Quantum Cellular Automata
元胞自动机的产生
元胞自动机的产生元胞自动机(CA)的概念最早在20世纪50年代由冯•诺依曼提出,主要用于模拟生命系统的自复制功能,而其真正得到广泛关注则是在Conway于1970年提出生命游戏之后,随后CA 被广泛用于各个领域。
一方面元胞自动机的演化行为十分丰富,理论上可以模拟任何复杂的行为,另一方面元胞自动机模型足够简单,方便对复杂系统的本质特征进行研究。
元胞自动机(CA)具有强大的空间模拟能力,这类简单的模型够能十分方便地模拟和预测复杂的现象或动态演化过程中的吸引力、自组织和混沌现象。
因此目前CA被广泛应用于模拟各种物理系统和自然现象,如流体流动、星系形成、雪崩、交通流模拟、并行计算及地震等。
CA的核心是如何定义局部规则,用CA来模拟一个物理过程的优点在于省去了用微分方程作为过渡,而直接通过制定转换规则来模拟非线性物理现象。
在这些实际应用中,CA模型通过简单的微观局部规则揭示了自然发生的宏观行为,是目前研究时空离散的理想物理模型,在研究复杂系统方面被认为是一种最有效的工具之一。
元胞自动机起源于20世纪40年代,“现代计算机之父” 冯.诺伊曼设计可自我复制的自动机时,参照了生物现象的自繁殖原理,提出了元胞自动机的概念和模型。
它是一时间和空间都离散的动力系统,散步在规则格网中的每一元胞取有限的离散状态,遵循同样的作用规则,依据确定的局部规则同步更新,大量元胞通过简单的相互作用而构成动态系统的演化,不同于一般的动力学模型,元胞自动机不是由严格定义的物理方程定义的物理方程或函数确定,而是用一系列模型构造的规则构成。
凡是满足这些规则的模型都可以算作是元胞自动机模型20世纪70年代,Con way编制的“生命游戏”是最著名的元胞自动机模型,显示了元胞自动机在模拟复杂性系统的无穷潜力。
引起了物理、数学、生物、计算机、地理等领域专家的兴趣,“生命游戏”被认为是元胞自动机研究的真正开始。
20世纪80年代是元胞自动机理论的大发展时期。
nca和qca的原理
nca和qca的原理
NCA和QCA都属于邻近域传感器网络技术,它们的原理如下:
1. NCA(Negative Capacitance FET-based Accelerometer)的原理:
- NCA是一种基于负电容场效应晶体管(NC-FET)的加速度计。
NC-FET电极由两个机械振动的测量电极和一个固定电极
组成。
其中一个测量电极通过机械振动引起电容变化,另一个测量电极用于触发和测量变化。
- NCA中的特殊结构使其具有负反馈效应。
当振动引起电容变化时,负反馈控制电路会产生一个负电荷来抵消电容变化,以维持电容的恒定值。
通过测量负反馈电荷的大小,可以推断振动的加速度。
2. QCA(Quantum-dot Cellular Automata)的原理:
- QCA是一种基于量子点细胞自动机的计算技术。
量子点是一种微观尺度的半导体结构,可以用于构建不同的逻辑门。
QCA中的计算单元由一系列量子点组成,每个量子点内的电
子在不同的能级间运动。
- 通过控制量子点之间的相互作用,可以实现逻辑门的功能。
例如,两个量子点之间的库伦排斥力可以用于实现NOT门,
而四个量子点的互相作用可以用于实现多输入的逻辑门。
- QCA中的信息传输是通过量子点之间的电荷运动来实现的。
当输入信号进入QCA电路时,电荷会在量子点之间进行运动,从而传递信息。
由于量子点之间的相互作用是非局域的,
QCA具有高速、低功耗和高可扩展性的特点。
元胞自动机(CellularAutomata),简称CA,也有人译为细胞
元胞自动机(Cellular Automata),简称CA,也有人译为细胞自动机、点格自动机、分子自动机或单元自动机)。
是一时间和空间都离散的动力系统。
散布在规则格网 (Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。
大量元胞通过简单的相互作用而构成动态系统的演化。
不同于一般的动力学模型,元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规则构成。
凡是满足这些规则的模型都可以算作是元胞自动机模型。
因此,元胞自动机是一类模型的总称,或者说是一个方法框架。
其特点是时间、空间、状态都离散,每个变量只取有限多个状态,且其状态改变的规则在时间和空间上都是局部的。
元胞自动机的构建没有固定的数学公式,构成方式繁杂,变种很多,行为复杂。
故其分类难度也较大,自元胞自动机产生以来,对于元胞自动机分类的研究就是元胞自动机的一个重要的研究课题和核心理论,在基于不同的出发点,元胞自动机可有多种分类,其中,最具影响力的当属S. Wolfram在80年代初做的基于动力学行为的元胞自动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。
除此之外,在1990年, Howard A.Gutowitz提出了基于元胞自动机行为的马尔科夫概率量测的层次化、参量化的分类体系(Gutowitz, H.A. ,1990)。
下面就上述的前两种分类作进一步的介绍。
同时就几种特殊类型的元胞自动机进行介绍和探讨S. Wolfrarm在详细分忻研究了一维元胞自动机的演化行为,并在大量的计算机实验的基础上,将所有元胞自动机的动力学行为归纳为四大类 (Wolfram. S.,1986):(1)平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。
不随时间变化而变化。
(2)周期型:经过一定时间运行后,元胞空间趋于一系列简单的固定结构(Stable Paterns)或周期结构(Perlodical Patterns)。
基于量子元胞自动机的逻辑设计
基于量子细胞自动机的逻辑电路设计摘要:量子细胞自动机(Quantum Cellular Automata, QCA)的出现,让电子电路的器件的尺寸进一步缩小成为可能。
在量子细胞自动机电路研究的突破,将使微电子进入量子这个全新的领域之中。
当前量子细胞自动机的研究仅限于理论上的,它的物理实现还正在萌芽阶段。
本文的讨论只限于理论上的讨论,不考虑量子细胞自动机的物理实现方面的问题,或细胞自动机的物理实现方面所带来的问题。
本文主要阐述了如何通过使用matlab软件,合理构建元胞来搭建计数器,采用线与、基础门来搭建。
例如M门、非门、等。
关键字:量子细胞自动机计数器时钟脉冲引言:引言量子细胞自动机的概念的提出,预示着微电子领域将想一个全新的领域发展,即量子领域,但是目前的研究未能摆脱经典电路的概念,因为这是一个向着量子电路过度的时期。
本文中,本人首先介绍了有关量子细胞自动机的基础知识,包括:它产生的时代背景;元胞的基本原理及运用于微电子领域的一些过渡性的规定;用细胞自动机来进行逻辑电路设计的设计方法以及几种不同的设计方案;量子细胞自动机电路的仿真方法。
接着简要介绍了当前量子细胞自动机方面的一些已经完成的成果,他们是该邻域不同部分的具体内容,是量子电路的基本雏形。
可以说,从提出量子细胞自动机的方案,以QCA来描述经典的电路理论中的逻辑单元,通过时钟来保证计算的有序正确的进行,到最后的量子电路的仿真,都有其独特的特点。
其次,说明了近年来,单电子器件的研究与开发已成为国际的热点,国际上的一些物理学家创造了一种“量子点”,也就是说运用单个电子的存在与否及其所处的位置对信息进行编码,从而代替传统晶体管电路中用电平进行信息的加工处理。
正因如此,基于量子细胞自动机(Quantum-dot Cellular Automata, QCA)的器件应运而生,QCA是于1993 年由Lent 等最先提出的,它提供了一种新的计算和信息转换方式,具有低功耗、高集成度和无引线等优点,将会成为利用量子点进行计算的新技术[4]。
八卦一下量子机器学习的历史
八卦一下量子机器学习的历史人工智能和量子信息在讲量子机器学习之前我们先来八卦一下人工智能和量子信息。
1956,达特茅斯,十位大牛聚集于此,麦卡锡(John McCarthy)给这个活动起了个别出心裁的名字:“人工智能夏季研讨会”(Summer Research Project on Artificial Intelligence),现在被普遍认为是人工智能的起点。
AI的历史是非常曲折的,从符号派到联结派,从逻辑推理到统计学习,从经历70年代和80年代两次大规模的政府经费削减,到90年代开始提出神经网络,默默无闻直到2006年Hinton提出深层神经网络的层级预训练方法,从专注于算法到李飞飞引入ImageNet,大家开始注意到数据的重要性,大数据的土壤加上计算力的摩尔定律迎来了现在深度学习的火热。
量子信息的历史则更为悠久和艰难。
这一切都可以归结到1935年,爱因斯坦,波多尔斯基和罗森在“Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”一文中提出了EPR悖论,从而引出了量子纠缠这个概念。
回溯到更早一点,1927年第五次索尔维会议,世界上最主要的物理学家聚在一起讨论新近表述的量子理论。
会议上爱因斯坦和波尔起了争执,爱因斯坦用“上帝不会掷骰子”的观点来反对海森堡的不确定性原理,而玻尔反驳道,“爱因斯坦,不要告诉上帝怎么做”。
这一论战持续了很多年,伴随着量子力学的发展,直到爱因斯坦在1955年去世。
爱因斯坦直到去世也还一直坚持这个世界没有随机性这种东西,所有的物理规律都是确定性的,给定初态和演化规律,物理学家就能推算出任意时刻系统的状态。
而量子力学生来就伴随了不确定性,一只猫在没测量前可以同时“生”和'死',不具备一个确定的状态,只有测量后这只猫才具备“生”和'死'其中的一种状态,至于具体是哪一种状态量子力学只能告诉我们每一种态的概率,给不出一个确定的结果。
基于改进五输入择多门的QCA全加器设计及应用
基于改进五输入择多门的QCA全加器设计及应用刘帅;解光军;张永强;项云龙;吕洪君【摘要】Quantum-dot cellular automata (QCA) is an emerging nanotechnology .A full adder based on improved five-input majority gate is proposed .The full adder keeps correct logic function and dominates the previous results .Then it is applied to imple-ment adder andmultiplier .Results illustrate that they improve significantly in some performance .%量子元胞自动机(Quantum-dot cellular automata ,QCA )是一种新兴的纳米技术。
本文基于改进的五输入择多门,设计出一个全加器,在保持正确逻辑功能的基础上较以往的全加器有一定优势。
应用该全加器设计加法器和乘法器,结果表明在某些性能上有显著提高。
