管线探测仪探测原理

合集下载

管线探测技术方案

管线探测技术方案

管线探测技术方案1地下管线分类及探测地下管线分类城市地下管线按照权属单位不同,可分为给水、排水(雨水、污水、雨污合流)、燃气、电力、通讯(电信、XXX、XXX、有线电视等)、热力等市政公用管线以及铁路、民航、军用等专用管线,是城市基础设施重要的组成部分,担负着输送能量、传输物资、传递信息的重要任务,是整个城市赖以生存和发展的物质基础,是城市名副其实的生命线。

地下管线探测地下管线探测方法一般分为两种:一种是采用井中调查、开挖样洞或简易触探相结合的方法,这种方法在我国早期城市管线普查中应用较多,目前主要应用在某些复杂地段的管线探测及检查验收中使用;另一种是仪器探测与井中调查相结合的方法,近年来在我国城市地下管线探测中广泛使用。

2地下管线探测前提条件分析公开管线探测是以公开管线与周围介质(土体)的密度、磁性、电阻率、介电常数等物性参数差异为前提,采用地球物理方法对公开管线进行定位的技术。

城市公开管线包孕给水、排水、电力、电信、燃气、热力、工业等,这些管线按材质大致可归结为三大类:第一类为由铸铁、钢材构成的金属管线,如给水、燃气、热力和压力雨(污)水管线等;第二类为由水泥、塑料等材质构成的非金属管线,如重力流式雨(污)水管线、PE材质燃气管线、PVC材质给水管线等;第三类为带金属骨架的管线(指内芯为铜、铝材质,外层为塑料的电缆),如电力电缆、通讯电缆等。

上述管线作为探测目标体,其与周围介质(土体)之间均存在密度、波速、电阻率、介电常数、导磁性、导热性等某一方面或几方面的物性参数差异,这些差异是能够运用物探技术对其进行有效探测的地球物理前提。

3城市地下管线探测技术方法城市地下管线探测技术基本原理地下管线的存在往往会改变天然的或者人工的地球上物理场的分布情况,而后会产生异常。

通过对着这些异常的分布情况、形态及性状的研究,可以获得与地下管线位置相关的资料,为我们进行地下管线探测奠定了理论基础。

城市公开管线探测方法现场探测时,可按照不同材质、不同类型的公开管线与周围介质之间的具体物性参数差异,按照有效、快速、经济的原则,选择某一种或多种物探方法进行探测。

管线探测仪探测原理讲解

管线探测仪探测原理讲解

三、探棒定位测深原理
1、间接测深方法: 所有管线定位仪都支持该种方法
三、探棒定位测深原理
2、深度直接测量:
RD8000、RD7000都支持探头深度数据的直接显示。地面探测定点采 用十字交叉的方法。
四、电流方向测量原理
电流方向测量 (CD)目的: ----可直观的区分其它管线与直连目标管线。因为直连法时,其它管线上
大的特定的信号。
Aerial cable form
六、接收机和发射机的方向性
1、发射机的方向性:(感应法) a.当管线方向与发射机发射线圈轴线平行
时,发射机无法给此管线施加感应信号。 b.当发射机线圈轴线与待测管线垂直相交时,
发射机无法给此管线施加感应信号。 c.当发射机线圈轴线与待测管线垂直并且不相
二、深度及电流测量原理
1、管线深度及电流测量原理:
二、深度及电流测量原理
2、测量准确性条件:
管线磁场尽量呈现同心园形。
当用峰值法确定管线位置时,通过判断管线两侧仪器响应的对 称情况即可知道管线磁场的变形程度。
二、深度及电流测量原理
3、70﹪法测量深度: 这个方法在磁场变形严重, 旁侧管线影响比较大时使用。
直连法可以采用的具体措施: ① 给接地棒浇水,这样可以大幅度降低 R*。 ② 红色导联线连接管道处,应该仔细打磨,保证接触良好, 对于通信光缆和对地绝缘良好的其它线缆,不要使用低频, 尽量使用高频,靠导线与大地之间的等效电容降低 R**,为信 号提供一个回路。 ③ 如果有条件,对绝缘良好的导线进行末段接地 。 ④ 增加发射机输出功率
2.POWER 与RADIO 信号强弱影响因素: a) 管线材质,导电性越好,信号越强。 b) 管线长度,长度越长,越容易产生信号。 c) 周围环境,离发电厂,输电线,长波电台越近,越容易产生信

城市地下管线探测方法及影响因素

城市地下管线探测方法及影响因素

城市地下管线探测方法及影响因素摘要:随着社会经济的不断发展,城市建设和发展的速度前所未有的进行着,一些多年前建设的城市管网由于无法荷载而引发城市内涝等灾害。

地下管网是现代化城市中的重要基础设施,完善城市基础设施的建设,提高城市地下载体的功能,对加速社会主义经济建设、改善人民生活条件、完善投资环境、提高城市现代化程度有着极其深远的意义。

由于地下管线属于隐蔽工程,科学地探明地下管线的准确位置、编制成图、建立地下管网信息系统,成为现代化城市面临的重大管理和技术问题。

由于城市发展建设的多元化,地下管线已由单一、简单形式发展到包括排水、给水、通信、燃气、工业管线等多类别布局复杂的管线网。

但由于历史的原因,全国70%的城市地下管线没有基础性城建档案资料,每年因施工而引发的管线事故造成经济损失高达数百亿元,本文就曲靖市麒麟区、沾益县(区)、马龙县(城区)地下管线探测为例,探讨城市地下管线探测方法及影响因素。

