初三数学上期末总复习(人教版-各章节重点题型)

合集下载

人教版九年级数学上册期末专题复习试题全套

人教版九年级数学上册期末专题复习试题全套
10.阅读材料:把形如ax2+bx+c(a,b,c为常数)的二次三 项式(或其一部分)配成完全平方式的方法叫做配方法 .
配方法的基本形式是完全平方公式的逆写,即a2±2ab
骣 1 3 2 ÷ ç 2 2 2 x 2 ÷ 例如:(x-1) +3,(x-2) +2x, ç + x 是 x ÷ ç 桫 2 4 -2x+4的三种不同形式的配方,即“余项”分别是常数
解: ∵关于x的方程x2+(b+2)x+(6-b)=0有两个
相等的实数根,
∴Δ=(b+2)2-4(6-b)=0, ∴b1=2,b2=-10(舍去). 当a为腰长时,△ABC的周长为5+5+2=12. 当b为腰长时,2+2<5,不能构成三角形.
∴△ABC的周长为12.
关系2
一元二次方程根与系数的关系
a+b =2 017.
同类变式
3.若关于x的一元二次方程ax2+bx+c=0有一 根为-1,且 a = 4 - c + c - 4 - 2, 求 (a+b )2018 的值. 2 017c
考点
2
一个解法—— 一元二次方程的解法
4.选择适当的方法解下列方程: (1) (x-1)2+2x(x-1)=0;
同类变式
选择适当的方法解下列方程: (1) 6 000(1-x)2=4 860;
(2) (10+x)(50-x)=800;
(3) (2x-1)2=x(3x+2)-7.
考点
关系1
3
两个关系
一元二次方程的根的判别与系数的关系
5.在等腰三角形ABC中,三边长分别为a,b,c. 其中a=5,若关于x的方程x2+(b+2)x+(6- b)=0有两个相等的实数根,求△ABC的周长.
(2) x2-6x-6=0;

人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)

 人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)

