高二单元目标教学质量检测题抛物线
(完整word版)高二数学抛物线单元测试题1
抛物线一、选择题1. 已知抛物线22y px =上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x=8B .x=-8C .x=4D .x=-42. 将抛物线x y 42=沿向量a 平移得到抛物线x y y 442=-,则向量a 为A .(-1,2)B .(1,-2)C .(-4,2)D .(4,-2)3. 抛物线2y ax =的焦点坐标为( )A .1(0,)a B .(0,)4a C .1(0,)4a D .1(,0)4a4. 正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为( )A .B .C .8D .165. 在22y x = 上有一点P ,它到(1,3)A 的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)6. 设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为 ( ).A.24y x =±B.28y x =±C. 24y x =D. 28y x =7. 抛物线y =x 2上的点到直线2x -y -10=0的最小距离为( )A .955B .0C .95D .55 8. 两个正数,a b 的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( )A .5(,0)16-B .2(,0)5- C .1(,0)5- D .1(,0)59. 直线l 过抛物线x y =2的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角4πθ≥,则|FA |的取值范围是( )A .)23,41[ B .13(,44+ C .]23,41( D .]221,41(+ 10. 已知点(1,0),(1,0)A B -及抛物线22y x =,若抛物线上点P 满足PA m PB=,则m 的最大值为( )(A )3 (B )2 (C (D二、填空题11. 设点F 为24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++= .12. 已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为__ 。
高二抛物线练习题答案
高二抛物线练习题答案抛物线是数学中的一个重要概念,它在物理学、工程学等领域中有广泛的应用。
掌握抛物线的性质和相关计算方法对于学生来说非常重要。
下面将给出一些高二抛物线练习题的答案,帮助你加深对抛物线的理解和应用。
题目一:已知抛物线的标准方程为y = ax² + bx + c,其中a ≠ 0。
若该抛物线与x轴交于点A和B,与y轴交于点C,则下列说法正确的是:A. A、B两点关于y轴对称B. A、B两点关于x轴对称C. A、C两点关于y轴对称D. B、C两点关于y轴对称解答:由于抛物线与x轴交于A、B两点,这意味着在这两个点上,y = 0,则将y = ax² + bx + c中的y替换为0,可得ax² + bx + c = 0。
这就是一个二次方程,它的解为抛物线的交点坐标。
而根据二次方程的性质,解的个数与二次项系数a的正负有关。
若a > 0,则开口向上,有两个不同的实数解,即A、B两点关于x轴对称;若a < 0,则开口向下,没有实数解,A、B两点在坐标轴上方,不对称于x轴。
所以选项B正确。
题目二:已知抛物线的焦点坐标为F(3, 2),准线方程为x = 1,则该抛物线的标准方程是:A. y = (1/2)(x - 3)² + 2B. x = (1/2)(y - 3)² + 2C. x = (1/2)(y - 2)² + 3D. y = (1/2)(x - 2)² + 3解答:首先我们知道,抛物线的焦点到准线的距离等于焦准距,而焦点F(3, 2)到准线x = 1的距离为2。
所以抛物线的方程可以表示为y = ax² + bx + c。
由于焦准距等于1/4a,我们可以得到1/4a = 2,所以a = 1/8。
再根据焦点到准线的垂直关系,可以得到抛物线的标准方程x = (1/2a)(y - k)² + h,其中焦点坐标为F(h, k)。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.已知点,直线,动点到点的距离等于它到直线的距离.(Ⅰ)求点的轨迹的方程;(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?【答案】(1);(2)即【解析】(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程,或根据定义来求抛物线方程.(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,求出的值.试题解析:(Ⅰ)因点到点的距离等于它到直线的距离,所以点的轨迹是以为焦点、直线为准线的抛物线,其方程为.(Ⅱ)解法一:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.①当直线的斜率不存在时,不合题意.②当直线的斜率存在时,设直线的方程为,联立方程组,消去,得,(*)∴,解得.此时,方程(*)为,其判别式大于零,∴存在满足题设的直线且直线的方程为:即.解法二:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.∵在轨迹上,∴有,将,得.当时,弦的中点不是,不合题意,∴,即直线的斜率,注意到点在曲线的张口内(或:经检验,直线与轨迹相交)∴存在满足题设的直线且直线的方程为:即.【考点】(1)抛物线的标准方程;(2)直线与抛物线的综合问题.2.如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的标准方程及其准线方程;(2)当直线与的斜率存在且倾斜角互补时,求的值及直线的斜率.【答案】(1)所求抛物线的方程是,准线方程是.(2).且由①-②得直线AB的斜率为-1.【解析】(1)设出抛物线的方程,把点P代入抛物线求得p,即求出抛物线的方程,进而求得抛物线的准线方程;(2)设直线的斜率为,直线的斜率为,则可分别表示、,根据倾斜角互补可得,进而得出与之间的等式关系,最后把点A、B代入抛物线的方程并将两式相减后即可求得直线AB的斜率.试题解析:(1)由已知条件,可设抛物线的方程为.因为点P(1,2)在抛物线上,所以,解得.故所求抛物线的方程是,准线方程是.(2)设直线的斜率为,直线的斜率为,则,.因为与的斜率存在且倾斜角互补,所以.又由,均在抛物线上,得①②所以,所以.且由①-②得直线AB的斜率为-1.【考点】抛物线的应用.3.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.4.已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.(1)求的值;(2)如图所示,过定点(2,0)且互相垂直的两条直线、分别与该抛物线分别交于、、、四点.(i)求四边形面积的最小值;(ii)设线段、的中点分别为、两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1)(2)(i)四边形面积的最小值是48(ii)【解析】(1)直接利用抛物线的定义(2)(i)S四边形ABCD,,利用弦长公式,以及基本不等式,二次函数在闭区间上的最值问题的解法求解(ii)恒过定点问题的常规解法试题解析:(1)由已知∴(2)(i)由题意可设直线的方程为(),代入得设则,∴6分同理可得 7分S四边形ABCD8分设则∴S四边形ABCD∵函数在上是增函数∴S四边形ABCD ,当且仅当即即时取等号∴四边形面积的最小值是48. 9分(ii)由①得∴∴∴, 11分同理得 12分∴直线的方程可表示为即当时得∴直线过定点(4,0). 14分注:第(2)中的第(i)问:S四边形ABCD(当且仅当时取等号)也可.【考点】本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,弦长公式,基本不等式,二次函数在闭区间上的最值问题等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.5.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.6.抛物线的准线方程是()A.B.C.D.【答案】C【解析】由抛物线方程可知,,焦点在轴正半轴,所以其准线方程为。
2019-2020学年高二数学双测2.3 抛物线单元测试(B卷提升篇)(浙江专用)(解析版)
2.3 抛物线 单元测试(B 卷提升篇)(浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2019·四川成都外国语学校高二期中(理))已知抛物线的准线经过点,则抛物线焦点坐标为( )A .B .C .D . 【答案】B【解析】 由抛物线得准线,因为准线经过点,所以, 所以抛物线焦点坐标为,故答案选2.(2018·上海高二期末)抛物线2x my =上的点到定点()0,4和定直线4y =-的距离相等,则m 的值等于( )A .116B .116-C .16D .16-【答案】C【解析】根据抛物线定义可知,定点(0,4)为抛物线的焦点,且0m >, ∴44m =,解得:16m =. 故选:C.3.(2019·上海市民立中学高二期末)平直角坐标系内,到点()1,1A 和直线:230l x y +-=距离相等的点的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线【答案】A【解析】因为点(1,1)A 位于直线:230l x y +-=上,所以动点的轨迹为过A 点与直线:230l x y +-=垂直的直线.4.(2019·内蒙古高二月考(理))点P 是抛物线24y x =上一动点,则点P 到点()0,1A -的距离与P 到直线2x =-的距离和的最小值是( )A .5B .3C .3D .21+ 【答案】D【解析】由y 2=4x 得p =2,2P =1,所以焦点为F (1,0),准线x =﹣1, 过P 作PN 垂直直线x =﹣1,根据抛物线的定义,抛物线上一点到准线的距离等于到焦点的距离,所以有|PN |=|PF |,连接F 、A ,有|F A |≤|P A |+|PF |,所以P 为AF 与抛物线的交点,点P 到点A (0,﹣1)的距离与点P 到直线x =﹣1的距离之和的最小值为|F A |2=,所以点P 到点()0,1A -的距离与P 到直线2x =-的距离和的最小值是21+.故选D .5.(2019·浙江高二期中)已知抛物线C :y 2=4x 的焦点为F 和准线为l ,过点F 的直线交l 于点A ,与抛物线的一个交点为B ,且FA =-2FB ,则|AB |=( )A .3B .6C .9D .12【答案】C【解析】抛物线C :y 2=4x 的焦点F (1,0)和准线l :x =-1,作图如下:∵FA =2FB -,可得|F A |:|AB |=2:3,|FD |:|BC |=2:3,因为|FD |=2,所以|BC |=3,|FB |=3故选:C .6.(2019·辽宁高二期中)设抛物线2y 4x =-的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 的斜率为33,那么||PF =( ). A .23 B .43 C .73 D .4 【答案】B【解析】如图所示:因为抛物线方程为24y x =-,所以焦点(1,0)F -,准线l 的方程为1x =, 因为直线AF 的斜率为33, 所以直线AF 的方程为3(1)3y x =+, 当1x =时,233y =,所以A 点的坐标为, 因为PA l ⊥,A 为垂足,所以P 点纵坐标为3,代入抛物线方程,得P 点坐标为1(3-, 所以141()33PF PA ==--=, 故选:B. 7.(2019·甘肃高二期中)已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为 ( )A .34B .1C .54D .74【答案】C【解析】 抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,因为,A B 是该抛物线上的两点,故,AE AF BG BF ==, 所以3AE BG AF BF +=+=,又MH 为梯形的中位线,所以32MH =,故M 到y 轴的距离为315244-=,故选C.8.