关键词:地下管线定位定深信号随着社会经济的不断发展,城市建设和发展的速度前所未有的进行着,一些多年前建设的城市管网由于无法荷载而引发城市内涝等灾害。

地下管网是现代化城市中的重要基础设施,完善城市基础设施的建设,提高城市地下载体的功能,对加速社会主义经济建设、改善人民生活条件、完善投资环境、提高城市现代化程度有着极其深远的意义。

由于地下管线属于隐蔽工程,科学地探明地下管线的准确位置、编制成图、建立地下管网信息系统,成为现代化城市面临的重大管理和技术问题。

由于城市发展建设的多元化,地下管线已由单一、简单形式发展到包括排水、给水、通信、燃气、工业管线等多类别布局复杂的管线网。

但由于历史的原因,全国70%的城市地下管线没有基础性城建档案资料,每年因施工而引发的管线事故造成经济损失高达数百亿元,加强地下管网的探测与管理已显得越来越重要。

一、地下管线探测仪的介绍原理及参数(一)地下管线探测仪的介绍本次在云南省曲靖市麒麟区、沾益县(区)、马龙县(城区)地下管线探测中所使用仪器是英国雷迪公司生产的RD-4000型地下管线探测仪。

管道检测设备介绍及检测方案范本

管道检测设备介绍及检测方案范本

管道检测设备介绍及检测方案管道检测是管道安全管理的重要组成部分,对于保护管道的安全性以及预防事故起到了举足轻重的作用。

随着科技的发展,越来越多的高效、精准的管道检测设备得到了广泛应用。

本文将介绍一些常见的管道检测设备以及相应的检测方案。

1. 管线探测仪管线探测仪是一种用于检测地下管线的设备。

它具有快速、高效、精准的特点,可以精确地检测到管线的位置、深度以及管道报警器的状态等信息。

其工作原理是利用地磁、电磁波或者声波等信号对管线进行定位和探测。

使用管线探测仪进行管道检测时,需要事先制定相关的检测计划,并对管线进行标记和分类。

在实际检测过程中,需要配备专业的检测人员进行操作,并对检测结果进行数据分析和统计。

管线探测仪的应用范围非常广泛,主要用于城市地下管网、石油化工行业、金属管道等领域。

2. 超声波检测仪超声波检测仪是一种利用声波进行检测的设备,主要用于检测管道的缺陷、泄漏、裂纹等问题。

超声波检测仪工作原理是向被测体发送超声波信号,然后通过接收探测器接收反射波,从而分析出管道内部是否存在缺陷。

在实际使用中,超声波检测仪具有快速、无损、灵敏度高等优点,被广泛应用于建筑工程、航空航天行业、机械制造等领域,以及在一些特殊的管道检测领域中具有独特的优势。

3. 管道内窥镜设备管道内窥镜设备是一种可穿越管道内部进行检测的设备,主要用于检测管道是否存在裂纹、腐蚀、碰撞、连接是否牢固等问题。

管道内窥镜设备分为硬性内窥镜和软性内窥镜两种类型,工作原理是通过显微镜头组成的探头进行管道检测。

在实际应用中,管道内窥镜设备十分灵活且精准,因此被广泛应用于建筑工程、石油化工行业、电力系统等领域。

4. 管道流量计管道流量计是一种用于测量管道内液体或气体流量的设备。

主要根据热量、压差、超声波、质量等原理进行测量。

管道流量计可以测量管道内部的流速、密度、压力、温度等参数,从而精准地计量管道的流量,并提供可靠的流量计量数据。

在实际应用中,管道流量计主要用于化工、石油、天然气、水务、供热等领域,以及工业生产和民用建筑等行业。

陀螺仪工作基本原理 管线探测

陀螺仪工作基本原理 管线探测

陀螺仪工作基本原理管线探测陀螺仪是一种用于测量和监测物体角速度的设备,其基本原理是基于角动量守恒定律和陀螺效应。

在管线探测领域中,陀螺仪可以被用来监测管道的位置、方向和移动状态,以帮助管理和维护管道系统。

本文将介绍陀螺仪的工作原理、在管线探测中的应用以及相关的技术发展和挑战。

一、陀螺仪工作原理1.角动量守恒定律陀螺仪的工作原理基于角动量守恒定律,即一个旋转的物体在没有外力作用下,角动量要恒定不变。

当陀螺仪旋转时,由于角动量守恒定律的作用,其转动轴会维持在一个固定的方向上,这使得陀螺仪可以用于测量物体的旋转状态。

2.陀螺效应陀螺效应是指当一个旋转的物体在受到外力作用时,会产生一个与外力垂直的附加力。

在陀螺仪中,当其转动轴受到外力作用时,会产生陀螺效应,使得陀螺仪产生一个与外力垂直的力,从而可以反映出外力作用的方向和大小。

综合以上两点,陀螺仪可以通过测量其旋转轴的角速度变化来确定物体的旋转状态,同时利用陀螺效应可以判断外力的作用方向和大小,从而实现对物体的旋转状态的监测和测量。

二、陀螺仪在管线探测中的应用1.定位与导航陀螺仪可以被用于管线探测中的定位与导航任务。

通过安装陀螺仪在探测器设备中,可以实时监测管道的位置、方向和移动状态,从而帮助管理人员更准确地掌握管线的位置信息,避免管道破损和泄漏等安全隐患。

2.弯曲监测在管线系统中,管道的弯曲状态是很常见的,然而弯曲程度过大会对管道系统的稳定性和可靠性造成不利影响。

通过安装陀螺仪设备可以实时监测管道的弯曲程度和变化趋势,及时发现并处理管道变形问题,预防管道破损和漏水等安全风险。

3.地下管线探测地下管线探测是管道管理中的一项重要任务,而陀螺仪可以作为一种高精度的地下管线探测工具。