人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)考点1:二次函数的图象与系数的关系考点分析:二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象有着密切的关系:a的取值决定了开口方向和开口大小,a,b的取值影响对称轴的位置,c的取值决定了抛物线与y轴的交点位置,所以a,b,c这三个系数共同决定着抛物线的位置和大小,反之也可以根据二次函数图象情况确定a,b,c的系数符号或大小.题型1 a与图象的关系 1.如图所示,四个函数的图象,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a,b,c,d的大小关系为( )A.a>b>c>d B.a>b>d>cC.b>a>c>d D.b>a>d>c2.在抛物线y=mx2与抛物线y=nx2中,若-m>n>0,则开口向上的抛物线是____,开口较大的抛物线是_____.3.抛物线y=ax2+c与抛物线y=bx2如图所示,则不等式-ax+b>0的解集是_______.题型2 b与图象的关系1.若二次函数y=3x2+(b-3)x-4的图象如图所示,则b的值是( )A.-5 B.0 C.3 D.42.当抛物线y =x 2-nx +2的对称轴是y 轴时,n ______0;当对称轴在y 轴左侧时,n ______0;当对称轴在y 轴右侧时,n ______0.(填“>”“<”或“=”)题型3 c 与图象的关系1.下列抛物线可能是y =ax 2+bx 的图象的是( )点拨:抛物线y =ax 2+bx 的图象一定经过原点2.若将抛物线y =ax 2+bx +c -3向上平移4个单位长度后得到的图象如图所示,则c =________.题型4 a ,b 与图象的关系1.二次函数y =ax 2+bx +c 的图象如图所示,则下列说法中不正确的是( )A .a >0B .b <0C .3a +b >0D .b >-2a2.如果抛物线y =x 2+(n +2)x -5的对称轴是x =-,则(3m -2n )2-的值为m2322n +43m ________.题型5 a ,c 与图象的关系1.二次函数y =(3-m )x 2-x +n +5的图象如图所示,试求+-|m +n |的(m -3)2n2值.题型6 a ,b ,c 与图象的关系1.在二次函数y =ax 2+bx +c 中,a <0,b >0,c <0,则符合条件的图象是( )2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =-,下列结12论中正确的是( )A .abc >0B .a +c =0C .b =2aD .4a +c =2b考点2:求二次函数解析式的常见类型考点分析:求二次函数的解析式是解决二次函数问题的重要保证,在求解二次函数的解析式时一般选用待定系数法,但在具体题目中要根据不同条件,设出恰当的解析式,往往可以给解题过程带来简便.题型1 由函数的基本形式求解析式方法1 利用一般式求二次函数解析式1.已知一个二次函数的图象经过点A (1,0),点B (0,6)和点C (4,6),则这个抛物线的解析式为________.2.一个二次函数,当自变量x =-1时,函数值y =2;当x =0时,y =-1;当x =1时,y =-2.那么这个二次函数的解析式为_____.3.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2,-4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.方法2 利用顶点式求二次函数解析式1.已知二次函数y=ax2+bx+c,当x=1时,有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的解析式是( )A.y=-2x2-x+3 B.y=-2x2+4C.y=-2x2+4x+8 D.y=-2x2+4x+62.已知某个二次函数的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6).求二次函数解析式.方法3 利用交点式求二次函数解析式1.已知抛物线与x轴交于A(1,0),B(-4,0)两点,与y轴交于点C,且AB=BC,求此抛物线对应的函数解析式.方法4 利用平移式求二次函数解析式1.把二次函数y=2x2的图象向左平移1个单位,再向下平移2个单位长度,平移后抛物线的解析式是_______.2.已知y=x2+bx+c图象向右平移2个单位,再向下平移3个单位,得到图象的解析式为y=x2-2x-3.(1)b=________,c=________;(2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.方法5 利用对称轴法求二次函数解析式1.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是_______.2.如图所示,抛物线与x 轴交于A ,B 两点,与y 轴交于C 点,点A 的坐标为(2,0),点C 的坐标为(0,3),抛物线的对称轴是直线x =-.12(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求点M 的坐标.方法6 灵活运用方法求二次函数的解析式1.已知抛物线的顶点坐标为(-2,4),且与x 轴的一个交点坐标为(1,0),求抛物线对应的函数解析式.题型2 由函数图象中的信息求解析式1.如图,是某个二次函数的图象,根据图象可知,该二次函数的解析式是( )A .y =x 2-x -2B .y =-x 2-x +21212C .y =-x 2-x +11212D .y =-x 2+x +22.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD ,线段CD 分别表示该产品每千克生产成本y 1(单位:元),销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义;(2)求线段AB 所表示的y 1与x 之间的函数解析式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?题型3 由表格信息求解析式1.若y=ax2+bx+c,则由表格中信息可知y与x之间的函数关系式是( )x-101ax21ax2+bx+c83A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+82.已知二次函数y=ax2+bx+c(a≠0)自变量x和函数值y的部分对应值如下表:x…-32-1-1212132…y…-54-2-94-2-5474…则该二次函数的解析式为______________.题型4 几何应用中求二次函数的解析式1.如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,求这条抛物线的解析式.题型5 实际问题中求二次函数解析式1.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S .(1)求S 与x 之间的函数解析式;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.考点3: 二次函数图象信息题的四种常见类型方法指导:利用图象信息解决二次函数的问题主要是运用数形结合思想将图象信息转换为数学语言,掌握二次函数的图象和性质,把握二次函数的特点是解决此类问题的关键.题型1 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②>0;③ac -b +1=0;④OA ·OB =-.其中正确结论的个数是( )b2-4ac4aca A .4B .3C .2D .1题型2 利用二次函数的图象比较大小2.二次函数y =-x 2+bx +c 的图象如图,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2题型3 利用二次函数的图象求方程或不等式的解3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C.-1<x<3 D.x<-1或x>34.如图所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( ) A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.如图,二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是____.题型4 根据抛物线的特征确定其他函数的图象1.二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是( )7.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的解析式.(2)设二次函数的图象交y轴于点C,求△ABC的面积.考点4:用二次函数解决问题的三种类型方法指导:利用二次函数解决实际问题时,要注意数形结合,巧妙地运用二次函数解析式实行建模,从而达到应用二次函数的某些性质来解决问题的目的.类型1 建立平面直角坐标系解决实际问题题型1 拱桥(隧道)问题1.有一拱桥呈抛物线形状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图所示)放在坐标系中,则抛物线的解析式为( )A .y =x 2+xB .y =-x 2-x1255858125C .y =-x 2+x D .y =-x 2+x +161258512585 2.如图,拱桥呈抛物线形,其函数的解析式为y =-x 2,当水位线在AB 位置时,水14面的宽度为12米,这时拱顶距水面的高度h 是________米.3.如图是某地区一条公路上隧道入口在平面直角坐标系中的示意图,点A 和A 1、点B 和B 1分别关于y 轴对称.隧道拱部分BCB 1为一段抛物线,最高点C 离路面AA 1的距离为8 m ,点B 离路面AA 1的距离为6 m ,隧道宽AA 1为16 m .(1)求隧道拱部分BCB 1对应的函数解析式.(2)现有一大型货车,装载某大型设备后,宽为4m ,装载设备的顶部离路面均为7m ,问:它能否安全通过这个隧道?并说明理由.题型2 建筑物问题1.如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面4 m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高约为(精确到0.1 m ,水泥建筑物的厚度忽略不计)( )A .9.2 mB .9.1 mC .9.0 mD .8.9 m2.某公园草坪的防护栏由100段形状相同的抛物线组成,为了牢固,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点到底部距离为0.5 m (如图),则这条防护栏需要不锈钢支柱的总长度为( )A .50 mB .100 mC .160 mD .200 m题型3 物体运动类问题1.如图,小李推铅球,如果铅球运行时离地面的高度y (米)关于水平距离x (米)的函数解析式为y =-x 2+x +,那么铅球运动过程中最高点离地面的距离为________米.1812322.如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)处竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶,网球能不能落入桶内?(2)当竖直摆放多少个圆柱形桶时,网球可以落入桶内?类型2 建立二次函数模型解决几何最值问题题型1 利用二次函数解决图形高度的最值问题1. 某人从地面竖直向上抛出一小球,小球的高度h (单位:米)与小球的运动时间t (单位:秒)之间的关系式是h =9.8t -4.9t 2,那么小球运动中的最大高度为________.2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的高度为________米.题型2 利用二次函数解决图形面积的最值问题1.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A . m 2B .m 2642543C . m 2 D .4 m 2832.如图所示,正方形ABCD 的边长为3a ,两动点E ,F 分别从顶点B ,C 同时开始以相同速度沿边BC ,CD 运动,与△BCF 相应的△EGH 在运动过程中始终保持△EGH ≌△BCF ,B ,E ,C ,G 在一条直线上.(1)若BE =a ,求DH 的长.(2)当E 点在BC 边上的什么位置时,△DHE 的面积取得最小值?并求该三角形面积的最小值.类型3 建立二次函数模型解决动点探究问题1.如图所示,直线y =x -2与x 轴、y 轴分别交于点A ,C ,抛物线过点A ,C 和点12B (1,0).(1)求抛物线的解析式;(2)在x 轴上方的抛物线上有一动点D ,当D 与直线AC 的距离DE 最大时,求出点D 的坐标,并求出最大距离.考点5: 函数中的决策问题方法指导:函数中的决策问题通常包括两类:一是利用一次函数进行决策,二是利用二次函数进行决策.其解题思路一般是先建立一次函数(二次函数)模型,将实际问题转化为函数问题,然后利用一次函数(二次函数)的图象和性质去分析、解决问题.