高一数学必修一第一次月考
2023-2024学年河南省高一上册第一次月考数学试题(含解析)
2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)
2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
高一数学必修1第一次月考试卷(含答案解析)
高一数学必修1第一次月考试卷(含答案解析)高一数学必修1第一次月考试卷(含答案解析)一、选择题1. 若集合A={2,4,6,8},集合B={1,3,5,7},则A∪B=()A. {1, 2, 3, 4, 5, 6, 7, 8}B. {1, 2, 3, 4, 5, 6, 7}C. {2, 4, 6, 8}D. {1, 3, 5, 7}解析:集合的并就是包含所有元素的集合,所以A∪B={1, 2, 3, 4, 5, 6, 7, 8},选项A正确。
2. 已知二次函数y=ax²+bx+c的顶点坐标为(1,2),则a+b+c的值为()A. 3B. 4C. 5D. 6解析:二次函数的顶点坐标为(h,k),所以a+b+c=a(h²)+b(h)+c=a(1²)+b(1)+c=a+b+c=k=2,选项B正确。
3. 若点P(3,4)在直线5x-ky=3上,则k的值为()A. 1B. 2C. 3D. 4解析:点P(3,4)在直线5x-ky=3上,代入坐标得到5(3)-k(4)=3,化简得15-4k=3,解得k=3,选项C正确。
二、填空题4. 根据等差数列的通项公式an=a1+(n-1)d,已知a1=3,a4=9,求公差d为_____。
解析:代入已知条件,9=3+(4-1)d,化简得3=3d,解得d=1。
公差d为1。
5. 在△ABC中,∠A=60°,BC=8,AB=4,则∠B=_____。
解析:根据三角形内角和为180°,∠B+60°+∠C=180°,化简得∠B+∠C=120°。
由已知BC=8,AB=4,利用正弦定理sinB=BC/AB=8/4=2,所以∠B=30°。
三、解答题6. 已知集合A={x|2x+1<5},求A的解集。
解析:将不等式2x+1<5移项得到2x<4,再除以2得到x<2。
所以集合A的解集为{x|x<2}。
高一数学上学期第一次月考(9月)【测试范围:必修第一册第一章、第二章】A4版
2022-2023学年上学期第一次月考(9月)B 卷高一数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第一册第一章、第二章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·安徽池州·高一期末)已知集合(][),23,A =-∞-+∞,则()R Z=A ( )A .{}1,0,1,2,3-B .1,0,1,2 C .{}2,1,0,1,2,3-- D .{}2,1,0,1,2--2.(2022·湖南·高一期中)2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机坠毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.(2022·陕西汉中·高一期末)若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( ) A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞)4.(2022·湖北黄石·高一阶段练习)集合{}2,P x x k k Z ==∈,{}21,Q x x k k Z ==+∈,{}41,M x x k k Z ==+∈,若aP ,b Q ,则一定有( ).A .a b PB .a b QC .ab M D .a b +不属于P ,Q ,M 中任意一个5.(2022·河南安阳·高一期末)集合{}0,1,2,4,8A =,{}2xB x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是( )A .B .C .D .6.(2022·广东深圳·高一期末)下列不等式恒成立的是( )A .2b a a b +≥B .22a b ab +⎛⎫≥ ⎪⎝⎭C .2a b ab +≥D .222a b ab +≥- 7.(2022·甘肃·高一期末)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦8.(2022·江苏·高一期中)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(2022·广东汕尾·高一期末)下列说法正确的是( ) A .“22ac bc >”是“a b >”的充分不必要条件 B .“0xy >”是“0x y +>”的必要不充分条件C .“对任意一个无理数x ,2x 也是无理数”是真命题D .命题“R x ∃∈,210x +=”的否定是“R x ∀∈,210x +≠” 10.(2022·江苏南通·高一期末)已知0a b <<,0c >,则( )A .c c a b <B .22c c a b <C .b c b a c a -<-D .2222a a cb b c+<+11.(2022·广东·普宁高一期中)已知关于x 的一元二次不等式()22120ax a x --->,其中0a <,则该不等式的解集可能是( )A .∅B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,2a ⎛⎫- ⎪⎝⎭12.(2022·湖南·高一阶段练习)早在西元前6世纪,毕达哥拉斯学派已经知道算中项,几何中项以及调和中项毕达哥拉斯哲学家阿契塔在《论音乐》中定义了上述三类中项,其中,算术中项,几何中项的定义与今天大致相同,而今我们称2a b+为正数a ,b ab 正数a ,b 2a bab +(0a >,0b >)叫做基本不等式,下列与基本不等式有关的命题中正确的是( ) A .若0a >,0b >,21a b +=,则1142a b+≥ B .若0a >,0b >,11132a b a b +=++,则a b +的最小值为65C .若0a >,0b >,2210b ab +-=,则2+a b 31+ D .若0a >,0b >,4a b +=,则2222+++a b a b 的最小值为2 第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.(2022·江苏·盐城市高一期中)已知命题p :x R ∃∈,210x ax -+<,若命题p 是假命题,则实数a 的取值范围为_________.14.(2022·云南丽江·高一期末)若正数a ,b 满足2a b ab +=,则2a b +的最小值为___________.15.(2022·上海市杨浦高一期中)已知集合{}()(){}221,2,10∣==+++=A B x x ax x ax ,记集合A 中的元素个数为()N A ,若|()()|1N A NB -=,则实数=a ______.16.(2022·广东·高一阶段练习)“一元二次方程210x ax -+=有两个正实数根”的一个充分不必要条件可以为________;一个必要不充分条件可以为________.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17.(2022·湖南·高一期中)设全集为R ,{|12}A x a x a =-<<,{|25}B x x =<≤.(1)若4a =,求A B ,R()A B ;(2)请在①A B =∅,②A B B ⋃=,③A B B =三个条件中,任选其中一个作为条件,并求在该条件下实数a 的取值范围.(若多个选择,只对第一个选择给分.)18.(2022·湖北高一月考)已知实数a 、b 满足a 2+b 2-ab =3.(1)求a -b 的取值范围;(2)若ab >0,求证:2211344a b ab++≥.19.