通过安装陀螺仪设备在地下管线探测器中,可以提高地下管线的探测精度,减少误差和漏测情况,为地下管线的检测和排查提供技术支持。

以上介绍了陀螺仪在管线探测中的应用,可以看出陀螺仪在管线探测中具有重要的作用和意义,可以提高管线的安全性和可靠性。

地下管线探测技术简介

地下管线探测技术简介

地下管线探测技术简介1、地下管线探测技术简介地下管线探测技术已应用多年。

早在第二次世界大战末,人们为了寻找战争遗留的地雷和其他未爆炸物而试图将物探技术应用于实际,但当时只有一些常规物探方法,由于分辨率低、抗干扰能力差,效果不大。

进入20世纪80年代末,研制者们采用新型磁敏元件、新型滤波技术、天线技术、电子计算机技术使这类仪器的信噪比、精度和分辨率大大提高,且更加轻便和易于操作,实现了高精度、高分辨率。

又由于计算机软件技术的开发,使得探测数据能够通过计算机进行处理,从而形成了一项适用技术。

1.1、地下管线探查地下管线探查是指应用地球物理勘探的方法对地下管线进行定位、定走向、定埋深。

它的原理是:地下管线的存在会改变天然的或人为产生的地球物理场的分布,即产生异常。

研究这些异常的形态、分布、形状可获得地下管线位置的有关资料。

常用的地下管线探测方法有两种:(1)充电法。

对地下管线施加直流电,在地面上观察电磁场的异常,以确定地下管线所在的位置,这种方法的特点是仪器轻便、方法简单、定位精度高,在地下管线密集的区域有较好的分辨率,但使用条件必须有可供充电的出露点,在地层电阻串低时效果差。

(2)电磁感应法。

是观察地下管线在一次电磁场作用下,利用发射线圈产生的电磁场对金属管线感应所产生的二次电磁场的变化规律以确定地下管线的位置,这种方法的特点是不需出露点,在地下管线比较少的情况下效果好。

为克服这些缺点,国外已研制出具有仪器输出阻抗与被测管线阻抗自动区分信号的探测仪,可最大限度地避免被测管线的电磁信号受周围环境的干扰。

可见,地下管线探测技术理论、仪器装备、电算解释应属物探理论及技术范畴,但又不同于常规的工程物探;应用领域应属于工程测量,又与常规的工程测量不一样,它是运用物探的原理对地下隐蔽体进行准确测量的技术。

1.2、地下管线测量地下管线测量是指对管线点的地面标志进行平面位置和高程连测;计算管线点的坐标和高程、测定地下管线有关的地面附属设施和测量地下管线的带状地形图,编制成果表。

管线探测仪的原理应用

管线探测仪的原理应用

管线探测仪的原理应用引言管线探测仪是一种用于检测和定位埋藏地下的各种管道、管线和隧道的设备。

它通过使用射频信号和电磁波来探测地下管线,然后将结果进行分析和展示。

管线探测仪在城市规划、土地开发、水利建设等领域有着广泛的应用。

管线探测仪的原理管线探测仪基于电磁波传播和反射原理工作。

它通过发射电磁信号穿透地下,并根据反射信号的强度和时间来确定管道的位置、深度和方向等信息。

管线探测仪主要由以下几个部分组成: - 发射器:发射器产生电磁信号并将其发送到地下。

- 接收器:接收器接收来自地下管线的反射信号,并将其转换成电信号。

- 处理单元:处理单元对接收到的信号进行分析和处理,并生成相应的管线信息,如位置、深度和方向等。

- 显示器:显示器将处理单元生成的管线信息进行展示,供用户观察和分析。

管线探测仪的应用管线探测仪在以下领域有广泛的应用:1. 城市规划在城市规划过程中,为了避免对已有地下管线的损坏或破坏,使用管线探测仪可以准确地检测和定位地下管线。

这样可以在规划和施工过程中避免潜在的问题,并确保城市基础设施的稳定运行。

2. 土地开发在进行土地开发之前,使用管线探测仪可以快速准确地了解地下管线的布局和走向。

这有助于规划和设计工程,并在施工过程中避免不必要的风险和延误。

3. 水利建设在进行水利建设项目时,如水管、下水道和排水设施的设计和施工,使用管线探测仪可以帮助工程师准确地了解地下管线的情况,快速找到合适的敷设位置,并避免对现有管线的损坏。

4. 管道维护在管道维护过程中,使用管线探测仪可以快速准确地定位问题所在,并帮助维修人员快速采取相应的维护措施。

这样可以减少维护时间和成本,并提高管道维修的效率。

5. 隧道建设在隧道建设过程中,使用管线探测仪可以帮助工程师准确地了解地下管线的布局,避免隧道施工对现有管线的破坏。

这样可以提高隧道建设的效率和质量。

结论管线探测仪在城市规划、土地开发、水利建设和管道维护等领域有着广泛的应用。

管线探测仪工作原理

管线探测仪工作原理

管线探测仪工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII管线探测仪工作原理:是利用电磁感应的原理来探测地下电缆的精确走向、深度以及定位电缆的开路、短路及外皮故障点,GH-6600B管线探测仪的智能化全汉字、图形操作指示及声音调频指示。

发射机内置欧姆表可自动测量环路电阻及连续的自动输出阻抗匹配,以保证输出最佳的匹配信号。

对于电缆故障的测试,本仪器可应用跨步电压法,用直埋电缆故障测试配件(“A”字架)来判断直埋电缆的对地绝缘电阻小于2M欧的电缆对地故障及电缆外皮故障的定位;也可以用信号强弱法判断电缆开路、短路故障。

