Nonlinear QED Effects in Heavy Ion Collisions
结晶和去润湿竞争条件下分子结构对超薄膜表面形貌的影响(英文)
209; 。 0 02 清华大学化学工程 系, 北京
摘要 : 将星形支化结构的聚己内酯, 包括六臂 星形 聚己内酯 ( C ) HP L 和树枝状星形聚 己内酯( P L, D C ) 以及线形
聚己内酯(P L 室温旋涂于云母片上, LC ) 通过原子力显微镜 ( M) AV 观察分子结构对星形支化聚己内酯超薄膜 的润 湿一 去润湿性质的影响. 在旋涂过程 中, 薄膜的形成受去润湿和结晶竞争的控制 . 差示 扫描量热( c 测试结果表 Ds ) 明, 当相对分子质量相 同时, 晶性 的顺 序是: C 结 DP L最弱, C HP L次弱, P L最强. LC 依据分子结构和相对分子质 量 的影响, 即去润湿和结 晶竞争的结果, P L H C L C 、 P L和 D C P L的超薄膜表现 出不同的表面形 态, 包括尺寸不同 的完整的球 晶、 口的球晶、 开 树枝状片 、 分散 的颗粒. 关键词 : 润湿; 分子结构 ; 去润湿: 结 晶; 超薄膜 中图分类号 : 0 4 67
物 理化学 学报( lHuxe ubo Wui a u ea ) X
Neumann边条件无电容效应Sine-Gordon系统的动力学
文章编号:1000-1506(2001)03-0041-03Neumann 边条件无电容效应Sine-gordon 系统的动力学刘迎东,何卫力(北方交通大学理学院,北京100044)摘要:证明当扩散系数适当大时Neumann 边条件下无电容效应的Sine-gordon 系统全局吸引子是一条不变曲线,系统在其上的行为类似于圆周上的保向同胚.关键词:全局吸引子;不变曲线;保向同胚中图分类号:O175.2文献标识码:ADynamics of Sine-gordon System Without CapacitanceEffect Under Neumann Boundary ConditionLIU Ying-dong ,HE Wei-li(CoIIege of Sciences ,Northern Jiaotong University ,Beijing 100044,China )Abstract :In this paper we prove that the gIobaI attractor for the Sine-gordon system without capacitance effect under Neumann boundary condition is an invariant curve.The behavior of the system on the curve is Iike the orientation preserving homeomorphism on a circIe.Key words :gIobaI attractor ;invariant curve ;orientation preserving homeomorphism1问题的提出在前文[1]讨论了狄氏边条件下无电容效应的Sine-gordon 系统的动力学,本文继续讨论Neumann 边条件下它的动力行为,将证明此时全局吸引子是一条不变曲线,系统在其上的行为类似于圆周上的保向同胚.此时边条件变成了 U i n !X R+=0.记E =(L 2(!))n , · 为E 中范数.设f i (x ,I ) C (R +,L 2(!))并且f i 关于I 以T 为周期.显然-C 是扇形算子,并且C 可生成强连续半群{e CI }I 0.G (I ,U ):R +X E E 关于U 一致Lip 连续.Lip 常数为".相应的积分方程为:U (I )=e CI U 0+Ie C (I -#)G (#,U (#))d #.定义1积分方程的连续解称为温和解.原问题存在唯一温和解U C (R +,E )[2].定义S (I )U 0=U (I ,U 0),U (I ,U 0)是初值为U 0的温和解,由周期性{S (NT )}N 0构成离散半动力系统.根据不可约弱耦合拟增椭圆组的特征值性质,-C 存在主特征值[3].因为-C 的所有特征值大于等于0,而易知0确为一个特征值,故0为主特征值,其对应主特征向量为(1,1,…,1).由算子扰动理论易知:引理1-C 是非负自伴算子,其特征值为0=$0<$1 $2 … $m …,当m + 时,$m + 且0为主特征值.收稿日期:2000-08-24基金项目:国家自然科学基金资助项目(19971004)作者简介:刘迎东(1971—),男,河北高阳人,讲师,博士.email :Iiuyingdong@第25卷第3期2001年6月北方交通大学学报JOURNAL OF NORTHERN JIAOTONg UNIVERSITY VoI.25No.3Jun.2001设主特征值0的主特征向量(l ,l ,…,l )生成的线性子空间为E l ,记 U =lI !I J!E Ii =lU i (x )c x ,记E 2={U E IU =0},则E =E l E 2.显然E l 、E 2都是C 的不变子空间,并且V U E 2〈CU ,U 〉<-"〈U ,U 〉.!吸收集定义!称B ={p +g E I p E l ,g E 2, g <r }为E 中半径为r 的伪球.显然,G (I ,U )在E 中一致有界,记为c.定理"设B 0为E 中伪球,半径为c /"l ,则V I >0,S (I )B 0c B 0,并且B 0吸引E 中任意有界集.证明V U 0 E ,记U (I )=S (I )U 0,则U (I )满足:U (I )=e CI U 0+JIe C (I -#)G (#,U (#))c #.设E 到E l 的投影算子为P ,到E 2的投影算子为O ,则OU(I )=e CI OU 0+JIe C (I -#)OG (#,U (#))c #,OU (I ) < e CIO OU 0 +JI0 eC(I -#)O G (#,U (#) c #<e -"l I OU 0 +c "l(l -e -"l I ),V U D ((-C )l /2)= E ,定义 U E = U +(-C )l /2U ,则 E 为Banach 空间.记 E l =E l E , E 2=E 2 E.则有:定义#称集合 B ={p +g E I p E l ,g E 2, g E <r }为 E 中半径为r 的伪球.定理!存在 E 中一个伪球 B 0,半径为r l ,使得对任意E 中有界集B ,存在I l =I l (B )>0,当I >I l 时,S (I )B c B 0.证明c Uc I=CU +G (I ,U ),用O 作用后再与OU 作内积得〈O c U c I,OU 〉=〈COU ,OU 〉+〈OG (I ,U ),OU 〉,则c c I OU 2+ (-C )l /2OU 2<-"l OU 2+2 OG (I ,U ) OU <-"l 2OU 2+c.结合定理l 可知,任给E 中有界集B ,存在I 0=I 0(B )>0,当I >I 0、r >0时,JI +rI(-C )l /2OU 2c #<c .又有〈-CU ,Oc Uc I〉=〈-CU ,COU 〉+〈OG (I ,U ),-CU 〉,l 2c (-C )l /2OU 2c I <-l 2COU 2-"l 2 (-C )l /2OU 2+ OG (I ,U ) COU ,c (-C )l /2OU 2c I<-"l (-C )l /2OU 2+c.再由一致GrOnwall 不等式[4],即得结论.#锥性质定义$称Z ={p +g E I p E l ,g E 2, g < p }为E 的锥.定理#设"l >4$,则V x 0、y 0 E.(l )如果y 0-x 0 Z ,则S (I )y 0-S (I )x 0 Z ,V I >0.(2)如果存在I 0>0,使得S (I 0)y 0-S (I 0)x 0 Z ,则OS (I )y 0-OS (I )x 0 <e -"l I /2 O (y 0-x 0) ,0<I <I 0.证明记y (I )=S (I )y 0,x (I )=S (I )x 0,p (I )=P (y (I )-x (I )),g (I )=O (y (I )-x (I )).于是p (I ),g(I )分别满足:c pc I =P (G (I ,y (I ))-G (I ,x (I ))p (0)=P(y 0-x 0{),c gc I =Cg +O(G (I ,y (I ))-G (I ,x (I )))g (0)=O(y 0-x 0{),所以c c I( g 2- p 2)<-2"l g 2+2$( p 2+ g 2)+4$ p g .24北方交通大学学报第25卷由条件O 1>4B 知当 p = g 时,dd t ( g 2- p 2) (-2O 1+8B ) g 2 0,这表明如果y 0-x 0 Z ,则y (t )-x (t ) Z.若存在t 0>0,使y (t 0)-x (t 0) Z ,则y (t )-x (t ) Z ,0<t t 0.即 g (t ) > p (t ) ,0<t t 0.因此有d d tg (t ) 2 -O 1 g (t ) 2,即 g (t ) e -O 1t /2 g (0) ,0<t t 0.!不变曲线以下记T 0=(1,1,…,1),p 0=21T 0.定义"设@是从E 1到E 2的Lip 映射,Lip 常数为1,即 p 1、p 2 E 1, @(p 1)-@(p 2) p 1-p 2,称@对应的曲线l ={p +@(p )I p E 1}为E 中的水平曲线,如果@还满足@(p +p 0)=@(p ), p E 1,则称l 为限制水平曲线.定理!N >0,S (NT )把水平曲线映成水平曲线,把限制水平曲线映成限制水平曲线.令H =[0,21]·T 0,则H 是E 1中的有界闭集.令M ={@I @是H E 2的连续映射,@(0)=@(p 0)},M 中加法和数乘按通常逐点意义下定义,范数定义为 @ =max p H @(p ) ,于是M 成为Banach 空间,记^M ={@I @ M , @(p 1)-@(p 2) p 1-p 2 , @ r 1},r 1是伪球B 0的半径.当t 0>t 1(B 0)时,S (t 0)B 0 B 0,对充分大的N ,构造^M ^M 的映射^S (NT )如下:^S (NT )@=1-1S (NT )1@,1是^M 到M 的自然的一一映射,易知^S (NT )为紧的,由Schauder 不动点定理,^S (NT )至少有一个不动点.定理"设O 1>4B ,则对充分大的N ,映射S (NT )有一条不变限制水平曲线l ,即S (NT )l =l.引理#设l 是S (NT )的不变曲线,U 是l 的E 邻域,则存在常数M 0>0,使 y 0 B 0(半径为c /O 1的伪球),当M >M 0时,S (MNT )y 0 U.设l 是S (NT )的不变曲线,l'是S ((N +1)T )的不变曲线.引理$l 即为l'.再由S ((N +1)T )l =S (NT )l ,得S (T )l =l ,即S (T )有不变曲线l ,并且由吸引性,l 唯一."保向同胚设l ={p +@(p )I p E 1},定义K :E 1 l 为p p +@(p ),这样S (T )在l 上的作用诱导出一个R 上的映射F :F (T )=G -1K -1S (T )K G ,其中G 是由G (t )=21t T0定义的算子,并且!F (t +1)=F (t )+1,"F 是严格单调增加的.引理!S(T )的旋转数V =Iim I F I(t )I存在,且极限值与t R 无关.F (t )可看成圆周上一个保向同胚的提升.通过旋转数V 可研究F (t ).定义F(t )的广义周期点如下:若存在I 、m Z ,I 1,使得F I(t )=t +m ,其中I 取有这种性质的最小的自然数,则称t 为(I ,m )型周期点.旋转数为有理数等价于存在广义周期点,旋转数为无理数等价于不存在广义周期点.如果l 模21T 0构成一个拓扑圆,则S (T )在其上作用为保向同胚[5].参考文献:[1]刘迎东,何卫力.狄氏边条件无电容效应的Sine-gordon 系统的动力学[J ].北方交通大学学报,2001,25(1):108-110.[2]Pazy A.Semigroup of Linear Operators and AppIications to PartiaI DifferentiaI Eguations [M ].BerIin :Springer-verIag ,1983.113-121.