(2019·福建高二月考)已知抛物线22(0)y px p =>的焦点为F ,准线为l ,过点F 的直线交抛物线于点M (M 在第一象限),MN ⊥l ,垂足为N ,直线NF 交y 轴于点D ,若|MD ,则抛物线方程是( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】B【解析】画出图像如下图所示,由于直线MF 的斜率为3,故π3MFA ∠=,由于MN l ⊥,故π3FMN ∠=,根据抛物线的定义得MN MF =,故三角形MNF 是等边三角形.由于O 是BF 的中点,//BN OD ,所以D 是NF 中点,而3MD =,根据等边三角形的性质可知2MN MF NF ===,在直角三角形ODF 中,π1,3DF DFO =∠=,所以122p OF ==,解得1p =,故抛物线方程为22y x =. 故选:B.9.(2019·福建高二期中)已知F 是抛物线x 2=y 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到x 轴的距离为( )A .34B .1C .54D .74【答案】C【解析】抛物线x 2=y 的焦点F (0,14)准线方程y =-14, 设A (x 1,y 1),B (x 2,y 2)∴|AF |+|BF |=y 1+14+y 2+14=3解得y 1+y 2=52, ∴线段AB 的中点纵坐标为54, ∴线段AB 的中点到x 轴的距离为54, 故选:C .10.(2019·黑龙江双鸭山一中高三月考(理))已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取得最大值时,点P 恰好在以,A F 为焦点的椭圆上,则椭圆的离心率为( )A1B1 CD【答案】B【解析】设(),P x y ,因为A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点, 所以()()0,1,0,1A F -, 则PAm PF ==== 当0y =时,1m =,当0y >时,m ==≤= 当且仅当1y =时取等号,∴此时()2,1P±, 2PA PF ==,点P 在以,A F 为焦点的椭圆上,22c AF ==,∴由椭圆的定义得22a PA PF =+=,所以椭圆的离心率2212222c c e a a ====-+,故选B. 第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2019·浙江高二期中)若M 是抛物线24x y =上一点,且5,MF O =为坐标原点,则该抛物线的准线方程为_______.线段MO = _______, 【答案】1y =- 42【解析】由抛物线24x y =,可得抛物线的开口向上,且2p =,所以抛物线的准线方程为12p y =-=- 设00(,)M x y ,根据抛物线的定义可得00152p MF y y =+=+=,解得04y =, 把点0(,4)M x 代入抛物线的方程,得204416x =⨯=,解得04x =±,即点(4,4)M ±,所以22(4)442MO =±+=.12.(2019·辽宁高二期中)图1是抛物线型拱桥,当水面在l 时,拱顶离水面2米,水面宽42米,建立如下图2所示的直角坐标系,则抛物线的解析式为________;水面下降1米后,水面宽是 _______米.【答案】24x y =- 3【解析】设这条抛物线的解析式为22(0)x py p =->,由已知抛物线经过点(22,2)-,可得82(2)p =-⨯-,解得2p =,所以抛物线的解析式为:24x y =-;当3y =-时,即212x =,解得23x =±所以当水面下降1米后,水面的宽度为故答案是:24x y =-;13.(2018·上海市复兴高级中学高二期末)P 为抛物线2:4C y x =上一动点,F 为C 的焦点,平面上一点(3,)A m ,若PF PA +的最小值为4,则实数m 的取值范围为_______. 【答案】23,23m【解析】 抛物线2:4C y x =的准线方程为::1l x =-,设PB l ⊥,垂足为B .设P 点坐标为2(,)4y y .根据抛物线的定义有PF PA PB PA +=+,当P 线段AB 上时, PF PA +有最小值,最小值为4,符合题意,此时有203,[4y y m m ≤≤=⇒∈-. 故答案为:23,23m14.(2019·浙江诸暨中学高二月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫ ⎪⎝⎭9 【解析】抛物线C :22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点, 119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.15.(2019·浙江高二期末)如图,已知抛物线C :28y x =,则其准线方程为_______;过抛物线C 焦点F 的直线与抛物线相交于,A B 两点,若||3AF =,则BF =_______.【答案】2x =- 6【解析】依题意抛物线的方程为28y x =,故22p =,所以准线方程为2x =-.由于3AF =,根据抛物线的定义,32A p AF x =+=,1A x =,代入抛物线方程,求得22A y =.所以直线AB 的斜率为2202212-=--,方程为()2222242y x x =--=-+.代入抛物线方程并化简得2540x x -+=,解得4B x =,根据抛物线的定义可知4262B p BF x =+=+=. 16.(2018·浙江高二期末)抛物线2x y =的焦点为F ,其准线与y 轴的交点为P .若该抛物线上的点M 满足2MP MF =,则点M 的纵坐标为__________. 【答案】14【解析】 由题意,点M 在抛物线2x y =上,设点M 的坐标为2(,)a a ,又抛物线2x y =的焦点为1(0,)4F ,准线方程为14y =-,则1(0,)4P - 因为2MP MF =,所以222211()2()44a a a a ++=+-, 解得12a =,所以点M 的坐标为214a =. 17.(2014·浙江高三月考(文))已知抛物线的焦点F 恰好是双曲线的右焦点,且两曲线的交点连线过点F,则该双曲线的离心率________.【答案】【解析】由题意焦点,交点,代入双曲线的方程得,又 ,化简得,,,故答案是.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2019·黑龙江实验中学高二期中)已知点F 为抛物线C :x 2=2py (P >0)的焦点,点A (m ,3)在抛物线C 上,且|AF |=5,若点P 是抛物线C 上的一个动点,设点P 到直线x -2y -6=0的距离为d .(1)求抛物线C 的方程;(2)求d 的最小值.【答案】(1)x 2=8y (2【解析】(1)由抛物线的定义得,|AF |=3+2p =5. 解得p =4,所以抛物线C 的方程为x 2=8y .(2)设直线x -2y -6=0的平行线:x -2y +c =0,⇒2208x y c x y-+=⎧⎨=⎩,得2440x x c --= 故△=16+16c =0⇒c =-1. 所求d19.(2019·辽宁高二期中)已知抛物线C 的顶点在原点,对称轴是y 轴,直线l 与抛物线C 交于不同的两点A 、B ,线段AB 中点M 的纵坐标为2,且||||6AF BF +=.(1)求抛物线C 的标准方程;(2)设抛物线的焦点为F ,若直线l 经过焦点F ,求直线l 的方程.【答案】(1)24xy =;(2)y 12x =±+; 【解析】 (1)由题意可设抛物线C 的标准方程为:22(0)x py p =>,设()()1122A x y B x y ,、,,则124y y +=∵12 6AF BF y y p +=++=,∴2p =,所以抛物线C 的方程为:24x y =(2)由已知得k 一定存在且0k ≠;故可设直线l 的方程为:1y kx =+,则联立直线l 与抛物线方程,整理可得:22y (24)10k y -++=由韦达定理得,24212120241k k y y k y y ⎧=+>⎪+=+⎨⎪=⎩∴212y +y 24k =+=4解得:k=±2,故所求直线方程为y 12x =±+. 20.(2019·黑龙江实验中学高二期中)已知F 为抛物线C :y 2=2px (P >0)的焦点,过F 垂直于x 轴的直线被C 截得的弦的长度为4.(1)求抛物线C 的方程.(2)过点(m ,0),且斜率为1的直线被抛物线C 截得的弦为AB ,若点F 在以AB 为直径的圆内,求m 的取值范围.【答案】(1)y 2=4x (2)1m -3<<.【解析】(1)由条件得2p =4,∴抛物线C 的方程为y 2=4x ,(2)设直线方程为y =x -m ,代入y 2=4x 得y 2-4y +4m =0,△=16-16m >0,m <1.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4,y 1y 2=4m∵F (1,0),∴FA =(x 1-1,y 1),FB =(x 2-1,y 2),∵点F 在以AB 为直径的圆内,∴∠AFB 为钝角,即FA •FB <0,⇒(x 1-1)(x 2-1)+y 1y 2<0,即x 1x 2-(x 1+x 2)+1+4m <0, ∴212()16y y -[(y 1+y 2)+2m ]+1+4m <0, ∴m 2+2m -3<0,解得1m -3<<.21.(2019·浙江高三期中)如图,F 是抛物线()220y px p =>的焦点,,,A B M 是抛物线上三点(M 在第一象限),直线AB 交x 轴于点N (N 在F 的右边),四边形FMNA 是平行四边形,记MFN △,FAB 的面积分别为12,S S .(1)若1MF =,求点M 的坐标(用含有p 的代数式表示);(2)若1225S S =,求直线OM 的斜率( O 为坐标原点). 【答案】(1) 2122p M p p ⎛-- ⎝ (2) 2 【解析】(1)设(),M x y ,则12p x +=,所以12p x =-, 所以22122p y p p p ⎛⎫=-=- ⎪⎝⎭所以2122p M p p ⎛-- ⎝ (2)设()00,M x y ,因为FMNA 是平行四边形,所以对角线,AM FN 互相平分,所以,A M 两点的纵坐标互为相反数,所以()00,A x y -,02,02p N x ⎛⎫- ⎪⎝⎭设()11,B x y ,因为1225S S =,所以01025y y y =+ 所以2001139,28y y y x p== 因为// MF AB ,所以AB MF k k =, 所以20975248o y p x p-=又2002y px =,解得00,x p y ==,所以OM k 22.(2018·上海市通河中学高二期末)已知动圆过定点(1,0)P ,且与定直线:1l x =-相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;(2)试过点P 且斜率为M 相交于A B 、两点.问:ABC ∆能否为正三角形? (3)过点P 作两条斜率存在且互相垂直的直线12l l 、,设1l 与轨迹M 相交于G H 、,2l 与轨迹M 相交于点D E 、,求GD EH ⋅的最小值.【答案】(1)24y x = (2)不能,理由见解析 (3)16【解析】(1)因为动圆过定点(1,0)P ,且与定直线:1l x =-相切所以动圆圆心M 到定点(1,0)P 与到定直线:1l x =-的距离相等由抛物线定义可知,动圆圆心的轨迹是抛物线该抛物线以(1,0)P 为焦点,以:1l x =-为准线所以动圆圆心的轨迹M 的方程为24y x =(2)ABC ∆不能为正三角形.理由如下:过点P 且斜率为AB 方程为)1y x =-则)214y x y x⎧=-⎪⎨=⎪⎩整理化简可得231030x x -+=直线与曲线M 相交于A B 、两点.