【期刊名称】《电子学报》【年(卷),期】2015(000)002【总页数】6页(P387-392)【关键词】量子元胞自动机;五输入择多门;全加器;加法器;乘法器【作者】刘帅;解光军;张永强;项云龙;吕洪君【作者单位】合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009【正文语种】中文【中图分类】TN4021 引言随着晶体管技术的提高,器件尺寸越来越小,小尺寸效应逐渐显现出来,严重影响器件的性能,因此需要有新的技术来取代CMOS.Lent等[1]1993年第一次提出量子元胞自动机,基于QCA的电路具有高速、高集成度以及低功耗[2]等优点,能够解决传统CMOS器件的一些问题,因而获得广泛关注.全加器在数字电路中的重要性,使得其在QCA电路中获得比较多的研究.本文在改进五输入择多门的基础上,设计出一个全加器,该全加器在保持最小输出延迟的基础上,减少了元胞使用数目及占用面积,同时具有更高的稳定性.为了进一步探讨该全加器的性能,应用其设计加法器和乘法器.结果表明,均具有正确的逻辑功能,而且性能更加优越.2 量子元胞自动机原理2.1 QCA元胞QCA元胞由处于正方形顶点的四个量子点和两个可以自由移动的电子组成,由于库仑作用,电子只有处于对角线上的量子点时才能达到稳定状态,分别对应极化状态P=-1和P=1,如图1所示.定义当P=-1时对应二进制信息0,当P=1时对应二进制信息1.2.2 时钟时钟主要有两方面的作用:(1)同步控制信息传输;(2)提供电路所需能量[3].通常用四个相位差为90°的时钟来控制信息的传输,用四种不同颜色来区分表示,信息传输顺序为时钟0→时钟1→时钟2→时钟3,如图2所示.2.3 逻辑单元在QCA电路中最基本的逻辑单元是反相器和择多门.反相器如图3(a)所示;择多门主要有两种,一种是三输入择多门,一种是五输入择多门.三输入择多门如图3(b)所示.第一种五输入择多门由Azghadi等[4]提出,它由三维的元胞构成,但并不能应用到电路中;Navi等[5,6]提出两种择多门,文献[5]中的输出端位于内部,没有实用性;文献[6]中的由10个元胞构成,元胞用一个时钟控制;Akeela等[7]提出一种择多门,Hashemi等[8]提出两种择多门,但这三种使用的元胞比较多,而且都要用三个时钟控制.如图4所示(图4(d),(e),(f)中不同颜色的元胞表示处于不同的时钟).3 全加器设计3.1 改进的五输入择多门为了减少全加器的元胞数目、缩小面积,将图4(c)中的五输入择多门作出改进,如图5所示.在图4(c)中,元胞E作为一个输入端.在改进后,去掉元胞E,在原来的位置放置一个正常元胞,并且增加一个正常元胞使其与输入端C相连.这样,输入端C便起到两个输入端的作用,正好符合由五输入择多门构成的全加器中进位信号的需求,极大的简化了电路走线.另外,只有当输入信号同时进入具有表决作用的元胞时,择多门才能保持正确功能.因此,为了保证输出正确,输出端F以及中间四个元胞都用时钟1来控制.3.2 全加器数字电路中算术运算(加、减、乘、除)最终都可归结为加法运算,所以加法器的设计尤为重要,而全加器又是加法器的基础,因此性能优越的全加器有着举足轻重的作用.第一种全加器由Lent等[9]提出来,由五个三输入择多门和三个反相器组成,后来Wang等[10]将全加器“和”的表达式简化,逻辑结构随之缩减到三个三输入择多门和两个反相器.Cho等[11]在此基础上设计出一种全加器,元胞数目为86,“和”输出延迟周期,进位输出延迟周期.最近,Pudi等[12]进一步将全加器简化,只用到三个三输入择多门和一个反相器.我们提出的全加器,由一个三输入择多门、一个五输入择多门和一个反相器组成,逻辑表达式为其中A、B、C分别为加数和被加数以及进位输入,CO为进位输出,S为和.该全加器的结构图、元胞图及仿真结果如图6所示.该全加器由66个元胞构成,“和”输出与进位输出.与 Cho等[11]设计的全加器相比,在输出延迟保持一致的情况下,元胞数目减少了20;与 Pudi等[12]相比,进位输出延迟保持一致,“和”输周期.而且由于输出端不被其它元胞所包围,该全加器具有良好的扩展性.目前,也有文献提出以五输入择多门构成的全加器,如Navi等[6]设计的全加器由73个元胞组成,输出延迟与本文的全加器一致,但是由于该全加器的三个输入端位于全加器的内部,导致不具备可扩展性.Hashemi等[8]设计出两种全加器,其中一种虽然使用更少的元胞,但电路中的反相器不稳定,电路稳定性差,并且扩展性也不好;另外一种全加器使用79个元胞,输出延迟个周期,与本文全加器相比,输出延迟大大增加.3.3 全加器的稳定性元胞缺失、移位等缺陷会对电路的稳定性造成影响,本文设计的全加器和Pudi等[12]设计的全加器在结构上相似,可以通过概率转移矩阵[13]比较二者的稳定性.对于有m个输入、n个输出的电路,共有2m×2n种输入和输出组合,每种输入对应1种正确输出和2n-1种错误输出.假设正确的输出概率为p,每种错误输出概率相等且总和为q,则p+q=1.根据上述描述可以列出不同单元的概率转移矩阵,如下所示假设有两个逻辑单元A和B,概率转移矩阵分别为TA和TB.若A的输出为B的输入,则二者称为串联结构,总的概率转移矩阵为TA·TB;若A与B互不影响,则二者称为并联结构[14],总的概率转移矩阵为TA⊗TB(运算符和⊗的定义与文献[14]一致).Pudi等[12]设计的全加器和本文的全加器结构分别如图7(a)、(b)所示.图中虚线框为两种全加器的不同部分,由于其它部分相同,可以通过虚线框内的对比来计算两种全加器的稳定性,即基于上述表达式得出总体错误率Q随错误概率q的变化曲线,如图8所示.由上图可知,在错误概率q相等的情况下,图7(b)的总体错误率要比图7(a)小,因此图7(b)中的全加器稳定性更高,可以更好地应用到大规模的电路中.4 全加器的应用4.1 加法器Cho等[11]利用全加器设计出载流进位加法器(Carry Flow Adder,CFA),Pudi等[12]利用其设计的全加器实现了脉冲进位加法器(Ripple Carry Adder,RCA).本文的全加器具有良好的扩展性,只需将前一个全加器的进位输出端连接到下一个全加器的进位输入端,便可实现加法器.限于篇幅,图9只给出四位加法器的元胞图和仿真结果.与上述两种加法器进行对比,结果如表1所示(本文的加法器用Proposed来代表,后面的数字代表加法器的位数).由上述对比可知,基于本文全加器实现的加法器在保持最小时钟延迟的基础上,无论是元胞数目还是面积都较另外两种有很大的优势,而且优势随着加法器位数的增加不断扩大.4.2 乘法器实现乘法器的关键在于乘法器网络的构造,Cho等基于滤波网络提出一个乘法器网络,在此基础上设计出进位延迟乘法器[11](Carry Delay Multiplier,CDM).借助于该乘法器网络,本文的全加器也可以实现乘法器.首先将本文的全加器修改为内部进位全加器,如图10所示(图10(a)中D代表时钟延迟).根据乘法器网络,利用图10(b)所示内部进位全加器设计出乘法器.图11为四位乘法器的元胞图与仿真结果,输出延迟1个周期.将本文的乘法器与Cho等[11]设计的进位延迟乘法器进行对比,结果如表2所示(本文的乘法器用Multiplier表示,后面的数字代表乘法器的位数).表1 三种加法器的对比延迟Proposed4 279 0.58 ×0.24 0.139 1类型元胞数目长×宽(μm×μm)面积(μm2)clocks Proposed8 584 1.14 ×0.40 0.456 2 2 4clocks Proposed16 1356 2.26 ×0.56 1.266 4 2 4 clocks Proposed32 3476 4.50 ×0.88 3.960 8 2 4 clocks Proposed64 10020 8.98 ×1.54 13.829 16 2 4 clocks CFA4 371 0.90 ×0.45 0.405 1 2 4 clocks CFA8 789 1.79 ×0.53 0.948 2 2 4 clocks CFA16 1769 3.55 ×0.69 2.450 4 2 4 clocks CFA32 4305 7.09 ×1.303 7.300 8 2 4 clocks CFA64 11681 14.15 ×1.71 24.196 16 2 4 clocks RCA4 339 0.82 ×0.31 0.254 1 2 4 clocks RCA8 712 1.62×0.46 0.745 2 3 4 clocks RCA16 1602 3.22 ×0.62 1.996 4 3 4 clocks RCA32 3901 6.46 ×1.00 6.460 8 3 4 clocks RCA64 10926 12.9 ×1.66 20.916 16 3 43 4c locks表2 两种乘法器的对比延迟Multiplier 4 291 0.76 ×0.32 0.243 1clock Multiplier 8 679 1.68 ×0.34 0.571 1clock Multiplier16 1557 3.46 ×0.44 1.522 1clock Multiplier 32 3677 7.02 ×0.62 4.352 1clock Multiplier 64 9472 14.08 ×0.98 13.798 1clock CDM4 406 1.05 ×0.47 0.494 1clock CDM8 903 2.12 ×0.47 0.996 1clock CDM16 1999 4.19 ×0.47 1.9691clock CDM32 4575 8.47 ×0.65 5.506 1clock CDM64 11264 16.84 ×0.95 15.998 1clock类型元胞数目长×宽(μm×μm) 面积(μm2)通过对比可知,在输出延迟相同的情况下,本文的乘法器无论是元胞数目还是面积都较Cho等人设计的进位延迟乘法器有很大优势.5 结论本文在改进五输入择多门的基础上设计出一种全加器,该全加器具有正确的逻辑功能.在保持最小输出延迟的前提下,无论是元胞数目还是占用面积均较以往全加器有一定的减少,通过概率转移矩阵计算发现该全加器的结构更加稳定,有利于应用到大规模电路中.为进一步研究该全加器的性能,将其应用到加法器和乘法器中,结果表明,基于本文全加器实现的加法器和乘法器较以往使用更少的元胞,占用面积也进一步缩小,而且还保持最小的时钟延迟,因此性能更加优越.参考文献【相关文献】[1]C S Lent,P D Tougaw,W Porod.Bistable saturation in coupled quantum dots for quantum cellular automata[J].Applied Physics Letters,1993,62(7):714 -716.[2]王友仁,黄媛媛,冯冉,等.基于矩阵编码的量子可逆逻辑电路进化设计方法[J].电子学报,2011,39(11):2576-2582.Wang You-ren,Huang Yuan-yuan,Feng Ran,etal.Evolutionary design technology of quantum reversible logic circuit based on matrix coding[J].Acta Electronica Sinica,2011,39(11):2576 -2582.(in Chinese)[3]夏银水,裘科名.基于量子细胞自动机的数值比较器设计[J].电子与信息学报,2009,31(6):1517 -1520.Xia Yin-shui,Qiu Ke-ming.Number comparator based on quantum-dot celluar automata[J].Jounal of Electronics &Information Technology,2009,31(6):1517 - 1520.