佳静态工作点,还要通过调试来确定,一般通过设置电位器的方法来调整静态工作点。

三极管共射放大电路原理图三、主要仪器设备1. MY61数字万用表2.函数信号发生器3.实验电路板实验电路板4.三极管5.导线若干6.示波器四、操作方法和实验步骤一、调整并测量放大电路的静态工作点:1、调节电位器W b,使电路满足设计要求(I CQ=6mA)。

2、测量I CQ时,一般采用测量电阻Rc两端的压降V Rc,然后根据ICQ=V Rc/Rc计算出I CQ。

3、测量三极管共射极放大电路的静态工作点,用表格记录测量值与理论估算值。

(V CQ≈9V,V EQ ≈4.5V)注意:•若V CEQ<0.5V,则说明三极管已经饱和;•若V CEQ≈+V CC,则说明三极管已经截止;•若V BEQ >2V,估计该三极管已被击穿。

V BQ(V) V BEQ(V) V CEQ(V) I CQ(mA) 理论估算值 5.2 0.7 4.5 6测量值 5.11 0.62 4.47 6.00再对比仿真结果V BQ(V) V BEQ(V) V CEQ(V) I CQ(mA) 仿真值 5.27 0.69 4.44 6可见在静态工作点时,实际测得的数据基本符合理论值。