解方程组可得A B 、两点的坐标为(1,,3,33A B ⎛- ⎝⎭因为C 在l 上,所以设()1,C y -,且ABC ∆能为正三角形 则AC BC AB ==,即满足BC AB AC AB ⎧=⎪⎨=⎪⎩当BC AB =时,由两点间距离公式得()()2222131333y ⎛⎫⎛⎫++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭解方程可得y=-当AC AB=时,由两点间距离公式得2222111333y⎫⎛⎛⎫⎛⎫++=-+⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭解方程可得y=±因为两个方程的解不相同,所以不存在这样的C点,使ABC∆为正三角形即ABC∆不能为正三角形.(3)因为过点P作的两条斜率存在的直线12l l、设直线1l的斜率为k,则1l的方程为()1y k x=-,1l与轨迹M相交于G H、,设()()1122,,,G x y H x y由()214y k xy x⎧=-⎨=⎩整理化简可得()2222240k x k x k-++=则21212224,1kx x x xk++==因为直线12l l、互相垂直,则直线2l的斜率为1k-,其方程可设为()11y xk=--,2l与轨迹M相交于点D E、,设()()3344,,,D x yE x y由()2114y xky x⎧=--⎪⎨⎪=⎩整理化简可得()222410x k x-++=则2343424,1x x k x x+=+=所以GD EH⋅()()GP PD EP PH=+⋅+GP EP GP PH PD EP PD PH=⋅+⋅+⋅+⋅因为直线12l l、互相垂直则0,0GP EP PD PH⋅=⋅=则GD EH⋅GP PH PD EP =⋅+⋅ GP PH PD EP =⋅+⋅由抛物线定义可知12341,1,1,1,GP x PH x PD x EP x =+=+=+=+ 所以GP PH PD EP ⋅+⋅()()()()12341111x x x x =+++++ 1212343411x x x x x x x x =+++++++ 22224111241k k k +=++++++ 22448k k =++由基本不等式可知22448816k k ++≥=当且仅当2244k k=,即1k =±时取等号.即GD EH ⋅的最小值为16。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.设抛物线焦点为F,点P在此抛物线上且横坐标为4,则|PF|等于【答案】6【解析】因为抛物线焦点为F,点P在此抛物线上且横坐标为4,所以由抛物线焦半径公式得|PF|=x+=4+2=6.【考点】本题主要考查抛物线的定义及几何性质。
点评:简单题,抛物线上的点到焦点的距离与到准线的距离相等。
2.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】解:抛物线,∴p=.设A、B、M到准线y=-的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即 2(2+1 32 )=AA′+BB′=AB,∴AB=,故答案为.3.过抛物线的焦点作倾斜角为的直线,则它被抛物线截得的弦长为 .【答案】16【解析】解:因为设直线方程为y=(x-2)与抛物线方程联立方程组,结合韦达定理,得到弦长公式求解得到为16.或者利用抛物线的定义可知弦长为两个的和加上4得到。
4.抛物线的焦点坐标是()A.(2,0)B.(0,2)C.(1,0)D.(0,1)【答案】D【解析】解:因为根据题意2p=4,焦点在y轴上,因此焦点坐标为(0,1),选D5.抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为, 则的值为 .【答案】1【解析】解:因为抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为,联立方程组得到,所以p=16.设不在轴下方的动点到的距离比到轴的距离大求的轨迹的方程;过做一条直线交轨迹于,两点,过,做切线交于点,再过,做的垂线,垂足为,若,求此时点的坐标.【答案】见解析.【解析】第一问利用设点坐标,结合已知的关系式得到化简得到轨迹方程。
第二问中用直线与抛物线的方程联立所以由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴∴可得到。
……………………6分设N点坐标为(a,b)则…………………………8分由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴,∴,,,∴,…………………………12分即,所以,,∴,∴所求点的坐标为…………………………15分7.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为,则()A.B.C.D.【答案】C.【解析】结合抛物线的对称性可知过抛物线的焦点作直线和,其中有四个交点,那么这四个交点与抛物线的焦点F可构成两个等边三角形.故应选C.8.的焦点坐标为 .【答案】.【解析】抛物线的焦点坐标为.9.设抛物线的准线与x轴的交点为,过点作直线交抛物线于两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交轴于,求证:;(3)若直线的斜率依次取时,线段的垂直平分线与x轴的交点依次为,当时,求的值.【答案】(1)(2)见解析(3)【解析】本试题主要是考查了抛物线方程以及抛物线的性质,以及直线与抛物线的位置关系的综合运用,求解中点轨迹方程。
(完整版)高二抛物线基础测试题
高二抛物线基础测试题一、 选择题:1.顶点在原点,焦点是F (0,5)的抛物线方程是( )A .y 2=20xB .x 2=20yC .y 2=120xD .x 2=120y2.抛物线y =-x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝⎛⎭⎪⎫0,-14 C.⎝ ⎛⎭⎪⎫14,0 D.⎝ ⎛⎭⎪⎫-14,03.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( )A.18 B .-18 C .8 D .-84.(2010年高考陕西卷)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .45.(2010年高考湖南卷)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .126.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A .y 2=-16xB .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)7.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y8.已知抛物线y 2=2px (p >0)的焦点F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .|FP 1|+|FP 3|=2|FP 2|D .|FP 1|·|FP 3|=|FP 2|29.抛物线y 2=12x 截直线y =2x +1所得弦长等于( )A.15 B .215C.152D .15.10.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定11.过抛物线的焦点且垂直于其对称轴的弦是AB ,抛物线的准线交x 轴于点M ,则∠AMB 是( )A .锐角B .直角C.钝角D.锐角或钝角12.(2010年高考山东卷)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1 B.x=-1C.x=2 D.x=-2二.填空题13.已知直线x-y-1=0与抛物线y=ax2相切,则a=________.14.抛物线y2=4x上的点P到焦点F的距离是5,则P点的坐标是________.15.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|=________. 16.边长为1的等边三角形AOB,O为原点,AB⊥x轴,则以O为顶点,且过A、B的抛物线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.18.抛物线的焦点F在x轴上,直线y=-3与抛物线相交于点A,|AF|=5,求抛物线的标准方程.19.已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.高二抛物线基础测试题参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BBBCBCCCACBB1.解析:选B.由p2=5得p =10,且焦点在y 轴正半轴上,故x 2=20y .2.解析:选B.x 2=-y ,∴2p =1,p =12,∴焦点坐标为⎝ ⎛⎭⎪⎫0,-14.3.解析:选B.由y =ax 2,得x 2=1a y ,14a =-2,a =-18.4.解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.5解析:选B.如图所示,抛物线的焦点为F (2,0),准线方程为x =-2,由抛物线的定义知:|PF |=|PE |=4+2=6.6.解析:选C.∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x . 7.解析:选C.通径2p =8且焦点在x 轴上,故选C. 8.解析:选C.由抛物线定义知|FP 1|=x 1+p2,|FP 2|=x 2+p 2,|FP 3|=x 3+p2,∴|FP 1|+|FP 3|=2|FP 2|,故选C.9.解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +1y 2=12x 得4x 2-8x +1=0,∴x 1+x 2=2,x 1x 2=14,∴|AB |=1+22x 1-x 22=5[x 1+x 22-4x 1x 2]=15.10. 解析:选C.|PF |=x P +p 2,∴|PF |2=x P 2+p4,即为PF 的中点到y 轴的距离.故该圆与y 轴相切.11. 解析:选B.由题意可得|AB |=2p .又焦点到准线距离|FM |=p ,F 为AB 中点,∴|FM |=12|AB |,∴△AMB 为直角三角形且∠AMB =90°.12.解析:选B.∵y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py-p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1. 二. 填空题13解析:由⎩⎪⎨⎪⎧x -y -1=0y =ax2,得ax 2-x +1=0, 由Δ=1-4a =0,得a =14. 答案:1414.解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4, ∴y 20=16,∴y 0=±4. 答案:(4,±4) 15.解析:设A (x 1,y 1),B (x 2,y 2), 则|FA |+|FB |=x 1+x 2+2.又⎩⎪⎨⎪⎧y 2=4x 2x +y -4=0⇒x 2-5x +4=0, ∴x 1+x 2=5,x 1+x 2+2=7. 答案:7 16.解析:焦点在x 轴正半轴上时,设方程为y 2=2px (p >0)代入点(32,12)得p =312,焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),∴p =-312.综上,所求方程为y 2=±36x . 答案:y 2=±36x 三、解答题17.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M 点的坐标.解:由抛物线定义知焦点为F (-p 2,0),准线为x =p2,由题意设M 到准线的距离为|MN |, 则|MN |=|MF |=10,即p2-(-9)=10, ∴p =2.故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).18.抛物线的焦点F 在x 轴上,直线y =-3与抛物线相交于点A ,|AF |=5,求抛物线的标准方程.解:设所求抛物线的标准方程为: y 2=ax (a ≠0),A (m ,-3).则由抛物线的定义得5=|AF |=|m +a4|,又(-3)2=am .