(in Chinese)[4]M Rahimi Azghadi,O Kavehei,K Navi.A novel design for quantum-dot cellular automata cells and full adders[J].Journal of Applied Sciences,2007,7(22):3460-3468. [5]Keivan Navi,Samira Sayedsalehi,Razieh Farazkish,et al.Five input majority gate,a new device for quantum-dot cellular automata[J].Journal of Computational and Theoretical Nanoscience,2010,7(8):1546 -1553.[6]Keivan Navi,Razieh Farazkish,Samira Sayedsalehi,et al.A new quantum-dot cellular automata full-adder[J].Microelectronics Journal,2010,41(12):820 -826.[7] Rami Akeela,Meghanad D Wagh.A five input majority gate in quantum-dot cellular automata[J].NSTI-Nanotechnology,2011,2(1):13 -16.[8] S Hashemi,M Tehrani,K Navi.An efficient quantum-dot cellular automata full-adder[J].Scientific Research and Essays,2012,7(2):177 -189.[9]P D Tougaw,C S Lent.Logical devices implemented using quantum cellular automata[J].Journal of Applied Physics,1994,75(3):1818 -1824.[10]W Wang,K Walus,G A Jullien.Quantum-dot cellular automata adders[A].Proceedings of the Third IEEE Conference on Nanotechnology[C].San Francisco:IEEE Computer Society,2003.461 -464.[11]Heumpil Cho,Earl E Swartzlander.Adder and multiplier design in quantum-dot cellular automata[J].IEEE Transactions on Computers,2009,58(6):721 -727.[12]Vikramkumar Pudi,K Sridharan.Low complexity design of ripple carry and brent-kung adders in QCA[J].IEEE Transactions on Nanotechnology,2012,11(1):105 -119. [13]欧阳城添,江建慧.基于概率转移矩阵的时序电路可靠度估计方法[J].电子学报,2013,41(1):171-177.OuYang Cheng-tian,Jiang Jian-hui.Reliability estimation of sequential circuit based on probabilistic transfer matrices[J].Acta Electronica Sinica,2013,41(1):171 - 177.(in Chinese)[14]黄宏图,蔡理,彭卫东,等.一位QCA数值比较器的可靠性研究[J].微纳电子技术,2011,48(5):291 -295.Huang Hong-tu,Cai Li,Peng Wei-dong,et al.Reliability study of 1-bit QCA comparators[J].Micronanoelectronic Technology,2011,48(5):291 -295.(in Chinese)。
细胞自动机模型的建模与仿真研究
细胞自动机模型的建模与仿真研究细胞自动机(cellular automata)是一种模拟自然规律和图形成像的数学模型。
它由一个二维或三维的规则格子组成,每个格子内存储一个状态值,每个规则格子的状态值受到它周围相邻格子的状态值和一个状态转移规律的影响。
细胞自动机模型具有自适应、非线性、复杂度高、可仿真性强等特点,在许多领域得到了广泛应用。
本文将介绍细胞自动机模型的建模和仿真研究,包括应用领域、建模方法与范式以及仿真技术和算法。
应用领域细胞自动机模型最初是由物理学家约翰·冯·诺伊曼在20世纪40年代提出的,以模拟复杂的物理和生物现象。
如今,细胞自动机模型已被广泛应用于生命科学、物理学、计算机科学、环境科学、城市规划和交通规划等领域。
其中,最重要的应用领域包括生命科学中的DNA自组装、癌症模拟及细胞生长等;物理学中的自组织现象、相变及传热传质等;计算机科学中的编码、密码学及机器学习等;环境科学中的自然灾害、气候变化及植被模拟等;城市规划和交通规划中的交通流模拟、市场研究等。
细胞自动机模型的这些应用领域都要求模型具有高度自适应性、大规模性、高效性和精确性。
建模方法与范式细胞自动机模型的建模方法和范式主要是基于细胞状态及其转移规律的内在特性,可以分为元胞自动机(cellular automata,CA)和格点自动机(lattice gas automata,LGA)两类。
元胞自动机以细胞状态为中心,按照状态转移规则更新状态,某个元胞的状态只受其邻居元胞的状态所影响(如Conway生命游戏、岛模型等);而格点自动机则将物理领域中连续的物质颗粒分割成若干个较小的离散单元,在这些单元中模拟物质的运动和相互作用(如Ludwig模型、BGK模型等)。
下面我们简单介绍一下常见的几种细胞自动机模型:1. 有限局域元胞自动机(FCA)有限局域元胞自动机是指细胞状态转移规则是局部性质和有限步骤的CA模型。
元胞自动机简介
二、经典的元胞自动机模型
2)“生命游戏”中一些演化形态
二、经典的元胞自动机模型
2 Wolfram和他的初等元胞自动机
1)初等元胞自动机
初等元胞自动机是状态集S只有两个元素,即k=2,邻 居半径r=1的一维元胞自动机。 初等一维元胞自动机可能的8种输入状态组合 111 110 101 100 011 010 001 000
这个动态演化又由各个元胞的局部演化规则f所决定的。这 个局部函数f通常又常常被称为局部规则。对于一维空间,元 胞及其邻居可以记为S2r+1,局部函数则可以记为: F(Sit+1)=f(sti-r,…,sti,…sti+r)
sti 表示在t时刻位置i处的元胞,至此,我们就得到了一个 元胞自动机模型
对于局部规则f来讲,函数的输入、输出集均为有限集合, 实际上。它是一个有限的参照表。例如,r=1,f的形式则形似 如下:[0,0,0]->O; [0,0,1]->0; [0,1,0]->1; [1,0,0]->0; [0,1,1]->1;
2) 元胞空间元胞所Fra bibliotek布在的空间网点集合就是这里的元胞空间。
理论上,它可以是任意维数的欧几里德空间规则划分。目 前研究多集中在一维和二维元胞自动机上。对于一维元抱自 动机。元胞空间的划分只有一种。而高维的元胞自动机。元 胞空间的划分则可能有多种形式。对于最为常见的二维元胞 自动机。二维元胞空间通常可按三角、四万或六边形三种网 格排列。
010 0
001 0
000 0
1.2 结果
横轴:空间
纵轴:时间
时空分布图
2
二维基本模型
2.1模型的建立
• 考虑一个L*L的网格,对任一格子(i,j),共有三 种状态,即有一个向右行驶的车、有一个向 上行驶的车和空。行驶规则为奇数时间向右 行驶的车可以前进,且一辆车只有前方格子 里空时可前进一格。不能跟驰,偶数时间步 向上的车可以行驶,规则同右行。
元胞自动机模型
元胞行为
局部变化引起全局变化
*可以简单认为元胞自动机在运动上 类似于波.
*无胞的状态变化依赖于自身状态和 邻居的状态
元胞自动机的规则 某元胞下时刻的状态只决定于邻居的状 态以及自身的初始状态.
元胞行为
元胞网格
元胞行为
元胞邻居
经典元胞
生命游戏
生命游戏 (Came of Life)是J. H. Conway 在2世纪6年代末设计的一种单人玩的计算 机游戏(Garclner,M.,97、97)。他与现 代的围棋游戏在某些特征上略有相似:围 棋中有黑白两种棋子。生命游戏中的元胞 有{"生","死"}两个状态 {,};围棋的棋盘是 规则划分的网格,黑白两子在空间的分布 决定双方的死活,而生命游戏也是规则划 分的网格(元胞似国际象棋分布在网格内。 而不象围棋的棋子分布在格网交叉点上)。 根据元胞的局部空间构形来决定生死。只 不过规则更为简单。
规则:
根据元胞当前状态及其邻居状况确
定下一时刻该元胞状态的动力学函 数,简单讲,就是一个状态转移函 t 数。 f : S it 1 f S it , S N
根据上面对元胞自动机的组成分析,我 们可以更加深入地理解元胞自动机的概 念。 可以将元胞自动机概括为一个用数 学符号来表示的四元组。 A Ld , S , N , f A:代表一个元胞自动机系统;Ld:代表 元胞空间;d:为空间维数;S:是元胞 有限的离散的状态集合;N:表示邻域 内所有元胞的组合(包括中心元胞在 内);f:是局部转换函数,也就是规则。
什么是元胞(CA)自动机
元胞自动机(Cellular Automata,简称CA) 实质上是定义在一个由具有离散、有限状态 的元胞组成的元胞空间上,并按照一定的局 部规则,在离散的时间维度上演化的动力学 系统。
元胞自动机简介
义较为复杂,但通常有以下几种形式(我们以最常用的规则四
方网格划分为例)
(1)冯-诺依曼(Von Neumann):上下左右 4个 (2)摩尔型(Moore):上下左右;左上、左下、右上、右下;8个
(3)扩展摩尔(Moore)型:r 扩展为2或更多
(4)马哥勒斯(Margolus)型:它是每次将一个2x2的元胞块做统 一处理,而上述前三种邻居模型中,每个元胞是分别处理的
2)典型的Wolfram规则
rule 18
rule 57
rule 150
rule 30
rule 73
rule 126
rule 124
rule 169
3)元胞自动机种类
Stephen Wolfram 对初等元胞自动机的分类 平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间 趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处 于固定状态。不随时间变化而变化。 周期型:经过一定时间运行后,元胞空间趋于一系列简单的固 定结构(Stable Paterns)或周期结构(Perlodical Patterns)。 混沌型:自任何初始状态开始,经过一定时间运行后,元胞自 动机表现出混沌的非周期行为,所生成的结构的统计特征不 再变化,通常表现为分形分维特征。 复杂型:出现复杂的局部结构,或者说是局部的混沌,其中有 些会不断地传播。
4)规则(Rule)
根据元胞当前状态及其邻居状况确定下一时刻该元胞状 态的Байду номын сангаас力学函数,简单讲,就是一个状态转移函数。
记为f: sit+1=f(sit,sNt),sNt为t时刻的邻居状态组合,我们称f 为元胞自动机的局部映射或局部规则
3 元胞自动机的特征
QUANTUMDOTCELLULARAUTOMATA.