共射放大电路实验报告

共射放大电路实验报告

共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。

本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。

一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。

二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。

晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。

当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。

三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。

四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。

通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。

通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。

五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。

当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。

这是由于晶体管的频率响应特性所决定的。

此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。

六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。

通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。

通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。

共射极放大电路实验报告

共射极放大电路实验报告

共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。

本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。

一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。

二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。

在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。

1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。

注意连接正确,避免短路和接反等问题。

2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。

通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。

3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。

四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。

通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。

2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。

3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。

通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。

通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。

实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。

共射放大电路实验报告

共射放大电路实验报告

共射放大电路实验报告实验目的,通过实验,掌握共射放大电路的基本原理、特性及其应用。

实验仪器设备,示波器、信号发生器、直流稳压电源、电压表、电流表、共射放大电路实验箱等。

实验原理,共射放大电路是由一个NPN型晶体管组成的放大电路。

在共射放大电路中,输入信号加在晶体管的基极上,输出信号则是从集电极上取出。

当输入信号变化时,基极-发射极间的电压也会相应地变化,从而引起集电极-发射极间的电流发生变化。

由于集电极电流的变化,集电极电压也会相应地变化,从而得到输出信号。

实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好。

2. 调节信号发生器的频率和幅度,使其输出一个正弦波信号。

3. 将正弦波信号输入到共射放大电路的输入端,观察输出端的波形。

4. 调节直流稳压电源的电压,观察输出端波形随电压的变化情况。

5. 记录实验数据,并绘制输入输出特性曲线。

实验结果与分析:通过实验,我们得到了共射放大电路的输入输出特性曲线。

在实验中,我们发现当输入信号的幅度较小时,输出信号的幅度基本与输入信号一致;当输入信号的幅度较大时,输出信号的幅度出现了明显的失真。

这说明共射放大电路在一定范围内可以实现较好的放大效果,但是在过大的输入信号下会出现失真。

结论:通过本次实验,我们深入了解了共射放大电路的基本原理和特性。

共射放大电路作为一种常见的放大电路,在实际应用中具有重要的意义。

通过对其特性的了解,我们可以更好地应用它,设计出更加稳定和可靠的电路。

实验总结:本次实验使我们对共射放大电路有了更深入的了解,也提高了我们的动手能力和实验操作技能。

在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。

以上就是本次共射放大电路实验的报告内容,希望对大家有所帮助。

基本共射放大电路 模拟电子技术基础,三极管,实验报告,课程设计

基本共射放大电路 模拟电子技术基础,三极管,实验报告,课程设计
创新实验项目报告书
实验名称 三极管单管放大
日期
2009.11.23
姓名
专业
通信工程
一、实验目的(详细指明输入输出)
1、深入研究三极管单级放大器的工作原理,相关参数的测量方法。 2、研究三极管输入输出电压的幅值关系和相位关系
3、设计出能够实现不失真稳定的放大,频率范围为几十 Hz 到几千 Hz,放大能力为几 v
共射极放大电路(图一)
VBQ = Rb2/(Rb1+Rb2)*VCC ≈5V VEQ = VBQ-VBE ≈ 4.3V VCQ = VCC-ICQ*Rc = 8.1V IEQ = VE/(Re1+Re2) ≈2.3mA ICQ ≈ IEQ = 2.3mA 由万用表测出三极管β= 285 ∴IBQ = IE/(1+β) ≈8.4uA 由于 IB 非常小,所以在计算时可认为其近似等于 0 故 无旁路电容无负载时 Au = RC/(Re1+Re2) ≈1.5
8 7 6 5 4 3 2 1 0
f(Hz)
Vo(V) 50 100 200 600 1K 10K 15K 18K 20K 50K 100K 450K
五、问题总结(实验中遇到的已解决和未解决的问题)
实验中出现的问题 1、刚开始集电极电阻和发射极电阻没有把握好,导致管压降过低,最大输出电压受到 很大的限制。 2、一开始对基极电流设定过低,导致管子容易出现截止失真。 3、要注意把地线单独引出,以免在测试时发生短路。 4、实验中如果函数信号发生器的电源没有和示波器的电源接在同一个接线板上就很容 易出现自己震荡
80 70 60 50 40 30 20 10
0
2 10 20 28 1K 10K 30K 100K 400K 600K f(HZ)

共发射极放大电路实验报告

共发射极放大电路实验报告

共发射极放大电路实验报告共发射极放大电路实验报告一、引言共发射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。

本实验旨在通过搭建共发射极放大电路并进行测试,探究其工作原理和性能。

二、实验器材1. 信号发生器2. 电阻、电容、二极管等元件3. 示波器4. 直流电源5. 万用表三、实验步骤1. 按照电路图搭建共发射极放大电路。

2. 将信号发生器的输出接入电路的输入端,调节信号发生器的频率和幅度。

3. 使用示波器测量电路的输入和输出信号波形,并记录数据。

4. 测量电路的电压增益、频率响应等性能指标。

5. 对比分析实验结果,总结共发射极放大电路的特点和应用。

四、实验结果与分析1. 输入输出波形图通过示波器测量,我们得到了共发射极放大电路的输入和输出波形图。

从波形图中可以看出,输入信号经过放大后,输出信号的幅度明显增大,符合共发射极放大电路的工作原理。

2. 电压增益通过测量输入和输出的电压值,我们计算出了共发射极放大电路的电压增益。

电压增益是衡量放大电路放大能力的重要指标,它表示输出信号的幅度与输入信号的幅度之比。

在本实验中,我们得到了电压增益为10。

3. 频率响应为了研究共发射极放大电路在不同频率下的放大性能,我们调节了信号发生器的频率,并测量了输出信号的幅度。

通过绘制频率-幅度曲线,我们可以得到共发射极放大电路的频率响应。

实验结果显示,该电路在低频段具有较好的放大效果,但在高频段会出现衰减。

五、实验总结通过本次实验,我们深入了解了共发射极放大电路的工作原理和性能。

共发射极放大电路具有电压增益高、输入输出阻抗匹配、频率响应宽等优点,因此在音频放大、通信等领域有着广泛的应用。

然而,该电路也存在一些问题,如高频衰减、温度漂移等。

因此,在实际应用中需要根据具体情况进行优化设计。

六、实验心得通过亲自搭建共发射极放大电路并进行实验测试,我对电子电路的工作原理和性能有了更深入的了解。

实验过程中,我学会了使用示波器、信号发生器等仪器,并掌握了测量电压、频率等参数的方法。

三极管共射极放大电路-实验报告

三极管共射极放大电路-实验报告

精品文档实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。

二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻专业: 姓名: 学号: 日期: 地点:学生序号66.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。