[3]Liu Yingdong ,Li Zhengyuan.The PrincipaI EigenvaIue of PeriodicaI Reaction-diffusion System with Time DeIay [J ].Beijing Mathematics ,1997,3(1):143-149.[4]Temam R.Infinite-dimensionaI DynamicaI Systems in Mechanics and Physics [M ].BerIin :Springer-verIag ,1988.88-89.[5]张筑生.微分动力系统原理[M ].北京:科学出版社,1985.27-52.34第3期刘迎东等:Neumann 边条件无电容效应Sine-gordon 系统的动力学Neumann边条件无电容效应Sine-Gordon系统的动力学作者:刘迎东, 何卫力作者单位:北方交通大学理学院,刊名:北方交通大学学报英文刊名:JOURNAL OF NORTHERN JIAOTONG UNIVERSITY年,卷(期):2001,25(3)1.刘迎东;何卫力狄氏边条件无电容效应的Sine-Gordon系统的动力学[期刊论文]-北方交通大学学报 2001(01)2.Pazy A Semigroup of Linear Operators and Applications to Partial D ifferential Equations 19833.Liu Yingdong;Li Zhengyuan The Principal Eigenvalue of Periodical Reaction-diffusion System with Time Delay 1997(01)4.TEMAM R Infinite-dimensional Dynamical Systems in Mechanics and P hysics 19885.张筑生微分动力系统原理 1985引用本文格式:刘迎东.何卫力Neumann边条件无电容效应Sine-Gordon系统的动力学[期刊论文]-北方交通大学学报 2001(3)。
当表面活性剂遇到大环分子
114Univ. Chem. 2023, 38 (12), 114–119收稿:2023-06-27;录用:2023-08-01;网络发表:2023-08-11*通讯作者,Email:*****************.cn基金资助:2021年基础学科拔尖学生培养计划2.0研究课题(20211014);天津市首批虚拟教研室试点建设项目(化学类交叉人才培养课程建设虚拟教研室)•专题• doi: 10.3866/PKU.DXHX202306051 当表面活性剂遇到大环分子阮文娟,李悦,耿文超,郭东升*南开大学化学学院,天津 300071摘要:近年来,表面和胶体化学与大环化学的结合引起了科学家的普遍关注。
将多样的大环结构引入表面活性剂分子,不仅极大地丰富了表面活性剂分子的种类,还可以赋予其大环的主客体识别功能。
由此所开发出的大环两亲和超两亲分子已在生物成像和药物递送中表现出很高的应用潜力。
从传统表面活性剂到大环两亲和超两亲分子的发展、应用表明,不同领域的交叉融合对科学研究的发展是非常重要的。
关键词:表面活性剂;胶束;大环结构;大环两亲分子;超两亲分子中图分类号:G64;O6Encountering of Surfactants with Macrocyclic MoleculesWen-Juan Ruan, Yue Li, Wen-Chao Geng, Dong-Sheng Guo *College of Chemistry, Nankai University, Tianjin 300071, China.Abstract: In recent years, the combination of surface and colloid chemistry with macrocyclic chemistry has garnered widespread attention among scientists. The integration of diverse macrocyclic structures into surfactant molecules not only greatly enriches the diversity of surfactants, but also imparts them with the host-guest recognition functionality of macrocycles. Macrocyclic amphiphiles and supra-amphiphiles, developed from this approach, have demonstrated high potential in applications such as bioimaging and drug delivery. The evolution from traditional surfactants to macrocyclic amphiphiles and supra-amphiphiles underscores the importance of interdisciplinary integration in advancing scientific research.Key Words: Surfactants; Micelles; Macrocycles; Macrocyclic amphiphiles; Supra-amphiphiles表面活性剂及其所构筑的胶束是表面和胶体化学中所涉及的一类非常重要的体系。
chemicalreactionengineering3ededition作者octavelevenspiel课后习题答案
Corresponding Solutions for Chemical Reaction EngineeringCHAPTER 1 OVERVIEW OF CHEMICAL REACTION ENGINEERING .......................................... 错误!未定义书签。
CHAPTER 2 KINETICS OF HOMOGENEOUS REACTIONS ........................................................ 错误!未定义书签。
CHAPTER 3 INTERPRETATION OF BATCH REACTOR DATA ..................................................... 错误!未定义书签。
CHAPTER 4 INTRODUCTION TO REACTOR DESIGN ............................................................... 错误!未定义书签。
CHAPTER 5 IDEAL REACTOR FOR A SINGLE REACTOR........................................................... 错误!未定义书签。
CHAPTER 6 DESIGN FOR SINGLE REACTIONS ....................................................................... 错误!未定义书签。
CHAPTER 10 CHOOSING THE RIGHT KIND OF REACTOR ....................................................... 错误!未定义书签。
用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理
密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。
密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。
杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。
在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。
通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。
这些信息有助于更好地理解活性炭纤维的多段充填机理。
在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。
例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。
可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。
还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。
通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。
在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。
例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。
通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。
此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。
例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。
然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。
Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropyalloy
article info
Article history: Received 18 January 2011 Received in revised form 20 September 2011 Accepted 28 October 2011 Available online 11 November 2011
Keywords: High entropy alloy Eutectic Laves phase Solid solution
abstract
The microstructures and properties of the AlCoCrFeNbxNi high-entropy alloys (HEAs) were investigated. Two phases were found in the prepared AlCoCrFeNbxNi HEAs: one is body-centered-cubic (BCC) solid solution phase; the other is the Laves phase of (CoCr)Nb type. The microstructures of the alloy series vary from hypoeutectic to hypereutectic, and the compressive yield strength and Vickers hardness have an approximately linear increase with increasing Nb content. The residual magnetization (Mr) reaches a maximum for AlCoCrFeNb0.1Ni alloy, which is 6.106 emu/g. The factor of ˝, which is defined as entropy of mixing times 1000 over enthalpy of mixing, well predicts the phase formation for the multicomponents alloys.