(2022·山东高一期中)已知非空集合(){}2230A x x a a x a =-++<,集合211x B x x ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a的取值范围;(2)当实数a 为何值时,p 是q 的充要条件.20.(2022·四川成都·高一期末)设函数()()()3f x x x a =--,R a ∈.(1)解关于x 的不等式()0f x <;(2)当()3x ∈+∞,时,不等式()9f x ≥-恒成立,求a 的取值范围.21.(2022·江苏高一月考)中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为3m ,底面积为212m ,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此,甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元,设屋子的左右两面墙的长度均为mx (26)x ≤≤.(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900(1)a x x+元(0)a >;若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求a 的取值范围.22.(2022·北京二中高一阶段练习)对于正整数集合{}()*12,,,,3n A a a a n n =∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”. (1)判断集合{}1,2,3,4,5与{}1,3,5,7,9是否为“和谐集”(不必写过程); (2)求证:若集合A 是“和谐集”,则集合A 中元素个数为奇数; (3)若集合A 是“和谐集”,求集合A 中元素个数的最小值.。
高一数学必修(一)第一次月考试题
高一数学必修(一)第一次月考试题一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一个是符合题目要求的)1.已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于 ( )A. NB.MC.RD.∅2.下列各组函数是同一函数的是 ( )①1)(-=x x f 与2()1x g x x=-;②x x f =)(与()g x ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--. A.①② B.①③ C.③④ D.①④3.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 等于( )A .1+-xB .1--xC .1+xD .1-x 4.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 ( )A .0B .2C .3D .65.已知集合{1,2,3,4},{,,,}A B a b c d ==,B A f →:为集合A 到集合B 的一个函数,那么该函数的值域C 的不同情况有 ( ) A .4种 B .8种 C .12种 D .15种 6.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 ( ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)7.已知集合{|},{|12},()R A x x a B x x A C B R =<=<<=,则实数a 的取值范围是( )A . 2a ≥B .2a >C . 1a ≤D .1a <8已知函数223y x x =-+在区间[]0,m 上的最大值为3,最小值为2,则m 的取值范围是( ) A .[)1,+∞ B .[]0,2 C .[]1,2 D .(],2-∞ 9.已知函数[]的取值范围上单调递减,则实数,在a ax x y 23822-+-=( )A .[)+∞,2B . [)+∞,1C .[)3,2D .[]3,210.已知偶函数)(x f 在区间),0[+∞上单调递增,则满足不等式)31()12(f x f <+的x 的取值范围是 ( )A .)31,32[--B .)31,32(--C .)21,32(--D .)21,32[-- 11.已知⎩⎨⎧≥<+-=)1(,)1(,1)2()(2x ax x x a x f 满足对任意21x x ≠,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是 ( )A .3[,2)2B .3(1,]2C .(1,2) D.),1(+∞12.对实数a b 和,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈.若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(1,1](2,)-⋃+∞B .(2,1](1,2]--⋃C .(,2)(1,2]-∞-⋃D .[-2,-1]二、填空题(本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上)13.若集合{}{}2|230,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为. 14. 函数12-+=x x y 的值域为 .15.已知函数=++++++=)41()31()21()4()3()2(,1)(22f f f f f f x x x f 则 .13. . 14. . 15. .16.定义在R 上的函数()f x ,如果存在函数()(,g x kx b k b =+为常数),使得()f x ≥()g x 对一切实数x 都成立,则称()g x 为()f x 的一个承托函数.现有如下命题:①对给定的函数()f x ,其承托函数可能不存在,也可能无数个;② 定义域和值域都是R 的函数()f x 不存在承托函数;③若函数()g x x a =-为函数2()f x ax =的承托函数,则a 的取值范围是12a ≥;其中正确命题的序号是 .三、解答题(本大题有4小题,共36分.解答应写出文字说明,证明过程或演算步骤)17.(本小题8分)设=A {x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x-8=0}.(1)若B A =,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值18.(本小题8分) 已知函数()122-+-=ax x x f ,若()x f 在[]1,1-上的最大值为()g a ,求()g a 的解析式.18.(本小题10分)函数()21x b ax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f .(1)用定义证明()x f 在()1,1-上是增函数;(2)解不等式()()01<+-x f x f .20.(本小题10分)已知函数()f x 定义在()1,1-上,对于任意的,(1,1)x y ∈-,有()()()1x y f x f y f xy++=+,且当0x <时,()0f x >;(1)判断()f x 的奇偶性并说明理由;(2)若1()12f -=,试解关于x 的方程1()2f x =-.高一第一次月考试卷参考答案一、ACBDD BACDB AB二、13. 0或1或31-14.[)+∞,2, 15.3 16.①③ 三、解答题:17.解:由题知 {}2,3B =,{}4,2C =-.(1)若B A =,则2,3是方程01922=-+-a ax x 的两个实数根, 由根与系数的关系可知 ⎩⎨⎧⨯=-+=3219322a a ,解得5=a . (2)∵∅A ∩B ,∴A B φ≠,则2,3至少有一个元素在A 中,又∵AC φ=,∴2A ∉,3A ∈,即293190a a -+-=,得52a =-或而5a A B ==时,与AC φ=矛盾,∴2a =-18.