(2)开启直流稳压电源,用万用表检测15V工作电压,确认后,关闭电源。

(3)将放大器电路板的工作电源端与15V直流稳压电源接通。

然后,开启电源。

此时,放大器处于工作状态。

(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ=6mA。

为方便起见,测量I CQ时,一般采用测量电阻R C两端的压降V Rc,然后根据I CQ=V Rc/Rc计算出I CQ。

(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。

2.测量电压放大倍数(R L=∞、R L=1kΩ)实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。

(完整版)三极管共射放大电路(模电实验)

(完整版)三极管共射放大电路(模电实验)

(完整版)三极管共射放⼤电路(模电实验)实验报告课程名称:模拟电⼦技术基础实验指导⽼师:张伟成绩:__________________ 实验名称:三极管共射极放⼤电路实验类型:直接测量型同组学⽣姓名:__________ ⼀、实验⽬的和要求(必填)⼆、实验内容和原理(必填)三、主要仪器设备(必填)四、操作⽅法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、⼼得⼀.实验⽬的和要求1、学习基本放⼤器的参数选取⽅法、安装与调试技术;2、掌握放⼤器静态⼯作点的测量与调整⽅法,了解在不同偏置条件下静态⼯作点对放⼤器性能的影响;3、学习放⼤器的电压放⼤倍数、输⼊电阻、输出电阻及频率特性等指标的测试⽅法;4、了解静态⼯作点与输出波形失真的关系,掌握最⼤不失真输出电压的测量⽅法;5、进⼀步熟悉⽰波器、函数信号发⽣器、交流毫伏表的使⽤。

⼆.实验内容和原理1、静态⼯作点的调整和测量2、电压放⼤倍数的测量3、输⼊电阻和输出电阻的测量4、观察静态⼯作点对输出波形的影响5、放⼤电路上限频率fH 、下限频率fL 的测量三极管共射极放⼤电路原理图:三、主要仪器设备1、稳压电源2、信号发⽣器3、晶体管毫伏表4、⽰波器5、放⼤电路板专业:电⽓⾃动化姓名:郑志豪学号:3110101577 ⽇期:2012/12/12 地点:东3-211 B5四、操作⽅法和实验步骤1. 静态⼯作点的调整和测量1)按所设计的放⼤器的元件参数焊接电路,根据电路原理图仔细检查电路的完整性和焊接质量。

2)开启直流稳压电源,将直流稳压电源的输出调整到12V,并⽤万⽤表检测输出电压,确认后,关闭直流稳压电源。

3)将放⼤器电路板的⼯作电源端与12V直流稳压电源接通。

然后,开启直流稳压电源。

此时,放⼤器处于⼯作状态。

4)调节电位器RP,使电路满⾜设计要求(ICQ=1.5mA)。

为⽅便起见,测量ICQ时,⼀般采⽤测量电阻Rc两端的压降URc,然后根据ICQ =URc/Rc计算出ICQ 。

三极管共射放大电路实验报告

三极管共射放大电路实验报告

实验报告一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。

2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。

3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。

二、实验内容和原理仿真电路图专业:姓名:学号:日期:地点:实验名称:_______________________________姓名:________________学号:__________________静态工作点变化而引起的饱和失真与截止失真1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。

测量个点的静态电压值2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。

3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压V omax 。

4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。

5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707倍。

6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。

三、主要仪器设备示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤准备工作:a) 修改实验电路◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路;◆ 在V 1处插入NPN 型三极管(9013);◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。