所以,a =±2或a =±18.故所求抛物线的方程为y 2=±2x 或y 2=±18x .19.已知抛物线y 2=-x 与直线l :y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-xy =k x +1,消去x ,得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1.因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA →·OB →=0,所以OA ⊥OB .(2)设直线l 与x 轴的交点为N ,则N 的坐标为(-1,0),所以S △AOB =12|ON |·|y 1-y 2|=12×|ON |×y 1+y 22-4y 1·y 2 =12×1× 1k 2+4=10, 解得k 2=136,所以k =±16.。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.抛物线()的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A.B.1C.D.2【答案】A.【解析】设,连接AF、BF,由抛物线的定义知,,在梯形ABPQ中,;应用余弦定理得,配方得,又因为,所以,得到.所以,即的最大值为,故选A.【考点】抛物线的简单性质.2.准线为的抛物线的标准方程是()A.y2=﹣4x B.y2=﹣8x C.y2=4x D.y2=8x【答案】B【解析】设抛物线方程为,准线方程,解得,抛物线方程【考点】抛物线方程的应用.3.已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2= 20的两条渐近线围成的三角形的面积等于,则抛物线的方程为A.y2=4x B.y2=8x C.x2=4y D.x2=8y【答案】B【解析】抛物线的顶点在原点,焦点在x轴的正半轴上排除C、D,设抛物线的方程为,则抛物线的准线方程为,双曲线的渐进线方程为,由面积为可得,所以,答案选B。
【考点】圆锥曲线的基本性质4.已知抛物线.(1)若直线与抛物线相交于两点,求弦长;(2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点在上且,求点的轨迹方程.【答案】(1);(2)().【解析】(1)这是解析几何中的常规问题,注意设而不求思想方法的使用;(2)求轨迹方程的方法有:直接法、定义法、代入转移法、几何法、参数法等,这里使用的是直接法,直接法的步骤是:建系、设点、列式、坐标化、化简整理、最后是多退少补,特别要注意多退少补.试题解析:(1)由,消去整理得: 2分设,则,所以 6分(注:用其他方法也相应给分)(2)设点的坐标为,由边所在的方程过定点,8分所以, 即() 14分(注:没写扣1分)【考点】1.直线与抛物线;2.求轨迹方程.5.斜率为2的直线L 经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为().A.1B.C.D.【答案】B【解析】设斜率为2且经过抛物线的焦点F的直线L的方程为,联立,得,即;设,中点;则;因为AB的中点到抛物线准线的距离为1,所以,.【考点】直线与抛物线的位置关系.6.已知抛物线方程,则抛物线的焦点坐标为 .【答案】【解析】因为抛物线的焦点坐标为;所以抛物线的焦点坐标为.【考点】抛物线的性质.7.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.8.抛物线的焦点是()A.B.C.D.【答案】D.【解析】由抛物线的方程知其焦点坐标在轴上,且,即,所以抛物线的焦点坐标为.【考点】抛物线的定义.9.已知点M是抛物线上的一点,F为抛物线的焦点,A在圆C:上,则的最小值为__________.【答案】4【解析】抛物线的准线方程为:x=-1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∵A在圆C:,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴=4.【考点】圆与圆锥曲线的综合;考查抛物线的简单性质;考查距离和的最小.10.抛物线的准线方程是,则的值为()A.B.C.8D.【答案】A【解析】首先把抛物线方程转化为标准方程的形式,再根据其准线方程为即可求之.【考点】抛物线的定义.11.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)证明:圆与轴必有公共点;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)1 (2)见解析(3)存在,【解析】(1)由抛物线方程求出焦点坐标,再由中点坐标公式求得FA的中点,由中点在抛物线上求得p的值;(2)联立直线方程和抛物线方程,由直线和抛物线相切求得切点坐标,进一步求得Q的坐标(用含k的代数式表示),求得PQ的中点C的坐标,求出圆心到x轴的距离,求出,由半径的平方与圆心到x轴的距离的平方差的符号判断圆C与x轴的位置关系;(3)法一、假设平面内存在定点M满足条件,设出M的坐标,结合(2)中求得的P,Q的坐标,求出向量的坐标,由恒成立求解点M的坐标.(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得.(2)由(1)得抛物线的方程为,从而抛物线的准线方程为由得方程,由直线与抛物线相切,得且,从而,即,由,解得,∴的中点的坐标为圆心到轴距离,∵所圆与轴总有公共点.(3)假设平面内存在定点满足条件,由抛物线对称性知点在轴上,设点坐标为,由(2)知,∴。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.若点A的坐标为(3,2),F为抛物线的焦点,点P是抛物线上的一动点,则取得最小值时,点P的坐标是。
【答案】(2,2)【解析】由抛物线的定义可知,|PF|等于P点到准线的距离,因此当|PA|+|PF|取得最小值时,直线AP与抛物线的准线垂直,求得P点的坐标为(2,2).【考点】抛物线的定义与性质2.已知点,直线,动点P到点F的距离与到直线的距离相等.(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.【答案】(1);(2)或。
【解析】(1)显然动点的轨迹满足抛物线的定义,故用定义去求轨迹方程;(2)法一:由题意知,故设直线FD的方程为,与抛物线方程联立可得点的横坐标,再由抛物线的定义求出,把直线的方程与抛物线方程联立,再由弦长公式求出的长,是用来表示的,然后令,可得关于的方程,从而求出的值;法二:同法一一样先求出点的坐标,再把直线的方程与抛物线方程联立,利用韦达定理求出两点的横坐标和与积,又因为四边形FABD是平行四边形,所以,由此可得两点的横坐标的关系,结合韦达定理得到的结论找到一个关于的方程,解方程即可,需根据点的坐标进行分情况讨论。
试题解析:(1)依题意,动点P的轨迹C是以为焦点,为准线的抛物线,所以动点P的轨迹C的方程为(2)解法一:因为,故直线FD的方程为,联立方程组消元得:,解得点的横坐标为或 , 由抛物线定义知或又由消元得:。
设,,则且,所以因为FABD为平行四边形,所以所以或,解得或,代入成立。
(2)解法二:因为,故直线FD的方程为联立方程组消元得:,解得或故点或.1)当时,设,联立方程组消元得(*)根据韦达定理有①,②又因为四边形是平行四边形,所以,将坐标代入有③代入①有,,再代入②有整理得此时(*)的判别式,符合题意.2)当时,同理可解得。
【考点】(1)抛物线的定义;(2)直线与抛物线的位置关系;(3)弦长公式的应用;(4)向量加法的平行四边形法则;(5)韦达定理的应用。
高中数学人教a版高二选修1-1学业分层测评11_抛物线及其标准方程 含解析
高中数学人教a 版高二选修1-1学业分层测评11_抛物线及其标准方程 含解析学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.抛物线的焦点是⎝ ⎛⎭⎪⎫-14,0,则其标准方程为( )A .x 2=-yB .x 2=yC .y 2=xD .y 2=-x【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左,其方程应为y 2=-x .【答案】 D2.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1.【答案】 A3.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=yD .无法确定【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2=2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以所求抛物线的标准方程为y 2=8x或x 2=y ,故选C.【答案】 C4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( ) A .(-2,0)B .(2,0)C .(2,0)或(-2,0)D .(4,0)【解析】 由抛物线的定义得,焦点到准线的距离为⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C.【答案】 C5.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4【解析】 易知椭圆的右焦点为(2,0),∴p2=2,即p =4.【答案】 D 二、填空题6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4,抛物线的准线为x =-p 2,由题意知3+p2=4,∴p =2.【答案】 27.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________.【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2=0为准线的抛物线,所以p =4,故抛物线的方程为y 2=8x .【答案】 y 2=8x8.对标准形式的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号 ) 【解析】 抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M (1,y 0)是y 2=10x 上一点,则|MF |=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝ ⎛⎭⎪⎫x -52.若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.【答案】 ②④ 三、解答题9.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和点M 的坐标.【解】 由抛物线定义,焦点为F ⎝ ⎛⎭⎪⎫-p 2,0,则准线为x =p 2.由题意,设M 到准线的距离为|MN |,则|MN |=|MF |=10,即p2-(-9)=10.∴p =2. 故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).10.若动圆M 与圆C :(x -2)2+y 2=1外切,又与直线x +1=0相切,求动圆圆心的轨迹方程.【解】 设动圆圆心为M (x ,y ),半径为R ,由已知可得定圆圆心为C (2,0),半径r =1.∵两圆外切,∴|MC |=R +1.又动圆M 与已知直线x +1=0相切. ∴圆心M 到直线x +1=0的距离d =R .∴|MC |=d +1,即动点M 到定点C (2,0)的距离等于它到定直线x +2=0的距离. 由抛物线的定义可知,点M 的轨迹是以C 为焦点,x +2=0为准线的抛物线,且p 2=2,p =4,故其方程为y 2=8x .[能力提升]1.抛物线y 2=4x 的焦点到双曲线x 2-y23=1的渐近线的距离是( )A.12B.32C.1 D. 3【解析】由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x-y=0或3x+y=0,则焦点到渐近线的距离d1=|3×1-0|(3)2+(-1)2=32或d2=|3×1+0|(3)2+12=32.【答案】 B2.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和到y轴的距离之和的最小值是()A. 3B. 5C.2 D.5-1【解析】由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.【答案】 D3.如图2-3-2所示是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4m.水位下降1 m后,水面宽________m.图2-3-2【解析】建立如图所示的平面直角坐标系,设抛物线方程为x2=-2py(p>0),则A(2,-2),将其坐标代入x2=-2py得p=1.∴x2=-2y.当水面下降1 m,得D(x0,-3)(x0>0),将其坐标代入x2=-2y得x20=6,∴x0= 6.∴水面宽|CD|=2 6 m.【答案】2 64.若长为3的线段AB的两个端点在抛物线y2=2x上移动,M为AB的中点,求M点到y轴的最短距离.【解】设抛物线焦点为F,连结AF,BF,如图,抛物线y2=2x的准线为l:x=-12,过A,B,M分别作AA′,BB′,MM′垂直于l,垂足分别为A′,B′,M′.由抛物线定义,知|AA′|=|F A|,|BB′|=|FB|.又M为AB中点,由梯形中位线定理,得|MM′|=12(|AA′|+|BB′|)=12(|F A|+|FB|)≥12|AB|=12×3=32,则x≥32-12=1(x为M点的横坐标,当且仅当AB过抛物线的焦点时取得等号),所以x min=1,即M点到y轴的最短距离为1.。