解:()()122-+--=a a x x f1当1a ≤-时,()f x 在[]1,1- 上单调减,()()max 122f x f a ∴=-=--2当11a -<<时,()f x 在[]1,a - 上单调增,在(],1a 上单调()()2max 1f x f a a ∴==-3当1a ≥时,()f x 在[]1,1- 上单调增,()()max 122f x f a ∴==-()222,11,1122,1a a g a a a a a --≤-⎧⎪∴=--<<⎨⎪-≥⎩19.解:(1)由已知()21xbax x f ++=是定义在()1,1-上的奇函数, ()00=∴f ,即0,0010=∴=++b b .又5221=⎪⎭⎫ ⎝⎛f ,即52211212=⎪⎭⎫⎝⎛+a,1=∴a . ()21xxx f +=∴.证明:对于任意的()1,1,21-∈x x ,且21x x <,则()()()()()()()()()()()()()()22212121222112212122212122212222112111111111111x x x x x x x x x x x x x x x x x x x x x x x x x f x f ++--=++-+-=+++-+=+-+=-()()011,0222121>++<-∴x x x x ,01,12121>-∴<∴x x x x .()()021<-∴x f x f ,即()()21x f x f <.∴函数()21x xx f +=在()1,1-上是增函数.(2)由已知及(1)知,()x f 是奇函数且在()1,1-上递增,∴()()()()()()2102111201111111101<<⇔⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<-<<⇔-<-<<-<-<-⇔-<-⇔-<-⇔<+-x x x x x x x x x f x f x f x f x f x f ∴不等式的解集为⎪⎭⎫ ⎝⎛21,0.20. 解:(1)令0==y x ,0)0(=∴f ,令x y -=,有0)0()()(==+-f x f x f ,)(x f ∴为奇函数(2)设1121<<<-x x ,则01,02121>-<-x x x x ,012121<--x x x x ,则0)1()()()()(21212121>--=-+=-x x x x f x f x f x f x f ,0)()(21>-x f x f ,∴()f x 在()1,1-上是减函数11()1()122f f -=∴=-原方程即为2212()1()()()()12x f x f x f x ff x =-⇔+==+, 2221410212x x xx x ∴=⇔-+=⇔=±+(1,1)2x x ∈-∴= 故原方程的解为2x =。
高一年级第一学期数学第一次月考试卷(必修一
高一年级数学第一学期月考一试卷(时间:120分钟 满分150分)一、单选题(本题共8小题,每题5分,计40分)1. 设全集U =R ,M ={x|x <−2或x >2},N ={x|1≤x ≤3}.如图所示,则阴影部分所表示的集合为( ) A. {x|−2≤x <1} B. {x|−2≤x ≤3} C. {x|x ≤2或x >3} D. {x|−2≤x ≤2}2. 已知p:x <−1,则p 的一个充分不必要条件为( )A. x <−1B. x <2C. −8<x <2D. −10<x <−33. 若a <1,则a +1a−1有( )A. 最小值为3B. 最大值为3C. 最小值为−1D. 最大值为−14. 已知x >0,y >0,且4x +9y −xy =0,求x +y 的最小值为.( )A. 25B. 18C. 13D. 125. 若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 若关于x 的不等式()02122<++-a x a x 恰有两个整数解,则a 的取值范围是( )A. {a|32<a ≤2} B. {a|−1<a ≤−12}C. {a|−1<a ≤−12或32≤a <2} D. {a|−1≤a <−12或32<a ≤2} 7. 已知函数y =f(−2x +1)的定义域是[−1,2],则y =f(x)的定义域是( )A. [−12,1]B. [−3,3]C. [−1,5]D. 以上都不对8. 若不等式x 2−tx +1<0对一切x ∈(1,2)恒成立,则t 的取值范围为( )A. t <2B. t >52C. t ≥1D. t ⩾52二、多选题(本题共4小题,全部选对得5分,少选得3分,多选或选错不得分,满分20分)9. 设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则( )A. A⋂B ={0,1}B. ∁U B ={4}C. A ∪B ={0,1,3,4}D.集合A 的真子集个数为810. 设{}{}01|,0149|2=-==+-=ax x B x x x A ,若B B A = ,则实数a 的值可以为( ) A. 2B. 12C. 17D. 011. 下列函数中,最小值为2的有( )A. y =x +4x −2 B. y =|x +1x | C. y =x 2+4√x 2+3D. y =√x +4√x −212. 下列四组函数中,不表示同一函数的一组是( )A. f(x)=x −1(x ∈R),g(x)=x −1(x ∈N)B. f(x)=|x|,g(x)=√x 2C. f(x)=√x +1⋅√x −1,g(x)=x +1D. f(x)=x 2−1x−1,g(x)=x +1三、填空题(每题5分,计20分)13.若x >4,则y =x 2−4x+9x−4的最小值为_________.14.已知−1≤x +y ≤4,且2≤x −y ≤3,则z =2x −3y 的取值范围是______. 15.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值集合为____________16.函数21y x x =-+-的值域是___________.四、解答题:本大题共6道小题,满分70分(第17题10分,其余题目12分).17.已知函数f (x )=8x−1+√x +3.(1)求函数f(x)的定义域并求f(−2),f(6);(2)已知f(2a+1)=4a+1,求a的值.18.已知函数f(x)=√−x2+x+12的定义域为A,集合B={x|2m−1≤x≤m+1}.(1)当m=−2时,求(∁R A)∩B;(2)若A∩B=B,求实数m的取值范围.19.已知p:∃x∈R,使mx2−4x+2=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+2}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.20.(1)设a>b>0,比较a 2−b2a2+b2与a−ba+b的大小;(2)已知a,b,c为不全相等的正实数,求证:a+b+c>√ab+√bc+√ca.21.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x,已知年利润=(出厂价−投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内22.已知函数22()1xf xx=+,(1)求(2)f与1()2f,(3)f与1()3f;(2)猜想()f x与1()fx有什么关系?并证明你的猜想;(3)求111(1)(2)(3)(2019)()()()232019f f f f f f f+++⋅⋅⋅++++⋅⋅⋅+的值.答案1.A2.D3.D4.A5.A6.D7.B8.D9.AC 10.BCD 11.BD 12.ACD 13.10 14. [3,8] 15.{}1,0,1- 16.[1,)-+∞ 17.解:(1)由{x −1≠0 x +3≥0解得{x ≠1x ≥−3,∴函数f (x )的定义域为{x |x ≥−3且x ≠1} -------------------2’ ∴f(−2)=8−2−1+√−2+3=−53,f(6)=86−1+√6+3=235.