华中科技大学电子线路实验报告三极管的单级共射放大电路

华中科技大学电子线路实验报告三极管的单级共射放大电路

二、实验元器件
三极管 电阻 电容 电位器 3DG6 51Ω、1kΩ、11kΩ、100kΩ 10μF 100kΩ 1只 各一只; 5.1kΩ 2 只; 47μF 1只 2只 1只
三、实验前预习要求
1、阅读教材: 82~86 页(实验五。注意:文中描述用万用表测量动态电压的方法有误,必 须用示波器测量) 2、根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放 大倍数。 3、估算电路的最大不失真输出电压幅值 4、根据实验内容设计实验数据记录表格。
424 632 860 860 860 860 820 740 584
13.95 21.64 30.71 31.16 32.09 32.09 30.60 27.61 22.81
22.89 26.71 29.75 29.87 30.13 30.13 29.71 28.82 27.16
总结上表数据, 放大倍数为 17.35; 输入电阻为 0.54 kΩ; 输出电阻为 1.93 kΩ; 有反馈时通频带为BW=fH-fL=700kHz-56Hz≈700kHz; 无反馈时通频带为BW=fH-fL=940kHz-110Hz≈940kHz;
4.测量 BJL 单级共射放大电路的通频带。 ①当输入信号 f = 1kHz,输入电压峰-峰值为 100mV,RL = 5.1KΩ时, 在示波器上测 出放大器中频区的输出电压峰-峰值(或计算出电压增益) 。 ②增加输入信号的频率(保持输入电压峰-峰值在 100mV 不变) ,在一定的频率 范围内,输出电压不变;继续增加输入信号的频率,增加到一定频率时,输出电 压开始下降,当其下降到中频区输出电压的 0.707 时,信号发生器所示的频率即 为放大电路的上限截止频率 fH。 ③同理, 减小输入信号的频率 (保持 Vip-p = 100mV 不变) , 在一定的频率方位内, 输出电压不变;继续减小输入信号的频率,减小到一定频率时,输出电压开始下 降,当其下降到中频区输出电压的 0.707 时,信号发生器所指示的频率即为放大 电路的下限截止频率 fL。 ④通频带BW=fH-fL。 5.输入电阻 Ri 的测量 ' 按图连接电路,取R=1kΩ,用示波器读出VS 和Vi,则 ' Ri= ViR/VS -Vi 6.输出电阻 RO 的测量 按图连接电路,取RL=5.1kΩ,用示波器读出RL=∞时的开路电压VO及 RL=5.1kΩ时的输出电压VOL,则 RO=(VO-VOL)RL/VOL

共射共集放大电路实验报告(共5篇)

共射共集放大电路实验报告(共5篇)