On the negative effective mass density in acoustic metamaterials
On the negative effective mass density in acoustic metamaterials
H.H. Huang a, C.T. Sun a,*,G.L. Huang b
a School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907, USA b Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
* Corresponding author. Tel.: +1 765 494 5130; fax: +1 765 494 0307. E-mail address: sun@ (C.T. Sun).
含杂环共聚芳香族聚酰胺溶液的动态流变特性
从 图 2可 以看 出 , 杂 环共 聚 芳香 族 聚酰 胺 含
溶 液的 G 和 G 随着溶 液浓度 的增加 而增 大 。这
是 由于含杂环 的共聚芳 香族 聚酰胺溶 液 中分子链 数 目增加 , 子 间距 减小 , 子 问作用 力 增 大 , 分 分 缠 结点增加 , 从而 阻碍小 振幅剪 切 , 现 出较 强 的粘 表
F g 1 P os o - v ru £ i . l t fq es s( J
■ —1O ℃ ; 一 5 ℃ ; —_O ℃ : 一 7 ℃ 4 ● O ▲ 6 V O
为 32455 06 1d ( 用 叼n表 征 其 相对 . ,. ,. ,. l 采 Mg l h
分子 质 量 ) 分 别 用 D A , M c稀 释 至 质 量 分 数 为 2 ,% ,% 。其 中质量 分数 为 4 的 7n分别 为 % 3 4 % 7h _
图4 2试样 的 G 和 G 与 关系曲线 ”
F 4 Po f n ess o smp 培 lso G adG vru ∞ f a l2 t e
■ —_0 q ● ~ 5 c; —_O o ; 一 7 ℃ 4 c; 0 q ▲ 6 C V O
第3 期
唐 国平 等 . 杂环 共 聚芳 香 族 聚 酰 胺 溶 液 的 动 态 流 变 特性 含
1 3
从 图 4可 以看 出 ,0~ 0℃时 , 4 7 温度 升 高 , 含
降 , G 下 降更快 , 但 因此 表现 出更 明显 的粘 性 。
表 2 2试 样在 不 同 温度 下 的动 态 流 变 特 性 特 征 值
图 2 不 同 浓 度 的 含 杂 环共 聚 芳 香 族 聚 酰 胺 溶 液 G 和 G 与 ∞关 系 ”
多孔介质中两相不可压缩不易混溶渗流问题的特征配置法(英文)
多孔介质中两相不可压缩不易混溶渗流问题的特征配置法(英
文)
马宁
【期刊名称】《应用数学》
【年(卷),期】2006(19)1
【摘要】多孔介质中两相不可压缩不易混溶渗流问题是非线性偏微分方程的耦合系统,其中压力方程是椭圆的用配置法逼近,而饱和度方程是对流占优的抛物方程,用特征配置法来逼近,并且证明了数值解的存在唯一性,最后得到了最优的误差估计.【总页数】10页(P195-204)
【关键词】不可压缩;不易混溶;特征线;配置法
【作者】马宁
【作者单位】山东大学数学与系统科学学院
【正文语种】中文
【中图分类】O241.82
【相关文献】
1.多孔介质中不可压缩非溶混驱动问题之混合迎风有限元法的收敛性和最大值原理[J], 哈什姆;胡健伟
2.多孔介质中两相可压缩混溶流体驱动问题的交替方向法 [J], 陈宁
3.多孔介质中可压缩可混溶驱动问题的特征—有限体积元法H^1模误差估计 [J], 马克颖
4.多孔介质中不可压缩流体的可混溶驱动问题的全离散有限元配置法 [J], 马宁
5.多孔介质中不可压缩流体的可混溶驱动问题的配置法 [J], 鲁统超
因版权原因,仅展示原文概要,查看原文内容请购买。
微波促进无溶剂下类biginelli和hantzsch反应研究
西北师范大学硕士学位论文微波促进无溶剂下类Biginelli和Hantzsch反应研究姓名:占红文申请学位级别:硕士专业:有机化学指导教师:***2009-06摘 要杂环化合物一类重要的有机化合物。
自从1857年Anderson从骨焦油中分离出吡咯到1882年Meyer戏剧性地发现噻吩至今也不过一个多世纪,被研究的杂环化合物已发展到惊人的数字。
本世纪三十年代拜尔斯坦有机化学手册记载的杂环化合物数目,约占当时已知的数十万种有机化合物的1/3左右 。
到1971年,已知的几百万种有机化合物中,有一半以上是杂环化合物。
近几十年来,杂环化合物在有机物中所占的比例仍是有增无减。
随着杂环化合物数目的迅速增加,其种类也越来越复杂。
杂环类化合物的应用范围也不断扩张。
在经典的有机合成方法中,很少考虑应用杂环化合物。
这可能是由于杂环常常要用链状化合物合成,通过杂环再合成链状化合物步骤较多。
但实际上杂环中有许多是容易合成的,并且操作简单而收率高,有些化合物应用经典方法难以合成,而应用杂环却容易实现。
例如:利用杂环增长碳链。
杂环化合物是一类具有药理活性的小分子化合物,许多研究人员以杂环类小分子化合物及其衍生物为母体,筛选具有抗菌活性的药物,因此研究杂化化合物的合成具有非常重要意义。
本论文结合我们实验室近几年研究工作的基础与特色,继续开展新的研究课题,主要利用聚焦微波辐射非催化无溶剂有机合成技术通过多组分缩合反应合成了一系列有机杂环化合物。
本论文共分三章:第一章文献综述本章对近年来微波辐射、无溶剂合成技术的发展及应用进行了较为详尽的综述。
第二章 微波促进无溶剂下3,4-二氢嘧啶-2-硫酮衍生物的合成本章研究了在无溶剂,无催化剂,微波辐射下以芳香醛、硫尿和乙酰乙酸乙酯为原料的Biginelli缩合反应,高产率地合成了32个3,4-二氢嘧啶-2-硫酮衍生物。
该方法不仅反应条件温和,反应时间短,避免使用催化剂,后处理过程简单,而且避免了使用有机溶剂给环境带来的污染,具有绿色合成的特点。
非线性混沌现象及其在激光原子相互作用和玻色爱因斯坦凝聚中的表
•What happens if we replace the ultra-cold atom with the BEC?
非线性混沌现象及其在 激光原子相互作用和玻 色爱因斯坦凝聚中的表
2021/1/4
非线性混沌现象及其在激光原子相互 作用和玻色爱因斯坦凝聚中的表
•概要 •1、非线性动力学混沌现象简介 • 保守系统的混沌 • 耗散系统的混沌 • 量子混沌 •2、应用于强激光的原子电离 •3、应用于波色---爱因斯坦凝聚体 •4、应用于纳米材料(如有时间)
非线性混沌现象及其在激光原子相互 作用和玻色爱因斯坦凝聚中的表
一、非线性系统的混沌现象
• 保守系统与耗散系统 区别点
相体积收缩与否
相同点
•混沌轨道有李雅谱诺夫指数描述
非线性混沌现象及其在激光原子相互 作用和玻色爱因斯坦凝聚中的表
•保守系统的标准映象
非线性混沌现象及其在激光原子相互 作用和玻色爱因斯坦凝聚中的表
hing
•Chirped pulse amplification
非线性混沌现象及其在激光原子相互 作用和玻色爱因斯坦凝聚中的表
强激光场中的原子----引言
• 近些年来,强场与原子相互作用问题引起人们的广泛 关注。这主要由于在过去几十年里激光技术和实验技 术的飞速发展使得①电磁场强度与库仑场(原子玻尔半 径处)在同.一量级(甚至超过);②可以非常精确地测 量光电子的能量及角分布等物理量。
作用和玻色爱因斯坦凝聚中的表
What is BECs good for
• Too new and we know too little • Potential application: Sensitive
measurement, tiny instrument, atom laser, quantum information, etc.