-------------------3’、4’(2)∵f (2a +1)=4a +1,∴4a +√2a +4=4a +1,-------------------6 ∴√2a +4=1, ---------------------------------------------------------8 ∴a =−32. ---------------------------------------------------------1018.(1) 由题知:A ={x|−3⩽x ⩽4},B ={x|−5⩽x ⩽−1}-------------------2(∁R A )∩B ={x|−5⩽x <−3}; --------------------------------------4 (2)由A ∩B =B 得B ⊆A --------------------------------------5 当B =⌀时,2m −1>m +1,即m >2,满足B ⊆A , -------------------7当B ≠⌀时,若满足B ⊆A ,则有{2m −1⩽m +12m −1⩾−3m +1⩽4 解得:−1⩽m ⩽2--------------10综上所述,m 的取值范围为{m|m ⩾−1}. --------------------------------------12 19.解:(1)p 等价于mx 2−4x +2=0无实根,-------------------2 当m =0时,x 0=12,有实根不合题意; -------------------4当m ≠0时,由已知得△=16−4×2m <0,∴m >2,则B ={m|m >2}.---------------6 (2)∵A ={x|3a <x <a +2}为非空集合,故a +2>3a ,即a <1,-------------------8若x ∈A 是x ∈B 的充分不必要条件,则A ⫋B 成立,∴3a ≥2,即a ⩾23,∴23≤a <1.----------------10 故a 的取值范围为{a|23≤a <1}. -------------------1219.解:(1)因为a >b >0,所以a 2−b 2a 2+b 2>0,a−ba+b >0-------------------2 a 2−b 2a 2+b 2a−b a+b=(a+b)2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2aba 2+b 2>1. -------------------4故a 2−b 2a 1+b 2>a−ba+b .- -------------------------------------6(2)只证2a +2b +2c >2√ab +2√bc +2√ca 即可.-------------------2左边=2a +2b +2c =(a +b)+(a +c)+(b +c)≥2√ab +2√bc +2√ca ,-------------------4 当且仅当a =b =c 时取等号,又a ,b ,c 不全相等,故等号取不到,故原结论成立.-----------6 21.解:(1)由题意得y =[12×(1+0.75x)−10×(1+x)]×10000×(1+0.6x)(0<x <1), 整理得y =−6000x 2+2000x +20000(0<x <1).-------------------5(2) 要保证本年度的年利润比上年度有所增加,必须有{y −(12−10)×10000>0,0<x <1,--------8即{−6000x 2+2000x >0,0<x <1,解得0<x <1,---------------------------------------------------------10 所以投入成本增加的比例x 的取值范围是{x ∣0<x <13}. --------------------------------------1222.(1)因为22()1x f x x =+,所以()442415f ==+,111412514f ⎛⎫== ⎪⎝⎭+,()9939110f ==+,1119131019f ⎛⎫== ⎪⎝⎭+; --------------------------------------4 (2)由(1)可发现()11f x f x ⎛⎫+= ⎪⎝⎭. --------------------------------------6 证明如下:2222222222221111()11111111x x x x x f x f x x x x x x x x ⎛⎫+=+=+=+= ⎪+++++⎝⎭+;-------------------8(3)1(2)()12f f +=,1(3)()13f f +=,⋯,1(2019)()12019f f +=,又()22111112f ==+,------------10 所以()()()()1111232019232019f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232019232019f f f f f f f ⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1120181201822=+⨯=---------------12。
高一数学必修一第一次月考及答案(完整资料).doc
【最新整理,下载后即可编辑】兴义九中2011-2012学年度第一学期高一第一次月考考生注意:1.本卷分试卷部分和答题卷部分,考试结束只交答题卷; 2.所有答案必须写在答题卷指定位置上,写在其他地方一律无效。
一、选择题(每小题5分,共计50分)1. 下列命题正确的是( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=f x 的定义域是( )A.1[,1]3- B.1(,1)3- C. 11(,)33- D.1(,)3-∞-3. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=-B .()21,()21f x x g x x =-=+C .2(),()f x x g x == D .0()1,()f x g x x ==5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( )A. 13B.13-C.7D.7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞)B .(-∞,-23] C .[23,+∞) D .(-∞,23] 7. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x的值是( )A .1B .312或 C .1± D8.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤49.函数y=xx ++-1912是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶数 10.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射; (3)函数y=2x(x N ∈)的图象是一直线; (4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .411. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,B B AA U UU CB A 那么2|)1(|<+x f 的解集是 ( ) A .(1,4) B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞12. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2x f x g x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二、填空题(每小题4分,共计20分) 13. 用集合表示图中阴影部分:14. 若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为_________________15. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________16.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k的取值范围是 .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分) 17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b∈R ),A ={x∈R |f(x)-x =0},B ={x∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立.(1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象;(2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21.(本题满分12分) 是否存在实数a使2=-+的定义域为f x x ax a()2-?若存在,求出a的值;若不存在,说明理由。
数学必修一:高一月第一次月考试卷
高一10月第一次月考试卷数学考试范围:北师大版必修1第一、二章;满分150分,考试时间:120分钟学校:__________姓名:__________班级:__________注意事项:1. 答题前填写好自己的姓名、班级等信息2. 请将答案正确填写在答题卡上一、单项选择(共60分,每小题5分)1、已知 {}{}1|,0|,≥=<==x x B x x A R U ,则集合=)(B A C U Y ( ) A .{}0|≥x x B .{}1|<x x C .{}10|≤<x x D .{}10|<≤x x2、已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( ) A. N B.M C.R D.∅3、 定义在R 上的偶函数)(x f ,对任意的实数x 都有2)()4(+-=+x f x f ,且,3)3(=-f则=)2015(f ( )A .1-B . 3C .2015D .4028-4、 32)(2-+-=mx x x f 在]3,(-∞上是增函数,则实数m 的取值范围是( )A .{}12B .),6[+∞C .),12[+∞D . ]6,(-∞5、 设)(x f 是定义在R 上的奇函数,且当0<x 时,x x x f 3)(2-=,那么当0>x 时,)(x f 的为解析式 为( )A .x x x f 3)(2+=B .x x x f 3)(2+-=C .x x x f 3)(2-=D .x x x f 3)(2--= 6、 下列函数中即是奇函数又是增函数的是( )A .2)(x x f =B .3)(x x f -= C .||)(x x x f = D .1)(+=x x f7、 已知{}{}f Q c b a P ,2,1,0,1,,,-==是从P 到Q 的映射,则满足0)(=a f 的映射的个数为( )A . 8B .9C .16D .818、函数0)1(32+--=x x y 的定义域为( )A .]32,1(-B .)32,1(-C . ]32,1()1,(---∞YD .),32[+∞9、已知函数f(x)是定义在(-6,6)上的偶函数,f(x)在[0,6)上是单调函数,且f(-2)< f(1),则下列不等式成立的是()A.f(-1)< f(1) < f(3) B.f(2)< f(3) < f(-4) C.f(-2)< f(0) < f(1) D.f(5)< f(-3) < f(-1)10、设{}1212331,,,3,a∈-,则使函数ay x=的定义域为R且为奇函数的所有a的值为()A.1,3 B.1,3,13- C.1,3,23 D.1,23,3,13-11、德国着名数学家狄利克雷在数学领域成就显着,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f (x)有如下四个命题:①f(f(x))=0;②函数f(x)是偶函数;③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中真命题的个数是()A. 1 B. 2 C. 3 D. 412、函数1y xx=-的图象只可能是()二、填空题(共20分,每小题5分)13、已知函数3212++=kx kx y 的定义域为R ,则实数k 的取值范围是________.14、定义在R 上的奇函数()f x 满足3()(),(2014)2,2f x f x f -=+=则(1)f -= 15、二次函数842--=x kx y 在区间]20,5[上是减函数,则实数k 的取值范围为 .16、给出下列四个命题:①函数||x y =与函数2)(x y =表示同一个函数; ②奇函数的图象一定通过直角坐标系的原点;③函数132+=x y 的图像可由23x y =的图像向上平移1个单位得到; ④若函数)(x f 的定义域为]2,0[,则函数)2(x f 的定义域为]4,0[;⑤设函数()x f 是在区间[]b a ,上图象连续的函数,且()()0<⋅b f a f ,则方程()0=x f 在区间[]b a ,上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题(共70分)17、(1)判断并证明函数xx x f 4)(+=在区间),2(+∞上的单调性; (2)试写出)0()(>+=a xa x x f 在),0(+∞上的单调区间(不用证明);(3)根据(2)的结论,求x x x f 16)(+=在区间]8,1[上的最大值与最小值.18、已知)(x f 是定义在[]1,1-上的奇函数,且1)1(=f ,若[]0,1,1,≠+-∈n m n m 时,有0)()(>++nm n f m f(1)证明)(x f 在[]1,1-上是增函数; (2)解不等式0)33()1(2<-+-x f x f 。
高一数学必修一第一次月考及答案
1. 下列命题正确的是 ( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=-f x ( )A. 1[,1]3-B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞-3. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=- B .()21,()21f x x g x x =-=+ C.2(),()f x x g x ==.0()1,()f x g x x ==4. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( ) A. 13 B.13- C.7 D. 7-5. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞) B .(-∞,-23] C .[23,+∞) D .(-∞,23]6. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x 的值是 ( )A .1B .312或 C .1± D7.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题(1)f(x)=x x -+-12有意义;BBAA U UU C B A (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是 ( )A .1B .2C .3D .410. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,那么2|)1(|<+x f 的解集是 ( )A .(1,4)B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞ 11. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2xf xg x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<12. 用集合表示图中阴影部分:13. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________15.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .16、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃17. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立. (1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.18、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象; (2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.二、填空题(每小题4分,共计20分)13.(),(),U AB C C A B 14.12或13-或 0 15. x x x f 2)(2--= 16.{211≤≤-k k };三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分)17、(满分10分) 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------……………2分(1)又{}3B C ⋂=()A B C ∴⋃⋂={}6,5,4,3,2,1,0,1,2,3,4,5,6------……6分(2)又{}1,2,3,4,5,6B C ⋃= 得{}()6,5,4,3,2,1,0A C B C ⋃=------()A A C B C ∴⋂⋃{}6,5,4,3,2,1,0=------ ……………12分 18.(本题满分12分)解:f(x)-x =0,即x 2-(a +1)x +b =0.∵A={1,-3},∴由韦达定理,得⎩⎪⎨⎪⎧1+(-3)=a +1,1×(-3)=b.∴⎩⎪⎨⎪⎧a =-3,b =-3.∴f(x)=x 2+3x -3.f(x)-ax =0,亦即x 2+6x -3=0.∴B={x|x 2+6x -3=0}={-3-23,-3+23}.19. (本题满分12分) 解析:(1)由f (1+x )=f (1-x )得,(1+x )2+a (1+x )+b =(1-x )2+a (1-x )+b , 整理得:(a +2)x =0,由于对任意的x 都成立,∴ a =-2. ………………………6分(2)根据(1)可知 f ( x )=x 2-2x +b ,下面证明函数f (x )在区间[1,+∞)上是增函数.设121x x >≥,则12()()f x f x -=(2112x x b -+)-(2222x x b -+)=(2212x x -)-2(12x x -)=(12x x -)(12x x +-2)∵121x x >≥,则12x x ->0,且12x x +-2>2-2=0, ∴ 12()()f x f x ->0,即12()()f x f x >,故函数f (x )在区间[1,+∞)上是增函数. ………………………………… 12分20解(1)当 x <0时,-x >0,22()()2()2f x x x x x -=-+-=--又f (x )为奇函数,∴2()()2f x f x x x -=-=--,∴ f (x )=x 2+2x ,∴m =2 ……………4分 y =f (x )的图象如右所示……………6分(2)由(1)知f (x )=222(0)(0)2(0)x xx x x x x ⎧-+>⎪=⎨⎪+<⎩,…8分 由图象可知,()f x 在[-1,1]上单调递增,要使()f x 在[-1,|a |-2]上单调递增,只需||21||21a a ->-⎧⎨-≤⎩……………10分 解之得3113a a -≤<-<≤或……………12分21解:22()2()f x x ax a x a a a =-+=-+-,对称轴x a = (1)当1a >时,由题意得()f x 在[1,1]-上是减函数 ()f x ∴的值域为[1,13]a a -+则有12132a a -=-⎧⎨+=⎩满足条件的a 不存在。
高一(上)第一次月考数学试卷(附答案解析)
高一(上)第一次月考数学试卷(附答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 命题“∀x>0,都有x2−x≤0”的否定是()A. ∃x>0,使得x2−x≤0B. ∃x>0,使得x2−x>0C. ∀x>0,都有x2−x>0D. ∀x≤0,都有x2−x>03. 已知a是实数,则“a<−1”是“a+1a<−2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列各组函数中,表示同一个函数的是()A. y=1,y=xxB. y=x,y=3x3C. y=x−1×x+1,y=x2−1D. y=|x|,y=(x)25. 若集合A={1,2,3,4,5},集合B={x|(x+2)(x−3)<0},则图中阴影部分表示()A. {3,4,5}B. {1,2,3}C. {1,4,5}D. {1,2}6. 已知不等式ax2−5x+b>0的解集为{x|−3<x<2},则不等式bx2−5x+a>0的解集为()A. {x|−13<x<12}B. {x|x<−13或x>12}C. {x|−3<x<2}D. {x|x<−3或x>2}7. 函数f(x)=ex+ln(2x+1)的定义域为()A. (−∞,+∞)B. (0,+∞)C. (−12,+∞)D. (12,+∞)8. 设函数f(x)=x+2,g(x)=x2−x−1.用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则M(x)的最小值是()A. 1B. 3C. 0D. −54二、多选题(本大题共4小题,共20.0分。
高一数学必修一月考试卷及答案
高一数学必修一月考试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
最新人教版高一数学第一学期第一次月考试卷及答案
第一学期第一次月考高一数学试卷一、选择题(本大题共12小题,每小题5分) 1.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A C C .()()A B B CD .()A B C 2.下列判断正确的是( )A .函数22)(2--=x xx x f 是奇函数 B.函数()(1f x x =-C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数3、44等于( )A 、168 424.设(f A .5.函数6.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A C 7.已知A .ABC8.已知p >q >1,0<a <1,则下列各式中正确的是 ( )A .q p a a >B .aa q p > C .q p a a --> D .a aq p-->9.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a10.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a fB .)23(-f <)252(2++a a fC .)23(-f ≥)252(2++a a fD .)23(-f ≤)252(2++a a f11.