共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。

二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。

它的信号输入在集-发极之间,输出在集-基极之间。

共射电路的输入电阻较低,输出电阻较高,放大系数较大。

但它的频率特性差,相位反向和输出幅度变化比较大。

共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。

在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。

共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。

三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。

2.接通电源,调节稳压电源直至设定值。

3.打开测量仪器,调整电位器,使输入端电压到达工作点。

4.调整电位器,使输出端交流信号最大。

5.更改输入信号,测量输出信号幅度的变化,记录测量结果。

6.重复操作5,并更改电源电压和电阻值,记录实验结果。

7.实验结束后,关闭电源,拆除实验装置,清理现场。

四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。

2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。

同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。

3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。

对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。

4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。

输出波形为正弦波。

5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。

同时,要注意接线正确,切勿操作不当以免损坏实验装置。

五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。

模电实验报告1 三极管共射放大电路

模电实验报告1 三极管共射放大电路
通过这个三极管共射放大电路的调试和参数测量实验我对三极管的共射放大电路的原理有了更深刻的认识对三极管共射放大电路的输入输出信号的波形不同负载下的信号放大倍数信号的失真情况放大电路的通频带宽度有了更深入直观的了解对示波器的使用和调试有了更好的掌握对实验过程中容易出现的问题有了更好的解决耐心和自己解决问题的能力
P.9
实验名称:三极管共射放大器的电路调试和参数测量 姓名: 何迪 学号: 3100103195
3 测量 RL=∞时的最大不失真输出电压 Vomax 实测值 RL=∞ ICQ(max) 1.24mA Vimax 20.87mV Vomax(V) 3.264V Av 156.4
误差原因 1 实验仪器本身的系统误差 2 示波器波形不稳产生的误差 3 判断波形失真时由于人的主观判断造成的误差 4 示波器显示的伏值是跳跃的,很难读出准确值从而产生的误差 5 计算时取精度的不同产生的误差 6 稳压源输出电压不是恒定而引起的误差 7 导线电阻的影响 8 电路板上的电阻及其它器件的标称值与实际值有差异引起的误差 9 示波器受到外界的干扰引起的误差 10 电流通过电阻时电阻发热引起的误差
实验调试过程 静态工作点的调试: 根据实验电路计算集电极对地电位,连接好电路,做好实验的准备后,调节电位器,同时用万用表 测量集电极的对地电位,使其达到理论值,此时静态工作点调试完毕。 测量输入输出信号的调试: 保持静态工作点不变,输入中频信号(正弦波) ,首先将输入信号 Vs 与示波器直接相连,用示波器 监视波形,如果输入波形不稳定时,需要检查导线接触情况、线路有无短路、周围有没有烦扰信号, 同时调节示波器使其尽量稳定,可以使用 single\averaging 等功能键,测量并记录 Vs 然后将输入信 号 Vi 和输出信号(RL=∞/RL=2K)连接至示波器,用示波器监视输入,输出波形,相同的方法调试, 测量并记录 Vi,Vo 两个量。

模电实验2三极管共射极放大电路

模电实验2三极管共射极放大电路
模电实验2三极管共射极 放大电路
• 实验目的 • 三极管共射极放大电路的原理 • 实验设备和材料 • 实验步骤和操作 • 实验结果与分析 • 实验总结与思考
01
实验目的
掌握三极管共射极放大电路的工作原理
了解三极管的结构和特性,包括 电流放大作用、输入输出特性等。
理解共射极放大电路的基本工作 原理,包括信号的输入、放大和
通过实验,我更加深入地理解了三极管共射极放大电路的工作原理,包括输入信号的放大 和输出信号的反馈等。
掌握了电路的搭建和调试技巧
在实验过程中,我学会了如何搭建和调试三极管共射极放大电路,了解了电路中各个元件 的作用和相互关系。
提高了实践操作能力
通过实际操作,我提高了对电子电路实验的操作能力,包括仪器的使用、数据的测量和处 理等。
THANKS
感谢观看
对实验中遇到的问题和解决方案的思考
问题1
输入信号过大导致三极管工作点 饱和。
解决方案
调整输入信号的大小,选择合适 的工作点。
问题2
输出信号失真。
解决方案
采用多次测量求平均值的方法, 提高测量精度。
问题3
测量数据误差较大。
解决方案
调整反馈电阻和偏置电阻,改善 电路的线性度和稳定性。
对未来学习和实践的建议和展望
输出信号电压:100mV 放大倍数:100倍
数据分析与解释
放大倍数
实验得到的放大倍数为100倍,与理论值相符,说明三极管共射 极放大电路的放大能力正常。
输入阻抗和输出阻抗
实验测得的输入阻抗和输出阻抗均为1kΩ,表明电路的输入输出 匹配良好。
信号失真
实验中观察到的输出信号未出现明显失真,表明电路的性能稳定。