高中数学《抛物线》单元测试
一、选择题1.(2017·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析 ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则FA →=(0,-2),FB →=(3,4),∴cos ∠AFB =FA →·FB→|FA →||FB →|=-810=-45.故选D. [答案 D2.(2017·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为 ,则直线AB 的方程为y = (x -1),代入抛物线方程y 2=4x ,得 2x 2-2( 2+2)x + 2=0.∵A ,B 两点的横坐标之和等于3,∴2k 2+2k 2=3.解得 =±2,∴符合题意的直线有且仅有两条.故选B.[答案 B3.(2017·湖南长沙调研)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4x B .y 2=4x C .y 2=±8x D .y 2=8x[解析 ∵抛物线y 2=ax (a ≠0)的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,∴直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a4.∵直线l与y 轴的交点为A ⎝⎛⎭⎪⎫0,-a 2,∴△OAF 的面积为12⎪⎪⎪⎪⎪⎪a 4·⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.∴抛物线的方程为y 2=±8x ,故选C.[答案 C4.(2017·河南三门峡灵宝期末)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线交抛物线于A ,B 两点,过点A ,点B 分别作AM ,BN 垂直于抛物线的准线,分别交准线于M ,N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能[解析 由题意画出图象,如图.由抛物线的定义,可知|NB |=|BF |.所以△BNF 是等腰三角形.因为BN ∥OF ,所以NF 平分∠OFB .同理MF 平分∠OFA ,所以∠NFM =90°.故选B.[答案 B5.(2017·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若FA →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵FA →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66, ∴|AB |=1+32+26+662=20.故选A.[答案 A6.(2017·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2 D. 3 [解析如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |, 在△NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MF 中,∠FM =45°,所以|MF |=2|F |.而|F |=1. 所以|MF |= 2.故选C. [答案 C7.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为__________. [解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p 2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.[答案 2 二、填空题8.(2018·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析 由抛物线焦点弦的性质,得|AB |=2p sin 2α=2×2sin 245°=8. [答案 89.(2017·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=PA →,则|AF |+2|BF |=________.[解析 设A (x 1,y 1),B (x 2,y 2).∵P (1,0),∴BP →=(1-x 2,-y 2),PA →=(x 1-1,y 1).∵2BP →=PA →,∴2(1-x 2,-y 2)=(x 1-1,y 1),∴x 1+2x 2=3,-2y 2=y 1. 将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15. [答案 15 三、解答题10.(2017·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积. [解 (1)由抛物线定义可知,|PF |=2+p2=3,∴p =2,∴抛物线C 的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4. ∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升11.(2017·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k(x -x 0),令y =0,得x = y 0+x 0,即a = y 0+x 0.由点差法可得 y 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案 A12.(2017·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎫a 2+c 22,a +c 2.又∵BM ∥x 轴,∴b =a +c2. ∴|BM |=⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪a 2+c 22-a +c 24=2,∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2.[答案 2 213.(2017·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值. [解 (1)∵直线l 的斜率为1且过点F (1,0),∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l的方程为x = y +1,联立⎩⎪⎨⎪⎧x =ky +1,y 2=4x ,消去x 得y 2-4 y -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4 ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2).∴OA →·OB →=x 1x 2+y 1y 2=( y 1+1)( y 2+1)+y 1y 2= 2y 1y 2+ (y 1+y 2)+1+y 1y 2=-4 2+4 2+1-4=-3. ∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.[解 (1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.( )设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x .(2)(1)中( )式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=1+m216m 2-32,②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,解得m 2=3,m =± 3. 所以直线l 的方程为x +3y +2=0或x -3y +2=0.15.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. [解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p 2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y . (2)设l :y = (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4 x -16 =0,④∴x 0=x C +x B2=2 ,y 0= (x 0+4)=2 2+4 .∴线段BC 的中垂线方程为y -2 2-4 =-1k(x -2 ),∴线段BC 的中垂线在y 轴上的截距为:b =2 2+4 +2=2( +1)2, 对于方程④,由Δ=16 2+64 >0得: >0或 <-4. ∴b ∈(2,+∞).。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.若点A的坐标为(3,2),F为抛物线的焦点,点P是抛物线上的一动点,则取得最小值时,点P的坐标是。