应用耦合夹钳,可以查找带电电缆的路径,利用接收机的50Hz探测功能,还可以对运行电缆发出的50Hz工频信号进行跟踪。

其基本工作原理是:由发射机产生电磁信号,通过不同的发射连接方式将信号传送到地下被测电缆上,地下电缆感应到电磁信号后,在电缆上产生感应电流,感应电流沿着电缆向远处传播,在电流的传播过程中,通过该地下电缆向地面辐射出电磁波,这样当管线定位仪接收机在地面探测时,就会在电缆上方的地面上接收到电磁波信号,通过接收到的信号强弱变化来判别地下电缆的位置、走向和故障发射机的工作原理及方法1.发射机的信号发送连接方式:直连法、耦合法、感应法2.直连法是最佳的探测方法,发射机输出线红色端直接连接到管线的裸露金属部分切勿将其接入带电运行线路中,另一端接地。

此种方法产生的信号最强,传播距离最远,适用于低频、射频两种工作状态3.耦合法当不能与待测管线直接相连时,可以采用耦合夹钳用耦合法探测。

此种方法可以根据现场的实际情况来选择发射频率:低频、射频。

当地下管线的近端和远端都接地良好并形成回路,这时就使用低频频率;如果两端接地不良好,回路电阻过大,或者低频信号耦合不上,那就改用射频来测试。

选择频率没有固定不变的原则,下面给出了频率选择的基本原则:对于高阻的管线(如:通信电缆,带防腐层的管道和铸铁管)使用射频率。

RDRD地下管线探测仪使用技巧

RDRD地下管线探测仪使用技巧

RD400、RD4000地下管线探测仪使用技巧雷迪公司北京办事处一、管线仪简介RD400、RD4000管线探测仪均为由一台发射机和一台接收机组成,用于地下金属管线路由的精确定位、深度测量和长距离管线的追踪。

它采用了雷迪公司独创的双水平线圈和垂直线圈电磁专利技术,并且增加了测量目标管线电流强度和电流方向的功能,提高了管线仪定位的精度和对目标管线的识别能力,在管线密集复杂的区域也能准确地对目标管线进行追踪和定位。

RD400、RD4000地下管线探测仪还有许多可选配件,从而扩展了它们的用途和应用范围。

不但可以对直埋管线的对地绝缘故障点进行准确的定位,也可以对非金属下水管道、污水管等的进行探测,还可以使用特殊夹钳(或听诊器)从很多根管线中识别单一的目标管线。

另外,雷迪公司还提供了探测深度更大的双深度天线及专门用于水下工作的水下双深度天线等配件。

二、管线仪的探测原理及方法1、原理RD400、RD4000地下管线探测仪使用的是电磁感应法。

用管线仪的发射机在地下管线上施加一个交变的电流信号I。

这个电流信号在管线中向前传输的过程中,会在管线周围产生一个交变的磁场。

其大小为I=K*I/R,方向为等势圆周上的切线方向。

将这个磁场分解为一个水平方向的磁场分量和一个垂直方向的磁场分量。

通过矢量分解可知,在目标管线的正上方时水平分量为最大,垂直分量为最小,而且它们的大小都与管线的位置和深度呈一定的比例关系。

因此,用管线仪接收机里的双水平天线和垂直天线分别测量其水平分量和垂直分量的大小,就能准确地对地下管线进行定位和测深。

2、方法RD400、RD4000地下管线探测仪都有无源工作方式和有源工作方式等两种方式。

无源工作方式用来搜索一个区域内未知的电力电缆及其它一些能主动向外幅射信号的管线。

不需要发射机对目标管线施加信号。

有电力(Power)和无线电(Radio)两种模式。

将接收机调到这两种工作模式,调节灵敏度,得到合适的读数,提着接收机在区域内进行网格搜索,并使机身面与移动方向成直线且尽可能与通过的管线呈90°,接收机有响应显示时,则表示有管线存在。

《地下管线探测原理》课件

《地下管线探测原理》课件

水利水电工程勘测
说明如何利用地下管线探测技术 来进行水利水电工程的勘测和规 划。
地下管线探测的未来发展
1
新技术的引入
介绍新兴地下管线探测技术的发展和应用前景。
2多种探测技术的融合展示多种地下管线探测技术的互补性和协同作用。
3
应用领域的进一步扩展
探讨地下管线探测技术在其他领域的应用和未来的发展空间。
电磁法探测技术
• 频域电磁法 • 时域电磁法
非接触式红外热像法 探测技术
• 红外热像仪的选择和使用 • 热像图的解读和分析
地震波探测法技术
• 爆炸反射法 • 电缆反射法 • 重锤反射法
地下管线探测的应用
市政工程建设
解释如何应用地下管线探测技术 来确保市政工程的质量和安全。
工业生产设施维护
探讨地下管线探测在工业生产设 施维护中的重要性和应用。
1 电磁法原理
介绍地下管线探测中常用 的电磁法原理,以及其在 定位和识别管线方面的优 势。
2 非接触式红外热像法 3 地震波探测法原理
原理
介绍地震波探测法,以及
解释利用非接触式红外热
通过分析地震波反射和传
像法探测管线的基本原理,
播路径来探测地下管线的
以及其在管线施工和维护
原理。
中的应用。
地下管线探测的方法和技术
地下管线探测原理
# 地下管线探测原理 地下管线探测的重要性及基本原理,探测方法和技术,应用领域的发展和未 来趋势。
地下管线的重要性
管道的作用和分类
了解不同类型的管道在城市基础设施中的重要作用和分类。
地下管道的安装方式和施工技术
探索地下管道的安装方式以及相关施工技术,了解其对城市建设的影响。
地下管线探测的基本原理

