刚体力学习题课
刚体力学习题课共22页
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
Thank you
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
《刚体运动习题》课件
刚体的转动问题涉及到分析刚体的转动惯量、角速度、角加速度等物理量,以及力和扭矩对刚体转动的影响。通过解决刚体的转动问题,可以了解刚体在转动过程中的运动规律和特点。
刚体的复合运动问题涉及到刚体的平动和转动同时发生的情况。
总结词
刚体的复合运动问题需要综合考虑刚体的平动和转动,分析其相互影响和耦合作用。这类问题通常比较复杂,需要运用力学和运动学的知识进行求解。
总结词
在解答进阶习题时,学生需要具备较强的分析能力和计算能力,能够根据题目要求进行正确的分析和计算,并得出正确的结论。
详细描述
总结词:高难度习题是刚体运动中的高级题目类型,主要考察学生对刚体运动理论的深入理解和应用能力。
感谢您的观看
THANKS
详细描述
刚体的振动问题主要研究刚体在周期性外力作用下的振动现象。
总结词
刚体的振动问题涉及到分析刚体的振动频率、振幅、相位等物理量,以及周期性外力对刚体振动的影响。通过解决刚体的振动问题,可以了解刚体在振动过程中的运动规律和特点,对于工程实践中的振动控制和减振设计具有重要意义。
详细描述
刚体运动的解题方法
03
它基于力学的基本原理和数学工具,如微积分、线性代数和常微分方程等,来推导和求解刚体运动的数学模型。
解析法可以给出精确的解,但有时可能比较复杂,需要较高的数学水平。
解析法是一种通过数学公式和定理来求解刚体运动问题的方法。
几何法是通过图形和几何形状来描述和解决刚体运动问题的方法。
它通过绘制刚体的运动轨迹、速度和加速度等矢量图,以及分析刚体的转动和角速度等来解决问题。
04
建筑结构中的刚体运动是指建筑物在风、地震等外力作用下产生的运动,包括平动、扭转和复合运动等。
高中物理奥林匹克竞赛专题--刚体-习题课(共12张PPT)
解:
设碰后棒开始转动的角速度为 , 滑块m2可视为质点, 碰撞瞬时忽略摩擦阻 力矩, 则m1、m2系统对o轴的角动量守恒, 取逆时针转动的方向为正方向, 由角动量 守恒定律, 有 碰后棒在转动过程中受到的摩擦阻力矩为
o
m1
m v1 2 v2
l
1 2 m2 v1l m2 v 2 l m1l 3
使 L 方向改变,而大小不变.
M L
自转轴将在水平面内逆时针方向(俯视)回转
质点力学、刚体力学有关公式对照表
质点的运动 速度 加速度 质量 刚体的定轴转动 角速度
d r dt
2
dr v dt dv a dt
角加速度 转动惯量
ddt
d dt
d 2 dt 2
m 力 F 运动定律 F ma 动量 p mv 角动量 L r p
动量定理
力矩
转动定律 动量 角动量
M r F
J r 2 dm
M J p mi vi
L J
dmv F dt
2 mg R 2 2 M f dM f r dr mgR 2 0 R 3
(2)求圆盘停止转动的时间有两种解法
dr r
o
R
解1 用转动定律 2 1 2 d M f mgR J mR 3 2 dt
3R dt d 4g
t
0
3R 0 dt d 4g 0
l
A
m1 1 M f gxdx m1 gl 0 l 2
1 m2 v1l m2 v 2 l m1l 2 3
质点和刚体力学习题课.ppt [修复的]
平动动能: 力的功:
转动动能: 力矩的功: 动能定理: 注意:
b A a F dr
动能定理: A外 Ek 功能原理:
A外 Ek
能量 关系
A外 A非保内 E E0
机械能守恒:
1. 对于刚体,做功的还应有外力矩的功
2. 机械能应为势能+平动动能+转动动能
A外 A非保内 0 E 0
x x( t )
(2) 分量式
y y( t )
(2) 瞬时速度 (简称速度)
Δr dr v lim v lim Δ t 0 Δt 0 Δt dt
(1-7)
vA
A
B2 B 1
B
速度 = 位置矢量对时间的一阶导数。
★ 直角坐标系中:
v AB
(1-9)
a
方向:
tan a y a x
★ 注意:
位矢
、位移 、速度 Δr r v
、加速度 a
1. 矢量性: 四个量都是矢量,有大小和方向,
加减运算遵循平行四边形法则。
2. 瞬时性:
r, v, a
瞬时量(不同时刻不同) 过程量
Δr
3. 相对性:不同参照系中,同一质点运动描述不同;
1 2 J l ml 3
定轴转动刚体的转动惯量具有可加性。
复习 1. 质点和刚体(mass point, particle and rigid body)
⑴ 物体不形变,不作转动(此时物体上各点的速度及加速度 都相同,其任一点的运动可以代表物体所有点的运动)。 ⑵ 物体本身的线度和它活动的范围相比小得很多(此时物体 的形变及转动显得并不重要)。
质点和刚体力学 习题
(3)Q vx = 2t ∴ v=
vy = 12t 3 4t 2 +144t 6
2 2 vx + vy =
dv 1 8t + 864t 5 2 + 216t 4 aτ = = = dt 2 4t 2 + 144t 6 1+ 36t 4
若求法向加速度,应先求曲率半径。 注:若求法向加速度,应先求曲率半径。
得:
9 3tdt = mvt 0 得:vt = 2 (m/ s) 0
0 3
依动能定理: 依动能定理:
1 2 W = mvt 0 2
W = 30.3(J )
的两质点间存在万有引力。 例4、质量分别为 和m的两质点间存在万有引力。 、质量分别为M和 的两质点间存在万有引力 初始时刻质点相距无穷远,然后两质点沿 初始时刻质点相距无穷远, 连线相向运动,当它们的距离为r时的相对速度 连线相向运动,当它们的距离为 时的相对速度 . 的大小为 v M v m v X v2 f O f’ 1 r 为研究对象, 解:以mM为研究对象,系统所受外力为零, 为研究对象 系统所受外力为零, 非保守内力为零,故动量守恒,能量守恒。 非保守内力为零,故动量守恒,能量守恒。
习题课一 (Exercises Class One)
质点和刚体力学部分
一、思考题
r r dr dr dv dv 1.试 问 与 有 区 , 与 何 别 又 dt dt dt dt 有 区 ? 何 别
2. 作直线运动的质点,它的运 作直线运动的质点, 与时间t的关系由图 动速度 v与时间 的关系由图 与时间 中曲线表示。 中曲线表示。问: (1) t1时刻的曲线的切线 表示 时刻的曲线的切线AB表示 什么? 什么? (2) t1与t2之间曲线的割线的斜 率表示什么? 率表示什么? (3) 从t=0到t3时间内质点的位移 到 和路程分别由什么表示? 和路程分别由什么表示?
(10)刚体习题课分解
Ek
1 J 2
2
E p mghc
当只有保守力矩作功 Ek Ep 恒量
2
说明: (1)粘接在一起的两个圆盘(或圆柱)形状的刚体,要把它们看 成一个刚体,不要分开考虑。
它们的和均相同,但不同半径处的和a不同。
如 图 , 在r处 :
or
r at r an 2 / r
R
在R处 :
o
为零,称该点为打击中心。试求:
(1)打击中心A与支撑轴o之间的距离RA。 RA
(2)如果用质量为m=M,速度为v的弹
Rc
性球沿水平方向击中A点,碰撞后轴o对
细杆的作用力将如何?