类型1 利用一次函数作决策题型1 购买方案1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更合算.题型2 生产方案2.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品,甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)题型3 运输方案3.荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满.根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车装鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式.(2)如果装运每种鱼的车辆不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.类型2 利用二次函数作决策题型1 几何问题中的决策1.如图,有长为24 m的围栏,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道栅栏的长方形鸡舍.设鸡舍的一边AB为x m,面积为S m2.(1)求S与x的函数关系式(不必写出x的取值范围).(2)如果围成面积为45 m2的鸡舍,AB的长是多少米?(3)能围成面积比45 m2更大的鸡舍吗?如果能,请求出最大面积;如果不能,请说明理由.2.如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P运动到B时,P,Q两点停止运动,设P点运动时间为t(s).(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm)2,求y关于t的函数解析式,当t取何值时,四边形APQC的面积最小?并求出最小值.题型2 实际问题中的决策1.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y 1(元/台)与采购数量x 1(台)满足y 1=-20x 1+1 500(0<x 1≤20,x 1为整数);冰箱的采购单价y 2(元/台)与采购数量x 2(台)满足y 2=-10x 2+1 300(0<x 2≤20,x 2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的倍,且空调采购单价不低119于1 200元,问该商家共有几种进货方案?(2)该商家分别以1 760元/台和1 700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.7.某宾馆有50个房间供游客住宿.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的定价不得高于340元.设每个房间每天的定价增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 之间的函数解析式及自变量x 的取值范围;(2)设宾馆一天获得的利润为W 元,求W 与x 之间的函数解析式;(3)一天订住多少个房间时,宾馆获得的利润最大?最大利润是多少元?考点6:二次函数与几何的应用考点分析:二次函数与几何的应用非常广泛,解决这类问题的关键是要学会数形结合,一方面,抓住几何图形的特征,灵活运用点的坐标与线段长度之间的相互转化,从而解决与二次函数有关的问题;另一方面,已知二次函数解析式可求出特殊点的坐标,进而求出线段长度,从而解决有关几何问题.题型1 二次函数与三角形的综合1.如图,在直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),抛物线y =x 2+bx -2过点C .求抛物线的解析式.122.在平面直角坐标系中,将一块等腰直角三角板ABC 放在第二象限,一直角边靠在两坐标轴上,且有点A (0,2),点C (-1,0),如图所示,抛物线y =ax 2+ax -2经过点B .(1)求点B 的坐标.(2)求抛物线的表达式.(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.题型2 二次函数与平行四边形的综合1.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2 cm,点A,C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A,B,且12a+5c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以2 cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1 cm/s的速度向点C移动.一点到达终点后另一点停止移动.①移动开始后第t s时,设S=PQ2(cm2),试写出S与t之间的函数解析式,并写出t 的取值范围.②当S取得最小值时,在抛物线上是否存在点R,使得以P,B,Q,R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.题型3 二次函数与矩形、菱形、正方形的综合1.二次函数y =x 2的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A n 在23y 轴的正半轴上,点B 1,B 2,B 3,…,B n ,在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上.四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3=…=∠A n -1B n A n =60°,则菱形A n -1B n A nC n 的周长为__4n___.2.如图所示,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF =90°,且EF 交正方形外角的平分线CF 于点F .(1)图①中,若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE =EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明).(2)如图②,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE =EF 是否总成立?请给出证明.②在如图②所示的平面直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线y =-x 2+x +1上,求此时点F 的坐标.考点7 :探究二次函数中存在性问题方法指导:存在性问题是近年来中考的热点,这类问题的知识覆盖面广,综合性强,题型构思精巧,解题方法灵活,求解时常常要猜想或者假设问题的某种关系或结论存在,再经过分析、归纳、演算、推理找出最后的答案.常见的类型有:探索与特殊几何图形有关的存在性问题,探索与周长有关的存在性问题,探索与面积有关的存在性问题.题型1 探索与特殊几何图形有关的存在性问题1.如图,已知抛物线y =-x 2-2x +a (a ≠0)与y 轴相交于A 点,顶点为M ,直线y =x -a 分别与x 轴、y 轴相交于B ,C 两点,并且与直线MA 相交于N 点.12(1)若直线BC 和抛物线有两个不同交点,求a 的取值范围,并用a 表示点M ,A 的坐标.(2)将△NAC 沿着y 轴翻折,若点N 的对称点P 恰好落在抛物线上,AP 与抛物线的对称轴相交于点D ,连接CD ,求a 的值及△PCD 的面积.(3)在抛物线y =-x 2-2x +a (a >0)上是否存在点Q ,使得以Q ,A ,C ,N 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.题型2 探索与周长有关的存在性问题2.如图,在直角坐标系中,点A 的坐标为(-2,0),OB =OA ,且∠AOB =120°.(1)求点B 的坐标.(2)求经过A ,O ,B 三点的抛物线的解析式.(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.题型3 探索与面积有关的存在性问题1.阅读材料:如图①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S △ABC =ah ,即三角形的面积等于12水平宽与铅垂高乘积的一半.解答下列问题:如图②,抛物线顶点为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 对应的函数表达式.(2)求△CAB 的铅垂高CD 及S △CAB .(3)抛物线上是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,98请说明理由.2.如图,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将抛物线沿y 轴平移后经过点C (3,1),求平移后所得抛物线的解析式.(3)设(2)中平移后的抛物线与y 轴的交点为B 1,顶点为D 1,在此抛物线上是否存在点N ,使△NBB 1的面积是△NDD 1面积的2倍?若存在,求出点N 的坐标;若不存在,请说明理由.题型4 探索与平行四边形有关的存在性问题1.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线对应的函数表达式.(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y 轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.3.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)求抛物线及直线AC对应的函数表达式.(2)设点M(3,m),求使MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.考点7 全章热门考点整合应用方法指导:二次函数是中考的必考内容,难度高,综合性强,既可以与代数知识相结合,也可以与几何知识相结合.有关二次函数的问题,中考一般以三种形式出现:一是以选择题或填空题出现,重在考查二次函数的基本概念和基本性质;二是以实际应用题的形式出现,重在考查函数建模思想;三是以综合题的形式出现,往往是压轴题,考查学生分析问题和解决问题的能力.题型1 一个概念——二次函数的定义21.已知函数y=(m+3)xm+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?题型2 一个性质——二次函数的图象与性质1.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( D )A.函数有最小值B .对称轴是直线x =12C .当x <,y 随x 的增大而减小12D .当-1<x <2时,y >0题型3 两个关系关系1 抛物线的位置与二次函数各项系数的关系1.如图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①a >0;②2a +b =0;③a +b +c >0;④当-1<x <3时,y >0.其中正确的个数为( C )A .1B .2C .3D .4关系2 二次函数与一元二次方程的关系2.已知关于x 的函数y =(a 2+3a +2)x 2+(a +1)x +的图象与x 轴总有交点.14(1)求a 的取值范围;(2)设函数的图象与x 轴有两个不同的交点,分别为A (x 1,0),B (x 2,0),当+=a 2-3时,求a 的值.1x11x2题型4 三个应用应用1 最大面积的应用1.如图,△ABC 为等边三角形,边长为a ,DF ⊥AB 于D ,EF ⊥AC 于E ,(1)求证:△BDF ∽△CEF .(2)若a =4,设BF =m ,四边形ADFE 的面积为S ,求出S 与m 之间的函数关系,并探究当m 为何值时S 取最大值.应用2 “抛物线”型几何应用1.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距(A 与B 间的距离)为6 m ,到地面的距离AO 和BD 均为0.9 m ,身高为1.4 m 的小丽站在距点O 的水平距离为1 m 的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线对应的函数表达式为y =ax 2+bx +0.9.(1)求该抛物线对应的函数表达式;(不考虑自变量的取值范围)(2)如果小华站在O ,D 之间,且离点O 的距离为3 m ,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O ,D 之间,且离点O 的距离为t m ,绳子甩到最高处时超过她的头顶,请结合图象,写出t 的取值范围.2.某跳水运动员进行10 m 高台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10 m ,入水处距池边的距离为4 m ,同时,运动员在距水面高度为5 m 以前,必须完成规23定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线对应的函数表达式.(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3 m ,问此次跳水会不会出现失误?35。