地下管线探测培训-地下管线探测原理

地下管线探测培训-地下管线探测原理

探测技术手段及其原理—技术手段
GPR(探地雷达)
GPR(探地雷达)的问题 复杂 需要专业的资料解释 对土壤条件要求高 设备较庞大
探测技术手段及其原理—技术手段
钎探
最原始的探测方法, 还不能称其为技术。 操作简单是其唯一的 优点。
开井探测 人工开挖
探测技术手段及其原理—技术手段
开井探测是最直接也 是施工中乃至最多的 探测方法,此方法直 观并可以直接量测相 关数据。 人工开挖是一种辅助 手段,施工中必需存 在一定比例开挖点作 为验证。
地下管线探测成果
技术设计书 管线现状调绘图、管线调查表和探测手簿(或 现场绘制的草图)、控制点成果表、控制网图 、专业地下管线图、综合地下管线图 野外观测记录、计算资料;检查和开挖验证记 录 质量自检报告及精度统计表、质量评价表 技术总结报告书
综合管线图 三维管线场景
综合管线图
地下管线概述—分类
夹钳
发射机
接收机
夹钳法探测
探测技术手段及其原理—技术手段
电磁感应法探测
该方法已经成为目前定 位和追踪地下管线通用 的方法。 该方法的优点是能够提 供有关地下管线的各种 资料,这都是其它方法 无法比拟的。
探测技术手段及其原理—技术手缺点 不能探测非金属管线,如 :塑料管和水泥管。 这种问题可以通过埋设示 踪金属线(带)得到解决 。
地下管线探测目的
随着城市现代化进程,地下管线设施也迅速发展 ,管线建设也将不断地进行新建、扩建或改造。 管线信息可以为管线建设提供良好的设计环境, 对管线安全运行、施工、维护、管理起着举足轻 重的作用。 在管线建成之后,使用中对管线不断维护更新, 正常运营,也都必须根据管线信息系统资料进行 分析,以便准确确定产生故障原因,采取切实可 行的措施排除故障,所以管线探测及信息系统建 设是城市现代化建设和管理的重要手段。

城市地下管线探测方法

城市地下管线探测方法

城市地下管线探测方法地下管线是城市的重要基础设施。

近年来,随着城市建设的发展,大力发展交通系统,能源体系,通讯,信息网络等,如铁路、地铁、轻轨、供电、供热、供气等。

各项工程的实施均离不开地下管线这一重要隐蔽基础设施。

由于种种原因,管线资料不全,有的与现状不符,而且各种管线权属于不同的部门,对管线管理不够重视,这都增加了管线的管理难度。

在工程施工中,常因管线位置不明挖断管线,造成停水、停电、通讯中断等事故,给人民生活带来极大不便。

为了避免这些状况发生,查明地下管线位置、走向已成为工程施工必不可少的前提,对于促进城市建设和谐发展具有重要意义。

1 地下管线的分类城市中的管线主要有给水管线、排水管线、燃气管线、热力管线、电力电信管线等。

这些管线按埋深可分为浅埋和深埋。

按材质可分为金属管线和非金属管线,其中,金属管线主要有铸铁管、钢管、铝管等;非金属管线主要有混凝土管、钢筋混凝土管、PVC管、PE管、电力电信电缆等。

2 各种地下管线探测技术原理及应用探测管线的目的是确定管线的位置、埋深。

地下管线与周围土体之间存在物性差异,各种地下管线探测技术原理追根究底都是利用这种物性差异来进行探测定位。

不同的物性差异决定了不同的探测方法。

根据探测时依据的不同物性差异可以将探测方法分为电磁感应法、地质雷达法、地震波法、高密度电阻率法、井中磁梯度法等。

2.1 电磁感应法电磁感应法是地下管线探测的主要方法。

是以地下管线与周围介质之间有明显的导电率、导磁率和介电性为主要物性基础 (如表1所示 ),根据电磁感应原理观测和研究电磁场空间和时间变化规律,达到寻找地下金属管线或解决其它地质问题的目的。