F
解(1)由转动定律 FRA J
质心运动定理 F Mac
1 ML2
3
ac rc
L 2
联立可得:
RA
2 3
L
Fy
Fx c A
得到: 0
由质心运动定理:
dt
yF J
t
F
y
切向:F Rx
法向:
m
Ry
l 2
d
dt
mg
于是得到:Rx
(1
3y)F 2l
m
l 2
2 Ry
mg
9F
2 y2 (t)2 2l 3m
12
例7、如图所示,以水平力F打击悬
挂着的质量为M、长度为L的均匀细杆。
如果打击点A选择得合适,在打击的过
程中,支撑轴o对细杆的水平切向力Fx
dM 2rf (2rdr) 4kvr2dr
o
4kr3dr
r
M R 4kr3dr kR4 0
dr
由转动定理:J
工程力学-刚体静力学习题课
10001 0.7071
1414(
N)
15
[例5] 已知:P=100N. AC=1.6m,BC=0.9m,CD=EC=1.2m,AD=2m 且AB水平, ED铅垂,BD垂直于
斜面; 求 SBD ?和支座反力?
解: 研究整体 画受力图 选坐标列方程
mB 0,YA 2.5P1.20
X ' 0, X Asin YAcos Psin 0
单体
3
六、解题环节与技巧
解题环节
解题技巧
①选研究对象
① 选坐标轴最佳是未知力 投影轴;
②画受力图(受力分析)② 取矩点最佳选在未知力旳交叉点上;
③选坐标、取矩点、列 ③ 充分发挥二力杆旳直观性;
平衡方程。
④解方程求出未知数 ④ 灵活使用合力矩定理。
七、注意问题 力偶在坐标轴上投影不存在; 力偶矩M =常数,它与坐标轴与取矩点旳选择无关。
Fiy 0 FAy FBy 40 0
得 FBy 20kN
求各杆内力
取节点A
Fiy 0 FAD
Fix 0 FAC
25
取节点C
Fiy 0 FCF Fix 0 FCD 0
取节点D
Fiy Fix
0 0
FDF
, FDE
取节点E Fiy 0 FEG Fix 0 FEF
4
八、例题分析
例1
水平均质梁 AB重为P1,电动机 重为 P2 ,不计杆CD 旳自重, 画出杆CD 和梁AB旳受力
图.图(a)
解:
取 CD 杆,其为二力构件,简称
二力杆,其受力图如图(b)
5
取AB梁,其受力图如图 (c)
CD 杆旳受力图能否画
为图(d)所示?
大学物理刚体力学习题课
l 1 1 2 mg sin mgl sin ( ml ml 2 ) 2 2 2 3 9g 3 2 sin g sin / l 4l 2
m m
9 g cos 16l
角加速度对应于该位置的力矩
l 1 2 mg cos mgl cos ( ml ml 2 ) 2 3
12. 一长为l ,质量为 M的均匀木棒,可绕水平轴O在 竖直平面内转动,开始时棒自然地竖直下垂,今有 一质量m、速率为v的子弹从A点射入棒中,假定A点 与O点的距离为3l/4,求:(1)棒开始运动时的角速度; (2)棒的最大偏转角。
解:对题中非弹性碰撞,角动量守恒,
3 3 2 1 mv l J J m( l ) Ml2 4 4 3 36ml (27m 16 M )l
mg T ma
O
Tr J
J m( g a)r 2 / 2
2 gt J mr 2 ( 1) 2s
a r
由已知条件v0 = 0, 得
1 2 s at a 2 s / t 2 2
m
9. 如图所示,滑轮为质量均匀分布的圆柱体,其质 量为m轮,半径为r,在绳与轮缘的摩擦力作用下旋转。 忽略桌面与物体间的摩擦。设m1=50 kg, m2=200 kg, m轮=15 kg, r=0.1 m,计算该系统中物体m1和m1的加 速度。
解:细杆由初始位置竖直位置,机械能守恒
1 1 L 2 2 J 0 J1 mg (1 cos ) 2 2 2
0
60
v0
碰撞前后角动量守恒, 取为角 动量正向 mv0 L J1 (J mL2 )2 系统竖直位置由初始位置
1 L 1 2 ( J mL2 )2 Mg (1 cos ) mgL(1 cos ) ( J mL2 ) 2 2 2 2
刚体力学第3讲刚体力学小结与习题课
(2)
3
完全1m弹m性x碰2撞m1前x21后m动l能213相m等2l 2:
??? (3)
2
23
(2)+(3) 解出 x 3 l / 3
或小球自下落至碰撞完毕,整个过程中小球、杆、
地球系统旳机械能守恒:
mgx(1 cos )
1
(1
ml 2 )
2
(3´)
(1)+(2)+(3´)一样可解出 2 3
例7:空心圆环可绕竖直轴 AC 自由转动,其转动惯量
mv
mv 0
质点系t 动量定理
t0
其中
Fdt
P
P P0
mv
动量守恒定律 当合外力为 0时
P0 P
转动
冲量矩 角动量
t
t0
刚体 质点
M dt
L Lr
J
P
角动量定t 理
Mdt t0
L
L0
角动量守恒定律 当合外力矩 为0时
L0 L
二 经典例题分析
处理力学问题旳措施
1.拟定研究对象; 2.受力分析; 3.建立坐标系或要求正向,或选择0势点; 4.拟定始末两态旳状态量; 5.应用定理、定律列方程求解; 6.有必要时进行讨论。
M 外 0 系统的角动量守恒.