人教版九年级上册数学期末考试总复习提纲

人教版九年级上册数学期末考试总复习提纲

人教版九年级上册数学期末考试总复习提纲有些学生不想做很多数学题。

其实学习不在于做题多少,而在于做题的质量如何。

下面小编给大家分享一些人教版九年级上册数学复习提纲,希望能够帮助大家,欢迎阅读人教版九年级上册数学复习提纲一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四还原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.考点18:正多边形的有关概念和基本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用基本作图工具,正确作出正三、四、六边形.快速提高数学成绩的方法1.掌握正确做题方法数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。

初三上学期期末各章知识汇总暨常见题型与方法

初三上学期期末各章知识汇总暨常见题型与方法

初三上学期期末各章知识汇总暨常见题型与方法▲ 反比例函数 一、知识点(一)定义 形如ky x=的函数叫做反比例函数,或者说y 与x 成反比例。

一般地,反比例函数用式子表示为:ky x=或1y k x -=⋅,其中k 是比例系数,且0k ≠。

(二)待定系数法1、反比例函数的一般形式是:ky x=,其中0k ≠. 2、待定系数法的步骤:第一、假设函数的解析式ky x=; 第二、把图象上的已知点代入解析式; 第三、解关于k 的方程,求出k 的值; 第四、把求出的k 代入ky x=,写出解析式.(三)反比例函数的图象1、图象:反比例函数的图象是双曲线.2、性质:对于反比例函数ky=(0k ≠). (四)比例系数k 的几何意义 在双曲线ky x=(0k ≠)上任取一点P ,过点P 分别作坐标轴的垂线 PA 、PB ,垂足分别是点A 、B ,则四点P 、A 、O 、B 围成的矩形面积等于k .O BAPxy二、常见题型与方法1、求函数解析式(待定系数法或数量关系)【参考汇编4(六)Ex2(1)】;2、比较函数值的大小(看图象、代入计算、图象性质)【参考汇编1(二)Ex7】;3、与函数相结合的面积问题(割补、已知面积求线段或点的坐标); 例如:如图,一次函数4y x =-的图象与反比例函数5y x=的图象相交于点A 、B. (1)求A 、B 点的坐标;(2)根据图象直接写出当x 为何值时,一次函数的函数值大于反比例函数的函数值;(3)连接OA 、OB ,求△AOB 的面积.▲ 一元二次方程 一、知识点(一)一般形式: 20(0)ax bx c a ++= ≠. (二) 一元二次方程的常用解法:(1)直接开平方法; (2)配方法; (3)公式法2b x a-=; (4)因式分解法;(三)判别式1、 若240b ac ∆=->,则方程有两个不相等的实数根; 2、 若240b ac ∆=-=,则方程有两个相等的实数根; 3、 若240b ac ∆=-<,则方程无实数根; 4、 若240b ac ∆=-≥,则方程有两个实数根. (四)韦达定理 1、根与系数的关系已知一元二次方程20ax bx c ++=的两根分别是1,2x x ,则12b x x a +=-,12c x x a= 2、以1x 和2x 为两根且二次项系数为1的一元二次方程是:21212()0x x x x x x -++ ⋅=. 3、变形公式:(1)222121212()2x x x x x x +=+-⋅; (2)12121211x x x x x x ++=⋅; OyxBA(3)121212(1)(1)1x x x x x x ++=++⋅+; (4)22121212()()4x x x x x x -=+-⋅;(5)12x x -=;(五)应用懂得列一元二次方程解答应用题,主要题型有面积(体积)问题、增长率问题、传播问题、握手问题、数字问题、利润问题等。

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)专题一:解一元二次方程1、直接开方解法1)$x-6+\sqrt{3}=2\sqrt{2}$解:移项得$x=6-2\sqrt{2}-\sqrt{3}$2)$(x-3)^2=2$解:两边开方得$x-3=\pm\sqrt{2}$,即$x=3\pm\sqrt{2}$ 2、用配方法解方程1)$x+2x-1=0$解:合并同类项得$3x-1=0$,移项得$x=\frac{1}{3}$2)$x-4x+3=0$解:合并同类项得$-3x+3=0$,移项得$x=1$3、用公式法解方程1)$2x^2-7x+3=0$解:根据一元二次方程的求根公式,$x=\frac{7\pm\sqrt{7^2-4\times2\times3}}{4}$,即$x=\frac{1}{2}$或$x=3$2)$x^2-x-1=0$解:同样根据求根公式,$x=\frac{1\pm\sqrt{5}}{2}$,即$x=\frac{1+\sqrt{5}}{2}$或$x=\frac{1-\sqrt{5}}{2}$4、用因式分解法解方程1)$3x(x-2)=2x-4$解:移项得$3x^2-6x-2x+4=0$,合并同类项得$3x^2-8x+4=0$,将其因式分解为$3(x-2)(x-\frac{2}{3})=0$,即$x=2$或$x=\frac{2}{3}$2)$2x-4=x+5$解:移项得$x=3$5、用十字相乘法解方程1)$x^2-x-90=0$解:将其因式分解为$(x-10)(x+9)=0$,即$x=10$或$x=-9$ 2)$2x^2+x-10=0$解:将其因式分解为$(2x-5)(x+2)=0$,即$x=\frac{5}{2}$或$x=-2$专题二:化简求值1、$\frac{x^2+y^2-2xy}{x-y}$,其中$x=2+1$,$y=2-1$解:将$x$和$y$的值代入得$\frac{(2+1)^2+(2-1)^2-2(2+1)(2-1)}{2+1-(2-1)}=\frac{3}{2}$2、$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}$,任选一个数$x$代入求值解:将$x$代入得$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}=\frac{4x^2-14x+12}{(x-1)^2}$专题三:根与系数的关系1、已知关于$x$的一元二次方程$x-4x-2k+8=0$有两个实数根$x_1$,$x_2$。

人教版初中九年级数学上册数学期末总复习(全面)精品课件

人教版初中九年级数学上册数学期末总复习(全面)精品课件
2
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.

九年级上册数学各章节知识点总结(最新最全)

九年级上册数学各章节知识点总结(最新最全)

九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。

人教版九年级数学上册期末总复习

人教版九年级数学上册期末总复习
解题突破 根据一元二次方程根的情况构建不等式求解.
解:(1)Δ=b2-4ac=4-4(2k-4)=20-8k. ∵方程有两个不相等的实数根, ∴20-8k>0, ∴k<52. (2)∵k 为正整数, ∴0<k<52且 k 为整数, 即 k 为 1 或 2. 解方程得 x=-1± 5-2k.又∵方程的根为整数, ∴5-2k 为完全平方 数.当 k=1 时, 5-2k=3,3 不是完全平方数,不符合题意,舍去;当 k=2 时, 5-2k=1,符合题意.故 k=2.
例17 已知二次函数y=(x+1)(x-m)的图像的对称轴在y轴的右侧, 则实数m的取值范围是___m__>_1____.
解题突破 依据抛物线的对称轴公式与对称轴的位置构建不等式进行求解. 解析 ∵y=(x+1)(x-m)=x2+(1-m)x-m,
1-m m-1 ∴它的对称轴为直线 x=- 2 = 2 . 又∵对称轴在 y 轴的右侧, ∴m-2 1>0, 即 m>1.
例4 已知x=1是一元二次方程x2+mx+n=0的一个根, 则m2 +2mn +n2 的值为__1__.
解题突破 将方程的根代入原方程, 并结合完全平方公式求解.
解析 依题意, 将x=1代入方程x2+mx+n=0, 得1+m+n=0, 则m+n =-1, 故 m2+2mn+n2=(m+n)2=(-1)2=1.故答案为1.
考点二 一元二次方程的解法
例5 一元二次方程x(x-2)=2-x的根是( D ).
A.x=-1
B.x=0
C.x1=1,x2=2
D.x1=-1, x2=2
解题突破 将方程的一边化为0后, 另一边能分解成两个一次因式 的乘积的一元二次方程用因式分解法解较简便.