当地下管线与周围介质间电性差异明显且管线长度远大于管线埋深时,探测效果明显。

根据施加信号的方式不同,电磁感应法分为直接法、夹钳法、感应法和示踪法。

直接法:直接法 (也称充电法 )适用于探测大口径的金属管线。

该方法是将发射机输出端接到被测金属管线上,利用直接加到被测金属管线上的信号进行探测。

墙体水管探测原理

墙体水管探测原理

墙体水管探测原理一、墙体水管探测原理简介:墙体水管探测是一种非破坏性检测技术,用于确定墙体内部隐藏的水管位置和走向。

其原理是通过发送特定的无损波束至墙体,利用声波或电磁波在水管与墙体间的反射、折射和传播特性来获取水管的信息。

二、声波墙体水管探测原理:1. 发送声波:探测仪器通过振动源发出特定频率的声波信号。

2. 声波传播:声波信号在墙体内部传播,部分能量被墙内的水管吸收,部分能量会产生反射和折射。

3. 声波接收:接收器接收到反射和折射的声波信号,并将其转化为电信号。

4. 信号处理:接收到的电信号经过放大和滤波处理,以提取出水管的特征信号。

5. 定位分析:通过分析反射和折射的信号特征,可以确定水管的位置和走向。

三、电磁波墙体水管探测原理:1. 发送电磁波:探测仪器通过发射电磁波信号,可能是高频电磁波或者微波。

2. 电磁波传播:电磁波信号在墙体内部传播,部分能量被墙内的水管吸收,部分能量会产生反射和散射。

3. 电磁波接收:接收器接收到反射和散射的电磁波信号,并将其转化为电信号。

4. 信号处理:接收到的电信号经过放大和滤波处理,以提取出水管的特征信号。

5. 定位分析:通过分析反射和散射的信号特征,可以确定水管的位置和走向。

四、探测仪器和技术细节:1. 探测仪器:墙体水管探测仪器通常包括声波发射器、接收器和信号处理装置,或者电磁波发射器、接收器和信号处理装置。

2. 探测精度:探测仪器应具有较高的探测精度,能够准确地定位水管位置和走向。

3. 探测深度:探测仪器的探测深度受设备性能和墙体材料等因素影响,一般在几米范围内。

4. 实际应用:墙体水管探测广泛应用于建筑施工、管道维修和改造等领域,以帮助工作人员准确地定位水管,避免破坏。

五、注意事项:墙体水管探测过程中应注意以下事项:1. 确保设备正常工作及正确操作;2. 了解墙体材料和水管类型,以调整合适的探测参数;3. 避免在已知有电缆或金属管线的区域进行探测,以免产生干扰;4. 结合实际施工需要,合理安排探测工序和操作方式。

城市地下管线探查技术及方法研究

城市地下管线探查技术及方法研究

城市地下管线探查技术及方法研究随着城市化进程的加快和城市基础设施的日益完善,城市地下管线系统日益复杂,各种管线纷繁交错,因此地下管线探查技术越来越成为城市建设和管理中的重要课题。

地下管线探查技术的研究与应用,对城市基础设施的建设与安全具有重要的意义。

本文将围绕城市地下管线探查技术及方法进行研究,探讨其技术原理和应用方法,旨在为城市地下管线的检测和管理提供技术支持。

一、技术原理1.激光扫描技术激光扫描技术是一种新兴的地下管线探查技术,通过使用激光扫描仪对地面进行扫描,生成地面数字模型,从而实现对地下管线系统的探查与测绘。

该技术具有高精度、高效率和非破坏性等特点,能够有效地解决地下管线探查难题,为城市管线布局和维护提供支持。

2.地震地电联合勘察技术地震地电联合勘察技术是一种结合了地质勘探、地震勘探和地电勘察技术的综合应用技术。

通过使用地震波和电场等物理探测手段,对地下管线进行探查与测定。

该技术能够有效地提高地下管线的探查效率和精度,具有较高的应用价值。

3.地下雷达探测技术地下雷达探测技术是一种利用电磁波在地下介质中传播的原理,对地下目标进行探测与测定的技术。

通过使用地下雷达设备,可以实现对地下管线系统的高分辨率探查与成像,具有高精度、快速、实时性等特点,适用于城市地下管线的检测与管理。

二、应用方法1.地下管线勘察与测图地下管线勘察与测图是地下管线探查技术的重要应用方法之一。

通过使用激光扫描、地震地电联合勘察和地下雷达探测等技术手段,对城市地下管线进行测绘和勘察,生成地下管线分布图和数字模型,为城市地下管线的建设和维护提供依据。

2.地下管线漏水检测3.地下管线异物探查地下管线系统中常常存在异物的堵塞和损坏,通过使用地下雷达探测技术,可以实现对地下管线异物的探查与测定,为城市地下管线的清理和维护提供技术支持。

三、技术应用在实际应用中,地下管线探查技术应用范围广泛,既可用于城市供水、供电、供气等管线系统的探查与管理,也可用于城市交通管线、通讯管线等系统的检测与维护。

浅析地下管线探测的方法技术

浅析地下管线探测的方法技术

浅析地下管线探测的方法技术摘要:地下管线探测对于城市建设的主要作用是能获取地下管线现状数据和保证地下管线信息的完整性和现势性。

随着城市施工项目逐渐增多,为了保护地下管线的安全运行,地下管线探测技术显得日益重要。

本文主要对管线探测的原理、方法进行了简单介绍,并对探测过程中的几个问题进行了简单分析。

关键词:地下管线探测;隐蔽点;1 前言地下管线是城市的重要基础设施,是城市正常运转的生命线。

伴随着城市的不断扩大和日益繁荣,各种施工逐渐增多,如道路改扩建、市内桥梁和高架快速路桩基施工等,这些施工都可能对施工区域内管线造成影响甚至破坏,因此地下管线探测是相关施工前的必要步骤。

地下管线探测分为明显点调查和隐蔽点探测。

明显点是肉眼可见的,如检查井、消防栓、接线箱等,这类管线点在现场直接调查量测并进行相关记录;隐蔽点是指需采用管线仪器探测来定位和定深的不可见的管线点,如埋设在地下的管线起始点、终止点、变径点、分支点等,这些隐蔽点的定位定深是管线探测中的关键。

2 地下管线探测原理地下管线探测是一门比较复杂的专业技术,不同材质、埋深和地质条件的地下管线应采取不同的探测方法。

现今用于管线探测的管线仪主要是利用电磁感应原理。

电磁感应法是通过对目标管线施加一定频率和适当强度的交变电磁场,该目标管线与大地之间便有相应的交变电流通过,该交变电流在其周围空间产生相同频率的交变电磁场,即在目标管线周围形成二次交变电磁场异常,用接收装置检测该异常,便能确定目标管线的位置,达到探测地下管线之目的。

设单根地下无限长金属管线载有谐变电流I,则其在地面某点产生的磁感应强度的水平分量BX和垂直分量BZ分别为:式1式2根据接收线圈观测到的BX 和Bz可以确定管线的位置和深度。