R /2
Ro
v
(1)开始系统的角动量为
m
12 R
2
0
1 2
M
R 20
后来:
m
1 4
R
2
mE
1 2
M
R 2 ME
mE ME mM 21 M R 2 0 / 40
R /2
Ro
v
第三章 刚体力学基础 课后作业
第三章 刚体力学基础 课后作业班级 姓名 学号一、选择题1、一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A , 且向x 轴正方向移动,代表此简谐振动的旋转矢量为( )1、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A ) 只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误(C ) (1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确2、关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A ) 只有(2)是正确的 (B ) (1)、(2)是正确的(C )(2)、(3)是正确的 (D ) (1)、(2)、(3)都是正确的3、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零4、 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定5、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒二、填空题1、有甲、乙两个飞轮,甲是木制的,周围镶上铁制的轮缘。
大学物理刚体力学习题讲解
m m O
Jw+mvr-mvr=(J+2mr2)w` w`=J/(J+2mr2)w
M
3. 两个滑冰运动员的质量各为70 kg,均以6.5 m/s
的速率沿相反的方向滑行,滑行路线间的垂直距 r=5m 离为10 m,当彼此交错时,各抓住一10 m长的绳 索的一端,然后相对旋转,则抓住绳索之后各自 对绳中心的角动量L=2275
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
4. 一作定轴转动的物体,对转轴的转动惯量J= 3.0 kg· m2,角速度0=6.0 rad/s.现对物体加一 恒定的制动力矩M =-12 N· m,当物体的角速度 减慢到=2.0 rad/s时,物体已转过了角度 =
4.0rad
M=Jβ
2as=v`2-v2 2βθ= 2 -02
5. 质量为m1, m2 ( m1 > m2) 的两物体,通过一定滑轮用绳 相连,已知绳与滑轮间无相对 滑动,且定滑轮是半径为 R 、 质量为 m3 的均质圆盘,忽略 轴的摩擦。求:滑轮的角加速 度。(绳轻且不可伸长)
PART_ONE_05_角动量和角动量守恒定律_刚体力学习题课
刚体绕定轴转动的角速度: ω = ω0 + α t , α = 转过的角度: θ = ω0t + 转过的圈数: N =
ω − ω0
t
,α = −
ω0
t
, α = −3π rad / s
2
1 2 α t , θ = 600π rad 2
θ = 300 2π
当 t = 10 s , ω = ω0 + α t , ω0 = 60π / s , ω = 30π rad / s 线速度: v = ωR = 3π m / s 切向加速度: aτ =