人教版九年级数学上册期末考试总复习提纲

人教版九年级数学上册期末考试总复习提纲

人教版九年级数学上册期末考试总复习提纲同学们在学习数学的过程中,会认为只要会做题既可以了,其实你在平时还要做好复习提纲,下面小编给大家分享一些人教版九年级数学上册复习提纲,希望能够帮助大家,欢迎阅读人教版九年级数学上册复习提纲一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四还原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.考点18:正多边形的有关概念和基本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用基本作图工具,正确作出正三、四、六边形.数学学习方法1、基础很重要是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。

人教版初三数学上册期末总复习考点与典题

人教版初三数学上册期末总复习考点与典题

解:
C
A′
O B′
B A
C′
∴点O即为所求.
细心选一选
下列图案中,能不能由一个图形通过旋转而 构成
1
2
3
4
如图,正方形ABCD是正方形 ABCD
按顺时针方向旋转45 正方形ABCD

(2)BAB 45°,
BAD 45°;
四、一元二次方程根与系数的关系——韦达定理
如果方程 ax2 bx c 0(a 0的)两个实数根是
x1,x,2 那么
x1

x2


b

a
x1x2

c a

第二十三章 旋转 考点与典题
把一个图形绕某一点O转动一个角度的图形变换 叫做旋转,其中O叫做旋转中心,转动的角叫做 旋转角。
(2)配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有 所应用,而且在数学的其他领域也有着广泛的应用。配方法的
理论根据是完全平方公式a 2 2ab b2 (a b)2 ,把公式中。 的a看做未知数x,并用x代替,则有 x 2 2bx b2 (x b)2
(2)圆周角定理及其推论
1、圆周角 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的 圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对 的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形。
古典概型
一、等可能事件的两大特征:
1、可能出现的结果只有有限个; 2、各种结果出现的可能性相等。

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

九年级上册数学专题复习(九个专题)专题一 解一元二次方程1、直接开方解法方程(1)2(6)30x -+= (2) 21(3)22x -=2、用配方法解方程(1)2210x x +-= (2) 2430x x -+=3、用公式法解方程(1)03722=+-x x (2) 210x x --=4、用因式分解法解方程(1)3(2)24x x x -=- (2)22(24)(5)x x -=+5、用十字相乘法解方程(1)2900x x --= (2)22100x x +-=专题二 化简求值1、先化简,再求值:x2+y2-2xy x -y÷(x y -yx ),其中x =2+1,y =2-1.2、先化简:先化简:12164--÷⎪⎭⎫ ⎝⎛---x x x x x ,再任选一个你喜欢的数x 代入求值.专题三 根与系数的关系1、已知关于x 的一元二次方程24280x x k --+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.2、已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x . (1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.3、已知关于x 的方程0)1()12(2=-+--m m x m x ,(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程的两实数根分别为1x ,2x ,且满足11)(21221-⋅=-x x x x ,求实数m 的值.专题四 统计与概率1、现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为_________;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.2、现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A ,B 两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.专题五圆知识点一:证切线,求半径1、如图所示,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .2、如图所示,AB 是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .3、如图所示,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.4、如图所示,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.知识点二求不规则图形的阴影面积1、如图所示,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.EDBOAC2、如图所示,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为___________.3、如图所示,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A,点C,交OB 于点D,若OA =3,则阴影部分的面积为________.4、如图所示,AB 为⊙O 的直径,AC 平分∠BAE 交⊙O 于点C ,AE ⊥EC 于点E .(1)试判断CE 与⊙O 的位置关系,并说明理由;(2)若D 为AC 的中点,⊙O 的半径为2,求图中阴影部分的面积.专题六 二次函数实际应用1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x (元/kg ) 120 130 ... 180 每天销量y (kg ) 100 95 (70)设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:⎩⎨⎧≤≤+≤≤=)()(20680206034x x x x y ,请解答以下问题:(1)李明第几天生产的粽子数量为280只?(2)如图所示,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,求p 与x 之间的函数关系式;(3)若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)3、如图所示,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.专题七反比例函数的相关计算1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为6,求点P的坐标.2、已知反比例函数y=5mx(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.3、如图所示,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为()A.4B.3C.2D.1专题八 三角形全等与旋转的综合应用1、如图1所示,已知△ABC ≌△EBD ,∠ACB =∠EDB =90°,点D 在AB 上,连接CD 并延长交AE 于点F .(1)猜想:线段AF 与EF 的数量关系为______;(2)探究:若将图1所示的△EBD 绕点B 顺时针方向旋转,当∠CBE 小于180°时,得到图2所示,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中所示,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.F EDC BAFDEBC A(图1) (图2)专题九 二次函数的综合应用1、已知抛物线22y ax ax c =-+过点A (-1,0)和C (0,3),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图1所示,E 为线段BC 上方的抛物线上一点,EF ⊥BC ,垂足为F ,EM ⊥x 轴,垂足为M ,交BC 于点G .当BG=CF 时,求△EFG 的面积;(3)如图2所示,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使∠OPB =∠AHB ?若存在,求出点P 的坐标;若不存在,请说明理由.xyCH D BA O yx M D CG FBA O E(图1) (图2)2.(满分3+4+5=12分)如图所示,抛物线y=ax 2+bx-3与轴交于A ,B 两点(A 点在B 点左侧),A(-1,0),B(3,0),直线L 与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC 上的一个动点,过点作y 轴的平行线交抛物线于点,求线段PE 长度的最大值;(3)点是抛物线上的动点,在x 轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.。