4.电QCA
影响半径r=1
Input X1 X2 X3 X4 X5 Output
P( x1, x 2, x3, x 4, x5) P( x5 / x 4) P( x 4 / x3) P( x3 / x 2) P( x 2 / x1) P( x1)
时钟
四个时钟区域, 每个时钟都与 前一个时钟相 差90° 作用 1.控制信号同步 2.提供能量
HEFEI UNIVERSITY OF TECHNOLOGY
4.电QCA
QCA电路
Si ABC i i i A i BC i i AB i iC i A iB iC i M(M( Ai , Bi , Ci ), M(M( Ai , Bi , Ci ), Bi , Ci ), Ai )
子节点
P( x / pa( x))
HEFEI UNIVERSITY OF TECHNOLOGY
4.电QCA
ss P ( x 0 / pa( x)) 11 ( pa( x), ch* ( x)) ss P ( x 1 / pa( x)) 22 ( pa( x), ch* ( x))
HEFEI UNIVERSITY OF TECHNOLOGY
2.新型器件
HEFEI UNIVERSITY OF TECHNOLOGY
2.新型器件
QCA于1993年由CS Lent等人提出
运算速度快(THZ)
低功耗
器件密度大
(10^12/cm^2)
HEFEI UNIVERSITY OF TECHNOLOGY
1 E 1 tanh 2
ss 11
ss 22 1 tanh 2
微电子技术论文
50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(silicon age)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。
作者简介 王阳元,1935年生,微电子学家。浙江宁波人。1958年北京大学物理系毕业。北京大学微电子学研究所教授。中国科学院院士。
QCA电路设计与可靠性分析的开题报告
QCA电路设计与可靠性分析的开题报告摘要:QCA(Quantum-dot Cellular Automata)作为一种新型的量子逻辑门,具有高密度、低功耗、高速度和思维的优点。
随着尺寸的缩小和技术的发展,QCA被广泛用于数字电路设计。
本文通过分析QCA电路设计相关的研究现状和QCA电路可靠性分析方法,研究如何提高QCA电路的可靠性,并提出了几种改善QCA电路可靠性的措施。
1.研究背景由于CMOS技术的发展逐渐达到极限,研究人员开始寻求新型的数字电路设计方法。
量子点细胞自动机(QCA)由于其高密度、低功耗、高速度等优点,已经开始受到越来越多的关注。
与晶体管技术相比,QCA 技术还存在许多问题,如错误率高和噪声容忍度差等。
因此,研究QCA 电路的设计和可靠性分析变得尤为重要。
2.研究内容在本研究中,首先介绍QCA技术的原理,概述QCA电路设计的相关研究现状。
然后,分析QCA电路可靠性的相关问题,重点是错误率和噪声容忍度问题。
最后,提出了几种改善QCA电路可靠性的措施,包括:优化QCA器件的结构、减少布线长度、引入容错机制和增加纠错码等。
3.研究意义本研究的主要贡献是提出了改善QCA电路可靠性的几种措施,并对这些措施进行了分析和比较。
这些措施对于提高QCA电路的可靠性是非常有帮助的,同时也有助于推动QCA技术的发展和应用。
关键词:QCA技术;QCA电路设计;QCA可靠性;错误率;噪声容忍度Abstract:As a new type of quantum logic gate, Quantum-dot Cellular Automata (QCA) has the advantages of high density, low power consumption, high speed and potential. With the development oftechnology and size reduction, QCA has been widely used in digitalcircuit design. In this study, the research status of QCA circuit designand QCA circuit reliability analysis method were analyzed to study the methods to improve the reliability of QCA circuits, and several measures to improve the reliability of QCA circuits were proposed.Keywords: QCA technology; QCA circuit design; QCA reliability;error rate; noise tolerance1. IntroductionWith the development of technology, researchers have beenseeking new digital circuit design methods, as CMOS technologygradually reaches its limits. Quantum-dot Cellular Automata (QCA) has gradually attracted more attention due to its advantages of high density, low power consumption, and high speed. Compared with transistor technology, QCA technology still has many problems, such as high error rate and poor noise tolerance. Therefore, research on QCA circuit design and reliability analysis becomes particularly important.2. Research ContentIn this study, the principles of QCA technology were introduced first, and the research status of QCA circuit design was summarized. Then the related reliability issues of QCA circuits, focusing on the problems of error rate and noise tolerance, were analyzed. Finally, several measures to improve the reliability of QCA circuits were proposed, including optimizing the structure of QCA devices, reducing the length of wiring, introducing fault-tolerant mechanisms, and increasing error-correcting codes, etc.3. Research SignificanceThe main contribution of this study is to propose several measuresto improve the reliability of QCA circuits, and analyze and compare these measures. These measures are very helpful for improving the reliability of QCA circuits, and also promote the development and application of QCA technology.。
ARTICLE IN PRESS
INTEGRATION,the VLSI journal 38(2005)541–548Automatic cell placement for quantum-dot cellular automata $Ramprasad Ravichandran a ,Sung Kyu Lim b,Ã,Mike Niemier aaCollege of Computing,Georgia Institute of Technology,Atlanta,GA 30332,USAbSchool of Electrical and Computer Engineering,Georgia Institute of Technology,777Atlantic Drive NW,Atlanta 30305,GA 30332,USAReceived 14July 2004;accepted 21July 2004AbstractQuantum-dot cellular automata (QCA)is a novel nano-scale computing mechanism that can represent binary information based on spatial distribution of electron charge configuration in chemical molecules.In this paper we develop the first cell-level placement of QCA circuits under buildability constraints.We formulate the QCA cell placement as a unidirectional geometric embedding of k-layered bipartite graphs.We then present an analytical and a stochastic solution for minimizing the wire crossings and wire length in these placement solutions.r 2004Elsevier B.V.All rights reserved.MSC:94C15;68W35;03G12Keywords:Quantum-dot Cellular Automata;Placement1.IntroductionOne approach to computing at the nano-scale is the quantum-dot cellular automata (QCA)[1,2]concept that represents information in a binary fashion,but replaces a current switch with a cell having a bi-stable charge configuration.A wealth of experiments have been conducted with/locate/vlsi0167-9260/$-see front matter r 2004Elsevier B.V.All rights reserved.doi:10.1016/j.vlsi.2004.07.002$A short version (Ravichandran et al.,2004)is published in the Proceedings of ACM Great Lake Symposium on VLSI,2004.ÃCorresponding author.Tel.:4048940373;fax:4043851746.E-mail address:limsk@ (S.K.Lim).metal-dot QCA,with individual devices,logic gates,wires,latches and clocked devices,all having been realized.In this article,we develop the first cell-level placement of QCA circuits.We formulate the QCA cell placement as a unidirectional geometric embedding of k-layered bipartite graphs.We then present an analytical and a stochastic solution for minimizing the wire crossings and wire length in these placement solutions.Our goal is to identify several objectives and constraints that enhance the buildability of QCA circuits and use them in our placement optimization process.The results are intended to define what is computationally interesting and could actually be built within a set of predefined placement constraints.A QCA cell is illustrated in Fig.1(a).Two mobile electrons are loaded into this cell and can move to different quantum dots by means of electron tunneling.Coulombic repulsion will cause the electrons to occupy only the corners of the QCA cell,resulting in two specific polarizations.The fundamental QCA logical gate is the three-input majority gate.It consists of five cells and implements the logical equation AB þBC þAC as shown in Fig.1(b).The QCA wire is a horizontal row of QCA cells and a binary signal propagates from left-to-right because of electrostatic interactions between adjacent cells as shown in Fig.1(c).A QCA wire can also be comprised of cells rotated 45 :Here,as a binary signal propagates down the length of the wire,it alternates between a binary 1and a binary 0polarization.QCA wires are able to cross in the plane without the destruction of the value being transmitted on either wire as shown in Fig.1(c).Our work focus on the following undesirable design schematic characteristics associated with a near-to-midterm buildability point:large amounts of deterministic device placement,long wires,clock skew,and wire crossings.We will use CAD to:(1)identify logic gates and blocks that can be duplicated to reduce wire crossings;(2)rearrange logic gates and nodes to reduce wire crossings;(3)create shorter routing paths to logical gates (to reduce the risk of clock skew and susceptibility to defects and errors);and (4)reduce the area of a circuit (making it easier to physically build).Some of these problems have been individually considered in existing work for silicon-based VLSI design,but in combination,form a set of constraints unique to QCA requiring a unique toolset to solve them.2.Problem formulationQCA placement is divided into three steps:zone partitioning,zone placement,and cell placement.An illustration is shown in Fig.2.The purpose of zone partitioning is to decompose an input circuit such that a single potential modulates the inner-dot barriers in all of the QCA cells that are grouped within a clocking zone.The zone placement step takes as input a set of(a)(b)(c)Fig.1.Illustration of QCA device,majority gate,and wires.R.Ravichandran et al./INTEGRATION,the VLSI journal 38(2005)541–548542R.Ravichandran et al./INTEGRATION,the VLSI journal38(2005)541–548543(d)(e)(f)Fig.2.Illustration of QCA placement steps.(a)input circuit represented with a DAG(directed acyclic graph),(b)zone partitioning,(c)wire block insertion,(d)zone placement,(e)wire crossing minimization at zone-level,(f)cell placement. zones—with each zone assigned a clocking label obtained from zone partitioning.The output of zone placement is the best possible layout for arranging the zones on a two dimensional chip area. Finally,cell placement visits each zone to determine the location of each individual logic QCA cell—a cell used to build majority gates.Our recent work on zone partitioning and zone placement work is available in[3].The focus of this article is on cell placement that is formally defined as follows:Definition1.Cell placement:we seek a placement of individual logic gates in the logic block so that area,wire crossing and wirelength are minimized.The following set of constraints exists during QCA cell placement:(1)the timing constraint:the signal propagation delay from the beginning of a zone to the end of a zone should be less than a clock period established from zone partitioning;(2)the terminal constraint:the I/O terminals are located on the top and bottom boundaries of each logic block;(3)the signal direction constraint:the signalflow among the logic QCA cells needs to be unidirectional–from the input to the output boundary for each zone. The signal direction is caused by QCA’s clocking scheme,where an electricfield E created by underlying CMOS wire is propagating in uni-directionally within each block.Thus,cell placement needs to be done in such a way to propagate the logic outputs in the same direction as E.In order to balance the length of intra-zone wires,we construct cell-level k-layered bipartite graph for each zone and place this graph.We define the k-layered bipartite graph as follows:Definition 2.K-layered bipartite graph:a directed graph G ðV ;E Þis k-layered bipartite graph if (i)V is divided into k disjoint partitions,(ii)each partition p is assigned a level,denoted lev ðp Þ;and (iii)for