【答案】(2,2)【解析】由抛物线的定义可知,|PF|等于P点到准线的距离,因此当|PA|+|PF|取得最小值时,直线AP与抛物线的准线垂直,求得P点的坐标为(2,2).【考点】抛物线的定义与性质2.抛物线的焦点到准线的距离是.【答案】4【解析】因为抛物线,所以由抛物线的性质可得焦点到准线的距离是P=4.【考点】抛物线的性质.3.已知是抛物线的焦点,是该抛物线上的两点.若线段的中点到轴的距离为,则()A.2B.C.3D.4【答案】C【解析】抛物线的准线方程:,线段的中点到准线的距离为,由抛物线的性质得【考点】抛物线的性质的应用.4.已知抛物线方程为,过点作直线与抛物线交于两点,,过分别作抛物线的切线,两切线的交点为.(1)求的值;(2)求点的纵坐标;(3)求△面积的最小值.【答案】(1)-8;(2)-2:(3).【解析】解题思路:(1)联立直线与抛物线方程,整理得到关于的一元二次方程,利用根与系数的关系求两根之积即可;(2)由导数的几何意义求切线方程,联立方程,解方程组即得P点纵坐标;(3)求弦长和面积,再利用基本不等式求最值.规律总结:直线与抛物线的位置关系,是高考数学的重要题型,其一般思路是联立直线与抛物线的方程,整理得到关于或的一元二次方程,采用“设而不求”的方法进行解答,综合型较强.试题解析:(1)由已知直线的方程为,代入得,,∴,.(2)由导数的几何意义知过点的切线斜率为,∴切线方程为,化简得①同理过点的切线方程为②由,得,③将③代入①得,∴点的纵坐标为.(3)设直线的方程为,由(1)知,,∵点到直线的距离为,线段的长度为. ,当且仅当时取等号,∴△面积的最小值为.【考点】直线与抛物线的位置关系.5.若抛物线的焦点为,则的值为( )A.B.C.D.【答案】A.【解析】先将抛物线方程化为标准方程即,所以其焦点的坐标为,由已知其焦点为得,即可解出.【考点】抛物线的定义.6.抛物线的焦点坐标是( ) .A.B.C.D.【答案】C【解析】∵在抛物线,即,∴p=, =,∴焦点坐标是(0,),故选C.【考点】抛物线的标准方程和简单性质的应用.7.抛物线的准线方程是,则的值为()A.B.C.8D.【答案】A【解析】首先把抛物线方程转化为标准方程的形式,再根据其准线方程为即可求之.【考点】抛物线的定义.8.抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是A.B.C.D.8【答案】C【解析】由抛物线定义得:,又斜率为,所以倾斜角为,又平行于轴,所以,因此为正三角形,所以其面积为而所以【考点】抛物线定义9.已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点.(1)求抛物线的方程;(2)当直线,的倾斜角之和为时,证明直线过定点.【答案】(1);(2)直线恒过定点,证明详见解析.【解析】(1)设抛物线方程为,由抛物线的定义及即可求得的值;(2)先设点,,然后将直线方程与抛物线方程联立消去得,根据二次方程根与系数的关系表示出,设直线,的倾斜角分别为,斜率分别为,则,进而根据正切的两角和公式可知,其中,,代入求得和的关系式,此时使有解的有无数组,把直线方程整理得,推断出直线过定点.试题解析:(1)设抛物线方程为由抛物线的定义知,又 2分所以,所以抛物线的方程为 4分(2)设,联立,整理得(依题意), 6分设直线,的倾斜角分别为,斜率分别为,则8分其中,,代入上式整理得所以即 10分直线的方程为,整理得所以直线过定点 12分.【考点】1.抛物线的定义与方程;2.直线与抛物线的综合问题;3.二次方程根与系数的关系.10.已知抛物线的准线为,则其标准方程为_______.【答案】【解析】因为抛物线的准线为,所以可以设抛物线的标准方程为.所以由抛物线准线方程可得.所以抛物线的标准方程为.本小题的关键就是根据抛物线准线的定义求得的值,即可求得抛物线方程.【考点】1.抛物线的定义.2.抛物线的准线方程公式.11.已知抛物线的焦点,该抛物线上的一点到轴的距离为3,则A.4B.5C.6D.7【答案】A【解析】抛物线的焦点,准线方程为:,该抛物线上的一点到轴的距离为3,则到准线的距离为,由抛物线的定义知:.故选A.【考点】1抛物线的定义;2、抛物线的标准方程.12.抛物线上到直线的距离最近的点的坐标()A.B.C.D.【答案】B【解析】设为抛物线上任一点,则到直线的距离,因为,所以,则当时,取得最小值,最小值为,此时故选B.【考点】本题主要考查了抛物线的简单性质,点到直线的距离公式.考查了学生数形结合的数学思想和基本的运算能力.13.抛物线上的两点、到焦点的距离之和是,则线段的中点到轴的距离是.【答案】2【解析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离解:∵F是抛物线y2=2x的焦点F(,0)准线方程x=-设A(x1,y1) B(x2,y2),∴|AF|+|BF|=x1++x2+=5,解得x1+x2=4,∴线段AB的中点横坐标为:2.故线段的中点到轴的距离是2.答案为:2【考点】抛物线的基本性质点评:本题考查抛物线的基本性质,利用抛物线的定义将到焦点的距离转化为到准线的距离是解题的关键14.给定直线动圆M与定圆外切且与直线相切.(1)求动圆圆心M的轨迹C的方程;(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.【答案】(1)(2)【解析】解:(1)由已知可得:定圆的圆心为(-3,0),且M到(-3,0)的距离比它到直线的距离大1,∴M到(-3,0)的距离等于它到直线的距离,∴动圆圆心M的轨迹为以F(-3,0)为焦点,直线为准线的抛物线,开口向左,,∴动圆圆心M的轨迹C的方程为:(也可以用直接法:,然后化简即得:);(2)方法一:经分析:OA,OB的斜率都存在,都不为0,设OA:,则OB:,联立和的方程求得A(,),同理可得B(,),∴, 即: ,令,则,∴,∴直线AB与x轴交点为定点,其坐标为。
抛物线综合测试(含有详细答案)
高二数学抛物线综合测试满分:150分 时间:100分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求,请将答案填写在题后的表格中.1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( )A.|a |4B.|a |2 C .|a | D .-a 22.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4 3.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 4.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)5.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x6.(2011·北京)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .17.(2011·大纲全国理)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则 cos ∠AFB =( )A.45B.35 C .-35 D .-458.(2010·辽宁)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .83D .169.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-210.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是( )A .4B .3 3C .4 3D .8高二数学抛物线综合测试选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5个小题,每小题5分,共25分.请将答案填写在横线上.11.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等 于 .12.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为 . 13.抛物线y 2=x 上的点到直线x -2y +4=0的距离最小的点的坐标是________.14.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________. 15.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =________.三、解答题:本大题共5小题,每题14分,共70分.解答应写出文字说明,证明过程或演算步骤. 16.斜率为1的直线l 经过抛物线24y x 焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长。
高二数学同步测试—抛物线(含答案)
高二数学单元测试—抛物线一、选择题(本大题共10小题,每小题5分,共50分)1.抛物线22x y =的焦点坐标是( )A .)0,1(B .)0,41(C .)81,0( D . )41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ( ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .y x 292-=或x y 342= B .x y 292-=或y x 342=C .y x 342= D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为 ( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,,成等差数列,则 ( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列 C .321,,y y y 成等差数列 D .231,,y y y 成等差数列 7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是 ( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p 2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp11+( )A .a 2B .a21C .a 4D .a410.若AB 为抛物线y 2=2p x (p>0)的动弦,且|AB|=a (a >2p),则AB 的中点M 到y 轴的最近距离是 ( ) A .21a B .21p C .21a +21p D .21a -21p二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________. 12.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ___________.13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a的取值范围是 .14.A 是抛物线)0(22>=p px y 上任一点,F 是抛物线焦点,则以AF 为直径的圆与y 轴 (相交、相切、相离)15.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y 轴上; (2)焦点在x 轴上; (3)抛物线上横坐标为1的点到焦点的距离等于6; (4)抛物线中垂直于轴的焦点弦长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y 2=10x 的条件是(要求填写合适条件的序号) ______. 三、解答题(本大题共6小题,共76分)16.已知以抛物线的焦点弦AB 为直径的圆与直线x=-2相切,求抛物线的标准方程,若直线AB 的倾斜角为45°,求弦AB 的长17.已知过抛物线y 2=2px 的顶点O 作互相垂直的两直线OA 、OB ,分别与抛物线相交于A 、B 两点,求证直线AB 过x 轴上的定点。
高二级数学抛物线测试及答案