三极管放大电路实验报告

三极管放大电路实验报告

三极管放大电路实验报告三极管放大电路实验报告引言在现代电子技术中,三极管放大电路是最常见的一种放大电路。

它具有放大信号、增加电流和功率的功能,广泛应用于收音机、电视、音响等电子设备中。

本实验旨在通过搭建三极管放大电路并进行实际测量,探究三极管的工作原理和放大特性。

实验材料与方法本实验所用材料包括:三极管、电阻、电容、信号发生器、示波器等。

首先,按照电路图搭建三极管放大电路,其中包括三极管的基极、发射极和集电极,以及相应的电阻和电容。

接下来,将信号发生器的输出端与放大电路的输入端相连,将示波器的输入端与放大电路的输出端相连。

最后,调节信号发生器的频率和幅度,通过示波器观察和测量输出信号的变化。

实验结果与分析在实验过程中,我们首先调节信号发生器的频率和幅度,使其输出一个稳定的正弦波信号。

然后,通过示波器观察到放大电路输出信号的波形。

实验中,我们分别改变三极管的工作状态,即改变基极电流和集电极电流,观察输出信号的变化。

当三极管处于截止状态时,即基极电流为零时,输出信号几乎为零。

这是因为在截止状态下,三极管无法放大输入信号,输出电流几乎为零。

当三极管处于饱和状态时,即基极电流较大时,输出信号会有明显的放大。

这是因为在饱和状态下,三极管可以将输入信号放大到较大的幅度,输出电流也相应增加。

通过调节三极管的工作状态,我们可以得到不同的放大倍数。

实验中,我们发现当基极电流较小时,输出信号的幅度较小,放大倍数较低;而当基极电流较大时,输出信号的幅度较大,放大倍数较高。

这说明三极管的放大特性与工作状态密切相关。

此外,我们还观察到三极管放大电路的频率响应特性。

当信号发生器输出的频率较低时,输出信号的波形较为完整;而当频率较高时,输出信号的波形变得扭曲。

这是因为三极管放大电路在高频时会出现截止现象,无法正常放大信号。

实验总结通过本次实验,我们深入了解了三极管放大电路的工作原理和特性。

三极管作为一种重要的电子元件,在现代电子技术中发挥着重要作用。

含三极管的放大电路实验报告

含三极管的放大电路实验报告

竭诚为您提供优质文档/双击可除含三极管的放大电路实验报告篇一:三极管放大电路实验报告三极管放大电路1、问题简述:要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mw;(5)增益不平坦度:20~200khz范围内小于0.1db。

2、问题分析:通过分析得出放大电路可以采用三极管放大电路。

2.1对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。

综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。

2.2放大电路的设计思路在此放大电路中采用两级放大的思路。

先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。

3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。

4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。

调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。

VA=R2//R3//(1+β)R5/[R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。

第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。

则需要适当增大R2,减小R3的阻值。

总输出的调试:如果放大倍数不合适,则调节R4与R5的阻值。

即当放大倍数不足时,应增大R4,减小R5。

如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回c极,调节c极的输出。

三极管共射放大电路实验[文摘]

三极管共射放大电路实验[文摘]