every edge e ¼ðx ;y Þ;lev ðy Þ¼lev ðx Þþ1:3.Cell placement algorithmThis section presents our cell placement algorithm,which consists of feed-through insertion,row folding,and wire crossing and wirelength optimization steps.3.1.Feed-through insertionIn order to satisfy the relative ordering and to satisfy the signal direction constraint,the original graph G ðV ;E Þis mapped into a k-layered bipartite graph G 0ðV 0;E 0Þwhich is obtained by insertion of feed-through gates,where V 0is the union of the original vertex set V and the set of feed-through gates,and E 0is the corresponding edge set.The following algorithm performs feed-through insertion.feed-through_insertion(G ðV ;E Þ)if (V is empty)return ;n ¼V :pop ðÞ;if (n has no child with bigger level)return ;g =new feed-through;lev ðg Þ¼lev ðn Þþ1;for (each child c of n )g ¼parent ðc Þ;c ¼child ðg Þ;n ¼parent ðg Þ;g ¼child ðn Þ;add g into G ;feed-through_insertion(G (V,E ));In this algorithm,we traverse through every vertex in the graph.For a given vertex,if any of the outgoing edges terminate at a vertex with topological order more than one level apart,a new feed-through vertex is added to the vertex set.The parent of the feed-through is set to the current vertex,and all children of the current vertex which have a topological order difference of more than one is set as the children of the feed-through.We do not need to specifically worry about the exact level difference between the feed-through and the child nodes,since this feed-through insertion is a recursive process.This algorithm runs in O ðk j V 0jÞ;where k is the maximum degree of V 0:Fig.3shows the graph before and after feed-through insertion.3.2.Row-folding algorithmAfter the feed-through insertion stage,some rows may have more gates than the average number of gates per row.The row with the largest number of gates defines the width of the entire zone,and hence the width of the global column that the zone belongs to.This increases the circuitR.Ravichandran et al./INTEGRATION,the VLSI journal 38(2005)541–548544area by a huge factor.Hence,rows with a large number of cells are folded into two or more rows.This is done by inserting feed-through gates in place of the logic gates and moving the gates to the next row.Row-folding decreases the width of the row since feed-throughs have a lower width than the gate it replaces.A gate g is moved into the next existing row if it belongs to the row that needs to be folded and all paths that g belongs to contain at least one feed-through with a higher topological order than g .The reason for the feed-through condition is that g ,along with all gates between g and the feed-through can be pushed to a higher row,and the feed-through can be deleted without violating the topological ordering constraint.The following algorithm performs row folding.row_folding ðG ;w Þif (w is a feed-through)return (TRUE);if (w :level ¼G :max level )return (FALSE);RETVAL =TRUE;k ¼w :outdegree ;i ¼0;while (RETVAL and i o k )RETVAL =row_folding ðG ;w :CHILD ði ÞÞ;i ¼i þ1;return (RETVAL);This algorithm returns true if a node can be moved,and false if a new row has to be inserted.If this feed-through criterion is not met,and the row containing g has to be folded,then a new row is inserted and g is moved into that row.3.3.Wirelength and wire crossing minimizationA width-balanced k-layered bipartite graph is formed via feed-through insertion and row folding stages.This graph is placed in such a way that all cells of the same longest path length are placed in the same row.The next step is then to rearrange the cells in each row to reduce wire crossing.Wire crossing minimization is already NP-hard for bipartite graphs with two rowsFig.3.Illustration of feed-through insertion,where a cell-level k-layered bipartite-graph is formed via feed-through nodes.R.Ravichandran et al./INTEGRATION,the VLSI journal 38(2005)541–548545only [4].Our approach for wire crossing minimization in k -layered bipartite graphs is to use a well-known barycenter heuristic [4]to build the initial solution and refine it with Simulated Annealing.In barycenter heuristic,the nodes in the top layer are fixed and used to rearrange the nodes in the bottom layer.For each node v in the bottom layer,we compute the center of mass,i.e.,m ðv Þ¼Pu 2FI ðv Þcolumn ðu Þ=j FI ðv Þj ;where FI ðv Þdenotes the fan-in nodes of v .These nodes are then sorted in an increasing order of m ðv Þand placed from the left-most column.During Simulated Annealing,a move is performed by swapping two randomly chosen gates in the same row in order to minimize the total wirelength and wire crossing.We initially compute the wirelength and wire crossing and incrementally update these values after each move so that the update can be done much faster.This speedup allows us to explore a greater number of candidate solutions,and as a result,obtain better quality solutions.We use the adjacency matrix to compute the number of wire crossings.In a bipartite graph,there is a wire crossing between two layers v and u if v i talks to u j and v x talks to u y ;where i ,j ,x ,and y denote the relative positional ordering of the nodes,and either,i o x o j o y or i o x o y o j or x o i o y o j or x o i o j o y without loss of generality.In terms of an adjacency matrix,this can be regarded as if either the point ði ;j Þis included in the lower left sub-matrix of ðx ;y Þor vice versa.Fig.4shows an example of wire crossing computation.The total crossing is computed by adding the product of every matrix element and the sum of its left lower sub-matrix entries.i.e.P ðA ij ÂP PA xy Þ;where i þ1o x o n and 1o y o j À1:However,this method is computationally expensive if we have to perform it frequently.In our incremental wire crossing calculation,we first take the row-wise sum of all entries as in Fig.4(c).Then we use this to compute the column-wise sum as in Fig.4(d).Finally,we multiply all the entries in the original matrix and the column-wise sum matrix to compute the total wire crossing–each entry ðr ;c Þin the original matrix is multiplied by the entry ðr þ1;c À1Þin the column-wise sum matrix.In the Simulated Annealing process,when we swap two nodes,it is identical to swapping the corresponding rows in the above matrices.Hence,it is enough if we just update the values of the rows in between the two rows that are being swapped.4.Experimental resultsOur algorithms were implemented in C++/STL,compiled with gcc v2.96run on Pentium III 746MHz machine.The benchmark set consists of seven biggest circuits from ISCAS89and five(b)A B C D 101011001201003(a)(c)A B C D 101012011221113(d)A B C D 211014221253213Fig.4.Illustration of incremental wire crossing computation.(a)a bipartite graph with 3wire crossings,(b)adjacency matrix of (a),(c)row-wise sum of (b)from left to right,(d)column-wise sum of (c)from bottom to top.Each entry in (d)now represent the total sum of entries in low-left ing (b)and (d),wire crossing is A 2ÂB 1þB 3ÂC 2¼3;where A 2and B 3are from (b)and B 1and C 2from (d).R.Ravichandran et al./INTEGRATION,the VLSI journal 38(2005)541–548546R.Ravichandran et al./INTEGRATION,the VLSI journal38(2005)541–548547 Table1QCA cell placement resultsAnalytical SA+WL SA+WC SA+WL+WC wire xing wire xing wire xing wire xing b1455861238286802343054510374051134948 b1595711667235804040069030742080178947 s132073119548140601553030610145032501982 s158503507634186102213042700214039192978 s3841794141195458304840080240732098199929 s38584195824017592207559014013098202010133122 s5378119915662806690136007301344841 s9234217020510720115402329098016402159 Ave4192741169801995038950274038806878 Ratio 1.00 1.00 4.0526.99.29 3.690.929.27 Time1806041128012901biggest circuits from ITC99suites due to the availability of signalflow information.Table1shows our cell placement results where we report net wirelength and number of wire crossings for the circuits using our analytical solution and all threeflavors of our Simulated Annealing algorithm. We observe in general that analytical solution is better than all threeflavors of the Simulated Annealing methods,except the wirelength of SA+WL+WC.But,the tradeoff in wire crossings makes the analytical solution more viable,since wire crossings pose a bigger barrier than wirelength in QCA architecture.One interesting note is that when comparing amongst the three flavors of Simulated Annealing wefind that SA+WC has the best wire crossing number.But surprisingly,in terms of wirelength,SA+WL does not outperform SA+WL+WC.We speculate that this behavior is because lower number of wire crossings has a strong influence on wirelength, but smaller wirelength does not necessarily imply smaller crossing.5.Conclusions and ongoing worksIn this article,we proposed a QCA cell placement problem and present an algorithm that will help automate the process of design within the constraints imposed by physical scientists.Work to address QCA routing and node duplication for wire crossing minimization are underway.The outputs from this work and the work discussed here will be used to generate computationally interesting and optimized designs for experiments by QCA physical scientists.References[1]R.Ravichandran,diwala,J.Nguyen,M.Niemier,S.K.Lim,Automatic cell placement for quantum-dotcellular automata,in:Proceedings of the Great Lakes Symposium on VLSI,2004.[2]I.Amlani,A.Orlov,G.Toth,G.Bernstein,C.Lent,G.Snider,Digital logic gate using quantum-dot cellularautomata,Science (1999)289–291.[3]J.Nguyen,R.Ravichandran,S.K.Lim,M.Niemier,Global placement for quantum-dot cellular automata basedcircuits,Technical Report GIT-CERCS-03-20,Georgia Institute of Technology,2003.[4]K.Sugiyama,S.Tagawa,M.Toda,Methods for visual understanding of hierarchical system structures,IEEETrans.Syst.Man Cybern.(1981)109–125.R.Ravichandran et al./INTEGRATION,the VLSI journal 38(2005)541–548548。
基于量子元胞自动机的存储器的实现
基于量子元胞自动机的存储器的实现摘要根据量子元胞的双稳态特性以及传统CMOS工艺设计存储器的思想,设计了2*2bit带有控制端的存储器两种,4*2bit带有控制端的存储器一种以及4*4bit 带有控制端的存储器一种。
并借助QCADesigner仿真软件对其进行了仿真验证,结果显示该存储器的正确性。