管线交叉或转折等存在形式都可以利用叠加原理进行计算。

3 地下管线探测的常用方法3.1 管线探测方法利用仪器进行管线探测的主要方法有被动源法和主动源法。

(1)、被动源法被动源法主要利用电缆中的交变电流所产生的电磁场,用接收机直接接收该电磁场的信号特征,即能确定其所处的位置。

地下管线的测量简析

地下管线的测量简析

地下管线的测量简析一、管线探测方法概述地下管线探测的目标管线包括给水、排水(雨水、污水)、电力、路灯、电信、有线电视、燃气等。

物探方法是基于探测目标体与周围介质存在物性差异的前提下进行的。

按管线的材质可将管线分为金属管线和非金属管线,电力、通讯为可导电的电缆、光缆,给水管道为导电性较好的铸铁管或者导电性较差的球墨铸铁管,排水管道为不导电的水泥管或者PVC管,燃气管道目前大部分选用不导电的PE管。

不管目标管线是金属或是非金属,管线本身与其埋设环境存在物性差异,是存在物探方法应用的基础。

导电的金属管线周围存在磁场,通过接收该磁场来判断管线的位置和埋深是目前探测金属管线的最有效的方法。

该方法利用电磁感应原理,适合于能导电的金属管线,包括电缆、光缆以及导电性较好的铸铁给水管等。

为了更好地分辨出目标管线,管线中的电流采用人工激发效果较好,根据管线类型的不同,应选择不同的激发方法。

直连法:适合于管径较大的金属管,利用导线将管线仪发射机和管道直接相连,在管道上产生一定频率的电流,利用接收机接收管线电流产生的磁场,测量管线的位置和深度。

夹钳法:电缆、光缆等管线不存在接口,也不允许仪器本身和管线直接相连,通过在目标管线上加夹钳使目标管线上产生感应电流,利用接收机接收管线电流产生的磁场,测量管线的位置和深度。

感应法:电缆、光缆等金属管线不存在出露口,无法采用直连法和夹钳法,利用发射机线圈的磁场在目标管线上产生感应电流,利用接收机接收管线电流产生的磁场,测量管线的位置和深度。

管线探测位置和深度原理为:当管线仪接收机中的水平线圈在通电导线的正上方时,信号最强,由此判断管线位置,利用接收机不同高度的两个水平线圈的测量值和高度差,用d=xEt/(Eb-Et)计算出管线深度。

该方法在实践应用中,优点是探测效果好、效率高,缺点是只能用于金属管线探测,不适用于非金属管线。

二、管线测量技术与探测成果城市地下管线是指埋设于地下的各种管道、线缆、盖板沟以及与地下管线直接关联的管线设备和构筑物以及附属设施的空间地理、安全运营管理等属性信息。