(11)抛物线一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -41=0 B .x 2+ y 2+x -2 y +1=0C .x 2+ y 2-x -2 y +1=0D .x 2+ y 2-x -2 y +41=0 3.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是 ( )A .(1,1)B .(41,21) C .)49,23(D .(2,4)4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB . 26mC .4.5mD .9m5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( ) A . y 2=-2x B . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|= ( ) A .8B .10C .6D .48.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是( )A .)2(4)3(2--=-x y B .)2(4)3(2+-=-x y C .)2(4)3(2--=+x y D . )2(4)3(2+-=+x y9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( )A .0条B .1条C .2条D .3条10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( ) A .2aB .a21 C .4aD .a4 二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 . 12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 .13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 .14.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .三、解答题(本大题共6小题,共76分)15.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M 的轨迹方程.(12分)16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分)17.动直线y =a ,与抛物线x y 212相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)18.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分)19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)20.已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤. (Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.(14分)参考答案(11)一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案ADABCBACCC二.填空题(本大题共4小题,每小题6分,共24分)11.2 12.4kx =13.(1,0) 14.x y 542-= 三、解答题(本大题共6题,共76分)15.(12分)[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122-=.16. (12分)[解析]:设抛物线方程为)0(22>-=p py x,则焦点F (0,2p-),由题意可得 ⎪⎩⎪⎨⎧=-+=5)23(6222p m pm ,解之得⎩⎨⎧==462p m 或⎩⎨⎧=-=462p m ,故所求的抛物线方程为y x82-=,62±的值为m17.(12分)[解析]:设M 的坐标为(x ,y ),A (22a ,a ),又B )3,0(a 得⎩⎨⎧==ay a x 22消去a ,得轨迹方程为42y x =,即x y 42=18.(12分)[解析]:如图建立直角坐标系,设桥拱抛物线方程为)0(22>-=p py x,由题意可知,B (4,-5)在抛物线上,所以6.1=p ,得y x 2.32-=,(Ay ,2),由当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA ’,则AA y 2.322-=得45-=A y ,又知船面露出水面上部分高为0.75米,所以75.0+=A y h =2米 19.(14分) [解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题意可知:曲线C是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中B A x x ,分别为A 、B 的横坐标,MN p =.所以,)0,2(),0,2(pN p M -. 由17=AM ,3=AN 得172)2(2=++A A px px ①92)2(2=+-A A px px ②联立①②解得p x A 4=.将其代入①式并由p>0解得⎩⎨⎧==14A x p ,或⎩⎨⎧==22Ax p .因为△AMN 为锐角三角形,所以A x p>2,故舍去⎩⎨⎧==22Ax p . ∴p=4,1=A x .由点B 在曲线段C 上,得42=-=p BN x B.综上得曲线段C 的方程为)0,41(82>≤≤=y x x y .20.(14分) [解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22=-=代入,得0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,Ox y A A'B则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,, ∴221221)()(||y y x x AB -+-=]4)[(221221x x x x -+=)2(8a p p +=.∵0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42p a p -≤<-.(Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴p QM QN 2||||==, ∴||||21QN AB S NAB ⋅=∆||22AB p =p p 222⋅≤ 22p =即NAB ∆面积最大值为22p。
【高二】高二数学下册抛物线单元测试题[1]
【高二】高二数学下册抛物线单元测试题[1]一、选择题(每小题6分,共42分)1.(2022江苏南通九霄模拟,2)抛物线y=AX2的拟线性方程是y=1,那么a的值是()a.b.-c.4d.-4回答:B解析:y=ax2x2=y,又准线方程为y=1,故-=1,a=-.2.(2022年江苏苏州第一次模拟考试,5)抛物线y=x2的焦坐标为()a.(0,)b.(,0)c、(1,0)d.(0,1)答案:d分析:y=x2=4Y,其焦点是(0,1)3.(2021中科大附中模拟,7)已知抛物线的顶点为原点,焦点在y轴上,抛物线上点(m,-2)到焦点的距离为4,则m的值为()a、 4b.-2c。
4或-4D 2或-2答案:c分析:假设抛物线方程为x2=-2PY(P>0),然后-2=4,P=4,那么抛物线方程为x2=-8y,M2=-8×2,m=±4。
4.(2021湖北黄冈一模,11)过抛物线y2=2px(p>0)的焦点作直线交抛物线于p(x1,y1)、q(x2,y2)两点,若x1+x2=3p,则|pq|等于()a、 4pb。
5便士。
6pd。
8便士答案:a分析:|pq |=|pf |+| fq |=X1++x2++=X1+x2+P。
同样X1+x2=3P,所以|pq |=4P5.(2021江苏南通九校模拟,9)已知点p(m,3)是抛物线y=x2+4x+n上距点?a(-2,0)最近一点,则m+n等于()a、 1b。
3c。
5d。
七答案:c分析:已知P是抛物线的顶点(-2,3),所以3=(-2)2+4×(-2)+n,n=7,m+n=?-2+7=5.6.(2021浙江联考,7)一动圆圆心在抛物线x2=4y上,过点(0,1)且恒与定直线l相切,则直线l的方程为()a、 x=1b。
x=c.y=-1d。
y=-答案:c分析:根据抛物线的定义,圆心到焦点的距离(0,1)等于到基准线的距离,所以l是基准线,y=-17.(2021北京东城区一模,8)已知点p是抛物线y2=2x上的动点,点p在y轴上的射影是m,点a的坐标是a(,4),则|pa|+|pm|的最小值是()a、 b.4c。
抛物线及其性质单元测试卷- 高二上学期数学人教A版(2019)选择性必修第一册
第一学期单元测试高二抛物线及其性质数学试题时长:120分钟 满分:150分一、单项选择题(共12小题,每题5分,满分60分)1.抛物线y =−x 2的焦点坐标为( )A.(0,14)B.(0,−14)C.( 14,0)D.(−14,0)2.抛物线y 2=4x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A.1716B.1516C.78D.03.已知抛物线y 2=2px (p >0)的准线与圆(x −3)2+y 2=16相切,则p 的值为( )A.12B.1C.2D.44.已知抛物线C:y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C的一个交点,若FP ⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗⃗⃗ ,则|QF|=( )A.72B.52C.3D.25.已知抛物线C:y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP ⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗⃗⃗ ,则|QF|=( )A.72B.52C.3D.2 6.已知双曲线C 1:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A.x 2=8√33yB.x 2=16√33yC.x 2=8yD.x 2=16y7.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM|为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A.(0,2)B.[0,2]C.(0,﹢∞)D.[2,﹢∞)8.过抛物线焦点F 的直线与抛物线相交于A ,B 两点,若点A ,B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1PB 1为( )A.45°B.60°C.90°D.120°9.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1010.过抛物线y 2=ax (a >0)的焦点F 作一直线交抛物线于P ,Q 两点,若PF 与FQ 的长分别为p ,q ,则1p +1q =( )A.2aB.12aC.4aD.4a11.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF|=54x 0,则x 0等于( )A.1B.2C.4D.812.抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p=( )A.2B.4C.6D.8二、填空题(共4小题,每题5分,满分20分)13.以椭圆x 225+y 216=1的中心为顶点,且以椭圆的右焦点为焦点的抛物线的标准方程为___________________.14.抛物线y 2=4x 与直线2x+y -4=0交于A ,B 两点,F 是抛物线的焦点,则|FA|+|FB|=_____________.15.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.16.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点且满足∠AFB=π3.设线段AB 的中点M 在l 上的射影为N,则|MN||AB|的最大值为_____________三、解答题(共6小题,其中第17题10分,其余各题12分,满分70分)17.已知顶点在原点,焦点在y 轴上的抛物线被直线x -2y -1=0截得的弦长为√15,求此抛物线的方程.18.已知抛物线y 2=2px (p >0),过点C (﹣2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,且OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =12.(1)求抛物线的方程;(2)当以AB 为直径的圆的面积为16π时,求△AOB 的面积S.19.如图所示,抛物线C 的顶点为坐标原点O ,焦点F 在y 轴上,准线l 与圆x 2+y 2=1相切.(1)求抛物线C 的方程;(2)若点A ,B 都在抛物线C 上,且FB ⃗⃗⃗⃗ =2OA⃗⃗⃗⃗⃗ ,求点A 的坐标.20.已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x=﹣2交x 轴于点Q.(1)设直线QA ,QB 的斜率分别为k 1,k 2,求k 1+k 2的值.(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点,OM ⃗⃗⃗⃗⃗⃗ ·ON⃗⃗⃗⃗⃗⃗ =2,求抛物线C 的方程.21.如图所示,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值.(2)若直线AF交抛物线于另一点B,过点B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.22.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足PA,PB的中点均在C上.(1)设AB的中点为M,证明:PM垂直于y轴.=1(x<0)上的动点,求△PAB面积的取值范围.(2)若P是半椭圆x2+y24。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.设抛物线焦点为F,点P在此抛物线上且横坐标为4,则|PF|等于【答案】6【解析】因为抛物线焦点为F,点P在此抛物线上且横坐标为4,所以由抛物线焦半径公式得|PF|=x+=4+2=6.【考点】本题主要考查抛物线的定义及几何性质。