无硫磷三嗪衍生物的摩擦学研究
非保守集中力作用下饱和多孔悬臂梁的非线性弯曲
关键词 : 多孔介质理论 ; 饱和 多孔 kn截断法 e
中 图 分 类 号 : 5 . O3 7 3 文献标志码 : A 文章 编 号 :10 —8 1 2 1 ) 302 - 0 726 ( 00 0 -2 1 5 0
摘 要 : 于 孔 隙 流 体 仅 沿 梁 轴 向运 动 的 微 观 不 可 压 饱 和 多 孔 弹 性 梁 大 挠 度 弯 曲数 学 模 型 , 用 G l k 基 利 ae i 断 法 , r n截 研
究 固定端不可渗透 、 自由度可渗透的饱和多孔悬臂弹性梁在 自由端处承受 突加非保守集 中力作用下 的拟静 态非线 性弯曲问题 , 给出 了梁弯曲时挠度 、 弯矩等 随时间的响应 以及沿梁轴线 的分布. 数值结果 表明 : 当载荷较 小时 , 非保
J n 01 u .2 0
d i 1 . 9 9 j i n 1 0 —8 1 2 1 . 3 0 1 o : 0 3 6 / .s . 0 72 6 . 0 0 0 . 0 s
非保 守集 中力作 用 下饱 和 多 孔悬 臂 梁 的非 线 性 弯 曲
杨 骁 , 周冬 华
( 海 大 学 土 木 工 程 系 , 海 20 7 ) 上 上 00 2
Absr c t a t:Asu t n ma e i h t e tc lmo lf rlr e d fe to fmi r s o i nc mp e sb e s mp i d n t e ma h maia de o a g e c in o c o c pc i o r s i l o l s t ae o o l si e m St a u d i o e a ny fo i h ie to fa d f r d a i.Ba e n aurt d p r ea tc b a i h tf i n p r sc n o l w n t e d r cin o e me x s l l o sdo t i d l n n i e r u s—t t b ndng f a a u ae p r ea tc a t e e b a h s mo e , o ln a q a isai c e i o s t r td o o l si c n i v r e m wih ix d n l t f e e d i eme be a d fe n e e bl mp r a l n r e e d p r a e,wih a s d n y a p id o c n e v tv o c n r td ta s e s m t u de l p le n n o s r ai e c n e tae r n v r e
Nafion修饰碳纤维纳米电极在抗坏血酸共存下选择性测定多巴胺
V0 1 . 3 2 No . 1 Ma l " . 2 01 3
N a i t o n修 饰 碳 纤 维 纳 米 电极 在 抗 坏 血 酸 共 、 存 I 】 下 选 择 性 测 定 多 巴胺
程 寒, 陈 敏, 杨 沫, 孙欣欣, 韦光汉, 兰嘉峰
( 中南 民族 大学 药学院 , 武汉 4 3 0 0 7 4 ) 摘 要 采用电沉积法制备了 N a i t o n修饰碳 纤维纳米电极 , 利用 扫描 电子显微镜 ( S E M) 表征 了该修饰 电极 的表面
形貌, 采用差示脉 冲伏安法 ( D P V) 研究 了多 巴胺和抗坏血 酸在该修饰 电极上 的电化学 行为.结果 表 明:多 巴胺 和 抗坏血酸在裸碳纤维 电极上均能发生 电化学反应 , 两氧化峰重叠 .修饰 电极对带 负 电的抗 坏血酸有 良好 的屏 蔽作 用, 可在 1 . 0 m m o l / L高浓度抗坏血酸 的共存下选择性测定 多巴胺 , 峰 电流 与多 巴胺 浓度在 1 . 0×1 0 一 ~1 . 0×1 0 m o l / L之 间呈 现 良好 的线性 关系 , 检 出限为 1 . 0 x1 0 一m o l / L .该法有 望用于检测活体 中多 巴胺浓度 .
Do pa mi n e i n t he Pr e s e nc e o f As c o r b i c Ac i d
C h e n g H a n ,C h e n Mi n , Mo , S u n X i n x i n , We i G u a n g h a n , L a n J i a f e n g
第3 2卷 第 1期 2 0 1 3年 3月
中南 民族大学学报 ( 自然科学版)
J o u na r l o f S o u t h — C e n t r a l U n i v e r s i t y f o r N a t i o n l a i t i e s ( N a t . S c i . E d i t i o n )
纳米纤维素增强胶黏剂的微观蠕变性能
东
北
林
业
大
学
学
报
Vo 1 . 4 3 No . 1 0
J OURN AL 0F N0R T HEA S T F OR E S T R Y UNI VE RS I T Y
0c t . 2 0 1 5
纳米 纤维 素增 强胶 黏 剂 的微 观 蠕变 性 能 )
试 样 的 界 面 变形 最 小 , 其 次为 添加 C N C胶 黏 剂 的胶 合 木 材试 样 , 最 后 为 添加 N F C胶 黏 剂 的胶 合 木材 试 样 。 关键词 纳米纤维素 : 微观 : 蠕 变 分类号 T B 3 3 2
Mi c r o C r e e p P r o p e r t i e s o f A d h e s i v e Mo d i i f e d b y N a n o c r y s t a l l i n e C e l l u l o s e / / L i u C o n g , Z h a n g Y a n g ( N a n j i n g F o r e s t r y U n i v e r s i t y , N a n j i n g 2 0 1 1 3 7 , P . R . C h i n a ) ; Wa n g S i q u n ( U n i v e r s i t y o f T e n n e s s e e ) / / J o u r n a l o f N o r t h e a s t F o r e s t y r U n i v e r - s i t y , 2 0 1 5 , 4 3 ( 1 0 ) : l 1 8 — 1 2 1 .