地下管线探测基本概念

地下管线探测基本概念
管线追踪:是指手持接收机追踪目标地下管线走向的过程,一般呈
“Z”字形轨迹。
管线系统:特指一种地下管线从源头至用户终端的完整的管线网络
体系,应包含控制关系、计量关系、流向、规格、管材等逻辑 关系。
管线点:特指描述地下管线走向特征的特征点。通常有折拐点、分
支点、变坡点、控制点、出入地点、计量点等。
管线段:指一段具有完全一致特征的直线管段(逻辑上而非物理
信号源。
被动源:是指地下金属管线本身因周边环境感应产生的可以被探测
设备接收机接收到的特定频率的信号源,如50Hz市电、30kHz 电台感应的信号。
信号加载:是指地下管线探测设备将设定的频率信号加载到目标管
线上构成回路的过程。
信号强度:是指地下管线探测设备接收机探测到的目标管线周围某
点的场强大小,可间接反映管线中特定频率的信号电流的大小 或信号异常的大小等信息,是探测地下管线的最重要依据。
地 下 管 线 明 显 点 定 位 精 度 : 平 面 ----±5cm ; 埋 深 ---±3cm
地 下 管 线 点 测 量 精 度 : 平 面 ----- ±5cm ; 高 程 ---±3cm
探查原则
先调查后探测、先已知后未知、先易后难、 先浅后深。
工作流程
接收任务编写技术设计书现场技术交底仪 器方法及适应性试验外业调查探测草图管 线探测探查信息录入管线点测量数据处理 管线成果编绘检查、修改、整饰审核验收 成果提交。
计算、展绘等工作。
管线信息整理:是指对调查、探测、测量完成获取的数据和信息进行梳理、
融合、整理编绘、制表、建库等工作,形成管线的各种成果。
管线的物理特性:是指管线自身及其与周边地质水文环境所构成的具有独
特物理环境的统称。如:导电性、导磁性、导声性、导温性、反射性、折 射性、穿透性、抗拉性、抗压性等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 接收机内线圈方向
提示:雷迪公司所 有接收机刀刃方向 与其机内接收线圈
轴线方向一致
六、接收机和发射机的方向性
刀刃
接收机 内接收 线圈轴 线方向
六、接收机和发射机的方向性
接收机最大响应方向的寻找
七、电力模式及无线电模式信号成因及影响强弱的因素 1.POWER模式及RADIO模式信号成因:
七、电力模式及无线电模式信号成因及影响强弱的因素
二、深度及电流测量原理
1、管线深度及电流测量原理:
二、深度及电流测量原理
2、测量准确性条件:
管线磁场尽量呈现同心园形。
当用峰值法确定管线位置时,通过判断管线两侧仪器响应的对 称情况即可知道管线磁场的变形程度。
二、深度及电流测量原理
3、70﹪法测量深度:这个方法在磁场变形严重, 旁侧管线影响比较大时使用。
感应的信号电流始终与目标管线相反.
五、管线中影响信号电流大小的因素
1、管线中信号电流大小的意义:由下面的公式可以看出, 管线中的电流大小对探测的影响最大。大的电流可以提 高仪器的信噪比,增加仪器的探测深度。
五、管线中影响信号电流大小的因素
2、发射机给管线施加信号的三种方法: a).直连法:
五、管线中影响信号电流大小的因素
2.POWER 与RADIO 信号强弱影线长度,长度越长,越容易产生信号。 c) 周围环境,离发电厂,输电线,长波电台越近,越容易产生信
号。
三、探棒定位测深原理
1、间接测深方法:所有管线定位仪都支持该种方法
三、探棒定位测深原理
2、深度直接测量:
RD8000、RD7000都支持探头深度数据的直接显示。地面探测定点采 用十字交叉的方法。
四、电流方向测量原理
电流方向测量(CD)目的: ----可直观的区分其它管线与直连目标管线。因为直连法时,其它管线上
b) 不要移动接收机,原地转动接收机,当响应最大时停下来。 c) 保持接收机垂直地面,在管线上方左右移动接收机,在响应最大
的地方停下来。 d) 把天线贴近地面,重复(b)。 e) 重复(c)。 f) 标志管线的位置和方向。 重复所有的步骤以提高精确定位的精度。
一、定位原理
峰值法定位准确性条件: ① 水平响应曲线越陡峭越好。 ② 水平响应曲线越对称越好。
b) 夹钳法:
c) 感应法
五、管线中影响信号电流大小的因素
五、管线中影响信号电流大小的因素
2.影响管线中信号电流增大的因素及措施:
a).直连法时信号施加回路阻抗越小越好。具体就是R* 及R**越小越好。
发射机
红色电极线
R**
黑色电极线
管线对地电阻
接地棒接地电阻 R*
直连法等效电路
五、管线中影响信号电流大小的因素
② 用高的感应频率。
五、管线中影响信号电流大小的因素
• 感应法增加管线电流的方法:(注意方向) ① 增加发射机输出功率。 ② 用高的感应频率。 ③ 对高阻管线进行两端接地。 ④ 发射机尽量靠近要激发的目标管线。
接收机
六、接收机和发射机的方向性
发射机
六、接收机和发射机的方向性
1、发射机结构:(与发射机方向性有关) 工作中,发射机的作用就是给管线施加尽可能
一、定位原理
1、基本的电磁定律:通电导线产生磁场(右手 法则)
2、管线仪测量板块
一、定位原理
TOP
VERTICAL BOTTOM
一、定位原理
3、峰值法定位原理: 当水平线圈轴线与通电导线垂直且处于通电导
线正上方时,水平线圈信号最强。
一、定位原理
a) 保持接收机天线与管线的方向垂直,横过管线移动接收机。确定 响应最大的点。
大的特定的信号。
Aerial cable form
六、接收机和发射机的方向性
1、发射机的方向性:(感应法) a.当管线方向与发射机发射线圈轴线平行
时,发射机无法给此管线施加感应信号。 b.当发射机线圈轴线与待测管线垂直相交时,
发射机无法给此管线施加感应信号。 c.当发射机线圈轴线与待测管线垂直并且不相
一、定位原理
4、谷值法:在管线正上方,垂直安装的线圈 响应最小。
一、定位原理
5、结合水平线圈的响应,谷值法中设计有 一个始终指向管线的箭头,依据此箭头, 可以对目标管线进行快速追踪。
一、定位原理
谷值法定位准确性条件:
在管线正上方磁场垂直分量越小定位越准。
峰谷值法定位:
在此模式下,同时具有峰值最大值响应的 功能,又具有谷值的箭头指向功能,箭头长 度随着离开管线的距离相应变化。
直连法可以采用的具体措施: ① 给接地棒浇水,这样可以大幅度降低R*。 ② 红色导联线连接管道处,应该仔细打磨,保证接触良好, 对于通信光缆和对地绝缘良好的其它线缆,不要使用低频, 尽量使用高频,靠导线与大地之间的等效电容降低R**,为信 号提供一个回路。 ③ 如果有条件,对绝缘良好的导线进行末段接地。 ④ 增加发射机输出功率
交时,发射机给管线上施加的感应电流最大。
六、接收机和发射机的方向性
(a)
(b)
(c)
六、接收机和发射机的方向性
发射机方向性的利用:
① 抑制非目标管线的感应干扰。 ② 抑制架空线路的感应干扰。
六、接收机和发射机的方向性
2.接收机的方向性: a) 当接收机线圈轴线与管线垂直时,接收机
才能具备对此管线的最大灵敏度。 管线方向探测:原地转动接收机,当接收机峰值响 应最大时,接收机刃面垂直方向即为管线方向
管线仪探测原理介绍
测量原理
一、为什么要讲测量原理?
1)可以指导我们正确地使用仪器,发挥仪器最大效能。 2)可以指导我们有效压制测量中的干扰。 3)可以使我们正确解读仪器提供给我们的信息。
二、为什么要用RD8000讲测量原理?
因为RD8000是雷迪公司管线仪中功能最多,应用新 技术,新方法最多的产品,知道了它的工作原理,其它 产品可以举一反三。
五、管线中影响信号电流大小的因素
b) 夹钳法时信号回路电阻越小越好。最好夹钳两侧管线都有
直接接地点,如果要用夹钳法施加信号的管线对地绝缘,
那么或者把夹钳两侧的管线在远端连起来,或者使用高频, 靠管线对地等效电容构成信号回路。
夹钳法增加管线电流的方法:
① 增加发射机输出功率。 ③ 对高阻管线进行两端接地。
相关文档
最新文档