三极管共射放大电路实验[文摘]三极管是现代电力电子技术和电器技术中应用广泛的一种电子元件。

其中一种常见的三极管放大电路为共射放大电路,具有输入电阻小、输出电阻大、电压放大倍数大的特点,常用于电子放大器。

本实验采用BC547 NPN型晶体管,组成单段共射放大电路,通过实验测量分析来掌握共射放大电路的基本性能。

实验步骤:1. 利用万用表检查晶体管管脚类型,标出其发射极、晶体管基极和集电极,同时注意焊接正确。

2. 将电路连接如图所示,其中电压源UCC为6V,电阻值RC、RB、RE分别为1KΩ、22KΩ、470Ω。

接上耳机,即可开始实验。

3. 分别测量输入电压Vin和输出电压Vout,在输入电压从0到0.5V上升的过程中,记录下对应的Vout值,并在示波器上绘制Vin-Vout关系曲线。

4. 测量晶体管的直流电流,包括IE、IC、IB。

5. 确定晶体管放大倍数,即Vout/Vin。

6. 测量输出电阻值。

7. 通过理论计算和实验结果比较,分析晶体管放大电路的性能特点。

实验结果分析:根据实验结果,我们可以得出以下结论:1. Vin-Vout关系曲线的斜率为放大倍数,该电路放大倍数约为100倍。

2. 电路输出电阻值为102.5Ω,符合共射放大电路的特点。

3. 通过测量晶体管的直流电流,可以发现IE=IC+IB,符合晶体管放大电路的基本原理。

4. 通过计算和比较实验结果,我们可以发现,晶体管放大电路具有输入电阻小、输出电阻大、电压放大倍数大的优点,可以满足电路放大的需求。

总之,本实验通过实际操作和测量,成功地展示了共射放大电路的基本特点和性能,为学习和应用三极管放大电路提供了实用经验和基础。

三极管放大倍实训分析报告

三极管放大倍实训分析报告

三极管放大倍实训分析报告实训内容:本次实训的主要内容是关于三极管放大倍实验的分析报告。

通过实际操作和实验分析,我们了解了三极管放大器的基本原理和性能参数。

该实训主要包括分析三极管放大器的工作原理、测量三极管的静态工作点、测量放大倍数和频率响应等。

一、实验原理三极管放大器是一种常见的电子放大器装置,可以将小信号放大为大信号。

其基本结构由三个电极构成,即发射极、基极和集电极。

发射极和基极之间是一个电流放大器,集电极和基极之间是一个电压放大器。

当输入的小信号通过电容耦合的方式加在基极上时,三极管工作在放大区,可以将小信号放大一定倍数。

二、实验过程1.静态工作点测量:首先将三极管和电源接入电路,并进行静态工作点测量。

通过调节电位器,使得基极电压和集电极电压都处于合适的工作范围,使得三极管处于放大区,此时的工作状态就是静态工作点。

2.放大倍数测量:选取合适的输入信号,通过信号源输入到三极管的基极处,通过示波器测量集电极和基极处的输出信号,计算出放大倍数。

3.频率响应测量:改变输入信号的频率,测量在不同频率下的输出信号幅度。

通过连接示波器,可以得到频率响应的曲线。

三、实验结果分析1.静态工作点测量:通过实际测量,可以得到三极管的静态工作电压和电流,这些参数将用于后续的分析和计算。

2.放大倍数测量:根据收集到的数据,在不同输入信号下计算出放大倍数。

我们可以发现,在合适的工作区域,三极管的放大倍数在几十到上百倍之间,这说明了三极管的放大性能比较好。

3.频率响应测量:通过连接示波器,观察到输出信号的波形和频率响应曲线。

我们发现,在低频率下,输出信号的幅度较大,而随着频率的增加,输出信号的幅度逐渐减小。

这是由于三极管本身的结构和特性导致的,这也说明了三极管放大器的频率响应是有限的。

四、实验总结通过本次实验,我们对于三极管放大倍实验有了更深入的了解。

我们不仅掌握了三极管放大器的基本原理、参数测量的方法,还了解了三极管放大器的一些特性,如静态工作点、放大倍数和频率响应等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。

2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。

3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。

二、实验内容和原理
仿真电路图
专业:姓名:学号:日期:地点:
实验名称:_______________________________姓名:________________学号:__________________
静态工作点变化而引起的饱和失真与截止失真
1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。

测量个点的静态电压值
2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器
监视输出波形,交流毫伏表测出有效值。

3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输
出波形、交流毫伏表测出最大不失真输出电压V omax 。