考虑应变依赖性特征的硬涂层整体叶盘非线性减振分析
第52卷第2期2021年2月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.52No.2Feb.2021考虑应变依赖性特征的硬涂层整体叶盘非线性减振分析高峰1,2,刘秀婷1,3(1.南京信息工程大学滨江学院自动化学院,江苏无锡,214105;2.东北大学航空动力装备振动及控制教育部重点实验室,辽宁沈阳,110819;3.东北大学材料各向异性与织构教育部重点实验室,辽宁沈阳,110819)摘要:为了提升整体叶盘在恶劣工况下的运行可靠性,提出一种对叶片附加非线性硬涂层材料的被动阻尼减振方法,并研究具有应变依赖性的涂层整体叶盘的非线性振动特性。
首先,利用实验离散数据和高阶多项式描述具有应变依赖性的硬涂层材料的非线性力学参数;然后,利用改进的Oberst 梁理论和基于正交多项式的Rayleigh-Ritz 能量法建立涂层整体叶盘的非线性动力学模型;其次,提出基于Newton-Raphson 法的非线性迭代求解流程,研究涂层整体叶盘的非线性振动特性;最后,选择叶片附加非线性NiCoCrAlY+YSZ 硬涂层的整体叶盘为实例进行数值分析与实验测试。
研究结果表明:在使整体叶盘固有频率变化不大的前提下,硬涂层可以有效抑制其振动响应峰值,而应变依赖性则进一步加强了硬涂层材料对整体叶盘的振动控制。
关键词:整体叶盘;硬涂层材料;应变依赖性;Newton-Raphson 法;非线性振动特性中图分类号:TJ650.3;TB535文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2021)02-0410-11Nonlinear vibration reduction analysis of hard-coating blisk withstrain-dependent mannerGAO Feng 1,2,LIU Xiuting 1,3(1.School of Automation,Binjiang College,Nanjing University of Information and Technology,Wuxi 214105,China;2.Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education,NortheasternUniversity,Shenyang 110819,China;3.Key Laboratory of Anisotropy and Texture of Materials Ministry of Education,Northeastern University,Shenyang 110819,China)DOI:10.11817/j.issn.1672-7207.2021.02.009收稿日期:2020−04−20;修回日期:2020−05−15基金项目(Foundation item):南京信息工程大学滨江学院人才启动经费资助项目(2019r007);江苏省高等学校自然科学研究项目(20KJB460004)(Project(2019r007)supported by the Start-up Funds for Talents of Binjiang College,Nanjing University Information and Technology;Project(20KJB460004)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China)通信作者:高峰,博士,讲师,从事机械系统动力学及其控制研究;E-mail :***************引用格式:高峰,刘秀婷.考虑应变依赖性特征的硬涂层整体叶盘非线性减振分析[J].中南大学学报(自然科学版),2021,52(2):410−420.Citation:GAO Feng,LIU Xiuting.Nonlinear vibration reduction analysis of hard-coating blisk with strain-dependent manner[J].Journal of Central South University(Science and Technology),2021,52(2):410−420.第2期高峰,等:考虑应变依赖性特征的硬涂层整体叶盘非线性减振分析Abstract:In order to improve the operating reliability of integrally bladed disk(blisk)under severe conditions,a novel methodology of passive vibration reduction by damping nonlinear hard-coating materials on blades was proposed,and the nonlinear vibration characteristics of hard-coating blisk were investigated.Firstly,based on the discrete values obtained from the vibration experiment,the nonlinear mechanical parameters of hard-coating material were characterized using high-order polynomials;the nonlinear dynamic model of hard-coating blisk was established using the modified Oberst beam theory and the energy-based Rayleigh-Ritz method considering orthogonal polynomials;next an iterative solution procedure based on the Newton-Raphson method was developed to solve the nonlinear vibration characteristics of hard-coating blisk.Finally,the numerical calculation of an academic blisk deposited nonlinear NiCoCrAlY+YSZ hard coating on both sides of blades was conducted, and the comparasions of numerical and experimental results were carried out for model validation.The results show that the vibration responses of the blisk are suppressed effectively by the hard-coating material without influencing its natural frequencies significantly,and these functions for vibration reduction can be further reduced by the strain-dependent manner.Key words:integrally bladed disk;hard-coating materials;strain-dependent manner;Newton-Raphson method;nonlinear vibration characteristics随着航空发动机在大推力与轻量化方向的快速发展,无榫结构(通过整体加工或焊接制造)的整体叶盘得到越来越广泛的应用[1]。
稠油开发调研整理
Non-newtonian effects on the primary production of heavy oil reservoirs (2)Improved heavy oil recovery by low rate waterflooding (3)Key issues in heavy oil waterflooding projects (3)Optimal heavy oil waterflood management may differ from that of light oils (4)Water flooding viscous oil reservoirs (5)Mechanism of heavy oil recovery by low rate waterflooding (6)Experimental study of the mechanisms in heavy oil waterflooding using etched glass micromodel (7)Non-newtonian effects on the primary production of heavy oil reser voirs阿尔伯塔一些稠油油藏自然递减开采速度远大于达西定律预测的速度,并且能保持几年这样的水平。
文章中利用扩散方程探讨了非牛顿流体流动特性对如此高的开采速度的影响。
结果发现,膨胀(剪切增厚)作用能为距井筒一定距离剪切速率低的位置较低的表观粘度提供解释。
对于一口无限大地层中的井,作图,纵坐标无因次压力,横坐标无因次时间,n=1的曲线是标准的牛顿流体的表现(均质油藏,小的恒定压缩,小的压力梯度,均一厚度)。
对于n小于1,流体是假塑性流体(剪切稀释),压力梯度随时间增加,产出油藏流体越来越困难。
这是剪切稀释效应的后果,较低的剪切速率时,表观粘度很高。
开始时,生产井筒附近的流体很容易,因为那里的剪切速率相对高。
未折叠蛋白反应在强噪声致豚鼠耳蜗细胞损伤过程中的作用
未折叠蛋白反应在强噪声致豚鼠耳蜗细胞损伤过程中的作用薛秋红;陈小林;龚树生;谢静;陈佳;何坚【摘要】Objective To study the unfolded protein glucose-regulated protein 78 (GRP78) expression level after intense noise exposure,and to find out the relationship between UPR and the intense noise induced cochlea cell damage. Methods Forty-eight guinea pigs were randomly divided into 6 groups(8 guinea pigs/group). The guinea pigs in the experiment groups were exposed to 4 kHz narrow band noise at 120 dB SPL for 4 housr while aninals in control group received no noise exprsure. Auditory brainstem response(ABR) of the guinea pigs in experiment and control groups were tested at 3 hours, 1, 4, 14,30 days post noise exposure. Four guinea pig's cochleas from each group were used for paraffin sectioning, and the rest was used for the total protein extraction. Expression of Bip/GRP78 was studied by immunohistochemistry sectioning and western blot. Results There were significantly higher expressions of Tunel-Positve cells in the OHC,SGC and SV in experiment groups compared with those in the controi group (P<0.01). Protein levels ofBip/GRP78 were significantly increased after noise exposure compared with those in the control group (P<0.01). Conclusion After intense noise exposure, UPR protection mechanisms were initiated and by upregulating the expression of molecular chaperones Bip/GRP78, folded proteins were correctly guided, thus reducing cell damage. This may be one of the endogenous protective mechanisms in the guinea pig cochlea.%目的探讨未折叠蛋白反应(unfolded protein response,UPR)标志物葡萄糖调节蛋白78(Bip/GRP78)在强噪声致豚鼠耳蜗细胞损伤中的作用.方法 48只豚鼠随机分为6组,分别为健康对照组(不给噪声暴露)和强噪声暴露后3 h、1 d、4 d、14 d、30 d 组,每组8只,噪声暴露的5组豚鼠在120 dB SPL、4 kHz窄带噪声环境暴露4 h 后,各组豚鼠于相应时间点处死前及对照组均测试听性脑干反应(ABR),然后每组各取4只豚鼠耳蜗作石蜡切片,余4只豚鼠提取耳蜗总蛋白.用免疫组化及Western Blot方法检测Bip/GRP78的表达及其在耳蜗的分布.结果强噪声暴露后各组Bip/GRP78蛋白表达明显高于正常组,且各时间点都维持在比较高的水平,Bip/GRP78蛋白在噪声暴露后各组豚鼠耳蜗的内外毛细胞、螺旋神经节细胞、侧壁细胞均有表达.结论强噪声暴露后,启动UPR保护机制,通过上调分子伴侣Bip/GRP78的表达,引导蛋白质正确折叠,降低细胞损伤,可能是耳蜗内源性保护机制之一.【期刊名称】《听力学及言语疾病杂志》【年(卷),期】2011(019)002【总页数】4页(P149-152)【关键词】未折叠蛋白反应;葡萄糖调节蛋白78;强噪声;耳蜗;损伤【作者】薛秋红;陈小林;龚树生;谢静;陈佳;何坚【作者单位】武汉科技大学附属天佑医院耳鼻咽喉科,武汉,430064;武汉科技大学附属天佑医院耳鼻咽喉科,武汉,430064;首都医科大学附属北京同仁医院耳鼻咽喉头颈外科;武汉科技大学附属天佑医院耳鼻咽喉科,武汉,430064;武汉科技大学附属天佑医院耳鼻咽喉科,武汉,430064;武汉科技大学附属天佑医院耳鼻咽喉科,武汉,430064【正文语种】中文【中图分类】R764.43+3内质网是细胞加工蛋白质和储存钙离子的场所,许多理化因素可以导致未折叠或错误折叠蛋白质在内质网的蓄积以及细胞内钙稳态的失衡,这种状态称为内质网应激,近年来有关内质网应激的信号通路与效应的研究已成为热点。
脂肪组织材料本构模型参数力学响应灵敏度分析
脂肪组织材料本构模型参数力学响应灵敏度分析
段海彤;郑光洁;韩菲菲;胡帛涛;梁亚妮
【期刊名称】《河南科技》
【年(卷),期】2024(51)4
【摘要】【目的】确定脂肪组织材料各材料本构的参数灵敏度,以便合理简化参数反求变量,提高材料对标效率。
【方法】采用对4种常用的脂肪组织材料本构模型进行无约束压缩试验,研究各材料参数对力学响应的影响情况。
【结果】线性黏弹性材料本构中短效剪切模量与衰减常数对接触力影响显著,Mooney-Rivlin超弹性本构中材料常数对接触力值影响较大,Ogden超弹性本构模型中Og⁃den系数对接触力值影响最显著,软组织材料本构中材料常数对接触力影响显著。
【结论】为脂肪组织材料力学性能研究、参数反求及材料对标工作的合理简化提供了参考,极大地提高了计算效率。
【总页数】5页(P93-97)
【作者】段海彤;郑光洁;韩菲菲;胡帛涛;梁亚妮
【作者单位】中汽研(天津)汽车工程研究院有限公司
【正文语种】中文
【中图分类】U467.14;R318.01
【相关文献】
1.两种A2/O工艺的活性污泥2D模型动力学参数灵敏度分析
2.基于自适应响应面法的脂肪组织材料参数反求
3.微型扑翼飞行器动力学模型参数的灵敏度分析
4.基于参数灵敏度分析的连续刚构桥有限元模型修正