人教版九年级数学上册全期各章复习习题全册

人教版九年级数学上册全期各章复习习题全册

一元二次方程及其应用复习【课前热身】1.方程3x(x+1)=0的二次项系数是,一次项系数是,常数项是. 2.关于x的一元二次方程(n+3)x n+1+(n-1)x+3n=0中,则一次项系数是. 3.一元二次方程x2-2x-3=0的根是.4.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x,则可以列出方程为.5.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p=()A.4B.0或2C.1D.-1【考点链接】1.一元二次方程:在整式方程中,只含个未知数,并且未知数的最高次数是的方程叫做一元二次方程.一元二次方程的一般形式是.其中叫做二次项,叫做一次项,叫做常数项;叫做二次项的系数,叫做一次项的系数.2.一元二次方程的常用解法:(1)直接开平方法:形如x2=a(a≥0)或(x-b)2=a(a≥0)的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程ax2+bx+c=o(a≠0)的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为(x+m)2=n的形式,⑤如果是非负数,即n≥0,就可以用直接开平方求出方程的解.如果n<0,则原方程无解.(3)公式法:一元二次方程ax2+bx+c=0(a≠0)的求根公式是x 1,2-b±b2-4ac=(b2-4ac≥0).2a(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中a≠0.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.【典例精析】例1选用合适的方法解下列方程:(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1-2x)2;(4)2x2-10x=3.例2已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一个根为零,求m的值.. y 2 3例3 用 22 长的铁丝,折成一个面积是 30 ㎝ 2 的矩形,求这个矩形的长和宽 又问:能否折 成面积是 32 ㎝ 2 的矩形呢?为什么?【中考演练】1.方程 (5x -2) (x -7)=9 (x -7)的解是_________.2.已知 2 是关于 x 的方程 3 2x 2-2 a =0 的一个解,则 2a -1 的值是_________.3.关于 y 的方程 2 y 2 + 3 py - 2 p = 0 有一个根是 y = 2 ,则关于 x 的方程 x 2 - 3 = p 的解为_____.4.下列方程中是一元二次方程的有( )①9 x 2=7 x② =8③ 3y(y-1)=y(3y+1)④ x 2-2y+6=0⑤2 ( x 2+1)=10⑥4x 2-x-1=0A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤5. 一元二次方程(4x +1)(2x -3)=5x 2+1 化成一般形式 ax 2+bx +c =0(a ≠0)后 a,b,c 的值为 ( )A .3,-10,-4 B. 3,-12,-2 C. 8,-10,-2 D. 8,-12,46.一元二次方程 2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为 1,一次项的系数为-1,则 m 的值为( )A. -1B. 1C. -2D. 27.解方程(1) x 2-5x -6=0 ; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法);(4)x 2-2 2 x+1=0.8.某商店 4 月份销售额为 50 万元,第二季度的总销售额为 182 万元,若 5、6 两个月的月 增长率相同,求月增长率.一元二次方程根的判别式及根与系数的关系复习【课前热身】1.一元二次方程 x 2 - 2 x - 1 = 0 的根的情况为()A.有两个相等的实数根 C.只有一个实数根 B.有两个不相等的实数根 D.没有实数根+ =,.x 12+x 22=.1,2 = . (3) b 2 - 4ac <0 ⇔ 一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 实数根., x ⋅ x = .+ =__________,(x 1-x 2)2=_______.2. 若方程 kx 2-6x +1=0 有两个不相等的实数根,则 k 的取值范围是.3.设 x 1、x 2 是方程 3x 2+4x -5=0 的两根,则1 1 x x1 24.关于 x 的方程 2x 2+(m 2-9)x +m +1=0,当 m = 时,两根互为倒数;当 m = 时,两根互为相反数. 【考点链接】1. 一元二次方程根的判别式:关于 x 的一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的根的判别式为 . (1) b 2 - 4ac >0 ⇔ 一元二次方程 ax 2 + bx + c = 0(a ≠ 0)有两个 实数根,即x(2) b 2 - 4ac =0 ⇔ 一元二次方程有 相等的实数根,即 x = x = .1 2 2. 一元二次方程根与系数的关系若关于 x 的一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 有两根分别为 x ,x ,那么 x + x =1 2 1 21 23.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意: ① 根的判别式 b 2 - 4ac ≥ 0 ;② 二次项系数 a ≠ 0 ,即只有在一元二次方程有根的前提下,才能应用根与系数的关系. 【典例精析】例1 当 k 为何值时,方程 x 2 - 6 x + k - 1 = 0 ,(1)两根相等;(2)有一根为 0;(3)两根为倒数.例 3 菱形 ABCD 的一条对角线长为 6,边 AB 的长是方程 x 2 - 7 x + 12 = 0 的一个根,则菱形 ABCD 的周长为 .【中考演练】1.设 x 1,x 2 是方程 2x 2+4x -3=0 的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________,1 1 x x1 22.当 c = __________时,关于 x 的方程 2 x 2 + 8x + c = 0 有实数根.(填一个符合要求的数α + 1β = -1,则 m 的值是( 8.设关于 x 的方程 kx -(2k +1)x +k =0 的两实数根为 x 1、x 2,,若即可)3. 已知关于 x 的方程 x 2 - (a + 2) x + a - 2b = 0 的判别式等于 0,且 x =1 2是方程的根,则a +b 的值为 .4. 已知 a ,b 是关于 x 的方程 x 2 - (2k + 1)x + k (k + 1) = 0 的两个实数根,则 a 2 + b 2 的最小值是.5.已知 α , β 是关于 x 的一元二次方程 x 2 + (2 m + 3) x + m 2 = 0 的两个不相等的实数根,且满足1)A.3 或 -1 B.3 C.1 D. -3 或 16.一元二次方程 x 2 - 3x + 1 = 0 的两个根分别是 x ,x ,则 x 2 x + x x 2 的值是()12121 2A.3B. -3C.13D. - 137.若关于 x 的一元二次方程 x 2. - 2 x + m = 0 没有实数根,则实数 m 的取值范围是()A .m<lB .m>-1C .m>lD .m<-12 x 1 + x 2x 2 = x1174 , 求 k 的值.9.已知关于 x 的一元二次方程 x 2 - (m -1)x + m + 2 = 0 .(1)若方程有两个相等的实数根,求 m 的值;(2)若方程的两实数根之积等于 m 2 - 9m + 2 ,求 m + 6 的值.-课时 6.反比例函数【课前热身】 1 .已知反比例函数y = k的图象经过点 A(-3, 6) ,则这个反比例函数的解析式是x.2.(07 梅州)近视眼镜的度数 y (度)与镜片焦距 x (米)成反比例,已知 400 度近视眼镜 镜 片 的 焦 距 为 0.25 米 , 则 眼 镜 度 数 y 与 镜 片 焦 距 x 之 间 的 函 数 关 系 式 为.3.在反比例函数 y = k - 3x图象的每一支曲线上,y 都随 x 的增大而减小,则 k 的取值范围是 ( ) A .k >3 B .k >0 C .k <3 D . k <04.(07 青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 P ( kPa )是气体体积 V ( m 3 ) 的反比例函数,其图象如图 1 所示.当气球内的气压大于 120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )5 5A .不小于 m 3B .小于 m 34 4 4 4C .不小于 m 3D .小于 m 35 55.(08 巴中)如图 2,若点 A 在反比例函数 y = k(k ≠ 0) 的图象上, AM ⊥ x 轴于点 M ,x△AMO 的面积为 3,则 k =.【考点链接】1.反比例函数:一般地,如果两个变量 x 、y 之间的关系可以表示成 y =或 (k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数.2. 反比例函数的图象和性质k 的符号图像的大致位置k >0yoxk <0 yo x经过象限性质第 象限在每一象限内 y 随 x 的增 大而 第 象限在每一象限内 y 随 x 的增大 而3. k 的几何含义:反比例函数 y = k x(k≠0)中比例系数 k 的几何意义,即过双曲线 y = k x(k≠0)上任意一点 P 作 x 轴、y 轴垂线,设垂足分别为 A 、B ,则所得矩形 OAPB 的面积为 .【典例精析】, - = 1的图像上,则点 C 的坐标是.P x x x3)- - 3)6)7.(07 江西)对于反比例函数 y = ,下列说法不正确的是( )x-例 1 某汽车的功率 P 为一定值,汽车行驶时的速度 v (米/秒)与它所受的牵引力 F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为 1200 牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过 30 米/秒,则 F 在什么范围内?例 2 (07 四川)如图,一次函数 y = kx + b 的图象与反比例函数 y =mx A(-21),B(1,n) 两点. (1)试确定上述反比例函数和一次函数的表达式;的图象交于y(2)求 △AOB 的面积.AOxB【中考演练】1.(07 福建)已知点 (1, 2) 在反比例函数 y =kx的图象上,则 k = .2.(07 安徽)在对物体做功一定的情况下,力 F(牛)与此物体在力的方向上移动的距离 s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到 10 牛时,物体在 力的方向上移动的距离是 米.3. (08 河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则 m 的值为.4.(08 宜宾)若正方形 AOBC 的边 OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数 yx y5. (08 广东)如图,某个反比例函数的图象经过点 P,则它的解析式为( )111 A.y = (x>0)B.y =- (x>0)-1 O11C.y = (x<0)D.y =- (x<0)xx6.(08 嘉兴)某反比例函数的图象经过点 (-2, ,则此函数图象也经过点( )A . (2, 3)B . (-3, 3)C . (2,D . (-4,2...A .点 (-2, 1) 在它的图象上B .它的图象在第一、三象限C .当 x > 0 时, y 随 x 的增大而增大D .当 x < 0 时, y 随 x 的增大而减小8.(08乌鲁木齐)反比例函数y=-6x的图象位于()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?10.(07四川)如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数y=m的图象的两个交点.x(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.A . AE (1) AB′ ;(2) ′ ′′相似三角形复习1.两个相似三角形对应边上中线的比等于 3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为 45,则这两个三角形的周长分别为__________. 3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是()AD AB AC= AE AD B . =BC BDDE C . = BC AE DE AD D . =AB BC AC4.在△ABC 与 △A B ′C′中,有下列条件:BC BC AC= = A ' B ' B 'C ' B 'C ' A 'C ';(3)∠A=∠A ;(4)∠C=∠C .如果从中任取两个条件组成一组,那么能判断△ABC ∽ △A B ′C′的共有多少组()A .1B .2C .3D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若 DE ∥BC (A 型和 X 型)则______________.2. 射影定理:若 CD 为 △Rt ABC 斜边上的高(双直角图形)则 △Rt ABC ∽△Rt ACD ∽△Rt CBD 且 AC 2=________,CD 2=_______,BC 2=__ ____.AED CDE ABCBC AD B3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用 k 表示.3. 相似三角形的对应角平分线,对应边的 ________线,对应边上的 _______•线的比等于_______比,周长之比也等于________比,面积比等于_________. 例1 在 ABC 和△DEF 中,已知∠A=∠D ,AB=4, AC=3,DE=1,当 DF 等于多少时,这两个三角形相 似3.如图,在△ABC中,若DE∥BC,AD例2如图,ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,•要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,•这个正方形零件的边长是多少?例3一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.如图,若△ABC∽△DEF,则∠D的度数为______________.2在Rt∆ABC中,∠C为直角,CD⊥AB于点D,BC=3,AB=5,写出其中的一对相似三角形是_和_;并写出它的面积比_____.AD EB C1=,DE=4cm,则BC的长为()DB2A.8cmB.12cmC.11cmD.10cm4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试证明△ABF∽△EAD.锐角三角函数1.在△ABC中,∠C=90°,BC=2,sinA=23,则AC的长是()A.5B.3C.45D.13y2.Rt∆ABC中,∠C=90︒,∠A∶∠B=1∶2,则sinA的值()0A(3,0)xA.1223B.C.D.122B(0,-4)3.如图,在平面直角坐标系中,已知点A(3,0),点B(0,-4),则cos∠OAB等于_______.4.cos30︒1+sin30︒=____________.【考点链接】1.sinα,cosα,tanα定义sinα=____,cosα=_______,tanα=______.2.特殊角三角函数值30°45°60°sinαcosαtanα【典例精析】例1在△Rt ABC中,a=5,c=13,求sinA,cosA,tanA.αbca例2计算:4sin30︒-2cos45︒+3tan60︒.例3等腰△ABC中,AB=AC=5,BC=8,求底角∠B的四个三角函数值.1.在△ABC中,∠C=90°,tanA=13,则sinB=()A.101023B.C.D.3431010_ _ _ _ _ _ _E F__2.若 cos A = 34,则下列结论正确的为( )A . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90°3.在 △Rt ABC 中, ∠C = 90o , AC = 5 , BC = 4 ,则 tan A =.4. 计算sin 60 ο cos 30 ο- tan 45 ο 的值是 .5. 已知 3tan A - 3 = 0则∠A =6.△ABC 中,若(sinA - 12 3 )2+| -cosB|2=0,求∠C 的大小.7.图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC• 是等边三角形,若 AB=2,求 EF 的长.H GDCOAB8. 矩形 ABCD 中 AB =10,BC =8, E 为 AD 边上一点,沿 BE 将△BDE 对折,点 D 正 好落在 AB 边上,求 tan ∠AFE .AEFB解直角三角形及其应用D C1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成 30°角,这时测得大树在地 面上的影子约为 10 米,则大树的高约为________米.(结果保留根号)2. 某坡面的坡度为 1: 3 ,则坡角是_______度.3.王英同学从 A 地沿北偏西 60º 方向走 100m 到 B 地,再从 B 地向正南方向走 200m 到 C 地,此时王英同学离 A 地 ( )A .150mB . 50 3 mC .100 mD .100 3 m1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________. Abc(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.C a BOcosB=____,tanA=_____,tanB=_____.4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA:_____,OB:_______,OC:_______,OD:________.6.如图(4)坡度:AB的坡度i AB=_______,∠α叫_____,tanα=i=____.AB北OCA西60︒70︒45︒AC东αB CB例1Rt∆ABC的斜边D南AB=5,cos A=3求∆ABC中的其他量.5例2海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例题3为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.1.在Rt∆ABC中,∠C=900,AB=5,AC=4,则sinA的值是_________.2.升国旗时,某同学站在离旗杆24m处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m,则旗杆高度约为_______.(取3=1.73,结果精确到0.1m)3.已知:如图,在△ABC中,∠B=45°,∠C=60°,AB=6.求BC的长.(结果保留根号)4.如图,在测量塔高A B时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三上数学期末总复习--典型例题选讲(各章节重点、常考题型)一、二次根式例题1:,则x的取值范围为()A、x≥2 B、x≠3 C、x≥2或x≠3 D、x≥2且x≠3例题2:实数a在数轴对应点如图所示,则+a()(A)2a+2 (B)2a-2 (C)2 (D)-2例题3:下列根式中属最简二次根式的是()AD.52例题4:在下列各组根式中,是同类二次根式的是( )BC例题5:填空:1).计算:825-= .2).若0)1(32=++-nm,则m-n的值为.3).比较大小:32_______23--(填“>”或“<”=)4).若x<2,化简xx-+-3)2(2的正确结果是___.例题6:计算: (1(2) xxxx3)1246(÷-例题7:先化简再求值:)12(122+-÷++xxxxx,其中2=x。