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则0)(>⋅x f x 的解集是( )A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 12.函数)11()(+--=x x x x f 是( )A .是奇函数又是减函数B .是奇函数但不是减函数C .是减函数但不是奇函数D .不是奇函数也不是减函数 二、填空题(本大题共4小题,每小题5分)13.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 14.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .15.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,)(x f 的图象如右图,则不等式x ·()0f x <的解集是16.下列四个命题(1)()21f x x x =-+-有意义;(2)函数是其定义域到值域的映射; (3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线。
高一数学学期第一次月考试卷(附答案)
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
高一上册数学第一次月考试卷及答案
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
陕西省西安市黄河中学2024-2025学年高一上学期第一次月考数学试题(含解析)
高一数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4,本试卷主要考试内容:人教A 版必修第一册前两章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题“”的否定为( )A .B .C .D .2.下列关系式正确的是( )AB .C .D .3.已知集合,则用列举法表示( )A . B .C .D .4.已知,则“”是“a ,b ,c 可以构成三角形的三条边”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合,则C 的真子集的个数为( )A .0B .1C .2D .36.已知正数a ,b 满足,则的最小值为( )A .9B .6C .4D .37.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株多肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不低于1250元,则每株这种多肉植物的最低售价为( )A .25元B .20元C .10元D .5元8.学校统计某班30名学生参加音乐、科学、体育3个兴趣小组的情况,已知每人至少参加了1个兴趣小11,||1||1x y x y ∀><++11,||1||1x y x y ∀>≥++11,||1||1x y x y ∀≤≥++11,||1||1x y x y ∃>≥++11,||1||1x y x y ∃≤≥++Q 1-∈N ⊆Z N ⊆Q R31A x x ⎧⎫=∈∈⎨⎬-⎩⎭ZZ A ={2,0,2,4}-{2,0,1,2,4}-{0,2,4}{2,4}0,0,0a b c >>>a b c +>{}2(,)21,{(,)23},A x y y x x B x y y x C A B ==-+==-= ∣∣121a b+=2a b +组,其中参加音乐、科学、体育小组的人数分别为19,19,18,只同时参加了音乐和科学小组的人数为4,只同时参加了音乐和体育小组的人数为2,只同时参加了科学和体育小组的人数为4,则同时参加了3个小组的人数为( )A .5B .6C .7D .8二、选择题:本题共3小题,每小题6分,共18分。
高一上学期第一次月考数学试题(附答案解析)
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
(新)高一数学必修一第一次月考及答案(供参考)
进贤二中2014-2015学年高一上学期第一次月考一.选择题:(本大题共10小题;每小题5分,共50分.) 1.集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( ) A .B C A u ⋂ B .A C B u ⋂ C .)(B A C u ⋂ D .)(B A C u ⋃3. 以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}={2,0,1};④∅∈0;⑤A A =∅⋂,正确的个数有( )A .1个B .2个C .3个D .4个 4.下列从集合A 到集合B 的对应f 是映射的是( )A B A B A B A BA B C D 5.函数5||4--=x x y 的定义域为( ) A .}5|{±≠x x B .}4|{≥x x C .}54|{<<x x D .}554|{><≤x x x 或6.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f 的值为( )A .5B .-1C .-7D .27.已知(x)f 是R 上的奇函数,在(,0)-∞上递增,且(1)f -=0,则不等式(x)()f f x x--<的解集为( ) A (-1,0) (1,+∞) B (-∞,-1 ) (0,1)C (-∞,-1)(1,+∞) D(-1,0)(0,1)8.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )ABU1234 35 1 2 3 4 56 a b c d1 2 3 4 3 4 5 1 2A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I , A 与B 是I 的子集, 若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理想配集”的个数是 (规定(A ,B )与(B ,A )是两个不同的“理想配集”)A. 4B. 8C. 9D. 16 二.填空题(本大题共5个小题,每小题5分,共25分)11.已知集合{}12|),(-==x y y x A ,}3|),{(+==x y y x B 则A B = 12.若函数1)1(2-=+x x f ,则)2(f =_____ __ _____13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是 14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是____ _ 15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号)①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
内蒙古鄂尔多斯市第二中学2024-2025学年高一上学期第一次月考数学试卷