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:physics /01221v1[physics.acc-p h]11D ec2LBNL-47144December,2000Nonlinear QED Effects in Heavy Ion Collisions Spencer R.Klein Nuclear Science Division,Lawrence Berkeley National Laboratory Berkeley,CA,94720,USA E-mail:SRKLEIN@ Peripheral collisions of relativistic heavy ions uniquely probe many aspects of QED.Examples include e +e −pair production and nuclear excitation in strong fields.Af-ter discussing these reactions,I will draw parallels between γ→e +e −and γ→q q pairs are a prolific source of vector mesons,which demonstrate many quantum effects.The two ions are a two-source interferometer,demonstrating interference between meson waves.Mul-tiple vector meson production will demonstrate superradiance,a first step toward a vector meson laser.Finally,I will discuss the experimental program planned at the RHIC and LHC heavy ion colliders.Invited talk,presented at the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics,October 15-20,2000,Capri,Italy 1Introduction Heavy ion collisions might seem like a strange topic for an accelerator physics conference.However,many topics of interest to accelerator physicists also occur in peripheral heavy ion collisions.In these collisions,the ions do not physically collide.Instead,they interact electromagnetically at long ranges,up to hundreds of fermi.Relativistic heavy ions carry extremely strong elec-tromagnetic fields,allowing tests of nonperturbative electrodynamics.These fields are strong enough to allow for multiple reactions involving a single pair of ions,so quantum fluctuations and superluminous emission can be studied.Even for single particle production,quantum interference affects the vector meson spectrum.All of these topics have parallels in advanced accelerator design.And,some aspects of heavy ion interactions impact directly on ac-celerator design.This writeup will review the physics of peripheral heavy ioncollisions,with an emphasis on principles.Mathematical and experimental details are left to the references.Several different types of peripheral reactions are possible.The two nuclei may exchange one or more photons (Fig 1a).One or both nuclei may be excited1A*d)A AA Figure 1:Some peripheral reactions:(a)Mutual nuclear excitation.(b)Two-photon in-teractions (c)Multiple (double)interaction,possible because Zαis large.(d)Two-photon interaction with nuclear excitation.The dashed line shows how the reaction factorizes into independent two-photon (or photon-Pomeron)and nuclear excitation reactions.This is the dominant diagram;the amplitude for excitation by the photon in (b)is small 7.into a Giant Dipole Resonance (GDR)or higher state.Or,the photon may interact with a single nucleon in the nucleus in an incoherent photonuclear interaction.Two fields may interact with each other.In a two-photon interaction,each nucleus emits a photon.The two photons collide to produce a leptonic or hadronic final state,as in Fig.1b.The fields are so strong that ‘two-photon’is a misnomer-the number of photons from one nucleus may be large,and,in fact,poorly defined.A photon from one nucleus may interact with the coherent meson or Pomeron fields of the other.Although this reaction has some similarities with incoherent photonuclear interactions,coherence restricts the final state kinematics,so reactions involving two coherent fields produce kinematically similar final states.Here,we (by definition)require that the two nuclei physically miss each other and do not interact hadronically.The impact parameter b >2R A ,R A being the nuclear radius.More detailed calculation will calculate and use the non-interaction probability as a function of b .In the nuclear rest frame,a photon,Pomeron or meson coupling coherently to a nucleus must have p <¯h c/R A .More precisely,the coupling is governed2by the nuclear form factor.In a collider where each nucleus is Lorentz boosted byγ,this coupling transforms to p⊥<¯h c/R A and photon energy k=p||<γ¯h c/R A.So,two-field interactions can occur up to a maximum energy W= 2γ¯h c/R A,with afinal state p⊥<2¯h c/R A.For photons,p⊥is actually smaller, peaked at p⊥<¯h c/b.Two-photon,photon-Pomeron/meson and double-Pomeron/meson reac-tions are all possible.Double-Pomeron/meson interactions are limited to a narrow range of impact parameter because of the short range of the strong force.Therefore,they will occur with a relatively low cross section.They will also have a quite different p⊥spectrum.The p⊥spectral difference will allow some statistical separation between two-photon and photon-Pomeron interac-tions.For most applications,the electromagneticfields of ultra-relativistic nuclei may be treated as afield of virtual photons,following Weizs¨a cker-Williams. The photonflux from a nucleus with charge Z a distance r from a nucleus isd3N(k,r)K21(x)(1)π2kr2where x=kr/γ¯h and K1(x)is a modified Bessel function.The two-photon luminosity is the overlap of the two photonfields.The usable two-photon luminosity Lγγis this overlap,integrated over all b>2R A.This can be calculated usingLγγ(W,Y)=L AA dk1k22π ∞R A b1db1 ∞R A b2db2 2π0dφd3N(k1,b1)dk2d2b2Θ(b−R1−R2)(2)where L AA is the nuclear luminosity,Θis the step function and the impact parameter b=Table1:Beam Species,Energies,Luminosities,compared for RHIC(Summer,2000),RHIC Design and LHC.RHIC is expected to reach it’s design parameters in2001.Machine Beam Energy(cm−2s−1)Gold2×1025 RHIC100GeVSilicon4.4×1028 LHC 2.76TeVCalcium2×1030b>2R A:dNγπk XK0(X)K1(X)−X2ln k maxπTable2:Cross sections for nuclear excitation5,pair production(Eq.5),bound-free pair production5,ρ,J/ψand double-ρproduction16.The nuclear excitation and bound e−cross sections are per ion.Systemσ(e+e−)σ(ρ)σ(ρρ) 58b45b290µb150mb 1.8mb 3.6µb113b102b32mb800mb36mb390µbq pairs are produced,but not charge-free states like glue-balls.Hybrids(q qqW γγ [GeV ]d L /d W γγ [1030 c m -2 s -1 Ge V -1]RHIC I+I CESR LEP 10-310-210-1110102103Figure 2:Two-photon luminosity expected at RHIC with gold and iodine beams,compared with the luminosities at LEP II (√s =10GeV and a luminosity of 2.9×1032cm −2s −1).charged and neutral mesons are produced.Two-photon interactions at heavy ion colliders are of interest because that the luminosity scales as Z 4and extremely high rates are possible.Figure 2compares the γγluminosities at RHIC,with the LEP and CESR e +e −col-liders 8;for W <1.5GeV,RHIC can reach the highest presently available two-photon luminosities.Heavy ion colliders also probe some unique areas,such as multiple pair production,and bound-free pair production;both are probes of strong field QED.3.1Lepton Pair ProductionLepton pair production can test the limits of perturbative QED.Perturbation theory may fail because the coupling Aαis so large.Even with perturbative approaches,e +e −production introduces additional complications.The elec-tron Compton wavelength,Λe =386fm,is large compared to typical impact parameters.So at W ∼2m e ,where the bulk of the cross section is,the pair production is poorly localized.The first perturbative calculation specific to heavy ion collisions was by Bottcher and Strayer 9.They treated the ions as sources of classical (but relativistic)electromagnetic potentials that follow fixed trajectories.This approach naturally incorporated off-shell photons.This calculation also ac-counted for large electron Compton radius Λe =386fermi,with an appropriate cutoff.In the two-photon approach,Λe should replace the minimum impact6parameter,R A∼7fermi,in Eq.2.This reduces the cross section significantly compared to earlier calculations.A slightly later,more refined calculation by Baur and Bertulani included Coulomb corrections,to account for the fact that the pair is produced deep in a Coulomb potential10.With this refinement,the cross section is given byσ=28Z4α4¯h22)−3f)ln2(Γδf=(Zα)2Σ∞n=1[n(n2+Z2α2)]−1is the usual Coulomb correction.The ln3term dom-inates at high energy.Other authors have found slightly different results, depending on the details of the calculation.Baur and Bertulani also calculated the probability of pair production at a given b.With gold at RHIC,this probability is greater than1for b=Λe! The differential cross section dσ/2πbdb saturates.The problem is resolved by multiple pair production:a single ion pair small-b confrontation can produce more than one pair.The the number of pairs is Poisson distributed,with the b-dependent mean11.This saturation can also affect calculations of the single pair cross section.Numerous authors have considered non-perturbative e+e−production, usually using the time-dependent Dirac equation.Some authors