关键词量子信息、存储器、量子元胞自动机存储器(QCAMemory)、使能端A Memory Design Using Quantum Cellular AutomataAbstract: Based on the bistable saturation in quantum cellular automata and the concepts of memory constructed by traditional CMOS technology, a Memory with enable of 2*2bit、4*2bit、4*4bit is constructed which composed of quantum cellular automata ,and with the QCADesigner simulation software to its simulated, and the results show the correctness of memory.Key words:Quantum Information;Memory;Quantum cellular automata memory;Enable1 引言微电子器件的集成度和运算速度已经呈指数持续增长了40年。
微电子器件已经深入到我们生活的方方面面,并且还在继续影响着我们的生活。
要保持微电子器件的影响力就要不断改进和创新。
但是当电子器件的尺寸小到0.07um时,由于功率耗散和相互连接以及器件之间量子效应等问题使得基于半导体技术的器件尺寸难以继续减小,事实上,研究表明,晶体管的尺寸将达到物理极限【1】。
Spin-orbital quantum cellular automata logic devic
专利名称:Spin-orbital quantum cellular automata logicdevices and systems发明人:George I. Bourianoff,Dmitri E. Nikonov,Jun-Fei Zheng申请号:US10978115申请日:20041029公开号:US07212026B2公开日:20070501专利内容由知识产权出版社提供专利附图:摘要:Spin-orbital quantum cellular automata logic devices and integrated circuits in the form of a substrate having a thin film of material on the substrate having stronglycoupled spin-orbital states, the thin film being patterned to define at least one input and at least one output, and to perform at least one logic operation by associated arrangement of the spin-orbital states between the input and the output. The logic devices and integrated circuits further include an input device at each input to define the spin-orbital states at each input, and an output sensor at each output for sensing the spin-orbital states of the thin film at the output. In an integrated circuit, the output of one gate or circuit, in the form of the ferromagnetically aligned spins, can be directly coupled to the next gate or circuit, so that entire circuits can be fabricated and effectively interconnected, only requiring interfacing for overall. circuit input and output using the electromagnetic inputs and magnetic measurements for the outputs.申请人:George I. Bourianoff,Dmitri E. Nikonov,Jun-Fei Zheng地址:Austin TX US,Morgan Hill CA US,Westport CT US国籍:US,US,US代理机构:Blakely, Sokoloff, Taylor & Zafman LLP更多信息请下载全文后查看。
7方法
图解: 当相邻的两个单元状态分别为“1” 和“0”时,系统处于高能态,这时状 态为“0”的单元将变为状态“1”,以使 系统处于低能态。把一系列这种量子 单元有序的排列起来就可以不通过电 流而实现二进制信息的传递。
QCA做逻辑器件的优点
• 高集成度(High functional density);
• 在人造原子中,由于库仑排斥作用,部分电子 处于势阱上部,弱的束缚使它们具有自由电子 的特征。 • 人造原子的另一个重要特点是放入一个或拿出 一个电子很容易引起电荷涨落,放入一个电子 相当于对人造原子充电。这些现象是设计单电 子晶体管的物理基础。
量子电子器件
短沟道MOS 晶体管
短沟道MOS晶体管的导电沟道非常薄,因此它的反型层可以看作是量子 层中的二维电子气。
• 人造原子与真正原子的不同之处: • 1)人造原子含有一定数量的真正原子; • 2 )形状和对称性多种多样(形貌),真正原 子可用球形或立方形描述。 • 3)电子间强交互作用比实际原子复杂得多 (多电子交互作用)。 • 随着原子数目增加,电子轨道间距减小,强库 仑排斥、系统限域效应和泡利不相容原理使电 子自旋朝同样的方向有序排列。 • 4 )实际原子中电子受原子核吸引作轨道运动, 而人造原子中电子是处于抛物线形的势阱中, 具有向势阱底部下落的趋势。
• 信号传导无需导线(No interconnect in signal path); • 高速,低功耗(Fast and low power)。
用QCA做逻辑器件的现状
• QCA逻辑器件的几大优点正是当前微电子 技术的所亟待解决的几大难题,因此很多科学 家纷纷把过目光转向这种新的逻辑器件制作方 法。 • 目前,在理论上已经可以构造出代替导线 的QCA“导线”和与门、或门、反向器等逻辑 电路所需的基本逻辑门,甚至能构造出较复杂 的逻辑电路。 • 下面以图片的形式列出几种典型的QCA逻 辑器件和由这些逻辑器件组成的二进制全加器。
QCA的设计方法
QCA电路的设计方法用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。
逻辑门是数字逻辑电路的基本单元。
存储器是用来存储二值数据的数字电路。
从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路为了用QCA设计组合逻辑电路,我们需要一种能够表示布尔函数的方法。
在QCA中,最佳的设计是使用多数逻辑门。
这与传统数字电路中使用与门和或门之间,仅仅是因技术的改变引起逻辑风格的变化,但是关于设计风格的固有观念仍然相同。
首先,对于使用多数逻辑门为基本单元的综合小型布尔电路,以与门和或门为输入的三输入多数门为例,如图所示:对于复杂的组合逻辑电路,用多数逻辑门表示电路,首先要用卡诺图化简法化简逻辑函数。
卡诺图是真值表的变形,它可以将有n个变量的逻辑函数的2n个最小项组织在给定的方格矩阵中,同时为相邻最小项(相邻与项)运用邻接律化简提供了直观的图形工具。
卡诺图具有一个重要性质:可以从图形上直观地找出相邻最小项。
两个相邻最小项可以合并为一个与项并消去一个变量。
在讨论这种方法之前,以一个包含4个非相邻最小项的布尔电路为例,介绍根据目前方法【1】表示电路需要的原则:原则:(1)确定布尔函数是不是多数门函数。
布尔函数表示一个多数门函数只有它的4个最小项在卡诺图中形成“T”或“倒T”结构,注意,不是多数门函数。
(2)如果函数不是多数门函数,将函数分解成尽可能少的多数门函数。
要做到这一点,在卡诺图中找到形成“T”或“倒T”结构且逻辑上相邻的four 0-cubes;如果使用表格结构,我们需要找到一个以最小项或最大项为根的由三部分组成的树结构。
不管在T或数结构中,最多只有一个最大项。
(3)为了减少网络门的数量,将一个大型网络分解成尽量少的三输入网络基于上述原则,可以用4个多数门表示,如图:其中:注:由原则(2)可得到F1和F2,原则(3)得到F3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Quantum Cellular AutomatabyBassam Aoun&Mohamad TarifiABSTRACTWe provide an introduction to Quantum Cellular Automata.ACKN OWLED G EMEN TSWe acknowledge our friend Carlos for extremely useful conversations and his good sense of humor!We acknowledge Prof. Michel Mosca for his excellent course that introduced and hooked us to Quantum Information Processing.We also acknowledge University of Waterloo for being a good host.CO N TEN TSAbstract (2)Acknowledgements (3)Contents (4)1. Introduction (5)2. Brief Overview of Quantum Mechanics (6)2.1 The beam splitter experiment (6)2.2 Quantum Mechanics Postulates (8)2.3 Quantum Bits (10)2.4 Quantum Computing (14)2.5 Qunautm Algorithm (18)2.6 Quantum Turing Machines (19)3. Classical Cellular Automata (21)3. 1 Why Cellular Automata? (21)3. 2 Definition and Classifications (23)3. 3 Properties of Cellular Automata (27)4. Quantum Cellular Automata (30)4. 1 Why Quantum Cellular Automata: (30)4. 2 Definition and Restrictions: (31)4. 3 Subclasses of QCA (33)4.4 Universality (39)4.5 A Simple Universal Architecture (41)5. Advanced issues (43)Bibliography (44)1. IN TRO D UCTIO NI do not know where to start, so I will just state the obvious hopping that this will let us realize some of the obviousness that we miss.The emergence of simple patterns out of complex systems motivates the study of behavior independent of the particulars of a system. Cellular Automata is a simple tool that displays such characteristics and is therefore useful for modeling.Cellular automata are particularly useful for presenting parallel computation, and can be thought of as its basic building blocks. Cellular automata sometimes display complex behavior even when simple rules are applied.It is natural then, to extend the models of cellular automata to encompass what we believe about nature and computation.In this report we attempt to provide a useful introduction to quantum cellular automata from a computing perspective. For clarity and accessibility we provide a brief overview of both quantum computing and classical cellular automata.2. BRIEF OVERVIEW O F QUAN TUM MECHAN ICS2.1 THE BEAM SPLITTER EXPERIMENTAs a start, we will present two brief experiments to illustrate some basic concepts in quantum mechanics. The outcome of the last experiment seems counterintuitive because everyday phenomena are well within good classical physics approximation range.In figure 1, a light source emits a photon along a path towards a half-silvered mirror. This mirror splits the light, reflecting half vertically towards detector A and transmitting half toward detector B. Our intuition would tell us that the photon leaves the mirror either towards A or B with equal probability since it cannot be split. The fact that a photon cannot split have been verified through detecting a signal at only one detector. This means that photons will be detected 50% of the time at each of the two detectors. So far, the quantum physical prediction agrees with the classical one.Figure 1: Experiment 1 using one beam splitterThis peace of information is misleading since it might lead us to think that the photon leaves either towards A or towards B. However, quantummechanics predicts, through the effect known as single-particle interference, that the photon actually travels along both paths simultaneously, collapsing down to one path only upon measurement. The following experiment illustrates the last effect.Figure 2: Experiment 2 using two beam splittersIn this experiment, we introduce a fully silvered mirror instead of each detector of the first experiment such that the two paths will encounter a half-silvered mirror before reaching detectors A and B. Once a photon will reach the last half-silvered mirror, along either one of the two paths, one might think that the photon will reach the detectors A or B with a probability of 50% each. However in this experiment, the detector A or the detector B will register a hit 100% of the time whereas the other one will never be triggered.In this experiment, our classical intuition based on the conditional probability doesn t predict such outcome. We cannot explain this conclusion based on a comparison with the first experiment. This phenomenon is known as single-particle interference. One interpretation quantum physics states that the photon traveled both paths simultaneously; creating interference at the point ofintersection that canceled the possibility of the photon to reach the other detector. Consequently, if we cancel out the effect of quantum interference by placing an absorbing screen on one of the paths, both detectors will registers 50% hits similar to the first experiment. Those potential paths taken by the photon represent the superposition of the possible photon states.Figure 3: Placing an obstacle on one of the pathsThose special characteristics as the superposition of different states and interference give the quantum computer the potential to be incredible powerful computational devices. Therefore, quantum computers are not seen as continuity of classical computers but as an entirely new branch of thoughts.2.2 QUANTUM MECHANICS POSTULATESIn this section we introduce the four postulates of quantum mechanics as they are relevant to our investigation in quantum information processing. Quantum postulates are very important in a sense that they provide the connections between the physical, real, world and the quantum mechanics mathematics used to model these systems.Postulate 1: Any isolated physical space is associated with a complex vector space with inner product called the State Space of the system. It states that a system is completely described by a state vector, a unit vector, pertaining to the state space which describes all the possible states the system can be in.Postulate 2: Evolution of an isolated system can be as:2121()(,)()v t U t t v t where t1, t2 are moments in time and U(t1, t2) is a unitary operator . We should notethat the process is reversible, sinceU U vPostulate 3: The me asure me nt o f a c lo se d syste m is de sc ribe d by a c o lle c tio n o f o pe rators Mm which act on the state space such that ()m m de sc ribe s the pro bability the me asure me nt o utc o me moccurred,'is the state o f the syste m afte r me asure me nt o utc o me moccurred,()1m mm m M M I m (completeness relation).Note that measurement is an external observation of a system and so disturbs its unitary evolution.Postulate 4: The state spac e o f a c o mpo site syste m is the te nso r pro duc t o f the state spac e s of its componentsSystem A AB System B .However, if the qubits are allowed to