例题8:如下图,实数a、b 在数轴上的位置,化简a2 - b2 - (a-b)2.-2例题9:已知5x y +=,3x y •=,二、二次方程例题1:下列方程是一元二次方程的有___________(1) x x 752=; (2) 035)12(22=---x x ; (3)233432-+x x =0; (4) 022=x ; (5) 0322=--y x ; (6) 215)25(3x x x =-.例题2:方程4x 2=13-2x化为一般形式为_________________,它的二次项是____, 一次项是____,常数项是_____.它的二次项系数是______, 一次项系数是________,常数项是______. 例题3:当m =______时,关于x 的方程(m-2)x 2+mx =5是一元一次方程; 当m______时,关于x的方程(m-2)x 2+mx=5是一元二次方程。

关于x的方程01)1(1=+++-kx x k k 是一元二次方程,则k的值为________例题4:解方程:(1)直接开方法4(1-x)2-9=0 (2)配方法011242=--x x(3)公式法0132=+-x x (3)十字相乘030132=+-x x(5)因式分解0)1(3)1(=-+-x x x (6) x x x 2)1)(1(=-+例题5:若关于x 的方程012)2(2=-++x x m 有两个不相等的实数根,则m的取值范围是_____________例题6:不论m取何值,方程03)7(92=-++-m x m x 都有两个不相等的实数根。