solved the coupled-channel equations numerically.The ions were stepped through their positions.At each step,the coupling from the initial state to a pair-containing final states was calculated.An accurate calculation requires a complete and orthogonal set of states.This turned out to be rather difficult,and early calculations found results that varied by orders of magnitude.Baltz and McLerran calculated pair production to all orders12.Their method is similar to the perturbative calculation.They worked in light-cone coordinates with Lienard-Wiechert potentials similar to those of Bottcher& Streyer.Theyfirst found the Greens function for the exact wave function at the interaction point.The transition amplitude was then constructed from the Greens function.The total cross section is this amplitude,integrated over impact parameter and intermediate transverse momentum.Their result matches the perturbative result(without Coulomb corrections).Recently,Roman Lee and stein found a problem with the order of integration in the Baltz and McLerran paper13.When the order changed,Lee and Milstein the result changed to include the Coulomb correction found by Baur&Bertulani(thepair production,their result was smaller than the perturbative result.Since multiple pair production is naturally a higher order process,it’s not surprising that a difference appears.A related reaction is bound-free pair production where the electron is pro-duced bound to one of the nuclei.As with free pairs,perturbative calculations may be inadequate,and an exact solution to the time-dependent Dirac equa-tion is desired.This problem has also been tackled perturbatively;here the final state consists of a free positron and an electron in an atomic orbital.The cross section to produce an electron bound in an atomic K−shell is3σ=33πZ8α8¯h2exp(2πZα)−1 ln(Γδ3 .(6)The stronger Z dependence comes from the electron-nucleus binding energy. Inclusion of higher shells will increase this by about20%.This cross section has the formσ=A ln(γ)+B.Extrapolations from lower energy data using this formfind a cross section about twice as large14.Coupled-channel calculations have been tried on this problem,and produced a wide range of results.Also,as with free-production,an all-order solution to the time-dependent Dirac equa-tion has recently been found,again using light-cone coordinates15.The result was slightly lower than perturbation theory.The cross section for bound-free production is much lower than for free production,so that dσ/2πbdb is not saturated.The1-electron atoms produced in this reaction have their momentum un-changed,so that they will follow well-defined trajectories.As with nuclear excitation,this can lead to heating of the accelerator magnets and also allow for extracted beams5.In principle,these non-perturbative aspects of pair production also apply toµ+µ−andτ+τ−production.However,the masses are much larger,so any non-perturbative effects are much smaller.Because mµ>¯h/R A,Eq.2applies for heavy lepton production.4qq is similar toγ→e+e−;only thefinal state charges and masses are different.Just as the virtual e+e−pair can interact with an external Coulombfield and become real,the qalternate language,l f=¯h/p||,where p||is the momentum transfer required to make the pair real.For e+e−pairs,l f is typically much larger than a single atom;for qq scatters elastically from the a nucleus with atomic number A.This scattering is mediated by the strong force and transfers enough momentum to give the meson its mass.The scattering leaves the photon quantum num-bers J P C unchanged.This elastic scattering cannot easily be described in terms of quarks and gluons.The most successful description is in terms of the Pomeron17.For hard processes the Pomeron may be thought of as a 2-gluon(quasi-bound)ladder,connected by gluon rungs.However,for soft processes such as elastic scattering,this picture may be inappropriate.For soft reactions,the best picture is the40-year old soft-Pomeron diffractive pic-ture18.The Pomeron absorbs part of the photon wave function,allowing a qq amplitude and the elastic scattering amplitude.Thefirst part can be determined from the partial width for V→e+e−,allowing vector meson production data tofix the scattering amplitude.Vector meson dominance allows us to treat the qforward amplitude scales as A2.This limit applies for heavy systems such as cσ(γA→V A).(9)dkThe factor of2is because either nuclei can act as target or emitter.These cross sections are given in Table2.The implications of this straightforward calculation are significant.The cross sections are huge.With gold at RHIC,ρ0production is10%of the total hadronic cross section.With lead at LHC,theρ0cross section is about equal to the hadronic cross section!Heavy ion colliders can act as vector meson factories,with rates comparable to e+e−vector meson machines.The1010φproduced in106seconds with calcium beams at LHC is comparable to that expected at a dedicatedφfactory.Searches for rare decay modes,CP violation and the like are possible.Also,vector meson spectroscopy will be productive; mesons like theρ(1450),ρ(1700)andφ(1680)will be copiously produced.Fully coherentfinal states will be distinctive.Thefinal state p⊥is a con-volution of the photon and Pomeron p⊥.Figure3shows these contributions. The mean p⊥from the photon is¯h/b,considerably smaller than¯h/R A.This approach can alsofind the vector meson rapidity distribution.The final state rapidity y=1/2ln(M V/k).So,dσ/dy=k/2dσ/dk and can be determined from Eq.9.The photon can come from either direction,so the totalσ(y)includes contributions for photons from+y and−y.dσ/dy is shown in Fig.4.4.1InterferenceThe observed p⊥spectrum is more complicated than Fig.3shows.Either nucleus can emit the photon.The two possibilities are indistinguishable,and10d N /d p ⊥2a)y=0p ⊥ [GeV/c ]d N /d p ⊥2b)y=-210-310-210-1110-310-210-1100.050.10.150.2Figure 3:The vector meson p ⊥spectrum (solid line)at y =0(a)and y =2(b)is the convolution of the photon p ⊥(dotted line)and the scattering p ⊥transfer (dashed line).therefore,they interfere.In essence,the two nuclei act as a two-source inter-ferometer.The two possible emitters are related by a parity transformation.Vector mesons are negative parity so the two possibilities contribute with op-posite signs,producing destructive interference 19.The cross section isσ(p ⊥,y,b )=A 2(p ⊥,y,b )+A 2(p ⊥,−y,b )−2A (p ⊥,y,b )A (p ⊥,−y,b )cos(φ(y )−φ(−y )+ p ⊥· b )(10)where A (p ⊥,−y,b )is the production amplitude and φ(y )is the productionphase.A may be found from the previous section.For pure Pomeron exchange,the production is almost real.The production phase always cancels at y =0,and cancels everywhere unless φdepends on k .Variation is likely with the ρand ωbecause of the meson contribution.For other mesons,it is likely to be small or negligible.11d σ/d y [m b ]Au RHICρφd σ/d y [m b ]J/Ψyd σ/d y [µb ]Ca LHCy50100-5-2.50 2.552468-5-2.50 2.55255075100-5-2.50 2.5502.557.510-5050.20.40.60.8-505204060-55Figure 4:Rapidity distribution dσ/dy with gold at RHIC (left panels)and calcium at the LHC (right panels)for the ρ0,φand J/ψ.The solid line is the total,while the dashed line shows the production for a single photon direction.At midrapidity,the interference simplifies toσ(p ⊥,y =0,b )=A 2(p ⊥,y =0,b )(1−cos [ p · b ]).