4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。

5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707
倍。

6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。

三、主要仪器设备
示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等
四、操作方法和实验步骤准备工作:
a) 修改实验电路
◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路;
◆ 在V 1处插入NPN 型三极管(9013);
◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。

b) 开启直流稳压电源,将直流稳压电源的输出调整到12V ,并用万用表检测输出电压。

c) 确认输出电压为12V 后,关闭直流稳压电源。

d) 用导线将电路板的工作电源与12V 直流稳压电源连接。

e) 开启直流稳压电源。

此时,放大电路已处于工作状态。

实验步骤
1.测量并调整放大电路的静态工作点
a) 调节电位器R W1,使电路满足I CQ =1.5mA 。

为方便起见,测量I CQ 时,一般采用测量电阻Rc
两端的压
P.
降V Rc,然后根据I CQ=V Rc/Rc计算出I CQ。

b)测量晶体管共射极放大电路的静态工作点,用表格记录测量值与理论估算值。

2.测量放大电路的电压放大倍数Av
保持静态工作点不变,放大电路S端输入频率约为1kHz、幅度约为30mV的正弦波信号V s。

接信号后测量
a)R L开路,输出端接示波器,监视Vo波形,当波形无失真现象时,用交流毫伏表分别测量V s、V i、V ’o
电压值,将其值记录在下表中,并计算电压放大倍数Av。

b)接入R L=2k,采用上述方法分别测量Vs、Vi、Vo电压值,将其值记录在下表中,并计算R L=2k时的
电压放大倍数Av。

c)用示波器双踪观察Vo和Vi的波形,测出它们的大小和相位。

并将波形画在同一坐标纸上。

3.测量R L=∞时的最大不失真输出电压Vomax
测量方法:使R L=∞,增大输入信号,同时调节R W1,改变静态工作点,使波形Vo同时出现饱和与截止失真。

然后,逐步减小输入信号Vi,当无明显失真时,测得最大不失真输出电压Vomax、输入电压Vimax、计算放大倍数Av并与前项所测得的结果进行比较,两者数值应一致;断开输入信号Vi,依据静态工作点的测量方法,测得I CQmax值。

4.输入电阻和输出电阻的测量
(1) 放大电路的输入电阻Ri的测量
放大电路的输入电阻Ri可用电阻分压法来测量,图中R为已知阻值的外接电阻,用交流毫伏表分别测出Vs和Vi,则可计算出输入内阻
若R为可变电阻,调节R的阻值,使Vi=1/2Vs,则Ri=R。

这种方法称为半压法
测输入电阻。

(2) 放大电路的输出电阻Ro 的测量
放大电路的输出电阻可用增益改变法来测量,分别测出负载开路时的输出电压V‘o和接入负载R L后的输出电压Vo
5.放大电路上限频率f H、下限频率f L的测量
通常当电压增益下降到中频增益0.707倍时(即下降3dB)所对应的上下限频率用 f H和 f L表示。

则f H
与f L之间的范围就称为放大电路的通频带宽度BW。

(1) 在R L=∞条件下,放大器输入端接入中频段正弦波,增大输入信号幅度,监视输出电压Vo保持不失真。

用交流毫伏表测出此时输出电压值Vo;
(2) 保持信号源输出信号幅度不变,改变信号源输出频率(增加或减小),当交流毫伏表测数的输出电压值达到V o×0.707值时,停止信号源频率的改变,此时信号源所对应的输出频率即为上限频率f H或下限频率f L。

6.观察静态工作点对输出波形的影响
在R L=∞情况下,将频率为中频段的正弦信号加在放大器的输入端,增大输入信号幅度,监视输出电压V o 保持最大不失真的正弦波(输出正弦波幅度尽量大)。

(1) 将电位器R W1的滑动端向下端调,可使静态电流I CQ下降,用示波器观察输出波形是否出现失真、记录此时的波形,并测出相应的集电极静态电流 (测量集电极静态电流时,需要断开放大器的输入正弦信号)。

若失真不够明显,可适当增大输入信号。

(2) 将电位器R W1的滑动端向上端调,可使静态电流I CQ增大,观察输出波形失真的变化,记录此时的波形,并测出相应的集电极静态电流。

记录两种情况下的输出波形和相对应的集电极静态电流。

说明截止失真与饱和失真的形状有何区别和集电极偏置电流的大小对放大电路输出动态范围的影响。

五、实验数据记录和处理
1.静态工作点的测量及理论估算值。

相关文档
最新文档