interact, then the closed system includes all the qubits together, and it may not be possible to write the state in the product form. When this is the case, we say that the qubits in the ensemble are entangled (refer to later sections for further analysis of entanglement).2.3 QUANTUM BITS2.3.1QubitsThe fundamental resource and basic unit of quantum information is the quantum bit (qubit). From a physical point of view, a qubit is represented by an ideal two-state quantum system. Examples of such systems include photons (vertical and horizontal polarization), electrons and other spin-1/2 systems (spin up and down), and systems defined by two energy levels of atoms or ions. From the beginning the two-state system played a central role in studies of quantum mechanics. It is the most simple quantum system, and in principle all other quantum systems can be modeled in the state space of collections of qubits.A qubit is represented as unit vector in a two dimensional complex vector space for which a particular orthonormal basis, denoted by{0,1}, has been fixed. The notation for these states was introduced by Dirac. It is called the ket notation, and its variations are widely used in quantum physics. It is important to notice that the basis vector 0is not the zero vector of the vector space.For the purposes of quantum computing, the basis states 0 and 1 encode the classical bit values 0 and 1 respectively. Unlike classical bits however, qubits can be in a superposition of0and 1such as where and are complex numbers such . If such a superposition is measuredwith respect to the basis{0,1}, the probability that the measured value is 0is and the probability that the measured value is 1Key properties of quantum bits:1. A qubit can be in a superposition state of 0 and 1.2.Measurement of a qubit in a superposition state will yieldprobabilistic results.3.Measurement of a qubit changes the state to the result.2.3.2 Te nso r pro duc tsMuch computational power of quantum systems comes from the fact that as the number of qubits increases linearly, the amount of information stored2is represented. The composite state of twoqubits is an element of4:11.The composite state of three qubits is in 8, and so on.More generally, if 1H and 2H are Hilbert spaces, then 12H H is also a Hilbert space. If 1H and 2H are finite dimensional with bases 12{,,...}n u u u and12{,,...}n v v v respectively, then 12H H has dimension nm withbasis {|1,1}ij u v in jm .For matrices A , B , C , D , U and scalars a , b , c , d the following hold:A B A U B U UC DC UD U and a ba Ub U Uc dc Ud UThe tensor product of several matrices is unitary if and only if each one of the matrices is unitary up to a constant. Let 1...n UA A . Then U is unitary ifi ii A A k I and 1iik . 11111(...)(...)......n n n nn U U A A A A A A A A k Ik IIWe can define an inner product on U Vby212,)).(,v u uwhich could be written in another notation as11221212,u v u v v u u 2.3.3 Entangled quantum statesThe fundamental observation of Josza R., in Entanglement and quantum computation , states that entanglement, not superposition, is the essential feature that empowers quantum computation, and is what gives other quantum technologies (such as quantum teleportation) their power.A classical (macroscopic) physical object broken into pieces can be described and measured as separate components. An n -particle quantum system cannot always be described in terms of the states of its component pieces. For instance, the state 0011cannot be decomposed into separate states of eachof the two qubits in the form 112(0,1)(1)a b b . This is because11212121212(0,1)(1)000110,11a b b a a a b a b band a 1b 2 = 0implies that either a 1a 2 = 0 or b 1b 2 = 0. States which cannot be decomposed in this way are called entangled states. These are states that don't have classical counterparts, and for which our intuition is likely to fail.When particles are entangled, a measurement of one affects a measurement of the other. For example, the state11is entangled since theprobability of measuring the first bit as 0is 1/2 if the second bit has not been measured. However, if the second bit has been measured, the probability that the first bit is measured as 0is either 1 or 0, depending on whether the second bit was measured as 0or 1, respectively. On the other hand, the state01)is not entangled. 01), any measurement of the first bit will yield 0regardless of measurements of the second bit. Similarly, the second bit has a fifty-fifty chance of being measured as 0regardless of measurements of the first bit. Therefore, entanglement is a non-classical correlation between two quantum systems. It is most strongly exhibited by the maximally entangled states such as the Bell states for two qubits, and is considered to be absent in mixtures of product states (separable states). Often states that are not separable are considered to be entangled. However, nearly separable states do not exhibit all the features of maximally entangled states. As a result, studies of different types of entanglement are an important component of quantum information theory.2.4 QUANTUM COMPUTINGThis exponential growth in number of states, together with the ability to subject the entire space to transformations (either unitary dynamical evolution of the system, or a measurement projection into an eigenvector subspace), provides the foundation for quantum computing.An interesting (apparent) dilemma is the energetic costs/irreversibility of classical computing. Since unitary transformations are invertible, quantum computations (except measurements) will all be reversible by restricting them to unitary quantum transformations. This means that every quantum gate (on one or many qubits) implements a reversible computation. That is, given the output of the gate, it must be possible to unambiguously determine what theinput was. Fortunately, there is a classical theory of reversible computation that tells us that every classical algorithm can be made reversible with an acceptable overhead, so this restriction on quantum computation does not pose a serious problem. It is something that must be kept in mind when proposing a specification for a quantum gate, however.We will illustrate quantum gate representation through an example of the quantum version of the classical not gate. It is represented by x and has the effect of negating the values of the computational basis. That is, using ket notation,not In vector notation this equation becomes: not .Another effect of expressing the effect of not is by multiplying the vector by a matrix representing not :0110notso we can identify the action of not with the matrix0110x. Similarly, we can find some useful single-qubit quantum state transformations. Because of linearity, the transformations are fully specified by their effect on the basis vectors. The associated matrix is also shown. They are known as the four the four Pauli gates.:I 011001:y 0011:z01001Note that I is the identity transformation (often called nop or no-operation),xis negation,zis a phase shift operation, andy z xis a combination ofboth. One reason why the Pauli gates are important for quantum computing is that they span the vector space formed by all 1-qubit operators. All these gates are indeed unitary. For example:0101110y yAnother very important gate is the Hadamard gate defined by the following transformation::H 01Applied to n bits each in the 0state, the transformation generates a superposition of all 2npossible states.xOther then the Hadamard gate, we need to mention the T gate. It is100eT ee eAn important two-qubit operator is the CNOT. It is given as follows:CNOT00=00CNOT01= 01CNOT10= 11CNOT11 = 10Classically, we can think of the C-not as flipping the second register if andonly if the first register is set to 1. The transformationnotC is unitary sincenot notC C and not notC C I. The notC gate cannot be decomposed into a tensor product of two single-bit transformations.By analogy to classical computation, one may ask what kind of quantum gates we need in order implement an arbitrary unitary transformation. Since the number of possible unitary transformation is uncountable, one can not find a set of basic gates that construct exactly every unitary transformation. However, there exist universal gates which can construct any transformation U within bounded error . Said in other words, we can construct a circuit U from those gates that simulates U within the allowed . A universal set of operations is: H,X, T, and CNot.2.5 QUNAUTM ALGORITHMQuantum algorithms are methods using quantum networks and processors to solve algorithmic problems. On a more technical level, a design of a quantum algorithm can be seen as a process of an efficient decomposition of a complex unitary transformation into products of elementary unitary operations (or gates), performing simple local changes.The four main properties of quantum mechanics that are exploited in quantum computations are:SuperpositionInterferenceEntanglementMeasurementThe publication of P. Shor s quantum algorithm in 1994 for efficiently factoring numbers was a key event that stimulated many theoretical and experimental investigations of quantum computation. One of the reasons why this algorithm is so important is that the security of widely used public key cryptographic protocols relies on the conjectured difficulty of factoring large numbers. Furthermore, more recently, Lov Grover came up with a quantumknowledge about the function f. Even though it is not an exponential speed-up, it is an improvement over classical search algorithms.2.6 QUANTUM TURING MACHINESWe discuss the automata theoretic definition due to Bernstein, Vazirani and Deutsch, an alternative and more physical approach is given by Benioff.Quantum Turing Machines (QTMs) are analogous to probabilistic Turing Machines. As always, QTMs are made of a processing unit, a tape divided into discrete cells, a read/write head, and a set of states.More formally, a single tape quantum Turing machine is a quintuple0,,f Q q q , where is the finite tape alphabet that includes the blanksymbol, Q is a finite set of states, 0q and f q are the initial and final states respectively.The transition functionmaps:[0,1]:({,,})QQ As usual the number of non-blank symbols is assumed to be finite.,i q , where is content of the tape, i specifies the position of the head and q the current state of machine.If we let C denote the set of all such configurations, then computation is done in the inner product space 2()H l C with bases {|}c c C . We can derive a mapping :a C Cfrom the transition function such that for 12,c c C ,12(,)a c c is the amplitude of the transition from the basis state 1c to 2c .The time evolution behavior of the QTM can then be defined as a mapping:U H H Cmaps tocc CU c , where '(,')'c CU ca c c c .of QTM it will collapse to a TM statecSufficient condition for checking whether a QTM is well-formed that is it satisfies requirements of quantum mechanics, like unitary evolution were introduced by Bernstein, Vazirani and Hirvensalo.3. CLASSICAL CE LLULAR AUTO MATA3. 