(11)For a given b ,σoscillates with period ∆p ⊥=¯h /b .When p ⊥b <¯h ,the inter-ference is destructive and there is little emission.The mean b for ρproductionat RHIC is about 40fermi,rising to 300fermi at LHC.The impact parameter is unmeasured,so it is necessary to integrate over all b .This dilutes the interference,except for p ⊥<¯h / b .Figure 5shows the expected p ⊥spectrum with and without interference.The mean impact parameter for ρproduction with gold at RHIC is 40fermi,far larger than the rho decay distance γβcτ<1fermi.The vector12d N /d p ⊥2a)Au+Au φb)Si+Si φc)Ca+Ca φp ⊥ [GeV/c ]d N /d p ⊥2d)Au+Au J/Ψp ⊥ [GeV/c ]e)Si+Si J/Ψp ⊥ [GeV/c ]f)Ca+Ca J/Ψ00.20.40.60.8100.20.40.60.8100.10.200.10.200.10.2Figure 5:Meson p ⊥spectra,with (solid lines)and without (dashed line)interference,at y=0.The top panels are for the φ,and the bottom for the J/ψ,with gold (left)and silicon (center)at RHIC,and calcium at the LHC (right).mesons decay before their wave functions can overlap!However,the decay product do overlap and interfere.The angular distributions for the two ρ0sources are the same,so the interference pattern is not affected.This process requires a non-local wave function.Consider ρ0→π+π−,with b ∼40fermi.Before the π+waves from the 2sources can overlap,they must travel ∼20fermi each,during which time the π−waves will travel 20fermi in the opposite direction,and the π+and π−waves will be separated by 40fermi.So,non-locality is required to produce this interference pattern.Although there is as yet no counterpart to Bell’s inequality,the choice of quantum observable does matter for this system.Consider a system where b is measured.For the π+and π−,one can measure either the momentum or position.If the momenta of both πare measured,then the interference pattern is observed.If the π+momentum is known,that disallows certain values of π−momentum where destructive interference is complete.If the positions of both πare measured,the production point can be determined,but the interference disappears.If one position and one momentum are observed,neither the interference pattern nor the production point can be determined.13The wave function of the system isΨ( x)=exp(i( k−+ k+)· x) exp(i( k−+ k+)· R A)−exp(i( k−+ k+)· R B) (12) where x is where the vector meson would be if it didn’t decay;in the vector meson rest frame x=1/2( x++ x−)where x+and x−are the position for theπ+andπ−,and k+and k+their momenta.This wave function cannot be factorized:Ψ(π+π−)=Ψ(π+)Ψ(π−).Since theπ+andπ−are well separated, the wave function is non-local.This system is thus an example of the Einstein-Podolsky-Rosen paradox.4.2Multiple Vector Meson ProductionThe vector meson production probability at a given b may be calculated with the impact-parameter dependent photonflux.This is shown in Fig. 6.At b=2R,the probability ofρ0production is1%at RHIC,rising to3%at LHC. These probabilities are high enough that multiple meson production should be observable.In the absence of quantum or other correlations,multiple meson production should be independent and Poisson distributed.At b=2R,the ρ0ρ0probabilities are(1%)2/2and(3%)2/2at RHIC and LHC respectively. After integration over b,1.4millionρ0ρ0are expected per year at RHIC.Like meson triples should also be produced in observable numbers.Vector mesons are bosons so production of like-meson pairs should be enhanced for momentum differencesδp<¯h/R A.The meson follows the photon spin and can be aligned or anti-aligned with the beam direction,so the enhancement is only50%,so N(pair)∼=1+0.5exp(δpR A/¯h).5Experimental StatusFixed target measurements have been published for pair production,with and without capture,and nuclear excitation.Due to space limitations,this writeup will only consider relativistic collisions,withΓ>10.The solid targets,with the nuclei surrounded by their electron clouds,differ from the stripped ion collisions we focus on here.Measurements of pair production in sulfur on heavy ion collisions aroundΓ=160have matched theoretical predictions20. Pair production with capture has also been studied with lead beams14.As was previously mentioned,when scaled to RHIC and LHC energies,this data may exceed current estimates.However,corrections may be needed for the limited boost of the current experiments.Programs to study a variety of peripheral reactions are underway in the STAR collaboration at RHIC and the CMS collaboration at LHC.For most14b [fm ]d σ/2πb d bJ/ΨΦωρ10-810-710-610-510-410-310-210-10102030405060Figure 6:Probability of meson production,with gold at RHIC,as a function of b .reactions,the largest backgrounds are expected to be grazing hadronic colli-sions,beam gas interactions,and incoherent photonuclear interactions 8.For triggering,debris from upstream interactions,and cosmic ray muons can be important.These backgrounds can be separated from the signals by selecting events with low multiplicity,typically,2or 4,low total p ⊥,and zero net charge.Baryon number and strangeness must also be conserved.At the trigger level,significant rejection can be achieved by requiring that the event originate inside the interaction region;this removes most of the beam gas events,along with almost all of the upstream interactions and cosmic ray muons.Event timing cuts also help reject cosmic ray muons.The STAR detector combines a large acceptance with a flexible trigger 21.Charged particles are detected in the pseudorapidity range |η|<2and 2.4<|η|<4by a large central time projection chamber (TPC)and two forward TPCs.This TPC can also identify particles by dE/dx .Neutral particles are detected by a central barrel (|η|<1)and endcap (1<η<2)calorimeter.Two zero degree calorimeters will detect neutrons from nuclear breakup,useful for background rejection.For triggering,a scintillator barrel covering |η|<1and multi-wire pro-portional chambers covering 1<|η|<2measure charged particle multiplicity on an event by event basis.These detectors have good segmentation,allowing15Figure7:Side view of an event collected with the peripheral collisions trigger.The invariant mass and p⊥are consistent with coherentρ0production.for total multiplicity and topological selection in the trigger.The trigger has 4levels,with the earliest level based onfield programmable gate arrays and the later levels computer based.Thefinal selection uses on-line TPC track-ing.Peripheral collisions data will be collected in parallel with central collision data.Simulations show that the planned trigger algorithms should be able to efficiently select peripheral events while rejecting enough background enough to minimize deadtime8.STAR took it’sfirst data this summer(2000).The central TPC,scintillator barrel and zero degree calorimeters were operational.Although the trigger was not completely functional,in late August,the collaboration took about7hours of data with a dedicated trigger optimized to select2-track peripheral events22. The trigger rate of20-40Hz wasfiltered to1-2Hz by thefinal trigger,which reconstructed the tracks on-line.About20,000events were written to tape.The initial event selection required a2-oppositely-charged track,primary vertex in the interaction diamond.The tracks were required to be at least slightly acoplanar to eliminate cosmic ray muons,and the event had to have a small p⊥.About300events passed these cuts.This data is now being analyzed for signals from e+e−pair andρ0production-the two processes16with the largest cross sections.Figure7shows an example of aρ0candidate.The CMS collaboration plans to study peripheral collisions with lead and calcium beams at LHC23.Their plans are at a fairly early stage.6ConclusionsPeripheral collisions of heavy nuclei can probe a wide variety of phenomena, including many faces of strong QED.Production of e+e−and qcolliders,CERN-SL-99-033EA.15.A.J.Baltz,Phys.Rev.Lett.78,1231(1997).16.S.R.Klein and J.Nystrand,Phys.Rev.C60,014903(1999).17.Quantum Chromodynamics and the Pomeron,by J.R.Forshaw and D.A.Ross,Cambridge University Press,1997,is a good discussion of themodern Pomeron.For a more traditional approach,see Ref.6.18.T.H.Bauer,R.D.Spital,D.R.Yennie and F.M.Pipkin,Rev.Mod.Phys.50,261(1978).19.S.R.Klein and J.Nystrand,Phys.Rev.Lett.84,2330(2000).20.R.Baur et al.,Phys.Lett.B332,471(1994);C.R.Vanes et al.,Phys.Rev.Lett.69,1711(1992).21.K.H.Ackermann et al.,Nucl.Phys.A661,681(1999).22.J.Seger,presented at the2000APS Division of Nuclear Physics Meeting,Oct.4-7,2000,Williamsburg,VA.Transparencies are available on the web at /STAR/conf/talks2000/dnp/seger.pdf.23.G.Baur et al.,hep-ph/9904361.18。