5. 如图XT_0058,匀质园盘水平放置,可绕过盘心的铅直轴自由转动,园盘对该轴的转动惯量为J0,
Created by XCH
Page 1
2005-6-20
大学物理习题集_上册_习题参考解答_杭州电子科技大学应用物理系_20050329 当转动角速度为ω0时,有一质量为m的质点落到园盘上,并粘在距轴R/2 处(R为园盘半径),则它们 的角速度 ω =
1 1 MR 2ω1 + mr 2ω1 = MR 2ω + mR 2ω 2 2
当人走到台边时,转台和人一起转动的角速度:
ω=
MR 2 + 2mr 2 ω1 , ω = 0.95 rad / s MR 2 + 2mR 2
*5. 如图XT_0063 所示,均匀细麦杆长为L,可绕通过中心O的固定水平轴在铅垂面内自由转动。开 落下后立 始时麦杆静止于水平位置。 一质量与麦杆相同的甲虫以速度v0垂直落到麦杆的 1/4 长度处, 即向端点爬行。试问:1) 为使麦杆以均匀的角速度转动,甲虫沿麦杆的爬行速度应是多少? 2) 为 使甲虫在麦杆转到铅直位置前能爬到端点,甲虫下落速度v0最大是多少? 研究系统为甲虫和麦杆,碰撞为完全非弹性碰撞,系统对转轴的角动量守恒:
第5章刚体力学习题课解析
[例3]一物体组。其中滑轮A可随m的下降而上升。两滑轮的质 量均为M ,且均匀分布,半径为R ,绳子的质量及轴上的摩擦不 计。试求:m下降的加速度及绳中的张力。
解:选取地面为参考系,隔离动滑轮A、 定滑轮B 和物体m,分析受力。规定 物体运动方向为正方向。
对物体 m 应用牛顿第二定律,得:
B
o
m1
T3
M2
T3
R1
T1
a 1 R1 2 R2
T1 T1, T2 T2 , T3 T3
联立得:
2( m1 m2 ) g a 2 (m1 m2 ) M1 M 2
4m1m2 g m1 ( M1 M 2 ) g T1 m1 g m1a 2( m1 m2 ) M1 M 2
4m1m2 g m2 ( M1 M 2 ) g T2 m2 g m2a 2( m1 m2 ) M1 M 2
1 4m1m2 g m1 M 2 g m2 M1 g T3 m2 ( g a ) M 2a 2 2(m1 m2 ) M1 M 2
联立上式求解,得:
11mMg T1 8m 7 M
(14m 4 M ) Mg T2 8m 7 M
(5m 3 M ) Mg T3 8m 7 M
[例4]已知m 1 ,m 2 ,M1 ,M2 ,R1 ,R 2 且m 1 > m 2 。 求:m 2的加速度和张力T1 ,T2 ,T3 解:设m 2 的加速度大小为a ,方向向上, m 1 的加速度大小也为a ,方向向下。 分析m1、m2 受力。由牛顿第二定律:
b
a
F dr
b
a
M d
力学(刚体力学习题课)
v1 v 2
1 R1 2 R 2
J1 M 1R
2 1
3
2
J 2 M 2 R2
解(1)、(2)、(3)得
1
M 1 R 1 1 M 2 R 2 2 R1 M 1 M
2
2
M 1 R 1 1 M 2 R 2 2 R 2 M 1 M
f1 f 2
f1
J 1 1 1 R1
1
1
M1
2
C
R1
M
2
R2
M
2
dt
fR 2 dt J 2 2 2
f dt
J 2 2 2 R2
2
1
f2
2
考虑到稳定后,有
周运动,弹丸的速度的最小值应为多少?