内蒙古鄂尔多斯市第二中学2024-2025学年高一上学期第一次月考数学试卷一、单选题1.下列各组对象中:①高一个子高的学生;②《高中数学》(必修)中的所有难题;③所有偶数;④全体著名的数学家.其中能构成集合的有( )A .1组B .2组C .3组D .4组 2.如图所示的韦恩图中,已知A ,B 是非空集合,定义*A B 表示阴影部分的集合.若{}03A x x =≤<,{}2B y y =>,则*A B =( )A .{}3x x >B .{}23x x ≤≤C .{}23x x <<D .{}3x x ≥ 3.已知不等式240x ax ++<的解集为空集,则a 的取值范围是( )A .44a -≤≤B .44a -<<C .4a ≤-或4a ≥D .4a <-或4a >4.已知0a b >>,0c d <<,则下列结论一定成立的是( )A .a c b d +>+B .a c b d ->-C .ac bd >D .ad cd > 5.设m 为给定的实常数,命题:p x ∀∈R ,2420x x m -+≥,则“0m >”是“p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知()()()R,23,21x A x x B x x ∈=+-=-,则( )A .AB > B .A B =C .A B <D .A ,B 的大小关系与x 的取值有关 7.已知a ,b 为正实数,则“2aba b ≤+”是“16ab ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件8.已知0m >,0n >,141m n+=,若不等式22m n x x a +≥-++对已知的m ,n 及任意实数x 恒成立,则实数a 的取值范围是( )A .[)8,+∞B .[)3,+∞C .(],3-∞D .(],8-∞二、多选题9.已知全集U A B =⋃,集合{}1,3,4A =,8{N |N}B x x=∈∈,则( ) A .集合A 的真子集有8个B .{}1U ∈C .U A B ⊆ðD .U 中的元素个数为510.有以下说法,其中正确的为( ) A .“m 是有理数”是“m 是实数“的充分条件B .“x A B ∈I ”是“x A ∈”的必要条件C .“2230x x --=”是“3x =”的必要条件D .“3x >”是“24x >”的充分条件11.设正实数x ,y 满足2x y +=,则下列说法正确的是( )A .11x y +的最小值为2B .xy 的最小值为1C 4D .22x y +的最小值为2三、填空题12.若命题2:[1,),1p x x m ∀∈+∞+≥,则命题p 的否定是13.已知14,24x y x y -<+<<-<,则32x y +的取值范围是.14.已知集合{|27}A x x =-≤≤,{|121}B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是.四、解答题15.解下列不等式:(1)21233x x ≤-; (2)24129x x ≥-; (3)2104x x -+<; (4)24293x x +>. 16.已知集合{|14}A x x =-≤≤,{|1B x x =<或5}x >.(1)若全集R U =,求A B U 、()U A B I ð;(2)若全集R U =,求()U A B I ð.17.已知二次函数()()20f x ax bx c a =++≠.(1)若不等式()0f x >的解集为{}03x x <<,解关于x 的不等式()2320bx ax c b +-+<.(2)若0a >且1b a =--,1c =,解关于x 的不等式()0f x <.18.(1)已知:0x >,0y >.若97x y xy ++=,求3xy 的最大值;(2)已知0x >,0y >,且2x y +=,若410x mxy +-≥恒成立,求m 的最大值. 19.根据要求完成下列问题:(1)若0a b >>、0c d <<、b c >.①求证:0b c +>;②求证:22()()b c a d a c b d ++<--; ③在②中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a d b d +<-?若能,请直接写出该代数式;若不能,请说明理由.(2)设x 、y ∈R ,求证:||||||x y x y +=+成立的充要条件是0xy ≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013年度高一级数学第一次月考
一、选择题(每小题5分,满分50分。
把答案填在答题卷上相应的表格中)
1、设集合M ={2,3,4},N ={3,4,5,},则M ∪N 等于 ( )
A 、{2,3,4,3,4,5}
B 、{2,3,4,5}
C 、{2,3,3,4,5}
D 、{2,4,3,4,5}
2、下列图形中,表示N M ⊆的是 ( )
3、化简[()2122-⎥⎦⎤⎢⎣⎡-的结果为 ( )
A 、2
B 、22
C 、22
- D 、-2
4、若{}{}|02,|12A x x B x x =<<=≤<,则A B ⋃=
A 、{}|0x x ≤
B 、{}|2x x ≥
C 、{}02x ≤≤
D 、
{}|02x x << 5、下列各组函数表示同一函数的是( ).
A 、22(),()()f x x g x x ==
B 、0()1,()f x g x x ==
C 、21
()1,()1x f x x g x x -=+=- D 、3223(),()()f x x
g x x == 6、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )
A 、(1%)na b -
B 、(1%)a nb -
C 、[1(%)]n a b -
D 、(1%)n a b -
7、下列四个函数中,在(0,+∞)上为增函数的是( )
A 、f (x )=3-x
B 、f (x )=x 2-3x
C 、f (x )=x 4
D 、f (x )=
x 1
8、函数y=x x -+-33是( ) A 、奇函数 B 、偶函数 C 、既是奇函数又是偶函数 D 、非奇非偶数
9、函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 ( )
A 、1+-x
B 、1--x
C 、1+x
D 、1-x
M N A M N B N M C M N
D
10、如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3
分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的
距离,则H 与下落时间t (分)的函数关系表示的图象只可能是( )
A B C D
二、填空题(每小题5分,满分20分。
把答案填在答题卷上相应的表格中)
11、集合A={1,2,3,4}的非空真子集共有_____________个。
12、已知)(x f =⎩
⎨⎧>-≤+05062x x x x ,若f (x )=10,则x =_____________。
13、5.1348.029.012,8,4===y y y 的大小顺序有小到大依次为_____________。
14、若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是_____________。
三、解答题(6个小题,共80分)
15、(12分)已知二次函数过(1,0),(-1,-4),(0,-3)三点,求此二次函数的解析式。
16、(12分)证明函数)(x f =
13+x 在[3,5]上单调递减,并求函数在[3,5]的最大值 和最小值。
17、集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求实数a 的值。
18、(14分)若函数141
)(++=x a x f 在R 上是奇函数。
(1)求)(x f 的解析式;
(2) 判断函数)(x f 在R 上的单调性,并加以证明。
19、(14分)已知集合A={x|a ≤x ≤a +3},B={x|x ≤-1或x ≥5}。
(1) 若A ∩B =Φ,求a 的取值范围; (2) 若A ∪B =B ,求a 的取值范围.
20、(14分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P 和Q(万元), 它们与投入的资金x(万元)的关系有公式x Q x P 5
351=
=,今有3万元资金投入经 营甲乙两种商品,设投入乙的资金为x(万元),其余资金投入甲则获得的总利润y(万元)。
(1)用x 表示y ;
(2)x 为何值时,y 有最大值,并求出这个最大值。