点评:简单题,抛物线上的点到焦点的距离与到准线的距离相等。
2.抛物线顶点在原点,焦点在y轴上,其上一点P(m,1)到焦点距离为5,则抛物线方程为()A.B.C.D.【答案】C【解析】点P(m,1)到焦点距离为5,所以P(m,1)到准线的距离为5,准线为,,抛物线方程为【考点】抛物线定义及方程点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,由定义可实现两距离的转化3.中心在原点,焦点在轴上的双曲线的实轴与虚轴相等,一个焦点到渐近线的距离为,则双曲线的方程为 .【答案】【解析】根据题意可知设双曲线方程为,(a>0),则可知,故可知双曲线的方程为。
【考点】双曲线几何性质点评:本题考查用待定系数法求双曲线的标准方程,以及点到直线的距离公式的应用4.已知抛物线,过点作直线交抛物线于(点在第一象限);(1)设点关于轴的对称点为,直线交轴于点,求证:为定点;(2)若,为抛物线上的三点,且的重心为,求线段所在直线的斜率的取值范围.【答案】(1)要证明直线过定点,则可以设出直线方程,然后借助于联立方程组的思想爱那个来分析得到。
(2) 或【解析】(1),令,,设,联立,得到,,(2),设,中点,联立,,,,,,在抛物线上,,又得,,,或【考点】直线与抛物线位置关系点评:该试题属于常规试题,只要用心来解答,计算细心,一般容易得分,主要是理解判别式则作用,属于基础题。
5.抛物线的焦点坐标为()A.B.C.D.【答案】C【解析】易知抛物线的焦点在y轴上,p=2,所以焦点坐标为。
【考点】抛物线的简单性质。
点评:熟练掌握抛物线四种形式的焦点坐标:焦点坐标为一次项系数的,但一定要注意把抛物线化为标准形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二单元目标教学质量检测题高中二年级 数学抛物线班级_____________ 学号______________ 姓名______________ 成绩____________ 一、选择题:(每小题只有一个正确答案。
每小题5分,共60分) 1.已知抛物线的准线方程是7x =-,则抛物线的标准方程是: ( ) A.228x y =-B.228y x =C.228y x =-D.228x y =2.顶点在原点,对称轴为x 轴,焦点在直线34120x y --=上的抛物线方程是() A. 216y x =- B. 216y x =C. 212y x =-D. 212y x =3. 过点P (4,2-)的抛物线的标准方程为:( )A.2y x =或28x y =-B.2y x =或28y x =C. 28y x =-D. 28x y =-4.抛物线24x y =-的通径为AB ,O 为抛物线的顶点,则:( )A. AB=8,4AOB S =△B. AB=4,2AOB S =△C. AB=4,4AOB S =△D. AB=8,2AOB S =△5.动点P 到点(3,0)的距离比它到直线2x =-的距离大1,则动点的轨迹是( )A.椭圆B.双曲线C.双曲线的一支D.抛物线6.在抛物线22y px =上,横坐标为4的点到焦点的距离为5,则P 的值为: ( )A.12B. 1C. 2D. 47.一动圆的圆心在抛物线28y x =上,且动圆与直线20x +=相切,则动圆必过点:()A.(4,0)B.(2,0)C.(0,2)D.(0,-2)8.抛物线24y x =关于直线2x y +=对称的抛物线的顶点坐标是 ()A. (0,0)B. (2,2)C. (-2,-2)D. (2,0)9.过抛物线上一点且与抛物线有且仅有一个交点的直线有: ()A. 1条B. 2条C. 3条D.不能确定10.设抛物线28y x =的准线与x 轴交于Q 点,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率范围:()A.11[,]22-B.[2,2]-C.[1,1]-D.[4,4]-11.在同一坐标系中,方程22221a x b y +=与20(0)ax by a b +=>>的曲线大致是( )A. B. C. D.12.已知点A(1,0),B(1将线段OA ,OB 均n 等分,设OA 上从左至右的第k个分点为k A ,AB 从下至上的第k 个分点为k B (1k n ≤≤)。
过点k A 且垂直于x 轴的直线为k l ,记k OB 交k l 于点k P ,则点k P 在同一()A.圆上B.椭圆上C.双曲线上D.抛物线上二、填空题:(每小题4分,共16分)13.抛物线2(0)y ax a =≠的焦点坐标_____________________;14.抛物线24y x =的弦AB 垂直于x 轴,若|AB|=,则焦点到AB 的距离为________; 15.若A 点的坐标(3,2),F 为抛物线22y x =的焦点,点P 是抛物线上一动点,则 |PA|+|PF|取最小值时P 点的坐标为___________________; 16.如图,这是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分。
盛水和食物的容器放在抛物线的焦点处。
已知镜口圆的直径为2m ,镜深0.25m ,底座(支撑点为抛物面中心)高1m 。
现阳光从北偏西60°方向照射下,为了使太阳灶使用效果最佳,此时盛水和食物的容器(近似的看作点)应距地面________________米。
三、解答题:(共6个小题,共74分)17.求抛物线2y x =上的点到直线240x y --=的最短距离,并求出此点的坐标。
(12分)18.已知抛物线的焦点在x 轴上,直线21y x =+,求抛物线的标准方程。
(12分)19.已知抛物线C :24y x =的焦点记作F ,直线l 过点F 交抛物线于AB 两点。
(12分)(1).若l 垂直x 轴,求OA 与OB的夹角; (2).若4BF FA =,求直线l 的方程。
20.在平面直角坐标中,过点(6,0)-作垂直于x 轴的直线1l ,A 为1l 上一点,过A 作直线21l l ⊥,取直线2l 上一点B ,使以AB 为直径的圆过原点。
(12分)(1).求B 点的轨迹方程;(2).在上问所求轨迹上引一弦,使P(4,1)为该弦的中点。
求这条弦所在的直线方程。
21.如图,O 为原点,直线l 在x 轴和y 轴上的截距分别是a 和(0,0)b a b >≠且交抛物线22(0)y px p =>于11(,)M x y ,22(,)N x y 两点。
(14分)⑴.写出直线l 的截距式方程; ⑵.证明12111y y b+=; ⑶.当2a p =时,求∠MON 的大小。
22.已知抛物线24y x 的准线与x 轴交于M 点,过点M 作直线与抛物线交于A 、B 两点,线段AB 的垂直平分线与x 轴交于点E (0,0x )(12分)⑴.求o x 的取值范围;⑵.△ABE 能否是等边三角形?若能,求o x 的值,若不能,请说明理由。
2007年秋季单元目标教学质量检测题 抛物线一、选择题:BBABD CBBBC BD二、填空题:13.1(0,)4a 14. 2 15.(2,2) 16. 1.5三、解答题:17.min d =(1,1)18.26y x =或22y x =-19.⑴3,arccos 5OA OB π<>=- ⑵4(1)3y x =±-20.⑴26(0)y x x =≠ ⑵3110x y --=21.⑴.1x ya b+= ⑶.90° 22.⑴.3o x > ⑵.113o x =2007年秋季单元目标教学质量检测题高中一年级 数学集合与简易逻辑 复数命题人:升庵中学 黄德勋 吴德章班级_____________ 学号______________ 姓名______________ 成绩____________ 一、选择题:(每小题只有一个正确答案。
每小题5分,共60分)1.方程2321x y x y -=⎧⎨+=⎩的解集是:( )A.(1,1)-B.{(1,1)}-C.{(1,1)}-D.{1,1}- 2.符合{}{,,}a P a b c ⊆⊆的集合P 的个数是: ( )A. 2B. 3C. 4D. 5 3.若不等式|2|6ax +<的解集为(1,2)-,则实数a 等于: ( )A. 8B. 2C. -4D. -8 4.设{(,)|30}T x y ax y =+-=,{(,)|0}S x y x y b =--=若{(2,1)}S T =∩,则,a b 的值为:()A.1,1a b ==-B.1,1a b =-=C.1,1a b ==D.1,1a b =-=-5.设全集{2,3,5}U =,{|5|,2}A a =-,{5}U C A =,则实数a 的值为: ( )A. 2B. 8C. 3或5D. 2或86.若,p q 是两个简单命题,且“p q 或”的否定是真命题,则必有: ( )A.p q 真真B. p q 假假C. p q 真假D. p q 假真 7.“0ab ≥”是“0ab≥”的________条件:()A.充分不必要B.必要不充分C.充要D.既不充分又不必要8.若|31|3x -<的结果是: ( )A.62x -B.6-C.6D.26x -9.已知集合2{|10}A x x =-=,{|1}B x mx ==且A B A =∪,则m 的值为: ( )A. 1B. 1-C. 1或1-D.1或1-或010.已知复平面的复数2(1)(4)6Z m i m i i =+-+-所对应的点在第二象限,则实数m 的取值范围是:()A.(0,3)B.(2,0)-C.(3,4)D.(,2)-∞- 11.设复数z 满足11zi z-=+,则|1|z +=()A. 0B. 1C.D. 2 12.2(2)(1)12i i i +-=- ()A. 2B. 2-C.2iD. -2i二、填空题:(每小题4分,共16分)13.已知集合{,},{2,2}A x y B y ==,若A=B ,则x y +=__________________; 14.不等式220ax bx ++>的解集是11{|}23x x -<<,则a b +=________________; 15.已知2|2|,|4|1x a x -<-<成立,则正数a 的取值范围是__________________; 16.复数z 满足52z z z z i ⋅+-=+,则z =_________________。
三、解答题:(共6个小题,共74分)17.设22{3,21},{1,21,3},{3}A x B x x x A B =-+=+--=-∩,求A B ∪。
(12分)18.已知集合2{|1030},{|121}A x x x B x m x m =+-≥=+≤≤-如果A B =∅∩,求m 的取值范围。
(12分)19.解关于x 的不等式22(1)40(0)ax a a -++>> (12分)20.已知21:|52|3:045p x q x x ->≥+- ,则p q ⌝⌝是成立的什么条件。
(12分)21.设集合22{|320}{|20}A x x x B x x ax a =-+≤=-+≤ ,且B A ⊆,求实数a 的取值范围。
(12分)22.已知1z i =+,,a b 为实数。
(14分) ⑴若234z z ω=+-,求||ω; ⑵若2211z az b i z z ++=--+,求,a b 的值。
2007年秋季单元目标教学质量检测题 集合与简易逻辑 复数一、选择题:BCCCD ABCDC CB二、填空题:13. 2或6 14. -14 22a ≤≤ 16.2i ±+三、解答题:17.{3,3,2,4}AB =--∪18.2m <或4m >19. ①当01a <<时,不等式的解集为2{|x x a >或2}x <②当1a =时,{|x x R ∈且2}x ≠③当1a >时,{|2x x >或2}x a <20.p ⌝是q ⌝成立的充分不必要条件21.1a ≤22.⑴||ω ⑵1,2a b =-=。