1 WHY CELLULAR AUTOMATA?In the late 1940s, Von Neumann set to answer the question of whether a machine can possibly fabricate machines as complicated as themselves. In an attempt to simplify the problem, he considered that machines or automatons are made up of a small number of standardized parts.In his model, a complex reservoir full of floating machine parts is used. Von Neumann was able proof, using mathematical logic, that a system made of an automaton and a blueprint for building the automaton can self-replicate by: First making a copy of the blueprint and then use the blueprint s instructions for making a copy of the automaton. It is interesting to observe that the blueprint is analogous to DNA for self-reproduction.Von Neumann needed a simpler model to formulate a more convincing and constructive proof. S. Ulam, his colleague at Los Alamos, suggested thinking in terms of an idealized space of cells that hold finite states, where each state represent different machine part.The idea was clearly presented in a paper by Ulam:Given is an infinite lattice or graph of points, each with a finite number of connections to certain of its "neighbors". Each point is capable of a finite number of "states". The states of neighbors at time tn induce, in a specified manner, the state of the point at time t n+1Cellular Automata where used by von Neumann described a self reproducing machine that used 29 states, this work was completed in before 1952 but it was not published during his lifetime.In 1970, Conway presented the Game of Life, which is a two-dimensional cellular automaton. In Life cells are either alive or dead, the rules are: a dead cell with exactly three live neighbors becomes alive. A live cell with two or three live neighbors stays so (survival).In all other cases, a cell dies or remains dead (overcrowding or loneliness). The game s simple rules generate beautiful patterns that to a certain extent seem alive. Conway later proved that the Game of Life is computationally universal.In the late 70s, Fredkin proposed that the world we live in is a huge cellular automaton. Fredkin s thought that all physical quantities can be seen as packets of information that reside in a cellular automaton.S. Wolfram entered the field of cellular automata in the early 1980s. After a series of discoveries about one dimensional cellular automata, Wolfram decided to retire from publishing and indulge in a private investigation of cellular automata. In 2002, and after 15 years, Wolfram publishes his work in a book entitled A New Kind of Science (NKS). The book has been very controversial.It remains to point the interesting fact that many of the leading researchers in Quantum Computing where also leading researchers in Cellular Automata, notable Charles Bennett, Tommaso Toffoli, and Norman Margolus.Applications of Cellular automata range from parallel computation, artificial life, image processing and image generation, modeling biological systems, simulations of chemistry, simulation of physics, turbulence, algorithm and hardware design, graphics, and art.3. 2 DEFINITION AND CLASSIFICATIONSA Cellular Automaton (CA) is a regular discrete infinite network of identical finite automaton called cells, the state of which changes on discrete time steps. The evolution of each cell is deterministic and depends upon a local finite number of so-called neighboring cells.More formally, a Cellular Automata is a quadruple,,d Q N, where*N Z is ad Z is its dimension, Q is the finite set of all possible states, dfinite neighborhood, : Q|N| Q is a local transition function.The cells of the automaton are organized in a line and are indexed by the elements of Z. The neighborhood of a cell is the set of all cells in the network which will locally determine its evolution. Von Neumann s and Moore s neighborhoods are two examples of commonly studied neighborhoods in d = 2.In general the neighborhood of a cell do not have to be near, however it has been shown that every d-dimensional neighborhood can be simulated by a d-dimensional nearest neighborhood.The radius of a neighborhood is the distance between the cell and its furthest neighbor. A related problem would be to optimize the radius versus the number of states. It is interesting to note that for a realistic model of computation we do not consider CAs whose ratio between the radius and the number of states is exponential since in such a setting NP-complete problems can be solved in polynomial time.The following is a simple example of 1 dimensional, 2 state with radius=1, rule:Bellow is a sketch of that simulates the evolution of the rule starting with an initial condition of {00100}:Wolfram devised an efficient representation of the local transition function (sometimes called rule). We describe the representation for the one-dimensional case:There is 23=8 different combination of states that determine the next state of a given cell, for every combination the rule can produce either a 0 or 1, so we have 28=256 possible rules. Thus one can specify a rule by associating it with an 8-bit number determined by setting the ith bit to 0 if the corresponding combination outputs a 0 and 1 otherwise. For example the rule shown above is rule number 01111110=126.In the early 1980s wolfram discovered that simple cellular automata rules can yield complex behavior, and he classifies cellular automata into four main categories:Class 1 is characterized by simple behavior and that information about initial conditions is always rapidly forgotten. Rule 254 is an example of this class; the following shows its evolutions starting with 6 different random initial conditions.Class 2 is also simple but it has many fixed or periodic orbits, and from most initial states it will quickly converge to one of those orbits. In a Class 2 some information in the initial state is retained in the final configuration but this information always remains completely localized. Rule 170 is a common example:Class 3 behavior is characterized by apparent randomness it shows long-range communication of information so that any change made anywherein the system will almost always eventually be communicated even to the most distant parts of the system. It is somewhat surprising that there are simple cellular automata that belong to this class, Rule 30 is an example:Class 4 is in-between Classes 2 and 3, it is characterized by regions with apparently random mixing and regions with localized structures that stay stationary or move linearly. A collision between two moving structures is an interaction that can be viewed as a two-bit a gate.The Game of Life belongs to this class. Wolfram discovered that Rule 110 also belongs to this class and proved that it is computationally universal. Wolfram also conjunctures that all Class 4 cellular automata simulate the Turing Machine. In fact, Wolfram claims the principle of computational equivalence which states that almost all processes that are not obviously simple can be viewed as computations of equivalent sophistication. The following shows Rule 110:3. 3 PROPERTIES OF CELLULAR AUTOMATA Back to general cellular automata ,,d Q N one can formally describe the state of cellular automata at a given instant through a configuration (also called global state) which is mapping :t d c Z Q , where d z t c Q . The evolution of the cellular automaton is then a sequence (0,t t c ) of configurations. Let us define the global transition function 1()i i c G c : :d d z z G Q Q , and for every cell Z we have: 111111()()((,...,),(,...,),...,(,...,))t d t d da t n d dn G c z c z z c z n z n c z n z n , where 1111((,...),....,(,...,))(,...,)n da n dn n n n n represent the neighborhood. For example the von Neumann neighborhood in two has the following global transition function: ()(,)((1,),(,1),(,),(,1),(1,))t t t t t G c i j c i j c i j c i j c i j c i j A problem with the practical realization of general cellular automata is that an infinite array of cells is needed. There are two types of configurations that avoid this problem:Finite Configurations: These are configurations c, such that for a given quiescent state q e , the support, defined as (){/()}e Supp c c q , is finite.Periodic Configurations: These are configurations c, such that there exist a d p Z such that ()(),d c z p c z z Z . These are suitable to describe automata on rings.A cellular automaton is called:Trivial if each cell has only itself as a neighbor. Simple if its neighborhood is an interval of integers.Symmetric if the cell is the central element of its neighborhood. An important subclass of cellular automata is reversible cellular automata, which was initially studied because cellular automata is used for to modeling and many phenomena are reversible.A cellular automata is A reversible if there is another cellular automata Asuch that 12()G c c if and only if '21()G c c . Note that A has aneighborhood that is in general different from A.Hedlund and Richardson proved that a cellular automaton is reversible if and only if it is bijective.Non-trivial reversible cellular automata are rare. In fact, for 2d , it is undecidable whether a d-dimensional cellular automaton is reversible (Kari 1990). However, Toffoli (1977) proved that any k-dimensional CA can be simulated in real time by a (k+1)-dimensional reversible CA . Moreover, Dubacq (1985) proved that there is a universal cellular automaton that is reversible .。