解:取摆锤、地球和子弹为 系统,子弹穿过摆锤过程中,系 统对转轴的角动量守恒:
J 1 1 J 1 1 J 2 J 3
m
l, M
v
M
v 2
即
ml
2
v l
ml
2
v 2 l
Ml
2
Ml 3 1
2
刚体力学习题课
如图,一个质量为 m 的物体与绕在定滑轮上 的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮的质量为M 、半径为 R,其转动惯量为
1 2 MR
2
习题一
,
滑轮轴光滑。试求该物体由 静止开始下落的过程中,下落速 度与时间的关系。 解:根据牛顿第二定律和刚体定 轴转动定律
刚体力学习题课
角动量定理 的微分形式
M = dL dt
角动量定理
t2
t1
Mdt
=
Jw2
Jw1
角动量守恒定律 M=0时,Jw=恒量
刚体力学两个主要公式
• 转动定律
Mz
=
J
dw
dt
=
J
• 角动量守恒定律
Lz = Jw = 恒量
• 机械能守恒定律:
• 当除重力矩以外旳其他合外力矩不作功或 作功为零时,则刚体机械能守恒。
T2 = T2'
对质点: mg T1 = ma1
对刚体: T2 mg = ma2
T12r T2r = J
a1 = 2r a2 = r
联立以上几式解得: 2g
19r
【例】基础训练(18)如图5-17所示、质量分别为m和2m、 半径分别为r和2r旳两个均匀圆盘,同轴地粘在一起,能够绕
经过盘心且垂直盘面旳水平光滑固定轴转动,对转轴旳转动
,
惯量为9mr2/2,大小圆盘边沿都绕有绳子,绳子下端都挂一 质量为m旳重物,求盘旳角加速度旳大小.
【例】基础训练(18)如图5-17所示、质量分别为m和2m、 半径分别为r和2r旳两个均匀圆盘,同轴地粘在一起,能够绕
经过盘心且垂直盘面旳水平光滑固定轴转动,对转轴旳转动
,
惯量为9mr2/2,大小圆盘边沿都绕有绳子,绳子下端都挂一 质量为m旳重物,求盘旳角加速度旳大小.
为),圆盘可绕经过其中心O旳竖直固定光滑轴转动.开始时,
圆盘静止,一质量为m旳子弹以水平速度v0垂直于圆盘半径打入 圆盘边沿并嵌在盘边上。求:(1) 子弹击中圆盘后竖直轴旳转动惯量为 ,忽视子弹重力造成旳摩擦阻力矩)
v0
09刚体力学基础习题课
转动惯量为 J 。平台和小孩开始时均静止。当小孩突然
以相对于地面为V 的速率在台边沿逆时针转向走动时,
则此平台相对地面旋转的角速度和旋转方向分别为
(A) ω
mR 2 J
(V ) R
,顺时针;
(B) ω
mR 2 J
(V ) R
,逆时针;
分析:
(C)
J
mR 2 mR 2
(V ) R
J RmV 0 ,顺时针; J mR2(V ) 0
对于包括刚体的系统,功能原理和机械能守恒定
律仍2019成/9/23立。
5
三、习题基本类型
1.定轴转动的运动学问题
解法:利用定轴转动的运动学描述关系
d
dt
d
dt
d2
dt 2
0 t
v r
at r
an r 2
0
0t
1 2
与弹簧垂直。在某一时刻,弹簧位于与初始位置
垂直的位置,长度l=0.5m。求该时刻滑块速度的
大小和方向。
2019/9/23
18
解: 以θ表末速度与弹簧长 度方向的夹角。
对(滑 块+弹簧)系统, M外 0
∴角动量守恒: mv0l0 mvl sin θ (选⊙为正)
对(滑块+弹簧+地球)系统,
12
E 2 m v 2019/9/23 ki
ii
Ek
1 J2
2
1
4.力矩及其功和功率
(1)对转轴的力矩
M r F M z ri Fi i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J mR
2)研究物体、定滑轮和地球组成的系统,在整个运动过程中, 机械能守恒。取物体的初位置为势能零点。
1 1 2 2 mv 0 J0 mgh 2 2
v0 R0
2 (m R2 J )0 h 0.016m 2m g
[例2]已知m1,m2 ,M1,M2,R1,R2 且m1> m2 试由牛顿运动 定律和转动定律写出系统的运动方程,求m2 的加速度和 张力T1 ,T2 , T3 。 解:设m2的加速度大小为a,方向向上, m1的加速度大小也为a,方向向下。 设向内为正方向。 对m1 、m2分析受力。由牛顿定律:
刚体:在任何外力作用下, 形状大小均不发生改变的物体。 是特殊的质点系。
刚体转动惯量:刚体对某定轴的转动惯量等于刚体上各质点 的质量与该质点到转轴垂直距离平方的乘积的总和。
J mi ri
刚体定轴转动角动量:
2
Lz J
刚体的转动动能: Ek转 1 J 2 2 力矩的功: 刚体的重力势能:
T1
关联方程: 联立得:
a 1R1 2 R2
2(m1 m2 ) g a 2 m1 m2 M 1 M 2 ( )
4m1m2 m1 ( M 1 M 2 ) T1 m1 g m1a 2(m1 m2 ) M 1 M 2
T2 m2 g m2a
i
质点的运动
刚体的定轴转动
转动定律: M z J d( Jω) 角动量原理: z M dt 角动量守恒: J C
动能定理: M d Ek
a
动能定理: F dr E k
b a
b
机械能守恒:
机械能守恒:
B
O2
EP 0
h
解二:应用牛顿第二定律和转动定律 A B C
T1R1 J11
T2 R2 T1R1 J 2 2
m1 , R1
mg T2 ma
a R11 R2 2
A
O1
T1
T1 m , R
2
2
关联方程:
B
O2
T2
T2
解得:
2m g a m1 m2 2m
力的矢量和为零,则此刚体 [
A)必然不会转动 C)转速必然改变
D
]
B)转速必然不变 D)转速可能改变,也可能不变。
4、 一个物体正在绕固定光滑轴自由转动, A)它受热膨胀或遇冷收缩时,角速度不变. B)它受热时角速度变大,遇冷时角速度变小. C)它受热或遇冷时,角速度均变大. D)它受热时角速度变小,遇冷时角速度变大.[
常用的转动惯量:
1) 均匀细棒
o
o
1 2 J o mL 3
o
Jo
1 J o mR 2 2
1 mL2 12
2)均匀圆盘 (圆柱体):
3)圆环: (薄圆筒)
o
J o mR2
练习:求下列各刚体对O 轴的转动惯量:
o o
J
l 2
l
m
l 2
o R
m
1 2 1 J ml mR 2 m(l R ) 2 3 2
AaLeabharlann F drA M d
a
b
动能
1 2 Ek mv 2
1 2 转动动能 Ek J 2
质点的运动规律和刚体定轴转动规律的对比(二)
运动定律:F ma d (mv ) 动量定理:F dt 动量守恒: mi vi C
时的速度 v 。 解一:应用机械能守恒定律
A
m1 , R1
O1
m2 , R2
关联方程:v R11 R22
1 2 J 2 m2 R2 2 mgh v 2 m1 m2 2m 1 J1 m1 R12 2
C m
1 2 1 1 2 2 mgh mv J11 J 2 2 2 2 2
D]
5、关于刚体对轴的转动惯量,下列说法中正确的是 A)只取决于刚体的质量,与质量的空间分布和轴的位置无关 B)取决于刚体的质量和质量的空间分布,与轴的位置无关. C)取决于刚体的质量、质量的空间分布和轴的位置. D)取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ C ] 6、一个人站在有光滑固定转轴的转动平台上,双臂水平 地二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、 哑铃与转动平台组成的系统的 A)机械能守恒,角动量守恒. B)机械能守恒,角动量不守恒. C)机械能不守恒,角动量守恒. D)机械能不守恒,角动量也不守恒.[ C ]
1 T3 m2 ( g a) M 2 a 2
例3
如图所示,A、B 两圆盘可分别绕 O1 , 2 轴 O
无摩擦地转动。重物 C 系在绳上(绳不伸长),且与圆盘边 缘之间无相对滑动。已知 A、B 的半径分别为 R1 , 2 ,A 、 R
B、C 的质量分别为m1 , 2 ,m,求:重物 C 由静止下降 h m
解:1)研究定滑轮的转动。分析所 受力矩。取滑轮转动方向为正。
M
R
0
m
T
1 T R J MR 2 由转动定律: T 2 研究物体的运动。分析受力。取向上为正。
T mg ma
m
mg
关联方程:
a R
T T
联立解得: mgR 78.4(rad / s 2 ) 2
M2
R2
T3
M1
R1
T2
m2
T1
m1
m1 g
m1 g T1 m1a T2 m2 g m2 a
m2 g
T3
T2
M2
R2
T3
M1
R1
对M1 、M2分析力矩;由转动定律: 1 (T1 T3 ) R1 M 1 R12 1 2 1 2 (T3 T2 ) R2 M 2 R2 2 2
刚体定轴转动角动量守恒定律:
若 M z 0 ,则Lz J 常量。
3) 刚体定轴转动定律:
M J
4)刚体定轴转动的动能定理:
1 1 2 2 A M d Ek J J0 2 2
合外力矩的功等于刚体转动动能的增量。
5)刚体的机械能守恒定律: 若刚体在转动过程中, 只有重力矩做功, 则刚体系统 机械能守恒.