例题7:已知方程01322=-+x x 的两根是21,x x ,不解方程,求下列各式的值。

(1)2111x x + (2))1)(1(1221x x x x ++(3)2221x x + (4)2112x x x x +例题8:已知关于x的方程02=++n mx x 的两个根为-5和7,求m-n例题9:应用题 1、面积问题:如图, 东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园, 矩形的一边用教学楼的外墙,其余三边用竹篱笆. 设矩形的宽为x ,面积为y . (1) 求y 与x 的函数关系式,并求自变量x 的取值范围; (2) 生物园的面积能否达到210平方米?说明理由.2.、.传染、分支问题.......:.某养鸡场突发禽流感疫情,某养鸡场一只带病毒的小鸡经过两天的传染后使鸡场共有121只小鸡遭感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡?3、循环问题:一个小组有若干人,新年互送贺年卡一张。

已知全组共送贺年卡169张,求这个小组的人数。

4、工程问题:甲、乙两工程队各承包1000米道路维修工程,已知甲比乙每天完成的工程量比甲多10米,结果甲比乙少用5天时间,问甲乙每一天各个完成多少米。

5、增长率问题某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助。

2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元。

(1)求A市投资“改水工程”年平均增长率;(2)A市三年共投资“改水工程”多少万元?6、商品价格问题......百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元。

为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。

经市场调查发现:如果每件童装降价1元,那么平均每天就可以多售出2件。

(1)要项平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?(2)若要使百货商店平均每天盈利最多,请你帮助设计方案。

三、旋转例题1:如图所示的四组图形中,左边图形与右边图形成中心对称的有( )A .1组 B.2组 C .3组 D.4组 例题2:如图所示,其中是中心对称图形的是( )例题3:如图4,P 为正方形A BCD内的一点,△ABP 绕点B 顺时针旋转得到△CB E,则∠PBE 的度数是( )A 、︒70B 、︒80C 、︒90D 、︒100图3 图4例题4:如图4,∠AO B=90°,∠B=30°,△A ′OB ′可以看作是由△AOB 绕点O 顺时针旋转α角度得到的. 若点A ′在AB 上,则旋转角α的大小可以是( )A 、︒30B 、︒45C 、︒60 D、︒90 例题5:如图,四边形ABC D是边长为1的正方形,且D E=14,△A BF 是△ADE 的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少? (4)如果连结EF,那么△A EF 是怎样的三角形?例题6:在正方形网格中建立如图所示的平面直角坐标系xoy .△AB C的三个顶点都在格点上, 点A 的坐标是(4,4 ),请解答下列问题;(1)先将△AB C向左平移6个单位得到△111C B A ,再作出画出△ABC 关于X 轴对称的△222C B A ;(2)做出△A BC 关于原点对称的三角形△333C B A 。

(3)将△222C B A 绕点C 顺时针旋转90°.例题7:如图所示,正方形ABCD 的BC边上有一点E,∠DAE 的平分线交CD 于F,试用旋转的思想方法说明A E=DF+BE.FEBCAD例题8:如图1,点O 是线段AB 的中点,分别以A O和OB 为边在线段A B的同侧作等边三角形O AM和等边三角形OBN ,连结AN 、BM 相交于点P .(1)证明ON BM ⊥; (2)求APB ∠的大小;(3)如图2,若ΔO AM 固定,将ΔOBN 绕着点O 旋转α角度如图,ΔOBN 形状和大小不变,试探究APB ∠大小是否发生变化,并对结论给予证明.PN MBOAAOBMNP图2图1四、圆例题1:1).如图1,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( ) A. 28° B.56° C.60° D.62°图32).如图2,AB 是⊙O 的直径,∠AB C=30°,则∠BA C =( )A .90° B.60° C.45° D .30°3)、如图3,AB O 是⊙的直径,弦303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为,则弦CD 的长为( ) A.3cm 2ﻩ B .3cm ﻩ C.23cm ﻩD.9cm例2. 如图,AB 、CD 是⊙O的直径,DF 、BE 是弦,且DF =BE . 求证:∠D = ∠B.DBO A CFE例4. 如图所示,⊙O 的直径AB 和弦CD 交于E,已知A E=6cm,EB =2cm ,∠CE A=30°,求CD 。

例5.如图所示,已知AB 为⊙O 的直径,CD 是弦,且A B⊥CD 于点E 。

连接AC、O C、BC 。

(1)求证:∠AC O=∠BCD 。

(2)若EB=8cm ,CD=24cm ,求⊙O 的面积。

图1C ABOOE DC BA图2例题6:如图,PA ,PB 分别为⊙O 的切线,AC 为直径,切点分别为A、B,∠P=70°,则∠C =第5题PCB AO例题7:圆最长弦为12cm ,如果直线与圆相交,且直线与圆心的距离为d ,那么( ) A . cm d 6< B.cm d cm 126<< C.cm d 6≥ D.cm d 12> 例题8:两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d 的取值范围是( ) A.d >8 B .0<d ≤2 C .2<d<8 D.0≤d<2或d>8: 例题9:已知:如图,AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,⊙O 的弦AD 平行于OC .求证:DC 是⊙O 的切线.ﻫ例题10:如图,⊙O 的直径AB=6,C 为圆周上的一点,B C=3.过点C 作⊙O的切线G E,作A D⊥GE 于点D , 交⊙O 于点F . 求:(1)求证:∠A CG =∠B, (2)计算线段AF 的长.ED BO CBCD FOG例题11:已知:如图,P A,PB,DC 分别切⊙O 于A,B,E 点.(1)若∠P=40°,求∠CO D;(2)若PA =10cm ,求△PCD 的周长.例题12:如图,在ABC △中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB ∠=∠.⑴ 求证:直线BF 是O 的切线; ⑵ 若5AB =,BE:A B=1:2,求BC 和BF 的长.OEFCDA例题13:矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),求顶点A 所经过的路线长.例题14:如图所示的扇形中,半径R=10,圆心角θ=144°用这个扇形围成一个圆锥的侧面. (1) 求这个圆锥的底面半径r; (2) 求这个圆锥的高.例题15:如图,已知一底面半径为3,母线长为9的圆锥,在地面圆周上有一蚂蚁位于A 点,它从A点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长.例题16:(2012广州中考题)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=\r(2)OM;(3)将△DCE绕点C逆时针旋转α(00<α<900)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=\r(2)OM1是否成立?若成立,请证明;若不成立,说明理由.图3图4AB=,点C在线段AB的延长线上运动,点D在⊙O上例题17:(广州2013-24)已知AB是⊙O的直径,4=.运动(不与点B重合),连接CD,且CD OAOC=(如图12),求证:CD是⊙O的切线;(1) 当22OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.(2) 当22∆的周长;①当D为CE中点时,求ACE⋅的值;若不存在,请②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE ED说明理由.图12五、概率例题1:下列事件中,属于不确定事件的有( )①太阳从西边升起; ②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下; ④小明长大后成为一名宇航员A .①②③ﻩﻩB.①③④ C .②③④ﻩ D.①②④例题2:下列说法错误的是( )A .必然发生的事件发生的概率为1 B.不可能发生的事件发生的概率为0C.不确定事件发生的概率为0 D.随机事件发生的概率介于0和1之间例题3:某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是 ( )A.45 B.35 C .25 D.15例题4:甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;(2)你认为这个游戏公平吗?请说明理由.例题5:一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,求出现1个男婴、2个女婴的概率是多少?例题6:如图,(1),A 、B 两个转盘分别被分成三个、四个相同的扇形,分别转动A 盘、B 盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止)。

相关文档
最新文档