2、一轻绳绕于半径 r = 0.2m 的飞轮边缘,并施以 F = 98N 的拉力,若不计摩擦,飞轮的角加速度等于 39.2rad/s2,此飞轮的转动惯量为(
0.5kgm2
0.5kgm2
)
Fr J
F
J
Fr
3、一半径为R、质量为M的圆盘可绕中心轴旋转。圆盘上距离 转轴为R/2处站有一质量为m的人。设开始时圆盘与人相对于地 面以角速度ω0匀速转动,则此人走道圆盘边缘时,人和圆盘一 2 1 R 2M m 2 起转动的角速度为( ) 0 L0 MR 0 m 0 2 2 2 M 4m 1 L MR 2 mR 2 2 3、几个力同时作用在一个具有固定转轴的刚体上,如果这几个
力学习题课
力 时间积累:冲量 动量定理 质点 质点系
F 空间转动效应:力矩 角动量定理 质点 质点系 刚体
空间积累:功 动能定理 质点 质点系 保守力 势能
动量守恒定律 质点 质点系
角动量守恒定律 定轴转动定律
动力学知 识点回顾
机械能守恒定律
刚体动能定理
刚体机械能守恒定律
能量守恒定律
一、基本概念:
m
B
mg
l 2
A
h
m
mg
C
m
l mg
l mvA J mul 2
l l mu J 2 2
J为其跷板的转动惯量, 把板看成是窄长条形状。
l 1 2 u v A 2 gl J ml 2 12 l 1 2 mvA J ml 2 2 l mvA 6m (2 gh) 2 1 1 2 (m 6m)l 2 ml ml 12 2
1 2 E J mghc C 2
质点的运动规律和刚体定轴转动规律的对比(一)
质点的运动
速度 加速度
dr v dt dv a dt
b
刚体的定轴转动
角速度 角加速度
d dt d dt
质量m, 力F 力的功
转动惯量J , 力矩M 力矩的功
7、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑 轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到 竖直位置的过程中,下述说法哪一种是正确的? A)角速度从小到大,角加速度从大到小. B)角速度从小到大,角加速度从小到大. C)角速度从大到小,角加速度从大到小. D)角速度从大到小,角加速度从小到大. [ A ]
C m
h
mg
mgh v 2ah 2 m1 m2 2m
[例4] 一杂技演员A由距水平跷板高为h处自由下落到跷板的一端, 并把跷板另一端的演员B弹了起来. 设跷板是匀质的, 长度 为l, 质量为m,支撑板在板的中点C, 跷板可绕点C在竖直平 面内转动, 演员A,B的质量都是m. 假定演员A落在跷板上, 与跷板的碰撞是完全非弹性碰撞. 问演员B可弹起多高. 解: 把演员视为质点, A、B和跷 板作为一个系统, 以通过点C 垂直平面的轴为转轴. 由于作用在系统上的合外力 矩为零,故系统的角动量守恒。 l 初状态: L1 rA mv A mv A 2 末状态: L2 LA LB LC mu